JP2012011373A - Catalyst for decomposing ammonia, method for producing the catalyst, and method for decomposing ammonia and method for producing hydrogen using the catalyst - Google Patents
Catalyst for decomposing ammonia, method for producing the catalyst, and method for decomposing ammonia and method for producing hydrogen using the catalyst Download PDFInfo
- Publication number
- JP2012011373A JP2012011373A JP2011073605A JP2011073605A JP2012011373A JP 2012011373 A JP2012011373 A JP 2012011373A JP 2011073605 A JP2011073605 A JP 2011073605A JP 2011073605 A JP2011073605 A JP 2011073605A JP 2012011373 A JP2012011373 A JP 2012011373A
- Authority
- JP
- Japan
- Prior art keywords
- catalyst
- component
- ammonia
- water
- hydrogen
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 title claims abstract description 222
- 239000003054 catalyst Substances 0.000 title claims abstract description 168
- 229910021529 ammonia Inorganic materials 0.000 title claims abstract description 109
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 title claims abstract description 59
- 239000001257 hydrogen Substances 0.000 title claims abstract description 41
- 229910052739 hydrogen Inorganic materials 0.000 title claims abstract description 41
- 238000004519 manufacturing process Methods 0.000 title claims description 53
- 238000000034 method Methods 0.000 title claims description 13
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims abstract description 132
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 49
- 239000007789 gas Substances 0.000 claims abstract description 28
- 230000000737 periodic effect Effects 0.000 claims abstract description 10
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 97
- 239000007864 aqueous solution Substances 0.000 claims description 76
- 239000002244 precipitate Substances 0.000 claims description 56
- 238000000354 decomposition reaction Methods 0.000 claims description 47
- 239000010419 fine particle Substances 0.000 claims description 28
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 24
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 21
- 150000003839 salts Chemical class 0.000 claims description 20
- 238000003756 stirring Methods 0.000 claims description 17
- 150000001875 compounds Chemical class 0.000 claims description 15
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 claims description 12
- 239000000377 silicon dioxide Substances 0.000 claims description 12
- 239000002131 composite material Substances 0.000 claims description 9
- 239000006185 dispersion Substances 0.000 claims description 7
- 150000002431 hydrogen Chemical class 0.000 claims description 5
- 239000000243 solution Substances 0.000 claims description 5
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 4
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 claims description 4
- -1 lanthanoid metal oxides Chemical class 0.000 claims description 4
- 229910044991 metal oxide Inorganic materials 0.000 claims description 4
- 229910000287 alkaline earth metal oxide Inorganic materials 0.000 claims description 3
- 229910052747 lanthanoid Inorganic materials 0.000 claims description 3
- 241000588731 Hafnia Species 0.000 claims description 2
- CJNBYAVZURUTKZ-UHFFFAOYSA-N hafnium(IV) oxide Inorganic materials O=[Hf]=O CJNBYAVZURUTKZ-UHFFFAOYSA-N 0.000 claims description 2
- 239000011787 zinc oxide Substances 0.000 claims description 2
- 229910052751 metal Inorganic materials 0.000 abstract description 6
- 239000002184 metal Substances 0.000 abstract description 6
- 239000000470 constituent Substances 0.000 abstract description 2
- 150000002739 metals Chemical class 0.000 abstract description 2
- 239000000843 powder Substances 0.000 description 47
- 229910001873 dinitrogen Inorganic materials 0.000 description 34
- 238000004438 BET method Methods 0.000 description 33
- 229910017052 cobalt Inorganic materials 0.000 description 31
- 239000010941 cobalt Substances 0.000 description 31
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 31
- CPLXHLVBOLITMK-UHFFFAOYSA-N Magnesium oxide Chemical compound [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 28
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 28
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 21
- 238000006243 chemical reaction Methods 0.000 description 18
- 239000000395 magnesium oxide Substances 0.000 description 14
- MFUVDXOKPBAHMC-UHFFFAOYSA-N magnesium;dinitrate;hexahydrate Chemical compound O.O.O.O.O.O.[Mg+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O MFUVDXOKPBAHMC-UHFFFAOYSA-N 0.000 description 14
- 229910052759 nickel Inorganic materials 0.000 description 14
- QGUAJWGNOXCYJF-UHFFFAOYSA-N cobalt dinitrate hexahydrate Chemical compound O.O.O.O.O.O.[Co+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O QGUAJWGNOXCYJF-UHFFFAOYSA-N 0.000 description 13
- 238000001914 filtration Methods 0.000 description 11
- XNDZQQSKSQTQQD-UHFFFAOYSA-N 3-methylcyclohex-2-en-1-ol Chemical compound CC1=CC(O)CCC1 XNDZQQSKSQTQQD-UHFFFAOYSA-N 0.000 description 9
- 230000000694 effects Effects 0.000 description 9
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 9
- ATRRKUHOCOJYRX-UHFFFAOYSA-N Ammonium bicarbonate Chemical compound [NH4+].OC([O-])=O ATRRKUHOCOJYRX-UHFFFAOYSA-N 0.000 description 8
- 239000001099 ammonium carbonate Substances 0.000 description 8
- 235000012501 ammonium carbonate Nutrition 0.000 description 8
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 8
- 229910052760 oxygen Inorganic materials 0.000 description 8
- 239000001301 oxygen Substances 0.000 description 8
- 239000002994 raw material Substances 0.000 description 8
- 239000000047 product Substances 0.000 description 7
- HSJPMRKMPBAUAU-UHFFFAOYSA-N cerium(3+);trinitrate Chemical compound [Ce+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O HSJPMRKMPBAUAU-UHFFFAOYSA-N 0.000 description 6
- 239000000126 substance Substances 0.000 description 6
- WGTYBPLFGIVFAS-UHFFFAOYSA-M tetramethylammonium hydroxide Chemical compound [OH-].C[N+](C)(C)C WGTYBPLFGIVFAS-UHFFFAOYSA-M 0.000 description 6
- 230000003197 catalytic effect Effects 0.000 description 5
- UFMZWBIQTDUYBN-UHFFFAOYSA-N cobalt dinitrate Chemical compound [Co+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O UFMZWBIQTDUYBN-UHFFFAOYSA-N 0.000 description 5
- 229910001981 cobalt nitrate Inorganic materials 0.000 description 5
- 238000002485 combustion reaction Methods 0.000 description 5
- 238000010438 heat treatment Methods 0.000 description 5
- UJVRJBAUJYZFIX-UHFFFAOYSA-N nitric acid;oxozirconium Chemical compound [Zr]=O.O[N+]([O-])=O.O[N+]([O-])=O UJVRJBAUJYZFIX-UHFFFAOYSA-N 0.000 description 5
- 229910000510 noble metal Inorganic materials 0.000 description 5
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 description 5
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 4
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- 235000011114 ammonium hydroxide Nutrition 0.000 description 4
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 4
- YIXJRHPUWRPCBB-UHFFFAOYSA-N magnesium nitrate Chemical compound [Mg+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O YIXJRHPUWRPCBB-UHFFFAOYSA-N 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- AOPCKOPZYFFEDA-UHFFFAOYSA-N nickel(2+);dinitrate;hexahydrate Chemical compound O.O.O.O.O.O.[Ni+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O AOPCKOPZYFFEDA-UHFFFAOYSA-N 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 4
- 239000012495 reaction gas Substances 0.000 description 4
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical group [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 3
- CETPSERCERDGAM-UHFFFAOYSA-N ceric oxide Chemical compound O=[Ce]=O CETPSERCERDGAM-UHFFFAOYSA-N 0.000 description 3
- QQZMWMKOWKGPQY-UHFFFAOYSA-N cerium(3+);trinitrate;hexahydrate Chemical compound O.O.O.O.O.O.[Ce+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O QQZMWMKOWKGPQY-UHFFFAOYSA-N 0.000 description 3
- 229910000422 cerium(IV) oxide Inorganic materials 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 230000005764 inhibitory process Effects 0.000 description 3
- BNGXYYYYKUGPPF-UHFFFAOYSA-M (3-methylphenyl)methyl-triphenylphosphanium;chloride Chemical compound [Cl-].CC1=CC=CC(C[P+](C=2C=CC=CC=2)(C=2C=CC=CC=2)C=2C=CC=CC=2)=C1 BNGXYYYYKUGPPF-UHFFFAOYSA-M 0.000 description 2
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical group [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical group [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 2
- 150000001242 acetic acid derivatives Chemical class 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 2
- 150000003841 chloride salts Chemical class 0.000 description 2
- 238000010790 dilution Methods 0.000 description 2
- 239000012895 dilution Substances 0.000 description 2
- 229910001882 dioxygen Inorganic materials 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- ZLNQQNXFFQJAID-UHFFFAOYSA-L magnesium carbonate Chemical compound [Mg+2].[O-]C([O-])=O ZLNQQNXFFQJAID-UHFFFAOYSA-L 0.000 description 2
- 239000001095 magnesium carbonate Substances 0.000 description 2
- 229910000021 magnesium carbonate Inorganic materials 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- KBJMLQFLOWQJNF-UHFFFAOYSA-N nickel(ii) nitrate Chemical compound [Ni+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O KBJMLQFLOWQJNF-UHFFFAOYSA-N 0.000 description 2
- 239000006069 physical mixture Substances 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical group [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- 150000008044 alkali metal hydroxides Chemical class 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 1
- 239000004327 boric acid Substances 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 239000000571 coke Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 229910001960 metal nitrate Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 150000002823 nitrates Chemical class 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 230000001376 precipitating effect Effects 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 150000002910 rare earth metals Chemical class 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/36—Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
Landscapes
- Catalysts (AREA)
Abstract
Description
本発明は、アンモニア分解用触媒及びその製造方法、並びに、当該触媒を用いた水蒸気共存下におけるアンモニア分解方法に関するものである。 The present invention relates to an ammonia decomposition catalyst, a method for producing the same, and an ammonia decomposition method using the catalyst in the presence of water vapor.
アンモニア分解による水素製造技術は古くから提案されているが、本格的に実用されることは少ないのが現状である。例えば、コークス炉から生じるアンモニアを分解し、水素を得る技術が提案されている(特許文献1)。当該触媒は白金族を必須とするものであり、コストが高くなることが実用上の問題点である。一方、白金族を必須成分とする貴金属系触媒の問題点を克服するために、非貴金属系触媒が提案されている。非貴金属系の触媒として、銅族元素、クロム族元素及び鉄族元素のうちから選ばれる少なくとも1種の金属又は化合物とニッケルを触媒成分として用いる触媒が提案されている(特許文献2)。当該触媒は、ニッケルにコバルト、銅、クロム等各成分を組み合わせることにより、ニッケル単独成分からなる触媒に比べて、触媒性能を向上させたものである。また、希土類とニッケルを組み合わせた触媒も提案されている(特許文献3)。 Hydrogen production technology by ammonia decomposition has been proposed for a long time, but it is rarely put into practical use. For example, a technique for decomposing ammonia generated from a coke oven to obtain hydrogen has been proposed (Patent Document 1). The catalyst essentially requires a platinum group, and its high cost is a practical problem. On the other hand, non-noble metal catalysts have been proposed in order to overcome the problems of noble metal catalysts containing a platinum group as an essential component. As a non-noble metal catalyst, a catalyst using at least one metal or compound selected from a copper group element, a chromium group element and an iron group element and nickel as a catalyst component has been proposed (Patent Document 2). The catalyst is obtained by improving the catalyst performance by combining nickel, cobalt, copper, chromium, and other components, compared to a catalyst composed of nickel alone. A catalyst combining rare earth and nickel has also been proposed (Patent Document 3).
従来提案されてきた多くのアンモニア分解用触媒は、水蒸気を含まない乾燥ガス条件下でのアンモニア分解に関するものであり、アンモニア分解活性に及ぼす共存水蒸気の影響に関する検討はほとんどなされてこなかった。
一方で、反応ガス中に含まれる水蒸気はアンモニア分解反応に対して反応阻害効果を有するため、従来から提案されているアンモニア分解用触媒を水蒸気共存下でのアンモニア分解反応にそのまま適用してもアンモニアを有効に分解することが困難な場合がある。
また、触媒活性点増加を目的として多量の触媒成分を担体成分に含浸担持しても触媒成分粒子が凝集し、結果として触媒活性表面が増加せず十分な触媒活性を有する触媒を得ることができないこともある。
Many of the catalysts for ammonia decomposition that have been proposed heretofore relate to ammonia decomposition under dry gas conditions that do not contain water vapor, and little consideration has been given to the influence of coexisting water vapor on ammonia decomposition activity.
On the other hand, since the water vapor contained in the reaction gas has a reaction inhibiting effect on the ammonia decomposition reaction, even if the conventionally proposed ammonia decomposition catalyst is directly applied to the ammonia decomposition reaction in the coexistence of water vapor, It may be difficult to effectively decompose.
In addition, even if a large amount of catalyst component is impregnated and supported on the support component for the purpose of increasing the catalyst active point, the catalyst component particles aggregate, and as a result, the catalyst active surface does not increase and a catalyst having sufficient catalytic activity cannot be obtained. Sometimes.
本発明は、コスト面で実用上の問題がある貴金属元素を用いることなく、アンモニアガス中に水蒸気が含まれるときであっても有効にアンモニアを分解することができる触媒を提供することにある。 An object of the present invention is to provide a catalyst capable of effectively decomposing ammonia even when water vapor is contained in ammonia gas without using a noble metal element that has practical problems in terms of cost.
上記課題を解決することができた本発明のアンモニア分解用触媒は、水蒸気の存在下にアンモニアを窒素と水素に分解する触媒であって、長周期型周期律表6〜10族の少なくとも1種の元素(A成分)と、長周期型周期律表2〜5族及び12〜15族からなる群から選ばれる少なくとも1種の元素(B成分)の酸化物及び/又は複合酸化物とを含むことを特徴とする。前記A成分の算出比表面積(S2)は前記触媒の比表面積(S1)に対して0.15〜0.85(S2/S1)であることが好ましい。前記B成分の酸化物及び/又は複合酸化物は、アルミナ、シリカ、チタニア、ハフニア、ジルコニア、酸化亜鉛、アルカリ土類金属酸化物及びランタノイド系金属酸化物からなる群から選ばれる少なくとも一種が好適である。前記触媒は、A成分を触媒全量に対して55〜95質量%含有することが好ましい。 The catalyst for decomposing ammonia of the present invention that has solved the above problems is a catalyst that decomposes ammonia into nitrogen and hydrogen in the presence of water vapor, and is at least one of the groups 6 to 10 in the long-period periodic table. And an oxide and / or composite oxide of at least one element (B component) selected from the group consisting of groups 2 to 5 and groups 12 to 15 of the long-period periodic table It is characterized by that. The calculated specific surface area (S2) of the component A is preferably 0.15 to 0.85 (S2 / S1) with respect to the specific surface area (S1) of the catalyst. The B component oxide and / or composite oxide is preferably at least one selected from the group consisting of alumina, silica, titania, hafnia, zirconia, zinc oxide, alkaline earth metal oxides, and lanthanoid metal oxides. is there. The catalyst preferably contains 55 to 95% by mass of component A based on the total amount of the catalyst.
本発明のアンモニア分解用触媒の製造方法の態様は、前記A成分の水溶性塩と前記B成分の水溶性塩とを水に溶解し、アルカリ性化合物により沈殿物を生成させた後、この沈殿物をろ過、水洗、乾燥、熱処理する態様;前記A成分の水溶性塩を水に加え水溶液を調製し、この水溶液にアルカリ性化合物を加えてA成分を含有する微粒子を析出させて微粒子分散液を調製し、当該微粒子分散液を撹拌しながら前記B成分を含有する微粒子分散ゾル溶液を添加して、前記A成分を含有する微粒子とB成分を含有する微粒子からなる沈殿物を生成させた後、この沈殿物をろ過、水洗、乾燥、熱処理する態様;が好ましい。 In the embodiment of the method for producing an ammonia decomposition catalyst of the present invention, the water-soluble salt of the component A and the water-soluble salt of the component B are dissolved in water, and a precipitate is formed with an alkaline compound. Filtering, washing, drying, and heat treatment: preparing an aqueous solution by adding the water-soluble salt of component A to water, adding an alkaline compound to the aqueous solution, and precipitating fine particles containing component A to prepare a fine particle dispersion Then, the fine particle-dispersed sol solution containing the component B is added while stirring the fine particle dispersion to produce a precipitate composed of the fine particles containing the component A and the fine particles containing the component B. An embodiment in which the precipitate is filtered, washed with water, dried, and heat-treated is preferable.
本発明には、上記アンモニア分解用触媒を用いて、水蒸気の存在下にアンモニアを窒素と水素に分解するアンモニア分解方法;水蒸気の存在下にアンモニアを窒素と水素に分解する水素製造方法;水蒸気を1〜40容量%、アンモニアを1〜99容量%、水素を0〜50容量%及び窒素(水蒸気、アンモニア、水素及び窒素の合計容量が100容量%)を含むガス中のアンモニアを窒素と水素に分解する水素製造方法;も含まれる。 In the present invention, an ammonia decomposition method for decomposing ammonia into nitrogen and hydrogen in the presence of water vapor using the above catalyst for decomposing ammonia; a hydrogen production method for decomposing ammonia into nitrogen and hydrogen in the presence of water vapor; 1 to 40% by volume, 1 to 99% by volume of ammonia, 0 to 50% by volume of hydrogen, and ammonia in a gas containing nitrogen (a total volume of water vapor, ammonia, hydrogen and nitrogen is 100% by volume) into nitrogen and hydrogen Also included is a method for producing hydrogen that decomposes.
本発明のアンモニア分解用触媒は、原料ガスに水蒸気が含まれる場合であっても、その反応阻害効果を大きく受けることなく有効に触媒作用を示し、効果的にアンモニアを水素と窒素に分解することが可能なものである。また、本発明の触媒の特徴は当該触媒の表面において活性成分であるA成分の比表面積を高めたものである。A成分が触媒中で同じ含有量であってもA成分の比表面積を高く保持できるため効率良くアンモニアを水素と窒素に分解することができる。よって、従来用いられてきた貴金属系の触媒よりも低コストでアンモニアを分解することができる。 The catalyst for decomposing ammonia according to the present invention effectively exhibits catalytic action without being greatly affected by the reaction inhibition effect even when the raw material gas contains water vapor, and effectively decomposes ammonia into hydrogen and nitrogen. Is possible. Further, the catalyst of the present invention is characterized in that the specific surface area of the component A which is an active component is increased on the surface of the catalyst. Even if the A component has the same content in the catalyst, the specific surface area of the A component can be kept high, so that ammonia can be efficiently decomposed into hydrogen and nitrogen. Therefore, ammonia can be decomposed at a lower cost than a conventionally used noble metal catalyst.
本発明のアンモニア分解用触媒は、長周期型周期律表6〜10族の少なくとも1種の元素(A成分)と、長周期型周期律表2〜5族及び12〜15族からなる群から選ばれる少なくとも1種の元素(B成分)の酸化物及び/又は複合酸化物とを含む触媒である。 The catalyst for decomposing ammonia according to the present invention includes at least one element (A component) of Group 6 to 10 of the long period periodic table, and groups 2 to 5 and 12 to 15 of the long period periodic table. It is a catalyst containing an oxide and / or composite oxide of at least one selected element (component B).
前記A成分は、長周期型周期律表6〜10族の少なくとも1種の元素を用いるものであり、好ましくは鉄、コバルト及びニッケルからなる群から選ばれる少なくとも1種であり、さらに好ましくはコバルト又はニッケルである。A成分の状態は、金属、酸化物、それらの混合物の何れであってもよく、好ましくは金属状態である。 The component A uses at least one element of groups 6 to 10 of the long periodic table, preferably at least one selected from the group consisting of iron, cobalt and nickel, more preferably cobalt. Or nickel. The state of the component A may be any of a metal, an oxide, and a mixture thereof, and is preferably a metal state.
触媒中のA成分の含有率は、当該触媒に対して55〜95質量%、好ましくは60〜90質量%、さらに好ましくは65〜85質量%である。A成分の含有率が55質量%未満では十分なアンモニア分解活性が得られないことがあり、95質量%を超えるとA成分に対してB成分が不足し、反応条件下でA成分の凝集が進み、耐熱性が低下する恐れがある。 The content rate of A component in a catalyst is 55-95 mass% with respect to the said catalyst, Preferably it is 60-90 mass%, More preferably, it is 65-85 mass%. If the content of the A component is less than 55% by mass, sufficient ammonia decomposition activity may not be obtained. If it exceeds 95% by mass, the B component is insufficient with respect to the A component, and the A component aggregates under the reaction conditions. There is a risk that the heat resistance will decrease.
前記B成分は、長周期型周期律表2〜5及び12〜15族からなる群から選ばれる少なくとも1種の元素の酸化物及び/又は複合酸化物であり、好ましくはアルミナ、シリカ、ジルコニア、アルカリ土類金属酸化物及びランタノイド系金属酸化物からなる群から選ばれる少なくとも1種の酸化物及び/又はそれらの複合酸化物である。当該複合酸化物とは、個々の金属酸化物の単純な物理混合物でなく、セリア・ジルコニア固溶体、シリカ・アルミナ等に例示されるように各構成金属元素が原子レベルで複合化し、個々の金属酸化物の単純物理混合物と比較して構造及び物性面で異なる特性を示す状態にあるものを指す。 The B component is an oxide and / or composite oxide of at least one element selected from the group consisting of groups 2 to 5 and 12 to 15 of the long period periodic table, preferably alumina, silica, zirconia, It is at least one oxide selected from the group consisting of alkaline earth metal oxides and lanthanoid metal oxides and / or composite oxides thereof. The complex oxide is not a simple physical mixture of individual metal oxides, but each constituent metal element is complexed at the atomic level as exemplified by ceria / zirconia solid solution, silica / alumina, etc. It refers to a material that exhibits different characteristics in terms of structure and physical properties compared to a simple physical mixture of materials.
本発明のアンモニア分解用触媒は、前記A成分の算出比表面積(S2)が、20m2/g以上であることが好ましく、より好ましくは25m2/g以上、さらに好ましくは30m2/g以上である。前記A成分の算出比表面積が20m2/g以上であれば、アンモニア分解用触媒の触媒活性がより向上する。A成分の算出比表面積(S2)は大きいほど好ましいが、触媒調製法の改良等によって増加できる値にも限界があり、実際的には250m2/g以下が好ましく、より好ましくは200m2/g以下、さらに好ましくは150m2/g以下である。 In the ammonia decomposition catalyst of the present invention, the calculated specific surface area (S2) of the component A is preferably 20 m 2 / g or more, more preferably 25 m 2 / g or more, and further preferably 30 m 2 / g or more. is there. When the calculated specific surface area of the component A is 20 m 2 / g or more, the catalytic activity of the ammonia decomposition catalyst is further improved. The calculated specific surface area (S2) of the component A is preferably as large as possible, but there is a limit to the value that can be increased by improving the catalyst preparation method and the like. In practice, it is preferably 250 m 2 / g or less, more preferably 200 m 2 / g. Hereinafter, it is more preferably 150 m 2 / g or less.
前記A成分の算出比表面積(S2)は、当該触媒の比表面積から当該B成分酸化物由来の比表面積分を減じることにより算出される。当該B成分酸化物は、例えば、B成分の水溶性塩を水に溶解し、これに当該触媒調製に用いるアルカリ性化合物を添加しB成分の沈殿物(例えば、水酸化物)を得た後、当該触媒調製手順と同様にB成分の沈殿物(例えば、水酸化物)をろ過、水洗、乾燥、還元し、B成分酸化物を調製する。得られたB成分酸化物について、窒素ガスを用いたBET法により比表面積(S(b))を測定する。当該触媒の比表面積(S1)から当該触媒に含まれるB成分酸化物由来の比表面積分(S(b)×当該触媒中のB成分酸化物の質量含有率)を減じて当該A成分の算出比表面積(S2)を得ることができる。 The calculated specific surface area (S2) of the A component is calculated by subtracting the specific surface integral derived from the B component oxide from the specific surface area of the catalyst. The B component oxide is obtained by, for example, dissolving a water-soluble salt of the B component in water and adding an alkaline compound used for the preparation of the catalyst to obtain a precipitate (for example, a hydroxide) of the B component. Similarly to the catalyst preparation procedure, the B component precipitate (for example, hydroxide) is filtered, washed with water, dried and reduced to prepare the B component oxide. About the obtained B component oxide, a specific surface area (S (b)) is measured by the BET method using nitrogen gas. Calculation of the A component by subtracting the specific surface integral (S (b) × mass content of the B component oxide in the catalyst) derived from the B component oxide contained in the catalyst from the specific surface area (S1) of the catalyst. A specific surface area (S2) can be obtained.
本発明のアンモニア分解用触媒の比表面積(S1)は、10〜500m2/gが好ましく、より好ましくは20〜450m2/g、さらに好ましくは、25〜400m2/g、さらに好ましくは、30〜350m2/gである。触媒の比表面積(S1)が10m2/g以上であれば、触媒性能がより向上し、500m2/g以下であれば、触媒の強度が良好となる。アンモニア分解用触媒の比表面積は、窒素ガスを用いたBET法により測定する。 The specific surface area of the ammonia decomposition catalyst of the present invention (S1) is preferably from 10 to 500 m 2 / g, more preferably 20~450m 2 / g, more preferably, 25~400m 2 / g, more preferably, 30 -350 m < 2 > / g. When the specific surface area (S1) of the catalyst is 10 m 2 / g or more, the catalyst performance is further improved, and when it is 500 m 2 / g or less, the strength of the catalyst is good. The specific surface area of the ammonia decomposition catalyst is measured by the BET method using nitrogen gas.
本発明のアンモニア分解用触媒は、前記A成分の算出比表面積(S2)の触媒の比表面積(S1)に対する比(S2/S1)は0.15以上が好ましく、より好ましくは0.20以上、さらに好ましくは0.22以上であり、0.85以下が好ましく、より好ましくは0.80以下、さらに好ましくは0.75以下である。前記比(S2/S1)が0.15未満では、触媒におけるA成分の算出比表面積が少なく十分な活性が得られないことがあり、0.85を超えると耐熱性が低下し、耐久性が低下する場合がある。なお、A成分としてニッケルを使用する場合、ニッケルは他のA成分(例えば、コバルト)よりも触媒活性が若干劣るため、前記比(S2/S1)を0.50以上とすることが好ましく、より好ましくは0.55以上、さらに好ましくは0.60以上である。 In the ammonia decomposition catalyst of the present invention, the ratio (S2 / S1) of the calculated specific surface area (S2) of the component A to the specific surface area (S1) of the catalyst is preferably 0.15 or more, more preferably 0.20 or more, More preferably, it is 0.22 or more, 0.85 or less is preferable, More preferably, it is 0.80 or less, More preferably, it is 0.75 or less. If the ratio (S2 / S1) is less than 0.15, the calculated specific surface area of the component A in the catalyst may be small and sufficient activity may not be obtained, and if it exceeds 0.85, the heat resistance decreases and the durability is low. May decrease. When nickel is used as the A component, the catalyst activity is slightly inferior to other A components (for example, cobalt). Therefore, the ratio (S2 / S1) is preferably 0.50 or more. Preferably it is 0.55 or more, More preferably, it is 0.60 or more.
本発明のアンモニア分解用触媒の形状は、粉体、球状、ペレット、サドル型、円筒型、板状、ハニカム状等、種々の形状のものを用いることができる。
本発明のアンモニア分解用触媒は、原料ガスに水蒸気が含まれる場合であっても、その反応阻害効果を大きく受けることなく有効に触媒作用を示し、効果的にアンモニアを水素と窒素に分解することが可能である。そのため、水蒸気が共存するアンモニア含有ガス中のアンモニアを窒素と水素に分解するアンモニア分解方法;水蒸気が共存するアンモニア含有ガス中のアンモニアを分解して水素を製造する水素製造方法;に好適に用いることができる。
The shape of the catalyst for decomposing ammonia according to the present invention may be various shapes such as powder, sphere, pellet, saddle type, cylindrical type, plate shape, honeycomb shape and the like.
The catalyst for decomposing ammonia according to the present invention effectively exhibits catalytic action without being greatly affected by the reaction inhibition effect even when the raw material gas contains water vapor, and effectively decomposes ammonia into hydrogen and nitrogen. Is possible. Therefore, it is preferably used for an ammonia decomposition method in which ammonia in an ammonia-containing gas in which water vapor coexists is decomposed into nitrogen and hydrogen; a hydrogen production method in which ammonia in an ammonia-containing gas in which water vapor coexists is decomposed to produce hydrogen. Can do.
本発明にかかる触媒の製造方法の一例を示す。なお、本発明の効果を奏するものであれば以下の触媒製造方法に限定されるものではない。本発明の触媒の製造方法としては、例えば、(1)A成分(例えば、コバルト)の水溶性塩を水に加え水溶液を調製し、この水溶液にアルカリ性化合物を加えてA成分を含有する微粒子(例えば、A成分の水酸化物微粒子)を析出させ微粒子分散液を調製する。この微粒子分散液を撹拌しながら、B成分を含有する微粒子(例えば、B成分酸化物の微粒子)分散ゾル溶液を添加して、A成分を含有する微粒子(例えば、A成分の水酸化物微粒子)とB成分を含有する微粒子(例えば、B成分酸化物の微粒子)からなる沈殿物を生成させる。その後、この沈殿物をろ過により取り出し、水洗、乾燥、熱処理(例えば、還元性雰囲気下での熱処理)して触媒を得る方法;(2)B成分の水溶性塩とA成分(例えば、コバルト)の水溶性塩とを水に加え十分に混合した後、アルカリ性化合物を加えA成分とB成分とを含有する微粒子(例えば、水酸化物微粒子)の沈殿物を生成させる。その後、この沈殿物をろ過により取り出し、水洗、乾燥、熱処理(例えば、還元性雰囲気下での熱処理)して触媒を得る方法;(3)アルカリ性化合物を加えたアルカリ性水溶液を調製する。撹拌したアルカリ性水溶液中にB成分の水溶性塩とA成分(例えば、コバルト)の水溶性塩を含む混合水溶液を追加して、A成分を含有する微粒子(例えば、A成分の水酸化物微粒子)とB成分を含有する微粒子(例えば、B成分の水酸化物微粒子)からなる沈殿物を生成させる。その後、この沈殿物をろ過により取り出し、水洗、乾燥、熱処理(例えば、還元性雰囲気下での熱処理)して触媒を得る方法;が挙げられる。 An example of the manufacturing method of the catalyst concerning this invention is shown. In addition, as long as there exists an effect of this invention, it is not limited to the following catalyst manufacturing methods. As the method for producing the catalyst of the present invention, for example, (1) an aqueous solution is prepared by adding a water-soluble salt of an A component (for example, cobalt) to water, and an alkaline compound is added to this aqueous solution to contain fine particles containing an A component ( For example, component A hydroxide fine particles) are precipitated to prepare a fine particle dispersion. While stirring this fine particle dispersion, fine particles containing B component (for example, fine particles of B component oxide) dispersed sol solution are added, and fine particles containing A component (for example, hydroxide fine particles of A component) And a fine particle containing B component (for example, B component oxide fine particle). Thereafter, the precipitate is removed by filtration, washed with water, dried, and heat-treated (for example, heat-treated in a reducing atmosphere) to obtain a catalyst; (2) Water-soluble salt of component B and component A (for example, cobalt) Is added to water and mixed well, and then an alkaline compound is added to form a precipitate of fine particles (for example, hydroxide fine particles) containing the A component and the B component. Thereafter, this precipitate is removed by filtration, washed with water, dried, and heat treated (for example, heat treated in a reducing atmosphere) to obtain a catalyst; (3) An alkaline aqueous solution to which an alkaline compound is added is prepared. A mixed aqueous solution containing a water-soluble salt of B component and a water-soluble salt of A component (for example, cobalt) is added to the stirred alkaline aqueous solution, and fine particles containing A component (for example, hydroxide fine particles of A component) And a fine particle containing B component (for example, B component hydroxide fine particle). Thereafter, the precipitate is taken out by filtration, washed with water, dried, and heat-treated (for example, heat-treated in a reducing atmosphere) to obtain a catalyst.
上記製造方法において、熱処理は、空気雰囲気下での焼成;窒素、アルゴン等の不活性ガス雰囲気下での熱処理;水素等の還元性ガスを含む還元性ガス雰囲気下での還元を含む。また、触媒は使用に際して還元処理をすることが好ましい。還元方法としては、水素ガス等の還元性ガスと接触させる通常の方法を採用することができる。水素ガスを用いた還元処理を行う場合、還元条件は300〜750℃、好ましくは400〜650℃で、30分〜2時間処理するものである。なお、水素製造時、原料ガスが酸素ガスを含む場合、アンモニア分解反応とともにアンモニア燃焼反応が進行するが、このアンモニア燃焼反応によって触媒温度が直ちに上昇し、アンモニア分解により生成した水素によって触媒が還元される。そのため、原料ガスが酸素ガスを含む場合には、アンモニア分解用触媒について、使用前の還元処理を施さなくとも使用できる場合がある。 In the above manufacturing method, the heat treatment includes firing in an air atmosphere; heat treatment in an inert gas atmosphere such as nitrogen or argon; and reduction in a reducing gas atmosphere containing a reducing gas such as hydrogen. The catalyst is preferably subjected to a reduction treatment when used. As a reduction method, a normal method of contacting with a reducing gas such as hydrogen gas can be employed. When the reduction treatment using hydrogen gas is performed, the reduction is performed at 300 to 750 ° C., preferably 400 to 650 ° C., for 30 minutes to 2 hours. During hydrogen production, if the source gas contains oxygen gas, the ammonia combustion reaction proceeds along with the ammonia decomposition reaction. The catalyst temperature immediately rises due to the ammonia combustion reaction, and the catalyst is reduced by the hydrogen generated by the ammonia decomposition. The Therefore, when the source gas contains oxygen gas, the ammonia decomposition catalyst may be used without being subjected to reduction treatment before use.
前記A成分の原料は、熱処理(好ましくは、還元処理)等により、金属、酸化物それらの混合物を生成するものであれば何れの化合物でも使用することが可能であるが、好ましくは水溶性の化合物である硝酸塩、酢酸塩、塩化物である。前記A成分の水溶性塩としては、例えば、硝酸コバルト六水和物等のコバルトの水溶性塩;硝酸ニッケル六水和物等のニッケルの水溶性塩;等が挙げられる。 As the raw material of the component A, any compound can be used as long as it can generate a mixture of metals, oxides and the like by heat treatment (preferably reduction treatment), but preferably it is water-soluble. The compounds are nitrates, acetates and chlorides. Examples of the water-soluble salt of the component A include a water-soluble salt of cobalt such as cobalt nitrate hexahydrate; a water-soluble salt of nickel such as nickel nitrate hexahydrate;
B成分の原料は最終的に熱処理により酸化物及び/又は複合酸化物を生成するものであれば何れの化合物でも使用することが可能であり、好ましくは水溶性の化合物である各種金属の硝酸塩、酢酸塩、塩化物、硫酸塩を使用することができる。前記B成分の水溶性塩としては、例えば、硝酸アルミニウム九水和物等のアルミニウムの水溶性塩;硝酸マグネシウム六水和物等のマグネシウムの水溶性塩;硝酸セリウム六水和物等のセリウムの水溶性塩;オキシ硝酸ジルコニウム等のジルコニウムの水溶性塩;等が挙げられる。また、前記B成分の微粒子としては、アルミナゾル;シリカゾル;等が挙げられる。 The raw material of the B component can be any compound as long as it finally generates an oxide and / or a composite oxide by heat treatment, preferably various metal nitrates that are water-soluble compounds, Acetates, chlorides and sulfates can be used. Examples of the water-soluble salt of the component B include water-soluble salts of aluminum such as aluminum nitrate nonahydrate; water-soluble salts of magnesium such as magnesium nitrate hexahydrate; and cerium nitrate such as cerium nitrate hexahydrate. Water-soluble salts; water-soluble salts of zirconium such as zirconium oxynitrate; Examples of the B component fine particles include alumina sol; silica sol; and the like.
前記アルカリ性化合物としては、例えば、アンモニア、炭酸アンモニウム、水酸化テトラメチルアンモニウム等のアンモニア系化合物;水酸化カリウム等のアルカリ金属水酸化物;等が挙げられる。 Examples of the alkaline compound include ammonia compounds such as ammonia, ammonium carbonate, and tetramethylammonium hydroxide; alkali metal hydroxides such as potassium hydroxide; and the like.
本発明のアンモニア分解用触媒は、原料ガスに水蒸気が含まれる場合であっても、その反応阻害効果を大きく受けることなく有効に触媒作用を示す。そのため、水蒸気が共存するアンモニア含有ガス中のアンモニアを分解して水素を製造することに好適に用いることができる。この場合、反応ガス(原料ガス)は、水蒸気を1〜40容量%、アンモニアを1〜99容量%、水素を0〜50容量%及び窒素(水蒸気、アンモニア、水素及び窒素の合計容量が100容量%)を含むガスが好ましい。この反応ガス(原料ガス)中において、アンモニアは1〜99容量%、好ましくは5〜98容量%存在するものであり、水蒸気は1〜40容量%、好ましくは2〜30容量%である。 The catalyst for decomposing ammonia according to the present invention exhibits an effective catalytic action without being greatly affected by the reaction inhibition effect even when the raw material gas contains water vapor. Therefore, it can be suitably used for producing hydrogen by decomposing ammonia in an ammonia-containing gas in which water vapor coexists. In this case, the reaction gas (raw material gas) is 1 to 40% by volume of water vapor, 1 to 99% by volume of ammonia, 0 to 50% by volume of hydrogen, and nitrogen (the total capacity of water vapor, ammonia, hydrogen and nitrogen is 100%). %) Is preferred. In this reaction gas (raw material gas), ammonia is present in an amount of 1 to 99% by volume, preferably 5 to 98% by volume, and water vapor is 1 to 40% by volume, preferably 2 to 30% by volume.
原料ガスは、アンモニアガスであるが、本発明の効果を阻害しないものであれば、他のガスを加えることができ、例えば窒素、アルゴン、ヘリウム、一酸化炭素、酸素である。特に、原料ガスが酸素を含む場合、アンモニアガスやアンモニア分解反応で生成した水素の一部を燃焼し、その燃焼熱をアンモニア分解反応の反応熱として使用するオートサーマルリフォーマーによるアンモニア分解を行うことができる。この場合、アンモニアに対する酸素のモル比(酸素/アンモニア)は、0.75未満とする必要がある。また、アンモニア分解により得られる水素量と、燃焼反応による燃焼熱とを両立させる観点から、モル比(酸素/アンモニア)は0.05以上が好ましく、より好ましくは0.1以上、さらに好ましくは0.12以上であり、0.5以下が好ましく、より好ましくは0.3以下である。 The source gas is ammonia gas, but other gases can be added as long as they do not hinder the effects of the present invention, such as nitrogen, argon, helium, carbon monoxide, and oxygen. In particular, when the source gas contains oxygen, ammonia decomposition can be performed by an autothermal reformer that burns part of the ammonia gas or hydrogen produced by the ammonia decomposition reaction and uses the combustion heat as the reaction heat of the ammonia decomposition reaction. it can. In this case, the molar ratio of oxygen to ammonia (oxygen / ammonia) needs to be less than 0.75. Further, from the viewpoint of achieving both the amount of hydrogen obtained by ammonia decomposition and the combustion heat by the combustion reaction, the molar ratio (oxygen / ammonia) is preferably 0.05 or more, more preferably 0.1 or more, and even more preferably 0. .12 or more, preferably 0.5 or less, more preferably 0.3 or less.
アンモニアの分解反応は、反応温度が300〜900℃、好ましくは400〜700℃であり、反応圧力は0.002〜2MPa、好ましくは0.004〜1MPaである。反応ガス(原料ガス)導入時の空間速度(SV)は1,000〜500,000hr-1、好ましくは1,000〜200,000hr-1である。 The ammonia decomposition reaction has a reaction temperature of 300 to 900 ° C., preferably 400 to 700 ° C., and a reaction pressure of 0.002 to 2 MPa, preferably 0.004 to 1 MPa. The space velocity (SV) when the reaction gas (raw material gas) is introduced is 1,000 to 500,000 hr −1 , preferably 1,000 to 200,000 hr −1 .
また、触媒を使用するに際して、事前に前処理することもできる。適した処理条件で前処理することにより触媒の状態を反応中の状態に近いものとすることができ、本前処理を施すことにより当初から定常的な反応状態での運転が可能になる。前処理としては、例えば、窒素ガスを反応条件で一定時間触媒に流通させることである。 Moreover, when using a catalyst, it can also pre-process in advance. By performing pretreatment under suitable treatment conditions, the state of the catalyst can be made close to that during the reaction, and by performing this pretreatment, operation in a steady reaction state can be performed from the beginning. As pretreatment, for example, nitrogen gas is allowed to flow through the catalyst for a certain period of time under reaction conditions.
本発明により水蒸気が含まれるアンモニアを含むガスであってもアンモニアを分解することができる。更に当該アンモニアを分解することにより水素を得ることができるものである。 According to the present invention, ammonia can be decomposed even with a gas containing ammonia containing water vapor. Furthermore, hydrogen can be obtained by decomposing the ammonia.
以下に実施例を挙げて本発明をより具体的に説明するが、本発明は、下記実施例によって限定されるものではなく、前・後記の趣旨に適合しうる範囲で適宜変更して実施することも可能であり、それらはいずれも本発明の技術的範囲に包含される。 The present invention will be described more specifically with reference to the following examples. However, the present invention is not limited to the following examples, and may be appropriately modified and implemented within a range that can meet the purpose described above and below. All of which are within the scope of the present invention.
<第1の触媒の製造>
製造例1
24.74gの硝酸コバルト六水和物と110.57gの硝酸アルミニウム九水和物とを、500mL(ミリリットル)の純水に溶解させ、硝酸コバルトと硝酸アルミニウムの混合水溶液を調製した(水溶液A1)。別途、101.2gの炭酸アンモニウムを1.5L(リットル)の純水に溶解させた水溶液B1を調製した。常温下で激しく撹拌した水溶液B1に水溶液A1を一度に加え、さらに一時間撹拌を継続し、沈殿物を生成させた。その後、当該沈殿物をろ過回収し、水洗後、150℃で一晩乾燥させた。乾燥後の沈殿物を粉砕し、管状炉に充填して10体積%水素ガス(窒素希釈)を用いて650℃で一時間還元して触媒1を得た。得られた触媒1のコバルト含有率は、25質量%であった。窒素ガスを用いたBET法で測定した触媒1の比表面積(S1)は、241.3m2/gであった。
<Production of first catalyst>
Production Example 1
24.74 g of cobalt nitrate hexahydrate and 110.57 g of aluminum nitrate nonahydrate were dissolved in 500 mL (milliliter) of pure water to prepare a mixed aqueous solution of cobalt nitrate and aluminum nitrate (aqueous solution A1). . Separately, an aqueous solution B1 in which 101.2 g of ammonium carbonate was dissolved in 1.5 L (liter) of pure water was prepared. The aqueous solution A1 was added at once to the aqueous solution B1 vigorously stirred at room temperature, and the stirring was further continued for 1 hour to generate a precipitate. Thereafter, the precipitate was collected by filtration, washed with water, and dried at 150 ° C. overnight. The dried precipitate was pulverized, filled into a tube furnace, and reduced at 650 ° C. for 1 hour using 10% by volume hydrogen gas (diluted with nitrogen) to obtain catalyst 1. The obtained catalyst 1 had a cobalt content of 25% by mass. The specific surface area (S1) of the catalyst 1 measured by the BET method using nitrogen gas was 241.3 m 2 / g.
また、触媒1のA成分であるコバルトの算出比表面積(S2)を算出するために、B成分であるアルミナのみからなる粉体1を調製した。具体的には、まず105.0gの硝酸アルミニウム九水和物を500mLの純水に溶解させた(水溶液a1)。別途、80.6gの炭酸アンモニウムを1.5Lの純水に溶解させた水溶液(水溶液b1)を調製した。常温下で激しく撹拌した水溶液b1に水溶液a1を一度に加え、さらに一時間撹拌を継続し、沈殿物を生成させた。その後、当該沈殿物をろ過回収し、水洗後、150℃で一晩乾燥させた。乾燥後の沈殿物を粉砕し、管状炉に充填して10体積%水素ガス(窒素希釈)を用いて650℃で一時間還元処理して触媒1のB成分であるアルミナのみからなる粉体1を得た。窒素ガスを用いたBET法で測定した粉体1の比表面積は、285.5m2/gであった。 Further, in order to calculate the calculated specific surface area (S2) of cobalt, which is the A component of the catalyst 1, powder 1 consisting only of alumina, which is the B component, was prepared. Specifically, 105.0 g of aluminum nitrate nonahydrate was first dissolved in 500 mL of pure water (aqueous solution a1). Separately, an aqueous solution (aqueous solution b1) in which 80.6 g of ammonium carbonate was dissolved in 1.5 L of pure water was prepared. The aqueous solution a1 was added at once to the aqueous solution b1 vigorously stirred at room temperature, and the stirring was continued for another hour to form a precipitate. Thereafter, the precipitate was collected by filtration, washed with water, and dried at 150 ° C. overnight. The dried precipitate 1 is pulverized, filled into a tube furnace, reduced at 650 ° C. for 1 hour using 10% by volume hydrogen gas (diluted with nitrogen), and powder 1 consisting only of alumina as the B component of catalyst 1 Got. The specific surface area of the powder 1 measured by the BET method using nitrogen gas was 285.5 m 2 / g.
製造例2
製造例1における硝酸コバルト六水和物、硝酸アルミニウム九水和物及び炭酸アンモニウムの使用量を66.6g、48.9g及び81.5gに変更した以外は製造例1と同様にして触媒2を得た。得られた触媒2のコバルト含有率は、67質量%であった。窒素ガスを用いたBET法で測定した触媒1の比表面積(S1)は、121.7m2/gであった。
また、触媒2のA成分であるコバルトの算出比表面積(S2)を算出するために、B成分であるアルミナのみからなる粉体2を製造例1と同様にして調製した。窒素ガスを用いたBET法で測定した粉体2の比表面積は、285.5m2/gであった。
Production Example 2
Catalyst 2 was prepared in the same manner as in Production Example 1 except that the amounts of cobalt nitrate hexahydrate, aluminum nitrate nonahydrate and ammonium carbonate used in Production Example 1 were changed to 66.6 g, 48.9 g and 81.5 g. Obtained. The obtained catalyst 2 had a cobalt content of 67% by mass. The specific surface area (S1) of the catalyst 1 measured by the BET method using nitrogen gas was 121.7 m 2 / g.
Further, in order to calculate the calculated specific surface area (S2) of cobalt, which is the A component of the catalyst 2, a powder 2 consisting only of alumina, which is the B component, was prepared in the same manner as in Production Example 1. The specific surface area of the powder 2 measured by the BET method using nitrogen gas was 285.5 m 2 / g.
製造例3
製造例1における硝酸コバルト六水和物、硝酸アルミニウム九水和物及び炭酸アンモニウムの使用量を81.5g、28.1g及び75.3gに変更した以外は製造例1と同様にして触媒3を得た。得られた触媒3のコバルト含有率は、81.2質量%であった。窒素ガスを用いたBET法で測定した触媒1の比表面積(S1)は、75.4m2/gであった。
また、触媒3のA成分であるコバルトの算出比表面積(S2)を算出するために、B成分であるアルミナのみからなる粉体3を製造例1と同様にして調製した。窒素ガスを用いたBET法で測定した粉体3の比表面積は、285.5m2/gであった。
Production Example 3
Catalyst 3 was prepared in the same manner as in Production Example 1 except that the amounts of cobalt nitrate hexahydrate, aluminum nitrate nonahydrate and ammonium carbonate used in Production Example 1 were changed to 81.5 g, 28.1 g and 75.3 g. Obtained. The obtained catalyst 3 had a cobalt content of 81.2% by mass. The specific surface area (S1) of the catalyst 1 measured by the BET method using nitrogen gas was 75.4 m 2 / g.
Further, in order to calculate the calculated specific surface area (S2) of cobalt, which is the A component of the catalyst 3, a powder 3 consisting only of alumina, which is the B component, was prepared in the same manner as in Production Example 1. The specific surface area of the powder 3 measured by the BET method using nitrogen gas was 285.5 m 2 / g.
製造例4
150℃で一晩乾燥させたγ−アルミナ(住友化学株式会社製)粉体を粉砕し、当該粉体5gを100mLの純水中に加え、撹拌により分散させた。γ−アルミナが分散された純水を激しく撹拌しながら、99.2gの硝酸コバルト六水和物を少量ずつ添加した。次いで、γ−アルミナが分散された硝酸コバルト水溶液を撹拌しながら加熱し、水分を蒸発させて乾燥物を得た。得られた乾燥物を、さらに150℃で一晩乾燥後、粉砕して管状炉に充填し、10体積%水素ガス(窒素希釈)を用いて450℃で一時間還元して触媒4を得た。得られた触媒4のコバルト含有率は、80質量%であった。窒素ガスを用いたBET法で測定した触媒4の比表面積(S1)は、61.1m2/gであった。
また、触媒4のA成分であるコバルトの算出比表面積(S2)を算出するために、B成分であるγ−アルミナ(住友化学株式会社製)粉体を粉砕後、当該粉体を管状炉に充填し、10体積%水素ガス(窒素希釈)を用いて450℃で一時間還元処理してγ−アルミナからなる粉体4を得た。窒素ガスを用いたBET法で測定した粉体4の比表面積は、291.4m2/gであった。
Production Example 4
Γ-alumina (Sumitomo Chemical Co., Ltd.) powder dried overnight at 150 ° C. was pulverized, and 5 g of the powder was added to 100 mL of pure water and dispersed by stirring. While stirring pure water in which γ-alumina was dispersed, 99.2 g of cobalt nitrate hexahydrate was added little by little. Next, the cobalt nitrate aqueous solution in which γ-alumina was dispersed was heated with stirring to evaporate the water, thereby obtaining a dried product. The obtained dried product was further dried at 150 ° C. overnight, pulverized and filled into a tubular furnace, and reduced at 450 ° C. for 1 hour using 10% by volume hydrogen gas (nitrogen dilution) to obtain catalyst 4. . The obtained catalyst 4 had a cobalt content of 80% by mass. The specific surface area (S1) of the catalyst 4 measured by the BET method using nitrogen gas was 61.1 m 2 / g.
Further, in order to calculate the calculated specific surface area (S2) of cobalt, which is the A component of the catalyst 4, γ-alumina (manufactured by Sumitomo Chemical Co., Ltd.) powder, which is the B component, is pulverized, and then the powder is put into a tubular furnace. Filling and reduction treatment at 450 ° C. for 1 hour using 10 vol% hydrogen gas (diluted with nitrogen) gave a powder 4 made of γ-alumina. The specific surface area of the powder 4 measured by the BET method using nitrogen gas was 291.4 m 2 / g.
製造例5
29.1gの硝酸コバルト六水和物と102.4gの硝酸マグネシウム六水和物を500mLの純水に溶解させ、硝酸コバルトと硝酸マグネシウムの混合水溶液を調製した(水溶液A2)。別途、140.1gの水酸化カリウムを2Lの純水に溶解させた水溶液B2を調製した。常温下で激しく撹拌した水溶液B2に水溶液A2を滴下し、沈殿物を生成させた。当該沈殿物をろ過し、十分に水洗した後、150℃で一晩乾燥させた。乾燥後の沈殿物を粉砕し、管状炉に充填して10体積%水素ガス(窒素希釈)を用いて450℃で一時間還元して触媒5を得た。得られた触媒5のコバルト含有率は、26.8質量%であった。窒素ガスを用いたBET法で測定した触媒5の比表面積(S1)は、188.3m2/gであった。
Production Example 5
29.1 g of cobalt nitrate hexahydrate and 102.4 g of magnesium nitrate hexahydrate were dissolved in 500 mL of pure water to prepare a mixed aqueous solution of cobalt nitrate and magnesium nitrate (aqueous solution A2). Separately, an aqueous solution B2 in which 140.1 g of potassium hydroxide was dissolved in 2 L of pure water was prepared. The aqueous solution A2 was added dropwise to the aqueous solution B2 vigorously stirred at room temperature to generate a precipitate. The precipitate was filtered, washed thoroughly with water, and dried overnight at 150 ° C. The dried precipitate was pulverized, filled into a tubular furnace, and reduced at 450 ° C. for 1 hour using 10% by volume hydrogen gas (diluted with nitrogen) to obtain catalyst 5. The obtained catalyst 5 had a cobalt content of 26.8% by mass. The specific surface area (S1) of the catalyst 5 measured by the BET method using nitrogen gas was 188.3 m 2 / g.
また、触媒5のA成分であるコバルトの算出比表面積(S2)を算出するために、B成分であるマグネシアのみからなる粉体5を調製した。具体的には、まず102.6gの硝酸マグネシウム六水和物を500mLの純水に溶解させた(水溶液a2)。別途、112.2gの水酸化カリウムを2Lの純水に溶解させた水溶液b2を調製した。常温下で激しく撹拌した水溶液b2に水溶液a2を滴下し、沈殿物を生成させた。当該沈殿物をろ過し、十分に水洗した後、150℃で一晩乾燥させた。乾燥後の沈殿物を粉砕し、管状炉に充填して10体積%水素ガス(窒素希釈)を用いて450℃で一時間還元処理してマグネシアからなる粉体5を得た。窒素ガスを用いたBET法で測定した粉体5の比表面積は、173.7m2/gであった。 Further, in order to calculate the calculated specific surface area (S2) of cobalt, which is the A component of the catalyst 5, powder 5 consisting only of magnesia, which is the B component, was prepared. Specifically, 102.6 g of magnesium nitrate hexahydrate was first dissolved in 500 mL of pure water (aqueous solution a2). Separately, an aqueous solution b2 in which 112.2 g of potassium hydroxide was dissolved in 2 L of pure water was prepared. The aqueous solution a2 was dropped into the aqueous solution b2 that was vigorously stirred at room temperature to generate a precipitate. The precipitate was filtered, washed thoroughly with water, and dried overnight at 150 ° C. The dried precipitate was pulverized, filled into a tubular furnace, and reduced at 450 ° C. for 1 hour using 10 vol% hydrogen gas (diluted with nitrogen) to obtain a powder 5 made of magnesia. The specific surface area of the powder 5 measured by the BET method using nitrogen gas was 173.7 m 2 / g.
製造例6
製造例5における硝酸コバルト六水和物、硝酸マグネシウム六水和物及び水酸化カリウムの使用量を53.8g、62.2g及び120.0gに変更した以外は製造例5と同様にして触媒6を得た。得られた触媒6のコバルト含有率は、52.7質量%であった。窒素ガスを用いたBET法で測定した触媒6の比表面積(S1)は、158.1m2/gであった。
また、触媒6のA成分であるコバルトの算出比表面積(S2)を算出するために、B成分であるマグネシアのみからなる粉体6を製造例5と同様にして調製した。窒素ガスを用いたBET法で測定した粉体6の比表面積は、173.7m2/gであった。
Production Example 6
Catalyst 6 was prepared in the same manner as in Production Example 5 except that the amounts of cobalt nitrate hexahydrate, magnesium nitrate hexahydrate and potassium hydroxide used in Production Example 5 were changed to 53.8 g, 62.2 g and 120.0 g. Got. The obtained catalyst 6 had a cobalt content of 52.7% by mass. The specific surface area (S1) of the catalyst 6 measured by the BET method using nitrogen gas was 158.1 m 2 / g.
Further, in order to calculate the calculated specific surface area (S2) of cobalt, which is the A component of the catalyst 6, a powder 6 consisting only of magnesia, which is the B component, was prepared in the same manner as in Production Example 5. The specific surface area of the powder 6 measured by the BET method using nitrogen gas was 173.7 m 2 / g.
製造例7
製造例5における硝酸コバルト六水和物、硝酸マグネシウム六水和物及び水酸化カリウムの使用量を72.8g、35.0g及び108.4gに変更した以外は製造例5と同様にして触媒7を得た。得られた触媒7のコバルト含有率は、72.8質量%であった。窒素ガスを用いたBET法で測定した触媒7の比表面積(S1)は、123.6m2/gであった。
また、触媒7のA成分であるコバルトの算出比表面積(S2)を算出するために、B成分であるマグネシアのみからなる粉体7を製造例5と同様にして調製した。窒素ガスを用いたBET法で測定した粉体7の比表面積は、173.7m2/gであった。
Production Example 7
Catalyst 7 was prepared in the same manner as in Production Example 5 except that the amounts of cobalt nitrate hexahydrate, magnesium nitrate hexahydrate and potassium hydroxide used in Production Example 5 were changed to 72.8 g, 35.0 g and 108.4 g. Got. The obtained catalyst 7 had a cobalt content of 72.8% by mass. The specific surface area (S1) of the catalyst 7 measured by the BET method using nitrogen gas was 123.6 m 2 / g.
Further, in order to calculate the calculated specific surface area (S2) of cobalt, which is the A component of the catalyst 7, a powder 7 consisting only of magnesia, which is the B component, was prepared in the same manner as in Production Example 5. The specific surface area of the powder 7 measured by the BET method using nitrogen gas was 173.7 m 2 / g.
製造例8
塩基性炭酸マグネシウム(和光純薬株式会社製)を750℃で2時間焼成してマグネシアを作製した。当該マグネシア粉体5gを100mLの純水中に加え、撹拌により分散させた。マグネシアが分散された純水を激しく撹拌しながら、74.4gの硝酸コバルト六水和物を少量ずつ添加した。次いで、マグネシアが分散された硝酸コバルト水溶液を撹拌しながら加熱し、水分を蒸発させて乾燥物を得た。得られた乾燥物を、さらに150℃で一晩乾燥後、粉砕して管状炉に充填し、10体積%水素ガス(窒素希釈)を用いて450℃で一時間還元して触媒8を得た。得られた触媒8のコバルト含有率は、60質量%であった。窒素ガスを用いたBET法で測定した触媒8の比表面積(S1)は、84.4m2/gであった。
Production Example 8
Basic magnesium carbonate (Wako Pure Chemical Industries, Ltd.) was calcined at 750 ° C. for 2 hours to prepare magnesia. 5 g of the magnesia powder was added to 100 mL of pure water and dispersed by stirring. While vigorously stirring pure water in which magnesia was dispersed, 74.4 g of cobalt nitrate hexahydrate was added little by little. Next, the aqueous cobalt nitrate solution in which magnesia was dispersed was heated with stirring to evaporate the water, thereby obtaining a dried product. The obtained dried product was further dried overnight at 150 ° C., pulverized and filled into a tubular furnace, and reduced at 450 ° C. for 1 hour using 10 vol% hydrogen gas (diluted with nitrogen) to obtain catalyst 8. . The obtained catalyst 8 had a cobalt content of 60% by mass. The specific surface area (S1) of the catalyst 8 measured by the BET method using nitrogen gas was 84.4 m 2 / g.
また、触媒8のA成分であるコバルトの算出比表面積(S2)を算出するために、B成分であるマグネシアのみからなる粉体8を調製した。具体的には、塩基性炭酸マグネシウム(和光純薬株式会社製)を750℃で2時間焼成してマグネシアを作製し、当該マグネシア粉体を粉砕後、管状炉に充填し、10体積%水素ガス(窒素希釈)を用いて450℃で一時間還元処理してマグネシアのみからなる粉体8を得た。窒素ガスを用いたBET法で測定した粉体8の比表面積は、56.3m2/gであった。 Further, in order to calculate the calculated specific surface area (S2) of cobalt, which is the A component of the catalyst 8, a powder 8 consisting only of magnesia, which is the B component, was prepared. Specifically, basic magnesium carbonate (manufactured by Wako Pure Chemical Industries, Ltd.) is calcined at 750 ° C. for 2 hours to produce magnesia, the magnesia powder is pulverized and then filled into a tubular furnace, and 10 volume% hydrogen gas Using nitrogen dilution, reduction treatment was performed at 450 ° C. for 1 hour to obtain a powder 8 made only of magnesia. The specific surface area of the powder 8 measured by the BET method using nitrogen gas was 56.3 m 2 / g.
製造例9
81.4gの硝酸ニッケル六水和物と23.4gの硝酸アルミニウム九水和物を500mLの純水に溶解させ、硝酸ニッケルと硝酸アルミニウムの混合水溶液を調製した(水溶液A3)。別途、327gの25質量%水酸化テトラメチルアンモニウム水溶液を1.5Lの純水に溶解させた水溶液B3を調製した。常温下で激しく撹拌した水溶液B3に水溶液A3を一度に加え、さらに一時間撹拌を継続し、沈殿物を生成させた。その後、当該沈殿物をろ過回収し、水洗後、150℃で一晩乾燥させた。乾燥後の沈殿物を粉砕し、管状炉に充填して10体積%水素ガス(窒素希釈)を用いて450℃で一時間還元して触媒9を得た。得られた触媒9のニッケル含有率は、83.8質量%であった。窒素ガスを用いたBET法で測定した触媒9の比表面積(S1)は、177.5m2/gであった。
Production Example 9
81.4 g of nickel nitrate hexahydrate and 23.4 g of aluminum nitrate nonahydrate were dissolved in 500 mL of pure water to prepare a mixed aqueous solution of nickel nitrate and aluminum nitrate (aqueous solution A3). Separately, an aqueous solution B3 in which 327 g of a 25 mass% tetramethylammonium hydroxide aqueous solution was dissolved in 1.5 L of pure water was prepared. The aqueous solution A3 was added at once to the aqueous solution B3 vigorously stirred at room temperature, and the stirring was continued for another hour to generate a precipitate. Thereafter, the precipitate was collected by filtration, washed with water, and dried at 150 ° C. overnight. The dried precipitate was pulverized, filled into a tubular furnace, and reduced at 450 ° C. for 1 hour using 10% by volume hydrogen gas (diluted with nitrogen) to obtain catalyst 9. The resulting catalyst 9 had a nickel content of 83.8% by mass. The specific surface area (S1) of the catalyst 9 measured by the BET method using nitrogen gas was 177.5 m 2 / g.
また、触媒9のA成分であるニッケルの算出比表面積(S2)を算出するために、B成分であるアルミナのみからなる粉体9を調製した。具体的には、まず93.8gの硝酸アルミニウム九水和物を500mLの純水に溶解させた(水溶液a3)。別途、684gの25質量%水酸化テトラメチルアンモニウム水溶液を1.5Lの純水に溶解させた水溶液(b3)を調製した。常温下で激しく撹拌した水溶液b3に水溶液a3を一度に加え、さらに一時間撹拌を継続し、沈殿物を生成させた。その後、当該沈殿物をろ過回収し、水洗後、150℃で一晩乾燥させた。乾燥後の沈殿物を粉砕し、管状炉に充填して10体積%水素ガス(窒素希釈)を用いて450℃で一時間還元してアルミナのみからなる粉体9を得た。窒素ガスを用いたBET法で測定した粉体9の比表面積は、341.7m2/gであった。 Further, in order to calculate the calculated specific surface area (S2) of nickel which is the A component of the catalyst 9, a powder 9 consisting only of alumina which is the B component was prepared. Specifically, 93.8 g of aluminum nitrate nonahydrate was first dissolved in 500 mL of pure water (aqueous solution a3). Separately, an aqueous solution (b3) in which 684 g of a 25 mass% tetramethylammonium hydroxide aqueous solution was dissolved in 1.5 L of pure water was prepared. The aqueous solution a3 was added at once to the aqueous solution b3 vigorously stirred at room temperature, and the stirring was continued for another hour to form a precipitate. Thereafter, the precipitate was collected by filtration, washed with water, and dried at 150 ° C. overnight. The dried precipitate was pulverized, filled into a tubular furnace, and reduced at 450 ° C. for 1 hour using 10% by volume hydrogen gas (diluted with nitrogen) to obtain a powder 9 consisting only of alumina. The specific surface area of the powder 9 measured by the BET method using nitrogen gas was 341.7 m 2 / g.
製造例10
61.1gの硝酸ニッケル六水和物と53.8gの硝酸マグネシウム六水和物を500mLの純水に溶解させ、硝酸ニッケルと硝酸マグネシウムの混合水溶液を調製した(水溶液A4)。別途、118gの水酸化カリウムを1.5Lの純水に溶解させた水溶液B4を調製した。常温下で激しく撹拌した水溶液B4に水溶液A4を滴下し、沈殿物を生成させた。当該沈殿物をろ過し、十分に水洗した後、150℃で一晩乾燥させた。乾燥後の沈殿物を粉砕し、管状炉に充填して10体積%水素ガス(窒素希釈)を用いて450℃で一時間還元して触媒10を得た。得られた触媒10のニッケル含有率は、59.3質量%であった。窒素ガスを用いたBET法で測定した触媒10の比表面積(S1)は、118.5m2/gであった。
Production Example 10
61.1 g of nickel nitrate hexahydrate and 53.8 g of magnesium nitrate hexahydrate were dissolved in 500 mL of pure water to prepare a mixed aqueous solution of nickel nitrate and magnesium nitrate (aqueous solution A4). Separately, an aqueous solution B4 in which 118 g of potassium hydroxide was dissolved in 1.5 L of pure water was prepared. The aqueous solution A4 was dropped into the aqueous solution B4 that was vigorously stirred at room temperature to form a precipitate. The precipitate was filtered, washed thoroughly with water, and dried overnight at 150 ° C. The dried precipitate was pulverized, filled into a tubular furnace, and reduced at 450 ° C. for 1 hour using 10 vol% hydrogen gas (diluted with nitrogen) to obtain catalyst 10. The resulting catalyst 10 had a nickel content of 59.3 mass%. The specific surface area (S1) of the catalyst 10 measured by the BET method using nitrogen gas was 118.5 m 2 / g.
また、触媒10のA成分であるニッケルの算出比表面積(S2)を算出するために、B成分であるマグネシアのみからなる粉体10を調製した。102.6gの硝酸マグネシウム六水和物を500mLの純水に溶解させた(水溶液a4)。別途、112.2gの水酸化カリウムを2Lの純水に溶解させた水溶液b4を調製した。常温下で激しく撹拌した水溶液b4に水溶液a4を滴下し、沈殿物を生成させた。当該沈殿物をろ過し、十分に水洗した後、150℃で一晩乾燥させた。乾燥後の沈殿物を粉砕し、管状炉に充填して10体積%水素ガス(窒素希釈)を用いて650℃で一時間還元処理してマグネシアからなる粉体10を得た。窒素ガスを用いたBET法で測定した粉体10の比表面積は、58.2m2/gであった。 Further, in order to calculate the calculated specific surface area (S2) of nickel which is the A component of the catalyst 10, a powder 10 consisting only of magnesia which is the B component was prepared. 102.6 g of magnesium nitrate hexahydrate was dissolved in 500 mL of pure water (aqueous solution a4). Separately, an aqueous solution b4 in which 112.2 g of potassium hydroxide was dissolved in 2 L of pure water was prepared. The aqueous solution a4 was dropped into the aqueous solution b4 that was vigorously stirred at room temperature to form a precipitate. The precipitate was filtered, washed thoroughly with water, and dried overnight at 150 ° C. The dried precipitate was pulverized, filled into a tube furnace, and reduced at 650 ° C. for 1 hour using 10 vol% hydrogen gas (diluted with nitrogen) to obtain a powder 10 made of magnesia. The specific surface area of the powder 10 measured by the BET method using nitrogen gas was 58.2 m 2 / g.
製造例11
66.9gの硝酸コバルト六水和物、15.4gの硝酸セリウム六水和物及び2.37gのオキシ硝酸ジルコニウムを500mLの純水に溶解させ、硝酸コバルト、硝酸セリウム及びオキシ硝酸ジルコニウムの混合水溶液を調製した(水溶液A5)。別途、56.1gの炭酸アンモニウムを1.5Lの純水に溶解させた水溶液B5を調製した。常温下で激しく撹拌した水溶液B5に水溶液A5を一度に加え、さらに一時間撹拌を継続し、沈殿物を生成させた。その後、当該沈殿物をろ過回収し、水洗後、150℃で一晩乾燥させた。乾燥後の沈殿物を粉砕し、管状炉に充填して10体積%水素ガス(窒素希釈)を用いて450℃で一時間還元して触媒11を得た。得られた触媒11のコバルト含有率は、64.1質量%であった。窒素ガスを用いたBET法で測定した触媒11の比表面積(S1)は、75.7m2/gであった。
Production Example 11
66.9 g of cobalt nitrate hexahydrate, 15.4 g of cerium nitrate hexahydrate and 2.37 g of zirconium oxynitrate are dissolved in 500 mL of pure water, and a mixed aqueous solution of cobalt nitrate, cerium nitrate and zirconium oxynitrate (Aqueous solution A5) was prepared. Separately, an aqueous solution B5 in which 56.1 g of ammonium carbonate was dissolved in 1.5 L of pure water was prepared. The aqueous solution A5 was added to the aqueous solution B5 vigorously stirred at room temperature all at once, and the stirring was continued for another hour to generate a precipitate. Thereafter, the precipitate was collected by filtration, washed with water, and dried at 150 ° C. overnight. The dried precipitate was pulverized, filled into a tubular furnace, and reduced at 450 ° C. for 1 hour using 10% by volume hydrogen gas (diluted with nitrogen) to obtain catalyst 11. The obtained catalyst 11 had a cobalt content of 64.1% by mass. The specific surface area (S1) of the catalyst 11 measured by the BET method using nitrogen gas was 75.7 m 2 / g.
また、触媒11のA成分であるコバルトの算出比表面積(S2)を算出するために、B成分であるセリア・ジルコニアのみからなる粉体11を調製した。具体的には、まず17.4gの硝酸セリウム六水和物及び2.67gのオキシ硝酸ジルコニウムを500mLの純水に溶解させ、硝酸セリウム及びオキシ硝酸ジルコニウムの混合水溶液を調製した(水溶液a5)。別途、13.4gの炭酸アンモニウムを1.5Lの純水に溶解させた水溶液b5を調製した。常温下で激しく撹拌した水溶液b5に水溶液a5を一度に加え、さらに一時間撹拌を継続し、沈殿物を生成させた。その後、当該沈殿物をろ過回収し、水洗後、150℃で一晩乾燥させた。乾燥後の沈殿物を粉砕し、管状炉に充填して10体積%水素ガス(窒素希釈)を用いて450℃で一時間還元してセリア・ジルコニアのみからなる粉体11を得た。窒素ガスを用いたBET法で測定した粉体11の比表面積は、145.1m2/gであった。 Further, in order to calculate the calculated specific surface area (S2) of cobalt, which is the A component of the catalyst 11, a powder 11 consisting only of ceria and zirconia, which is the B component, was prepared. Specifically, 17.4 g of cerium nitrate hexahydrate and 2.67 g of zirconium oxynitrate were first dissolved in 500 mL of pure water to prepare a mixed aqueous solution of cerium nitrate and zirconium oxynitrate (aqueous solution a5). Separately, an aqueous solution b5 in which 13.4 g of ammonium carbonate was dissolved in 1.5 L of pure water was prepared. The aqueous solution a5 was added at once to the aqueous solution b5 vigorously stirred at room temperature, and the stirring was continued for another hour to generate a precipitate. Thereafter, the precipitate was collected by filtration, washed with water, and dried at 150 ° C. overnight. The dried precipitate was pulverized, filled into a tubular furnace, and reduced at 450 ° C. for 1 hour using 10 vol% hydrogen gas (diluted with nitrogen) to obtain a powder 11 consisting only of ceria and zirconia. The specific surface area of the powder 11 measured by the BET method using nitrogen gas was 145.1 m 2 / g.
製造例12
49.5gの硝酸コバルト六水和物を1Lの純水に溶解した(水溶液A6)。別途、25.6mLの25質量%アンモニア水に純水を加えて300mLに希釈したアンモニア水に14.24gのスノーテックス(登録商標)N(日産化学工業株式会社製シリカゾル:シリカ20.3質量%含有)を加えた水溶液B6を調製し、水溶液B6を水溶液A6に滴下し、沈殿物を生成させた。当該沈殿物をろ過し、十分に水洗した後、150℃で一晩乾燥させた。乾燥後の沈殿物を粉砕し、管状炉に充填して10体積%水素ガス(窒素希釈)を用いて450℃で一時間還元して触媒12を得た。得られた触媒12のコバルト含有率は、77.6質量%であった。窒素ガスを用いたBET法で測定した触媒12の比表面積(S1)は、118.2m2/gであった。
Production Example 12
49.5 g of cobalt nitrate hexahydrate was dissolved in 1 L of pure water (aqueous solution A6). Separately, 14.24 g of SNOWTEX (registered trademark) N (Nissan Chemical Industries, Ltd. silica sol: 20.3% by mass of silica) in ammonia water diluted to 300 mL by adding pure water to 25.6 mL of 25 mass% ammonia water. Aqueous solution B6 was added, and the aqueous solution B6 was added dropwise to the aqueous solution A6 to generate a precipitate. The precipitate was filtered, washed thoroughly with water, and dried overnight at 150 ° C. The dried precipitate was pulverized, filled into a tubular furnace, and reduced at 450 ° C. for 1 hour using 10 vol% hydrogen gas (diluted with nitrogen) to obtain catalyst 12. The obtained catalyst 12 had a cobalt content of 77.6% by mass. The specific surface area (S1) of the catalyst 12 measured by the BET method using nitrogen gas was 118.2 m 2 / g.
また、触媒12のA成分であるコバルトの算出比表面積(S2)を算出するために、B成分であるシリカのみからなる粉体12を調製した。具体的には、スノーテックスN(日産化学工業株式会社製シリカゾル:シリカ20.3質量%含有)を50gガラス製ビーカーに計り取り、150℃で一晩乾燥させた。乾燥により得られた固形物を粉砕し、管状炉に充填して10体積%水素ガス(窒素希釈)を用いて450℃で一時間還元してシリカのみからなる粉体12を得た。窒素ガスを用いたBET法で測定した粉体12の比表面積は、220.8m2/gであった。 Further, in order to calculate the calculated specific surface area (S2) of cobalt, which is the A component of the catalyst 12, a powder 12 made only of silica, which is the B component, was prepared. Specifically, Snowtex N (silica sol manufactured by Nissan Chemical Industries, Ltd .: containing 20.3% by mass of silica) was weighed into a 50 g glass beaker and dried at 150 ° C. overnight. The solid obtained by drying was pulverized, filled into a tubular furnace, and reduced at 450 ° C. for 1 hour using 10% by volume hydrogen gas (diluted with nitrogen) to obtain a powder 12 made only of silica. The specific surface area of the powder 12 measured by the BET method using nitrogen gas was 220.8 m 2 / g.
製造例13
34.9gの硝酸コバルト六水和物と27.3gの硝酸アルミニウム九水和物を1Lの純水に溶解した(水溶液A7)。別途、34.5mLの25質量%アンモニア水に純水を加えて300mLに希釈したアンモニア水に21.5gのスノーテックスN(日産化学工業株式会社製シリカゾル:シリカ20.3質量%含有)を加えた水溶液B7を調製し、水溶液B7を水溶液A7に滴下し、沈殿物を生成させた。当該沈殿物をろ過し、十分に水洗した後、150℃で一晩乾燥させた。乾燥後の沈殿物を粉砕し、管状炉に充填して10体積%水素ガス(窒素希釈)を用いて450℃で一時間還元して触媒13を得た。得られた触媒13のコバルト含有率は、46.7質量%であった。窒素ガスを用いたBET法で測定した触媒13の比表面積(S1)は、122.8m2/gであった。
Production Example 13
34.9 g of cobalt nitrate hexahydrate and 27.3 g of aluminum nitrate nonahydrate were dissolved in 1 L of pure water (aqueous solution A7). Separately, 21.5 g of Snowtex N (Nissan Chemical Co., Ltd. silica sol: containing 20.3% by mass of silica) was added to 34.5 mL of 25% by mass of ammonia water and pure water diluted to 300 mL. An aqueous solution B7 was prepared, and the aqueous solution B7 was dropped into the aqueous solution A7 to generate a precipitate. The precipitate was filtered, washed thoroughly with water, and dried overnight at 150 ° C. The dried precipitate was pulverized, filled into a tubular furnace, and reduced at 450 ° C. for 1 hour using 10% by volume hydrogen gas (diluted with nitrogen) to obtain catalyst 13. The obtained catalyst 13 had a cobalt content of 46.7% by mass. The specific surface area (S1) of the catalyst 13 measured by the BET method using nitrogen gas was 122.8 m 2 / g.
また、触媒13のA成分であるコバルトの算出比表面積(S2)を算出するために、B成分であるシリカ・アルミナのみからなる粉体13を調製した。37.5gの硝酸アルミニウム九水和物を1Lの純水に溶解した(水溶液a7)。別途、22.6mLの25質量%アンモニア水に純水を加えて300mLに希釈したアンモニア水に29.6gのスノーテックスN(日産化学工業株式会社製シリカゾル:シリカ20.3質量%含有)を加えた水溶液b7を調製し、水溶液b7を水溶液a7に滴下し、沈殿物を生成させた。当該沈殿物をろ過し、十分に水洗した後、150℃で一晩乾燥させた。乾燥後の沈殿物を粉砕し、管状炉に充填して10体積%水素ガス(窒素希釈)を用いて450℃で一時間還元してシリカ・アルミナのみからなる粉体13を得た。窒素ガスを用いたBET法で測定した粉体13の比表面積は、150.8m2/gであった。 Further, in order to calculate the calculated specific surface area (S2) of cobalt, which is the A component of the catalyst 13, a powder 13 made only of silica / alumina, which is the B component, was prepared. 37.5 g of aluminum nitrate nonahydrate was dissolved in 1 L of pure water (aqueous solution a7). Separately, 29.6 g of Snowtex N (Nissan Chemical Co., Ltd. silica sol: containing 20.3% by mass of silica) was added to 22.6 mL of 25% by mass of ammonia water and pure water diluted to 300 mL. An aqueous solution b7 was prepared, and the aqueous solution b7 was dropped into the aqueous solution a7 to generate a precipitate. The precipitate was filtered, washed thoroughly with water, and dried overnight at 150 ° C. The dried precipitate was pulverized, filled into a tube furnace, and reduced at 450 ° C. for 1 hour using 10% by volume hydrogen gas (diluted with nitrogen) to obtain a powder 13 consisting only of silica / alumina. The specific surface area of the powder 13 measured by the BET method using nitrogen gas was 150.8 m 2 / g.
製造例14
150℃で一晩乾燥させたγ−アルミナ(Strem Chemicals Inc.製)粉体を粉砕し、当該粉体20gに、24.8gの硝酸ニッケル六水和物を50mLの純水に溶解させた水溶液を加え、撹拌しながら加熱して水分を蒸発させて乾燥物を得た。得られた乾燥物を、さらに150℃で一晩乾燥後、粉砕して管状炉に充填し、10体積%水素ガス(窒素希釈)を用いて450℃で一時間還元して触媒14を得た。得られた触媒14のニッケル含有率は、20質量%であった。窒素ガスを用いたBET法で測定した触媒14の比表面積(S1)は、157.4m2/gであった。
また、触媒14のA成分であるニッケルの算出比表面積(S2)を算出するために、B成分であるγ−アルミナ(Strem Chemicals Inc.製)粉体を粉砕後、当該粉体を管状炉に充填し、10体積%水素ガス(窒素希釈)を用いて450℃で一時間還元処理してγ−アルミナからなる粉体14を得た。窒素ガスを用いたBET法で測定した粉体14の比表面積は、187.1m2/gであった。
Production Example 14
An aqueous solution in which γ-alumina (manufactured by Strem Chemicals Inc.) powder dried overnight at 150 ° C. is pulverized, and 24.8 g of nickel nitrate hexahydrate is dissolved in 50 mL of pure water in 20 g of the powder. And heated with stirring to evaporate the water to obtain a dried product. The obtained dried product was further dried overnight at 150 ° C., pulverized and filled into a tubular furnace, and reduced at 450 ° C. for 1 hour using 10% by volume hydrogen gas (diluted with nitrogen) to obtain catalyst 14. . The resulting catalyst 14 had a nickel content of 20% by mass. The specific surface area (S1) of the catalyst 14 measured by the BET method using nitrogen gas was 157.4 m 2 / g.
Further, in order to calculate the calculated specific surface area (S2) of nickel which is the A component of the catalyst 14, after pulverizing the γ-alumina (made by Strem Chemicals Inc.) powder which is the B component, the powder is put into a tubular furnace. Filled and reduced using 450% hydrogen gas (diluted with nitrogen) at 450 ° C. for 1 hour to obtain a powder 14 made of γ-alumina. The specific surface area of the powder 14 measured by the BET method using nitrogen gas was 187.1 m 2 / g.
製造例15
99.0gの硝酸コバルト六水和物を500mLの純水に溶解させた(水溶液A8)。別途、65.3gの炭酸アンモニウムを1.5Lの純水に溶解させた水溶液B8を調製し、常温下で激しく撹拌した水溶液B8に水溶液A8を一度に加え、さらに一時間撹拌を継続し、沈殿物を生成させた。その後、当該沈殿物をろ過回収し、水洗後、150℃で一晩乾燥させた。乾燥後の沈殿物を粉砕し、管状炉に充填して10体積%水素ガス(窒素希釈)を用いて450℃で一時間還元して触媒15を得た。得られた触媒15のコバルト含有率は、100質量%であった。窒素ガスを用いたBET法で測定した触媒15の比表面積(S1)は、4.5m2/gであった。
Production Example 15
99.0 g of cobalt nitrate hexahydrate was dissolved in 500 mL of pure water (aqueous solution A8). Separately, an aqueous solution B8 in which 65.3 g of ammonium carbonate was dissolved in 1.5 L of pure water was prepared, and the aqueous solution A8 was added to the aqueous solution B8 vigorously stirred at room temperature all at once, and stirring was further continued for 1 hour to precipitate. Product was produced. Thereafter, the precipitate was collected by filtration, washed with water, and dried at 150 ° C. overnight. The dried precipitate was pulverized, filled into a tubular furnace, and reduced at 450 ° C. for 1 hour using 10% by volume hydrogen gas (diluted with nitrogen) to obtain catalyst 15. The obtained catalyst 15 had a cobalt content of 100% by mass. The specific surface area (S1) of the catalyst 15 measured by the BET method using nitrogen gas was 4.5 m 2 / g.
<触媒の比表面積測定法>
触媒の比表面積は、窒素ガスを用いたBET法により測定した。
<Method for measuring specific surface area of catalyst>
The specific surface area of the catalyst was measured by the BET method using nitrogen gas.
<A成分の比表面積算出法>
A成分の算出比表面積(S2)は、触媒の比表面積(S1)からB成分酸化物由来の比表面積分(Sb)を減じることにより算出した。触媒中のB成分酸化物由来の比表面積は、以下のようにして求めた。具体的には、各製造例で使用したB成分の水溶性塩を水に溶解し、これにその製造例で使用したアルカリ性化合物を添加しB成分の沈殿物(例えば、水酸化物)を調製した。その後、その製造例における触媒調製手順と同様に、B成分の沈殿物(例えば、水酸化物)をろ過、水洗、乾燥、還元し、B成分酸化物を調製した。得られた酸化物について、窒素ガスを用いたBET法により比表面積(S(b))を測定した。下記式により触媒中のB成分酸化物由来の比表面積を算出した。
触媒中のB成分酸化物由来の比表面積=(S(b)×当該触媒中のB成分酸化物の質量含有率)
<Method for calculating specific surface area of component A>
The calculated specific surface area (S2) of the A component was calculated by subtracting the specific surface area (Sb) derived from the B component oxide from the specific surface area (S1) of the catalyst. The specific surface area derived from the B component oxide in the catalyst was determined as follows. Specifically, the B component water-soluble salt used in each production example is dissolved in water, and the alkaline compound used in the production example is added thereto to prepare a B component precipitate (eg, hydroxide). did. Thereafter, the B component precipitate (for example, hydroxide) was filtered, washed with water, dried and reduced in the same manner as the catalyst preparation procedure in the production example to prepare the B component oxide. About the obtained oxide, the specific surface area (S (b)) was measured by BET method using nitrogen gas. The specific surface area derived from the B component oxide in the catalyst was calculated from the following formula.
Specific surface area derived from B component oxide in catalyst = (S (b) × mass content of B component oxide in the catalyst)
<水蒸気共存下でのアンモニア分解反応>
10mmφのSUS316製反応管を用い、製造例1〜15で調製した触媒1〜15を0.8mL充填して水蒸気共存下でのアンモニア分解反応(反応例1〜15)を行った。常圧下、SV=21,000hr-1とし、電気炉で反応管を加熱し、各電気炉設定温度でのアンモニア分解率を測定した。アンモニア分解反応は、触媒に供給する入口ガス組成をアンモニア48.3体積%、水蒸気17.3体積%及び残部窒素として実施した。
アンモニア分解率は、入口に供給しているアンモニア流速V1、窒素流速V2及び触媒層出口ガス中に含まれる水蒸気及び未反応アンモニアをトラップした後のガス流速V3から下記式により算出した。なお、触媒の前処理として窒素で希釈した10%水素を毎分100mlで流通しながら450℃で1時間還元を行ってから水蒸気共存下でのアンモニア分解反応を実施した。反応結果を表2に示す。
アンモニア分解率(%)=100×(V3−V2)×0.5/V1
<Ammonia decomposition reaction in the presence of water vapor>
Using a 10 mmφ SUS316 reaction tube, 0.8 mL of catalyst 1-15 prepared in Production Examples 1-15 was charged and ammonia decomposition reaction (reaction examples 1-15) was performed in the presence of water vapor. Under normal pressure, SV = 21,000 hr −1 , the reaction tube was heated in an electric furnace, and the ammonia decomposition rate at each electric furnace set temperature was measured. The ammonia decomposition reaction was carried out with the composition of the inlet gas supplied to the catalyst being 48.3% by volume of ammonia, 17.3% by volume of steam and the balance nitrogen.
The ammonia decomposition rate was calculated from the ammonia flow rate V1 and nitrogen flow rate V2 supplied to the inlet and the gas flow rate V3 after trapping water vapor and unreacted ammonia contained in the catalyst layer outlet gas by the following formula. In addition, as a pretreatment of the catalyst, 10% hydrogen diluted with nitrogen was reduced at 450 ° C. for 1 hour while flowing at 100 ml per minute, and then an ammonia decomposition reaction was carried out in the presence of water vapor. The reaction results are shown in Table 2.
Ammonia decomposition rate (%) = 100 × (V3−V2) × 0.5 / V1
<水蒸気及び酸素共存下でのアンモニア分解反応>
10mmφのSUS316製反応管を用い、製造例2、11、14で調製した触媒2、11、14を0.8mL充填して、電気炉で反応管を加熱し、水蒸気及び酸素共存下でのアンモニア分解反応を行った。常圧下、SV=50,000hr-1とし、電気炉設定温度150℃でのアンモニア分解率を測定した。アンモニア分解反応は、触媒に供給する入口ガス組成をアンモニア48.4体積%、水蒸気17体積%、酸素7.2体積%及び残部窒素として実施した。
アンモニア分解率は、入口に供給しているアンモニア流速F1、触媒出口ガス中の未反応アンモニアをホウ酸水溶液で一定時間捕集し、当該捕集液に含まれるアンモニア濃度を陽イオンクロマトグラフで定量分析して出口ガス中のアンモニア流速F2を求め、下記式により算出した。なお、触媒の前処理として窒素で希釈した10%水素を毎分100mlで流通しながら450℃で1時間還元を行ってから水蒸気共存下でのアンモニア分解反応を実施した。反応結果を表3に示す。
アンモニア分解率(%)=100−{100×(F2/F1)}
<Ammonia decomposition reaction in the presence of water vapor and oxygen>
Using a 10 mmφ SUS316 reaction tube, 0.8 mL of Catalysts 2, 11, and 14 prepared in Production Examples 2, 11, and 14 were charged, the reaction tube was heated in an electric furnace, and ammonia in the presence of water vapor and oxygen A decomposition reaction was performed. Under normal pressure, SV = 50,000 hr −1, and the ammonia decomposition rate at an electric furnace set temperature of 150 ° C. was measured. The ammonia decomposition reaction was carried out with the composition of the inlet gas supplied to the catalyst being 48.4 vol% ammonia, 17 vol% water vapor, 7.2 vol% oxygen, and the balance nitrogen.
The ammonia decomposition rate is determined by collecting the ammonia flow rate F1 supplied to the inlet, unreacted ammonia in the catalyst outlet gas with an aqueous boric acid solution for a certain period of time, and quantifying the ammonia concentration contained in the collected liquid with a cation chromatograph. The ammonia flow rate F2 in the outlet gas was determined by analysis and calculated by the following formula. In addition, as a pretreatment of the catalyst, 10% hydrogen diluted with nitrogen was reduced at 450 ° C. for 1 hour while flowing at 100 ml per minute, and then an ammonia decomposition reaction was carried out in the presence of water vapor. The reaction results are shown in Table 3.
Ammonia decomposition rate (%) = 100− {100 × (F2 / F1)}
本発明は、水蒸気存在下でもアンモニアを水素と窒素に効率良く分解でき、かつ、コスト面でも実用性の高いアンモニア分解用触媒に関するものであり、本発明に係るアンモニア分解用触媒を用いることで水蒸気存在下であってもアンモニアから水素を効率よく得ることができる。本発明は、水素製造技術に関して広く応用することができるものである。 The present invention relates to an ammonia decomposition catalyst that can efficiently decompose ammonia into hydrogen and nitrogen even in the presence of water vapor, and has high practicality in terms of cost. By using the ammonia decomposition catalyst according to the present invention, Even in the presence, hydrogen can be efficiently obtained from ammonia. The present invention can be widely applied to hydrogen production technology.
Claims (9)
長周期型周期律表6〜10族の少なくとも1種の元素(A成分)と、長周期型周期律表2〜5族及び12〜15族からなる群から選ばれる少なくとも1種の元素(B成分)の酸化物及び/又は複合酸化物とを含むことを特徴とするアンモニア分解用触媒。 A catalyst that decomposes ammonia into nitrogen and hydrogen in the presence of water vapor,
At least one element (A component) of group 6-10 of long-period periodic table and at least one element (B) selected from the group consisting of groups 2-5 and 12-15 of long-period periodic table A catalyst for decomposing ammonia, comprising a component) oxide and / or composite oxide.
前記A成分の水溶性塩と前記B成分の水溶性塩とを水に溶解し、アルカリ性化合物により沈殿物を生成させた後、この沈殿物をろ過、水洗、乾燥、熱処理することを特徴とするアンモニア分解用触媒の製造方法。 It is a manufacturing method of the catalyst for ammonia decomposition | disassembly of any one of Claims 1-4,
The water-soluble salt of the component A and the water-soluble salt of the component B are dissolved in water, and a precipitate is formed with an alkaline compound, and then the precipitate is filtered, washed with water, dried, and heat-treated. A method for producing an ammonia decomposition catalyst.
前記A成分の水溶性塩を水に加え水溶液を調製し、この水溶液にアルカリ性化合物を加えてA成分を含有する微粒子を析出させて微粒子分散液を調製し、当該微粒子分散液を撹拌しながら前記B成分を含有する微粒子分散ゾル溶液を添加して、前記A成分を含有する微粒子とB成分を含有する微粒子からなる沈殿物を生成させた後、この沈殿物をろ過、水洗、乾燥、熱処理することを特徴とするアンモニア分解用触媒の製造方法。 It is a manufacturing method of the catalyst for ammonia decomposition | disassembly of any one of Claims 1-4,
A water-soluble salt of the component A is added to water to prepare an aqueous solution, an alkaline compound is added to the aqueous solution to precipitate fine particles containing the component A to prepare a fine particle dispersion, and the fine particle dispersion is stirred while stirring the fine particle dispersion. A fine particle-dispersed sol solution containing the B component is added to form a precipitate composed of the fine particles containing the A component and the fine particles containing the B component, and then the precipitate is filtered, washed, dried, and heat-treated. A method for producing a catalyst for decomposing ammonia.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011073605A JP5746539B2 (en) | 2010-06-02 | 2011-03-29 | Ammonia decomposition catalyst, method for producing the catalyst, ammonia decomposition method and hydrogen production method using the catalyst |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010126404 | 2010-06-02 | ||
JP2010126404 | 2010-06-02 | ||
JP2011073605A JP5746539B2 (en) | 2010-06-02 | 2011-03-29 | Ammonia decomposition catalyst, method for producing the catalyst, ammonia decomposition method and hydrogen production method using the catalyst |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2012011373A true JP2012011373A (en) | 2012-01-19 |
JP5746539B2 JP5746539B2 (en) | 2015-07-08 |
Family
ID=45598440
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011073605A Active JP5746539B2 (en) | 2010-06-02 | 2011-03-29 | Ammonia decomposition catalyst, method for producing the catalyst, ammonia decomposition method and hydrogen production method using the catalyst |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5746539B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016013652A1 (en) * | 2014-07-24 | 2016-01-28 | 国立研究開発法人産業技術総合研究所 | Method for producing hydrogen from ammonia nitrogen-containing waste by ammonia decomposition |
WO2016140227A1 (en) * | 2015-03-04 | 2016-09-09 | 国立大学法人 群馬大学 | Carbon-nanotube-coated catalyst particles |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023033528A1 (en) * | 2021-09-02 | 2023-03-09 | 한국화학연구원 | Method for preparing catalyst for ammonia decomposition using cation-anion double hydrolysis |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004307326A (en) * | 2003-03-25 | 2004-11-04 | Ngk Insulators Ltd | Method for recovering energy from organic waste |
JP2010094668A (en) * | 2008-09-17 | 2010-04-30 | Nippon Shokubai Co Ltd | Catalyst for ammonia decomposition, process for producing the same, and method for treating ammonia |
-
2011
- 2011-03-29 JP JP2011073605A patent/JP5746539B2/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004307326A (en) * | 2003-03-25 | 2004-11-04 | Ngk Insulators Ltd | Method for recovering energy from organic waste |
JP2010094668A (en) * | 2008-09-17 | 2010-04-30 | Nippon Shokubai Co Ltd | Catalyst for ammonia decomposition, process for producing the same, and method for treating ammonia |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016013652A1 (en) * | 2014-07-24 | 2016-01-28 | 国立研究開発法人産業技術総合研究所 | Method for producing hydrogen from ammonia nitrogen-containing waste by ammonia decomposition |
JP2016023126A (en) * | 2014-07-24 | 2016-02-08 | 国立大学法人群馬大学 | Method for producing ammonia decomposition hydrogen from ammonia nitrogen-containing waste |
WO2016140227A1 (en) * | 2015-03-04 | 2016-09-09 | 国立大学法人 群馬大学 | Carbon-nanotube-coated catalyst particles |
JPWO2016140227A1 (en) * | 2015-03-04 | 2018-02-01 | 国立大学法人群馬大学 | Carbon nanotube-coated catalyst particles |
US10232355B2 (en) | 2015-03-04 | 2019-03-19 | National University Corporation Gunma University | Carbon nanotube-coated catalyst particle |
Also Published As
Publication number | Publication date |
---|---|
JP5746539B2 (en) | 2015-07-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6381131B2 (en) | Ammonia decomposition catalyst, method for producing the catalyst, and method for decomposing ammonia using the catalyst | |
CN103183346B (en) | Method of reverse water gas shift reaction for reverse water gas shift catalyst | |
WO2011125653A1 (en) | Catalyst for decomposing ammonia, method for producing the catalyst and method for producing hydrogen using the catalyst | |
Ivanova et al. | Application of the direct exchange method in the preparation of gold catalysts supported on different oxide materials | |
JP5553484B2 (en) | Ammonia decomposition catalyst and ammonia decomposition method | |
JP7352487B2 (en) | Ammonia decomposition catalyst | |
CN106345452A (en) | High-stability high-temperature sulfur-tolerant methanation catalyst prepared through organic acid complexing method and preparation method thereof | |
JP6883289B2 (en) | Hydrogen production method and catalyst for hydrogen production | |
JP2002282689A (en) | Catalyst carrier, catalyst and method for producing them | |
CN106512999A (en) | Dry-gas reforming catalyst for methane and preparation method for dry-gas reforming catalyst for methane | |
JP2020505227A (en) | Manganese doped nickel methanation catalyst | |
CN103143364A (en) | High-dispersion nano-composite catalyst, and preparation method and applications thereof | |
CN101905162A (en) | Molecular sieve-supported cobalt-based composite oxide catalyst, preparation method and application | |
CN105268451B (en) | Ternary metal complex carrier low-temperature selective catalytic reduction system catalyst and preparation method thereof | |
JP5746539B2 (en) | Ammonia decomposition catalyst, method for producing the catalyst, ammonia decomposition method and hydrogen production method using the catalyst | |
JP5691119B2 (en) | Method for producing hydrogenation catalyst and method for producing methane gas using the same | |
CN109503377A (en) | A kind of method of long life solid base catalysis Catalysts of Preparing Methyl Ethyl Carbonate | |
JP6684669B2 (en) | Ammonia decomposition catalyst and method for producing hydrogen-containing gas using this catalyst | |
CN105797706A (en) | Cerium-lanthanum solid solution catalyst for purifying diesel vehicle exhaust particles and preparation method thereof | |
CN110433815A (en) | A kind of carbon dioxide methanation nickel-based catalyst and its preparation method and application | |
JPH11179204A (en) | Gas methanation catalyst containing carbon monoxide and carbon dioxide and method for producing the same | |
JP2020032331A (en) | Methanation catalyst, manufacturing method therefor, and manufacturing method of methane | |
JP2013203609A (en) | Oxygen storable ceramic material, method for producing the same, and catalyst | |
CN108126708A (en) | A kind of CO room-temperature catalytic oxidation catalysts | |
JPWO2017094688A1 (en) | Hydrocarbon steam reforming catalyst |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20131119 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20140710 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140805 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20141006 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20150421 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20150508 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5746539 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |