[go: up one dir, main page]

JP2012032285A - Foam inspection method - Google Patents

Foam inspection method Download PDF

Info

Publication number
JP2012032285A
JP2012032285A JP2010172316A JP2010172316A JP2012032285A JP 2012032285 A JP2012032285 A JP 2012032285A JP 2010172316 A JP2010172316 A JP 2010172316A JP 2010172316 A JP2010172316 A JP 2010172316A JP 2012032285 A JP2012032285 A JP 2012032285A
Authority
JP
Japan
Prior art keywords
foam
wave
inspection method
ultrasonic waves
ultrasonic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010172316A
Other languages
Japanese (ja)
Inventor
Kazuo Oraku
和夫 大楽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaneka Corp
Original Assignee
Kaneka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corp filed Critical Kaneka Corp
Priority to JP2010172316A priority Critical patent/JP2012032285A/en
Publication of JP2012032285A publication Critical patent/JP2012032285A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an inspection method for nondestructively detecting an internal defect of a foam so as to solve the problem in which there has been no effective inspection method since an ultrasonic wave, which is generally used for a nondestructive inspection method, is reflected against a boundary surface between a film layer and an air layer, which constitute a foam, and is not transmitted through a foam.SOLUTION: The problem is solved by using a burst wave ultrasonic wave or a chirp wave ultrasonic wave as the ultrasonic wave for a nondestructive inspection since they are transmitted through the foam.

Description

本発明は、発泡体の内部欠陥を非破壊で検出する検査方法に関する。   The present invention relates to an inspection method for nondestructively detecting internal defects of a foam.

発泡体製品の内部には、製造過程で空隙が発生したり、ビーズ法による型内発泡法により成形された発泡体ではビーズ同士が融着していない融着不良と呼ばれる欠陥が発生する場合がある。 これら製品内部に発生している欠陥は、製品を割って検査しないと発見が困難であるため、客先で発泡体を使用する際に初めて発見されることになる。   Inside the foam product, voids may occur during the manufacturing process, or in the foam molded by the in-mold foaming method using the bead method, defects called poor fusion may occur, where the beads are not fused together. is there. The defects occurring inside these products are difficult to discover unless the product is cracked and inspected, and will be discovered for the first time when the foam is used at the customer site.

この問題に対して、発泡体製造メーカーの工場では、抜き取り検査、すなわち、適当な時間間隔で製品を抜き取り、それら製品を割って製品内部の欠陥をチェックする検査が行われており、欠陥品があれば、欠陥が発生しないように製造工程の条件調整を行っている。
検査に用いた製品は、製品として通用しないために廃棄され、その費用の発生が問題である。
また、製品検査の頻度を上げられないので、きめ細かな工程管理が難しい。そのため、製造工程の条件は、余裕を持った安全サイドに設定されることになる。その結果、過剰な加熱、過剰な冷却、過剰な成型時間で製造することになり、生産性の低下、エネルギー効率の低下を招くことになる。
従って、発泡体を生産する工場では、製品を破壊せず、内部欠陥を検査する装置が必要とされてきた。
In order to deal with this problem, the foam manufacturer's factory conducts a sampling inspection, that is, an inspection is performed in which products are extracted at appropriate time intervals, and these products are divided to check for defects inside the products. If there is, the conditions of the manufacturing process are adjusted so that defects do not occur.
The product used for the inspection is discarded because it cannot be used as a product, and its cost is a problem.
In addition, since the frequency of product inspection cannot be increased, detailed process management is difficult. Therefore, the manufacturing process conditions are set on the safe side with a margin. As a result, production is performed with excessive heating, excessive cooling, and excessive molding time, resulting in a decrease in productivity and a decrease in energy efficiency.
Therefore, in a factory that produces foam, an apparatus for inspecting internal defects without destroying the product has been required.

発泡体の内部欠陥を検査する方法としては、軟X線を用いる装置が考えられるが、高価であり、放射線被爆に対する対策も必要となるので、発泡体の製造工場への導入は困難である。また、ビーズ法による型内発泡成型法で発生する融着不良は、喩え成形体の内部の画像が見えたとしてもビーズ同士が融着しているのか接しているだけなのか識別できないため、軟X線は有効ではない。   As a method for inspecting the internal defect of the foam, an apparatus using soft X-rays can be considered. However, since it is expensive and measures against radiation exposure are required, it is difficult to introduce the foam into a manufacturing factory. In addition, poor fusion that occurs in the in-mold foam molding method using the bead method cannot be discriminated whether the beads are fused or in contact with each other even if an image inside the molded product is seen. X-rays are not effective.

そこで、超音波探傷器の応用も試みられているが、従来の超音波探傷器に用いられてきた超音波はパルス波であり、パルス波超音波の大半は、発泡体の基材と空隙の界面において反射され、成形体の内部に透過しないため、内部欠陥の検出は困難であった。
これに対して、特許文献1に記載されているように、特殊な条件下では、超音波が成形体の内部に透過する場合がある。ただし、測定対象が表皮を有する発泡体に限られ、かつ、超音波を発信、受信するプローブを密着させるなど、特殊な測定条件に限られ、実用性の低いものであった。
Therefore, application of ultrasonic flaw detectors has also been attempted, but the ultrasonic waves that have been used in conventional ultrasonic flaw detectors are pulse waves, and most of the pulse wave ultrasonic waves are formed between the foam substrate and the voids. Since it is reflected at the interface and does not pass through the inside of the molded body, it is difficult to detect internal defects.
On the other hand, as described in Patent Document 1, under special conditions, ultrasonic waves may pass through the molded body. However, the measurement object is limited to a foam having an epidermis, and is limited to special measurement conditions such as close contact with a probe that transmits and receives ultrasonic waves, and has low practicality.

従って、発泡体の内部欠陥を非破壊で検出する適当な検査方法はなく、その開発が待たれていた。   Accordingly, there is no appropriate inspection method for detecting the internal defects of the foam in a nondestructive manner, and development of the method has been awaited.

特開2000−187024JP2000-187024

本発明の目的は、発泡体の内部欠陥を比較的安価でかつ安全に検出できる検査方法を提供することにある。   The objective of this invention is providing the inspection method which can detect the internal defect of a foam comparatively cheaply and safely.

本発明者は、上記課題に関して鋭意検討した結果、比較的周波数の低いバースト波超音波やチャープ波超音波を用い発泡体サンプルを透過する超音波の透過率を検出することにより、発泡体内部の欠陥を検出できることを見出し、本発明を完成させるに至った。   As a result of intensive studies on the above problems, the present inventor has detected the transmittance of ultrasonic waves transmitted through the foam sample using burst wave ultrasonic waves and chirped wave ultrasonic waves having a relatively low frequency, and thereby the inside of the foam. It has been found that defects can be detected, and the present invention has been completed.

すなわち、本発明は、
[1] 発泡体の内部欠陥を非破壊で検出する検査方法であって、
発泡体に向けてバースト波超音波もしくはチャープ波超音波を発信し、発泡体を透過した該超音波を受信して、透過した該超音波の強度の減衰率から発泡体の内部欠陥を検出することを特徴とする、発泡体の非破壊検査方法、
[2] 超音波の発信および受信探触子が、検査対象の発泡体に対し非接触であることを特徴とする、[1]記載の発泡体の非破壊検査方法、
[3] バースト波超音波もしくはチャープ波超音波の周波数が、16kHz〜200kHzのいずれかであることを特徴とする、[1]または[2]記載の発泡体の非破壊検査方法、
[4] バースト波超音波もしくはチャープ波超音波の周波数が、30kHz〜150kHzのいずれかであることを特徴とする、[1]または[2]記載の発泡体の非破壊検査方法、
[5] 発泡体が、熱可塑性樹脂を基材樹脂とするビーズ法による型内発泡成型法により成型された発泡体であることを特徴とする、[1]〜[4]のいずれかに記載の発泡体の非破壊検査方法、および
[6] 発泡体の内部欠陥が、原料発泡ビーズの融着不良であることを特徴とする、[5]記載の発泡体の非破壊検査方法
に関する。
That is, the present invention
[1] An inspection method for nondestructively detecting internal defects of a foam,
Transmits burst wave or chirp wave ultrasonic waves toward the foam, receives the ultrasonic waves transmitted through the foam, and detects internal defects of the foam from the attenuation rate of the intensity of the transmitted ultrasonic waves A non-destructive inspection method for foam,
[2] The foam non-destructive inspection method according to [1], wherein the ultrasonic wave transmission and reception probe is non-contact with the foam to be inspected,
[3] The nondestructive inspection method for foam according to [1] or [2], wherein the frequency of burst wave ultrasonic waves or chirp wave ultrasonic waves is any of 16 kHz to 200 kHz,
[4] The nondestructive inspection method for foam according to [1] or [2], wherein the frequency of the burst wave ultrasonic wave or the chirp wave ultrasonic wave is any of 30 kHz to 150 kHz,
[5] The foam according to any one of [1] to [4], wherein the foam is a foam molded by an in-mold foam molding method using a thermoplastic resin as a base resin. The foam non-destructive inspection method and [6] The foam non-destructive inspection method according to [5], wherein the internal defect of the foam is poor fusion of the raw material foam beads.

本発明の非破壊検査法のように、バースト波超音波もしくはチャープ波超音波を発泡体に向けて発信し、発泡体を透過した超音波を受信することにより、得られる透過した超音波の強度の減衰率から、発泡体の内部欠陥を検出することができる。   As in the non-destructive inspection method of the present invention, the intensity of transmitted ultrasonic waves obtained by transmitting burst wave ultrasonic waves or chirped wave ultrasonic waves toward the foam and receiving the ultrasonic waves transmitted through the foam is obtained. The internal defect of the foam can be detected from the attenuation rate of the foam.

本発明の非破壊検査により、従来困難であった発泡体の内部欠陥を、比較的安価でかつ安全に検出できる、非破壊検査が可能となる。   By the nondestructive inspection of the present invention, it is possible to perform a nondestructive inspection that can detect an internal defect of a foam, which has been difficult in the past, relatively inexpensively and safely.

本発明の実施態様に係る検査装置の構成の一例を示す図である。It is a figure which shows an example of a structure of the test | inspection apparatus which concerns on the embodiment of this invention. 本発明の実施態様に係る、探触子の配置を示す図である。It is a figure which shows arrangement | positioning of a probe based on the embodiment of this invention. 本発明の別の実施態様に係る、探触子の配置を示す図である。It is a figure which shows arrangement | positioning of the probe based on another embodiment of this invention. 本発明の実施例1に係る融着率と透過波のエコー高さの関係を示す図である。It is a figure which shows the relationship between the fusion rate which concerns on Example 1 of this invention, and the echo height of a transmitted wave.

本発明の発泡体の非破壊検査法は、バースト波超音波もしくはチャープ波超音波を発泡体に向けて発信し、発泡体を透過した超音波を受信することにより、得られる透過した超音波の強度の減衰率から、発泡体の内部欠陥を検出することを特徴とする発泡体の非破壊検査方法である。   The nondestructive inspection method for foam according to the present invention transmits burst wave ultrasonic waves or chirp wave ultrasonic waves toward the foam, and receives the ultrasonic waves transmitted through the foam. This is a nondestructive inspection method for a foam, wherein an internal defect of the foam is detected from an attenuation rate of strength.

バースト波超音波やチャープ波超音波とは、超音波の一種であり、バースト波とは同じ周波数のパルス波を複数回繰り返すものであり、チャープ波はパルス波の周波数を変化させる(すなわち、変調させる)ものであり、例えば、特開2009−276319号公報に記載されている。   Burst wave ultrasonic waves and chirp wave ultrasonic waves are a kind of ultrasonic waves. A burst wave is a pulse wave with the same frequency that is repeated multiple times. A chirp wave changes the frequency of a pulse wave (ie, modulation). For example, it is described in JP2009-276319A.

バースト波超音波もしくはチャープ波超音波を非破壊検査方法に応用すると、SN比に優れる特徴があるため、一般の超音波では困難であった発泡体を透過させることが可能になる。
一般に、受信探触子から得られる信号には、ノイズが含まれる。信号(Signal)とノイズ(Noise)の比はSN比と表現される。ここで、SN比が低いと、意味のある信号がノイズに埋もれてしまい測定できないことを意味している。
When burst wave ultrasonic waves or chirped wave ultrasonic waves are applied to a non-destructive inspection method, it is possible to transmit a foam, which is difficult with general ultrasonic waves, because it has a characteristic of excellent SN ratio.
In general, a signal obtained from a reception probe includes noise. The ratio between the signal (Signal) and noise (Noise) is expressed as the SN ratio. Here, if the S / N ratio is low, it means that a meaningful signal is buried in noise and cannot be measured.

すなわち、発信探触子から発せられた超音波は、発泡体を通過することにより減衰するが、限度を超えて微弱な信号になるとノイズと区別できなくなり、測定ができなくなる。ノイズは、不規則に発生する電気信号であるが、一般に計測に用いられる超音波信号はパルス信号(すなわち一回限りの波)であり、超音波信号が微弱になると、多数回発生させて、それらの平均をとってもSN比を改善することは困難になる。
バースト波超音波やチャープ波超音波と呼ばれる信号は、規則的に繰り返す波全体が対象であるため、入力と出力の間での規則的に変動する波全体の相関をとる演算をすることにより、不規則なノイズを排除することが容易となる。そのため、バースト波超音波やチャープ波超音波では、SN比が向上し、すなわち、超音波信号が透過しやすくなることになる。
That is, the ultrasonic wave emitted from the transmission probe is attenuated by passing through the foam, but if it becomes a weak signal exceeding the limit, it cannot be distinguished from noise and measurement is impossible. Noise is an electrical signal that occurs irregularly, but the ultrasonic signal generally used for measurement is a pulse signal (that is, a one-time wave). When the ultrasonic signal becomes weak, it is generated many times, It is difficult to improve the signal-to-noise ratio even if the average is taken.
Signals called burst wave ultrasound and chirp wave ultrasound are targeted for the entire regularly repeating wave, so by calculating the correlation of the entire wave that fluctuates regularly between input and output, It becomes easy to eliminate irregular noise. Therefore, in the burst wave ultrasonic wave and the chirp wave ultrasonic wave, the SN ratio is improved, that is, the ultrasonic signal is easily transmitted.

バースト波超音波やチャープ波超音波は、上述のように、測定対象の発泡体を透過させることができるため、発泡体を透過させた際の減衰率を評価することにより、内部の欠陥を検出することが可能になる。   As mentioned above, burst wave ultrasonic waves and chirp wave ultrasonic waves can pass through the foam to be measured, so internal defects are detected by evaluating the attenuation rate when the foam is passed through. It becomes possible to do.

すなわち、発泡体内部に欠陥がない場合、発泡体を構成する気泡の壁は相互に結合しており自由に振動することを制限されている。この場合、超音波は、壁の表面で大半が反射されるため、ほとんど透過できない。したがって、減衰率が大きくなる。
一方、大きな空洞がある場合やビーズ型内発泡成形法においてビーズ相互が融着していない場合、バースト波超音波やチャープ波超音波は、空洞部分が共振することにより振動が減衰されることが少なくなるため、透過しやすくなる。
That is, when there is no defect inside the foam, the walls of the bubbles constituting the foam are connected to each other and are restricted from vibrating freely. In this case, most of the ultrasonic waves cannot be transmitted because most of the ultrasonic waves are reflected on the surface of the wall. Therefore, the attenuation rate increases.
On the other hand, when there are large cavities or beads are not fused together in the in-mold foam molding method, the vibration of burst wave ultrasonic waves and chirped wave ultrasonic waves may be attenuated due to resonance of the cavity portions. Since it decreases, it becomes easy to transmit.

本発明の発泡体の非破壊検査法においては、発泡体を透過したバースト波超音波やチャープ波超音波の減衰率と融着率との関係を予め測定し、検量線を作成する。次いで、検査対象である発泡体を透過する超音波の減衰率を測定して、検量線を参照することにより、融着率を非破壊で検出することができる。   In the nondestructive inspection method for a foam according to the present invention, a calibration curve is created by measuring in advance the relationship between the attenuation rate and the fusion rate of burst wave ultrasonic waves and chirp wave ultrasonic waves that have passed through the foam. Subsequently, the fusion rate can be detected nondestructively by measuring the attenuation rate of the ultrasonic wave transmitted through the foam to be inspected and referring to the calibration curve.

ここで、本発明の発泡体の非破壊検査法においては、発泡体を透過した超音波を「エコー」と呼び、該エコー波形の強さを「エコー高さ」と呼ぶ。
そして、超音波の減衰率が小なければ、エコー高さは高くなり、減衰率が大きければ、エコー高さは低くなる。そのため、エコー高さは、超音波の減衰率を反映した指標として測定される。そこで、本発明の発泡体の非破壊検査法においては、エコー高さと融着率の関係に関する検量線を用いる。得られた検量線により、測定されたエコー高さから融着率を推算することができる。
Here, in the nondestructive inspection method for foam according to the present invention, the ultrasonic wave transmitted through the foam is called “echo”, and the intensity of the echo waveform is called “echo height”.
If the attenuation rate of the ultrasonic wave is small, the echo height is high, and if the attenuation rate is large, the echo height is low. Therefore, the echo height is measured as an index reflecting the ultrasonic attenuation rate. Therefore, in the nondestructive inspection method for foams of the present invention, a calibration curve relating to the relationship between echo height and fusion rate is used. With the obtained calibration curve, the fusion rate can be estimated from the measured echo height.

本発明の発泡体の非破壊検査法においては、バースト波やチャープ波の超音波は、図1に示すように、超音波発信・受信装置(「パルサ・レシーバ」とも呼ばれる)2において電気信号として発せられ、発信探触子3から超音波となって発信される。また、発泡体を透過した超音波は、受信探触子4にて受信した後、電気信号に変換され、プリアンプ5で増幅され、超音波発信・受信装置2に入力し、必要な信号処理を施されて、エコー波(すなわち、成型体サンプルを透過した受信波)が表示装置6に表示される。   In the nondestructive inspection method for foam according to the present invention, burst wave and chirp wave ultrasonic waves are converted into electric signals in an ultrasonic wave transmitting / receiving device (also referred to as “pulser / receiver”) 2 as shown in FIG. Emitted from the transmission probe 3 as ultrasonic waves. The ultrasonic wave transmitted through the foam is received by the receiving probe 4, converted into an electric signal, amplified by the preamplifier 5, and input to the ultrasonic wave transmitting / receiving device 2 to perform necessary signal processing. The echo wave (that is, the received wave that has passed through the molded body sample) is displayed on the display device 6.

本発明の検査方法において精度よくエコー波形を得るためには、検査に用いられる超音波の周波数としては、16〜200KHzの範囲内のいずれかの周波数が好ましく、30〜150KHzの範囲内のいずれかの周波数がより好ましい。   In order to obtain an echo waveform accurately in the inspection method of the present invention, the frequency of the ultrasonic wave used for the inspection is preferably any frequency within the range of 16 to 200 KHz, and any one within the range of 30 to 150 KHz. The frequency of is more preferable.

一般に、超音波が発泡体内部を透過する場合、超音波の周波数が高いと、大半が発泡体の気泡の壁面で散乱され、発泡体内部を透過しない。そのため、超音波の周波数は低く設定すべきである。
一方、欠陥を検出するためには、当該欠陥の寸法に対して、超音波の波長を同程度または、それ以下にする必要がある。これは、測定対象物より波長が長くなると、超音波の散乱や回折現象が無視できなくなり、精度よくエコー波形を得ることが困難になるためである。
In general, when ultrasonic waves are transmitted through the inside of the foam, if the frequency of the ultrasonic waves is high, most of the ultrasonic waves are scattered on the wall surfaces of the foam bubbles and do not pass through the inside of the foam. Therefore, the ultrasonic frequency should be set low.
On the other hand, in order to detect a defect, it is necessary to make the wavelength of the ultrasonic wave the same as or less than the size of the defect. This is because if the wavelength is longer than the object to be measured, ultrasonic scattering and diffraction phenomena cannot be ignored, and it is difficult to obtain an echo waveform with high accuracy.

ところで、超音波の波長λと周波数f、音速vとの間には (1)式の関係がある。
λ=v/f (1)
15℃の空気中における音速vは340(m/秒)であるため、(1)式に代入して計算すると、周波数と波長の関係は、表1に示すとおりである。
By the way, there exists a relationship of (1) Formula between the wavelength (lambda) of an ultrasonic wave, the frequency f, and the sound speed v.
λ = v / f (1)
Since the sound velocity v in the air at 15 ° C. is 340 (m / sec), the relationship between the frequency and the wavelength is as shown in Table 1 when calculated by substituting into the equation (1).

Figure 2012032285
Figure 2012032285

超音波の周波数が200KHzを超えると、波長が短くなるので、1.7mm程度の細かい欠陥も検出できるが、超音波自体が発泡体内部を透過しにくくなる傾向がある。また、超音波の周波数を16KHz未満に下げると、超音波は透過しやすくなるが 波長は長くなるので、20mm以下の細かい欠陥は見落とす可能性がでてくる。   When the frequency of the ultrasonic wave exceeds 200 KHz, the wavelength is shortened, so that a fine defect of about 1.7 mm can be detected, but the ultrasonic wave itself tends to be difficult to transmit inside the foam. Moreover, if the frequency of the ultrasonic wave is lowered to less than 16 KHz, the ultrasonic wave is easily transmitted, but the wavelength becomes long, so that a fine defect of 20 mm or less may be overlooked.

発泡体の基材樹脂や気泡形状にも影響されるが、透過性と解像度の両者を満足する条件として、超音波の周波数としては、30〜150KHzの範囲内のいずれかが最も発泡体の欠陥検出に適している。   Although affected by the base resin of the foam and the shape of the bubbles, as a condition that satisfies both the permeability and resolution, the ultrasonic frequency is most often in the range of 30 to 150 KHz. Suitable for detection.

一般に、パルス波超音波を用いた非破壊検査では、探触子を検査対象に密着させたり、水やゲル状物質を介在させ、検査対象物体と探触子との間の空気を排除する必要がある。このことは、空気と検査対象物体との間の密度差が大きいと、両者の界面で超音波が反射され透過しないためである。   In general, in non-destructive inspection using pulse wave ultrasonic waves, it is necessary to close the probe to the inspection target, or to interpose water or a gel-like substance to eliminate air between the inspection target object and the probe. There is. This is because if the density difference between the air and the object to be inspected is large, ultrasonic waves are reflected at the interface between the two and do not transmit.

これに対して、バースト波超音波やチャープ波超音波であれば、空気中から検査対象に向けて発せられたものであっても、ある程度透過できる。従って、バースト波超音波やチャープ波超音波を用いる場合には、水やゲルなどの媒体を用いたり、探触子を検査対象に密着させる必要がなく、すなわち、非接触での検査が可能となる。
よって、本発明の発泡体の非破壊検査法は、検査設備の構造が簡単になり、操作が迅速になるなど、極めて有利な方法である。
On the other hand, burst wave ultrasonic waves and chirp wave ultrasonic waves can be transmitted to some extent even if they are emitted from the air toward the inspection object. Therefore, when using burst wave ultrasonic waves or chirp wave ultrasonic waves, it is not necessary to use a medium such as water or gel, or to closely contact the probe to the inspection object, that is, non-contact inspection is possible. Become.
Therefore, the non-destructive inspection method for foam according to the present invention is a very advantageous method in that the structure of the inspection facility is simplified and the operation is quick.

本発明の検査方法では、図2に示すとおり、検査対象サンプルに対して、直接接触させない状態で、検査対象サンプル1の一方面に発信探触子3を、反対側に受信探触子4を配置する。そして、サンプルの表面に沿って発信探触子および受信探触子を移動させながら、各点の超音波透過率を測定する。
得られた透過率データは、データ処理用コンピュータに入力され、異常値(すなわち、融着率が限度を超えて低いことを示す透過率)があれば、警報を発するなどして不良品を発見することができる。また、検査した面の透過率を等高線や色分けにより表示することにより、サンプルの融着率の分布を表示し、成形条件の調整や金型の異常、フィーダ(樹脂を金型内に供給する器具)の不具合を監視することも可能である。
従って、本発明の検査方法は、工程管理上も有効な検査方法である。
In the inspection method of the present invention, as shown in FIG. 2, the transmitting probe 3 is placed on one surface of the inspection target sample 1 and the receiving probe 4 is placed on the opposite side in a state where it is not in direct contact with the inspection target sample. Deploy. Then, the ultrasonic transmittance at each point is measured while moving the transmitting probe and the receiving probe along the surface of the sample.
The obtained transmittance data is input to the computer for data processing, and if there is an abnormal value (that is, a transmittance indicating that the fusion rate is low beyond the limit), an alarm is issued to detect defective products. can do. In addition, by displaying the transmittance of the inspected surface by contour lines or color coding, the distribution of the fusion rate of the sample is displayed, adjustment of molding conditions, abnormalities of the mold, feeder (resin that supplies resin into the mold) ) Can also be monitored.
Therefore, the inspection method of the present invention is an effective inspection method for process management.

本発明の検査方法では、図3に示すように、検査対象サンプル1に対して、発信探触子3を斜めの位置に配置、超音波を斜めに発信し、サンプル内部を透過して、同じ面側の離れた位置へ戻ってきた透過波を受信探触子4で受信することも可能である。
この方法によれば、離れて配置された発信探触子3と受信探触子4の間に位置する部分を一度に検査できるので、検査対象の製品寸法が大きい場合、短時間で欠陥の有無を検査することができる。
本発明の検査方法では、さらに、検査対象の特性によっては、探触子を検査対象に接触させることにより、測定精度を向上させることもできる。
In the inspection method of the present invention, as shown in FIG. 3, the probe 3 is disposed at an oblique position with respect to the sample 1 to be inspected, ultrasonic waves are transmitted obliquely, the inside of the sample is transmitted, and the same It is also possible for the reception probe 4 to receive a transmitted wave that has returned to a position distant from the surface side.
According to this method, since a portion located between the transmitting probe 3 and the receiving probe 4 that are arranged at a distance can be inspected at a time, if the product size to be inspected is large, the presence or absence of defects can be detected in a short time. Can be inspected.
In the inspection method of the present invention, depending on the characteristics of the inspection object, the measurement accuracy can be improved by bringing the probe into contact with the inspection object.

本発明での検査の対象は、発泡体である。好ましくは、熱可塑性樹脂によるビーズ法による型内発泡成型法により成型された発泡体である。   The object of inspection in the present invention is a foam. Preferably, it is a foam molded by an in-mold foam molding method using a bead method using a thermoplastic resin.

ビーズ法による型内発泡成型法とは、予め成型体の最終発泡倍率程度まで発泡させた樹脂ビーズを金型内に充填し、蒸気で過熱することにより発泡させると共に、ビーズ相互を融着させ発泡成型体を得る成型方法である。型内成形法においては、発泡圧により、ビーズ間の空隙が埋められると同時に、温度が上昇したビーズ同士が加圧され、融着させる。   The in-mold foam molding method using the bead method is filled with resin beads that have been foamed to the final foaming ratio of the molded body in advance and foamed by heating with steam, and the beads are fused together to foam. This is a molding method for obtaining a molded body. In the in-mold molding method, the gap between the beads is filled by the foaming pressure, and at the same time, the beads whose temperature has increased are pressurized and fused.

その際の問題点は、ビーズ間の隙間は埋められ一体化しているように見えても、接しているだけで融着していない場合である。
このような場合、ユーザーで発泡成型体を切削加工した際や、使用中に力が加わった場合、ビーズがばらけて、そこで初めて融着不良の欠陥が顕在化する。製造過程で検査する場合は、発泡成形体を割ってみないと、融着不良の欠陥が存在するか否かは判らない。
The problem at that time is when the gaps between the beads seem to be filled and integrated, but they are in contact but not fused.
In such a case, when the user cuts the foamed molded body or when a force is applied during use, the beads are separated, and a defect of poor fusion becomes apparent for the first time. When inspecting during the manufacturing process, it is not possible to determine whether or not there is a defect of poor fusion unless the foamed molded product is broken.

本発明の検査方法によれば、このような融着不良の欠陥を非破壊で検出でき、製品全数の検査も可能であり、きわめて有用な検査方法である。   According to the inspection method of the present invention, such a defective fusion defect can be detected in a non-destructive manner, and the entire product can be inspected, which is an extremely useful inspection method.

本発明の検査方法において、ビーズ法による型内発泡成形体に、バースト波やチャープ波の超音波を透過させる場合、ビーズ相互が融着していれば、超音波は透過しにくく、得られたエコー高さが低くなる。これに対して、ビーズ相互の融着が悪いと、超音波は透過しやすくなり、得られるエコー高さは高くなる。
また、超音波を透過させる場合、発泡体内部に空隙あると、同じく透過しやすくなり、得られるエコー高さが高くなり、空隙による欠陥を検出することができる。
In the inspection method of the present invention, when transmitting ultrasonic waves of burst waves and chirp waves to the in-mold foam molded body by the bead method, if the beads are fused together, the ultrasonic waves are not easily transmitted and obtained. The echo height is lowered. On the other hand, when the fusion between the beads is poor, the ultrasonic wave is easily transmitted, and the echo height obtained is high.
In addition, when transmitting ultrasonic waves, if there are voids inside the foam, it is also easy to transmit, resulting in a higher echo height and detection of defects due to voids.

発泡体の検査方法にかかる実施形態例である検査装置および測定条件について、図1を用いて説明する。   An inspection apparatus and measurement conditions according to an embodiment of the foam inspection method will be described with reference to FIG.

検査対象の発泡体サンプル1は、肉厚(厚さ60mm)の板状サンプルであって、サンプル1を挟んで対向する位置に、それぞれ50mmの間隔を開けて、発信探触子3(ジャパンプローブ株式会社製、0.05K50×50A)と、反対側に受信探触子4(ジャパンプローブ株式会社製、0.05K50×50A)を配置する。
超音波発信・受信装置2(ジャパンプローブ株式会社製、JPR−IC)で生成された周波数47KHz、5波繰り返しのバースト波超音波信号を、発信探触子3から超音波としてサンプル1に当て、サンプル1を透過した超音波を受信探触子4で受信し、プリアンプ5(ジャパンプローブ株式会社製、PR−60A)で増幅して、超音波発信・受信装置2(ジャパンプローブ株式会社製、JPR−IC)に入力し、信号処理を施し、受信波形(すなわち、エコー波)を表示装置6(ノートパソコン、OS:Windows(登録商標) XP)に表示し、エコー高さを読み取る。
用いた発泡体サンプル1は、ビーズ法による型内発泡成型法により成型された発泡ポリプロピレン成形体(高さ295mm×幅393mm×厚さ60mm、発泡倍率は45倍)であり、融着率0%、20%、60%、100%の4水準の発泡体を用意した。
測定においては、発泡体サンプルの厚さ方向を透過するように、バースト波超音波を透過させた。
The foam sample 1 to be inspected is a plate-like sample having a thickness (thickness of 60 mm), and the transmitter probe 3 (Japan probe) is spaced at a distance of 50 mm between the sample 1 and the opposite position. The receiving probe 4 (manufactured by Japan Probe Co., Ltd., 0.05K50 × 50A) is arranged on the opposite side.
A burst wave ultrasonic signal generated by an ultrasonic transmission / reception device 2 (Japan Probe Co., Ltd., JPR-IC) having a frequency of 47 kHz and a repetition of 5 waves is applied to the sample 1 as an ultrasonic wave from the transmission probe 3, The ultrasonic wave transmitted through the sample 1 is received by the reception probe 4 and amplified by the preamplifier 5 (Japan Probe Co., Ltd., PR-60A), and the ultrasonic transmission / reception device 2 (Japan Probe Co., Ltd., JPR). -IC), signal processing is performed, the received waveform (that is, echo wave) is displayed on the display device 6 (notebook personal computer, OS: Windows (registered trademark) XP), and the echo height is read.
The used foam sample 1 is a foamed polypropylene molded body (height 295 mm × width 393 mm × thickness 60 mm, expansion ratio 45 times) molded by an in-mold foam molding method using a bead method, and has a fusion rate of 0%. 20%, 60%, and 100% foams were prepared.
In the measurement, burst wave ultrasonic waves were transmitted so as to transmit in the thickness direction of the foam sample.

4水準のサンプルにおけるエコー高さを、表示装置より読み取り、透過波のエコー高さを記録した。図4には、融着率0%の場合のエコー高さを100%とし、融着率とエコー高さの関係を図示し(図中、▲)、検量線とした。
別途、同じ形状および発泡倍率で、融着率が0%、30%、70%、100%の発泡ポリプロピレン成形体に関して、同様の操作を行い、得られたエコー高さ(図中、●)をプロットしたところ、図4に示すように、検量線にほぼ一致した。
The echo height in the four-level sample was read from the display device, and the echo height of the transmitted wave was recorded. In FIG. 4, the echo height when the fusion rate is 0% is set to 100%, the relationship between the fusion rate and the echo height is shown (in the figure, ▲), and a calibration curve is shown.
Separately, for foamed polypropylene moldings with the same shape and expansion ratio and a fusion rate of 0%, 30%, 70%, and 100%, the same operation was performed, and the resulting echo height (● in the figure) When plotted, as shown in FIG. 4, it almost coincided with the calibration curve.

1 発泡体サンプル
2 超音波発信・受信装置
3 発信探触子
4 受信探触子
5 プリアンプ
6 表示装置
DESCRIPTION OF SYMBOLS 1 Foam sample 2 Ultrasonic transmission / reception apparatus 3 Transmission probe 4 Reception probe 5 Preamplifier 6 Display apparatus

Claims (6)

発泡体の内部欠陥を非破壊で検出する検査方法であって、
発泡体に向けてバースト波超音波もしくはチャープ波超音波を発信し、発泡体を透過した該超音波を受信して、透過した該超音波の強度の減衰率から発泡体の内部欠陥を検出することを特徴とする、発泡体の非破壊検査方法。
A non-destructive inspection method for detecting internal defects in foam,
Transmits burst wave or chirp wave ultrasonic waves toward the foam, receives the ultrasonic waves transmitted through the foam, and detects internal defects of the foam from the attenuation rate of the intensity of the transmitted ultrasonic waves A non-destructive inspection method for a foam.
超音波の発信探触子および受信探触子が、検査対象の発泡体に対し非接触であることを特徴とする、請求項1記載の発泡体の非破壊検査方法。   2. The foam non-destructive inspection method according to claim 1, wherein the ultrasonic transmission probe and the reception probe are not in contact with the foam to be inspected. バースト波超音波もしくはチャープ波超音波の周波数が、16kHz〜200kHzのいずれかであるあることを特徴とする、請求項1または2記載の発泡体の非破壊検査方法。   The nondestructive inspection method for foam according to claim 1 or 2, wherein the frequency of the burst wave ultrasonic wave or the chirp wave ultrasonic wave is any one of 16 kHz to 200 kHz. バースト波超音波もしくはチャープ波超音波の周波数が、30kHz〜150kHzのいずれかであるあることを特徴とする、請求項1または2記載の発泡体の非破壊検査方法。   The nondestructive inspection method for foam according to claim 1 or 2, wherein the frequency of the burst wave ultrasonic wave or the chirp wave ultrasonic wave is any one of 30 kHz to 150 kHz. 発泡体が、熱可塑性樹脂を基材樹脂とするビーズ法による型内発泡成型法により成型されてなる発泡体であることを特徴とする、請求項1〜4のいずれかに記載の発泡体の非破壊検査方法。   The foam according to any one of claims 1 to 4, wherein the foam is a foam formed by an in-mold foam molding method using a bead method using a thermoplastic resin as a base resin. Non-destructive inspection method. 発泡体の内部欠陥が、原料発泡ビーズの融着不良であることを特徴とする、請求項5記載の発泡体の非破壊検査方法。   6. The nondestructive inspection method for a foam according to claim 5, wherein the internal defect of the foam is a poor fusion of the raw material foam beads.
JP2010172316A 2010-07-30 2010-07-30 Foam inspection method Pending JP2012032285A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010172316A JP2012032285A (en) 2010-07-30 2010-07-30 Foam inspection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010172316A JP2012032285A (en) 2010-07-30 2010-07-30 Foam inspection method

Publications (1)

Publication Number Publication Date
JP2012032285A true JP2012032285A (en) 2012-02-16

Family

ID=45845864

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010172316A Pending JP2012032285A (en) 2010-07-30 2010-07-30 Foam inspection method

Country Status (1)

Country Link
JP (1) JP2012032285A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013217830A (en) * 2012-04-11 2013-10-24 Ihi Corp Ultrasonic flaw detection method and ultrasonic flaw detection device
CN109642873A (en) * 2016-06-08 2019-04-16 克朗斯股份公司 For checking the device and method of container

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11142378A (en) * 1997-11-13 1999-05-28 Nkk Corp Electromagnetic ultrasonic measurement method and apparatus
JP2000187024A (en) * 1998-12-24 2000-07-04 Mitsubishi Kagaku Form Plastic Kk Non-destructive inspection equipment for composite foam
JP2005274227A (en) * 2004-03-23 2005-10-06 Osaka Gas Co Ltd Ultrasonic flaw inspection method of pipe body
JP2009276319A (en) * 2008-05-19 2009-11-26 Choonpa Zairyo Shindan Kenkyusho:Kk Air ultrasonic diagnostic apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11142378A (en) * 1997-11-13 1999-05-28 Nkk Corp Electromagnetic ultrasonic measurement method and apparatus
JP2000187024A (en) * 1998-12-24 2000-07-04 Mitsubishi Kagaku Form Plastic Kk Non-destructive inspection equipment for composite foam
JP2005274227A (en) * 2004-03-23 2005-10-06 Osaka Gas Co Ltd Ultrasonic flaw inspection method of pipe body
JP2009276319A (en) * 2008-05-19 2009-11-26 Choonpa Zairyo Shindan Kenkyusho:Kk Air ultrasonic diagnostic apparatus

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JPN6014044712; MOUSSATOV A et al.: 'Porous material characterization - ultrasonic method for estimation of tortuosity and characteristic' Ultrasonics Vol.39, No.3, 200104, pp.195-202 *
JPN7014003034; Groby J P et al.: 'Analytical method for the ultrasonic characterization of homogeneous rigid porous materials from tra' J Acoust Soc Am. Vol.127, No.2, 201002, pp.764-772 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013217830A (en) * 2012-04-11 2013-10-24 Ihi Corp Ultrasonic flaw detection method and ultrasonic flaw detection device
CN109642873A (en) * 2016-06-08 2019-04-16 克朗斯股份公司 For checking the device and method of container

Similar Documents

Publication Publication Date Title
US4658649A (en) Ultrasonic method and device for detecting and measuring defects in metal media
US8826740B2 (en) Methods and apparatus for porosity measurement and defect detection
JP2003207463A (en) Nondestructive inspection method for concrete structure and structure other than the same
Spytek et al. Evaluation of disbonds in adhesively bonded multilayer plates through local wavenumber estimation
de Castro et al. Baseline-free damage imaging algorithm using spatial frequency domain virtual time reversal
CN106596725A (en) Method for ultrasonic distinguishing of R-region defect of composite material structure
US11860131B2 (en) System and method for portable ultrasonic testing
CN107024535B (en) A multi-coefficient depth detection method for vertical flaws based on surface waves
KR101351231B1 (en) Method and Apparatus For Spectroscopic Characterization Of Samples Using A Laser-Ultrasound System
JP2012032285A (en) Foam inspection method
US10627370B2 (en) Additive manufacture of metal objects; inspection and part validation
CN203117167U (en) Ultrasonic detector for road steel bridge
JPH04323553A (en) Ultrasonic resonance flaw detection method and equipment
JP4329773B2 (en) Ultrasonic inspection method for fluororesin inspection object
CN117233037A (en) Cable protection tube material density detection system and method based on air coupling ultrasound
KR101452441B1 (en) Measurement method for mechanical behavior of material using laser Ultrasonics and measurement apparatus of the same
Fromme Health monitoring of plate structures using guided waves
Fay et al. The thermoacoustic effect and its use in ultrasonic power determination
RU2214590C2 (en) Procedure establishing physical and mechanical characteristics of polymer composite materials and device for its implementation
KR20210111692A (en) Surface roughness analysis system and methods of analyzing surface roughness of a workpiece
RU2231054C1 (en) Method of determination of degree of polymerization of composite materials
JPH07248317A (en) Ultrasonic flaw detection method
JP2007309850A5 (en)
Kong et al. Preliminary Study of Using Acoustic Signal for Material Identification for Underwater Application
CN222050097U (en) A polyetheretherketone material defect detection device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130605

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140225

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20140403

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141028

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141210

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150512