[go: up one dir, main page]

JP2012007651A - Non-welded steel pipe joint and method of joining steel pipes - Google Patents

Non-welded steel pipe joint and method of joining steel pipes Download PDF

Info

Publication number
JP2012007651A
JP2012007651A JP2010142698A JP2010142698A JP2012007651A JP 2012007651 A JP2012007651 A JP 2012007651A JP 2010142698 A JP2010142698 A JP 2010142698A JP 2010142698 A JP2010142698 A JP 2010142698A JP 2012007651 A JP2012007651 A JP 2012007651A
Authority
JP
Japan
Prior art keywords
steel pipe
joint
inner steel
welded
peripheral surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010142698A
Other languages
Japanese (ja)
Inventor
Yasutoshi Tateishi
寧俊 立石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Construction Co Ltd
Shimizu Corp
Original Assignee
Shimizu Construction Co Ltd
Shimizu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Construction Co Ltd, Shimizu Corp filed Critical Shimizu Construction Co Ltd
Priority to JP2010142698A priority Critical patent/JP2012007651A/en
Publication of JP2012007651A publication Critical patent/JP2012007651A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Joints With Sleeves (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a non-welded steel pipe joint which can be worked easily because of the simple structure, can suppress degradation of bearing force and rigidity of a joint part, as well as improve its appearance by compacting the structure.SOLUTION: A joint 1 includes an inner steel pipe 20 having a mortar injection part 23 which is divided liquid tightly by upper and lower partition walls 21 and 22 in the end part of an upper column 2 at one side, and an outer steel pipe 30 having a larger inner diameter than the inner steel pipe 20 disposed at the end part of a lower column 3 at the other side. In a state where the inner steel pipe 20 is inserted coaxially in the outer steel pipe 30, the inner steel pipe 20 is expanded by injecting an expandable mortar 4 to the mortar injection part 23, so that the inner steel pipe 20 and the outer steel pipe 30 are frictionally joined.

Description

本発明は、建物の鋼管柱などの接合に用いられる無溶接鋼管継手および鋼管接合方法に関する。   The present invention relates to a non-welded steel pipe joint and a steel pipe joining method used for joining steel pipe columns and the like of buildings.

従来、鉄骨造建物の施工現場では、分割されて搬入された鉄骨ピースを、高力ボルトや現場溶接によって接合しているのが一般的である。そして、接合対象が鋼管の場合には、閉断面であるため高力ボルトによる接合を採用することが困難であり、現場溶接を実施せざるを得ない現状がある。ところが、現場溶接の場合、溶接の品質、欠陥の有無は溶接技能者の力量によるところが大きく、また溶接作業によっては気温や気候の影響を受け、品質管理項目も多いことから、高コストとなっている。   Conventionally, in a construction site of a steel building, it is common to join steel pieces that are divided and carried in by high-strength bolts or on-site welding. And when a joining object is a steel pipe, since it is a closed cross section, it is difficult to employ | adopt joining by a high strength volt | bolt, and there exists the present condition which must implement on-site welding. However, in the case of on-site welding, the quality of welding and the presence or absence of defects depend largely on the ability of the welding engineer, and depending on the welding operation, it is affected by temperature and climate, and there are many quality control items, resulting in high costs. Yes.

これに対して、無溶接鋼管継手として、ボルトを使用した機械式のものが知られている。この機械式の継手は、埋め込み杭への使用のほか、住宅向けの断面の小さな鋼管を適用対象としており、継手部の曲げ耐力も小さく、接合部が複雑な構造となっている。
また、機械式でない他の無溶接鋼管継手として、図15に示すように鋼管100、101同士の接続部に外鋼管102を配置し、鋼管100、101と外鋼管102との間に膨張モルタル103を注入した接合構造であり、その膨張するモルタルの付着強度や圧縮ストラットを利用したものがあり、これは例えば特許文献1にも開示されている。
On the other hand, a mechanical type using a bolt is known as a non-welded steel pipe joint. This mechanical joint is used for embedded piles, and is also applicable to steel pipes with a small cross section for residential use. The joint section has a small bending strength and has a complicated structure.
Further, as another non-mechanical welded steel pipe joint, as shown in FIG. 15, an outer steel pipe 102 is disposed at a connection portion between the steel pipes 100 and 101, and an expansion mortar 103 is provided between the steel pipes 100 and 101 and the outer steel pipe 102. There is a joint structure in which the adhesive strength of the expanding mortar and compression struts are used, and this is also disclosed in Patent Document 1, for example.

特許文献1には、相隣接して鋼管(内鋼管)の管端を対向させた鋼管の端部に止水材を設け、鋼管の継手部の外周を覆い、両側内側にフランジ部を設けた分割可能な筒状の外管(外鋼管)を鋼管に被装し、フランジ部と外管の間には止水材を配し、外管と鋼管により形成される継手空間内に所定の膨張圧を生じさせる膨張モルタルを充填した無溶接鋼管継手について開示されている。   In Patent Document 1, a water-stopping material is provided at the end of the steel pipe facing the pipe ends of the steel pipe (inner steel pipe) adjacent to each other, the outer periphery of the joint portion of the steel pipe is covered, and flange portions are provided on both inner sides. A separable cylindrical outer pipe (outer steel pipe) is placed on the steel pipe, a water-stopping material is placed between the flange and the outer pipe, and a predetermined expansion occurs in the joint space formed by the outer pipe and the steel pipe. A non-welded steel pipe joint filled with expanded mortar that produces pressure is disclosed.

特開平9−79447号公報Japanese Patent Laid-Open No. 9-79447

しかしながら、従来の無溶接鋼管継手では、以下のような問題があった。
すなわち、特許文献1では、内鋼管と外鋼管の間に膨張モルタルによる付着強度や圧縮ストラットが発生し得るだけの厚さ寸法が必要であり、これにより外鋼管の外径寸法が大きくなり、外観が悪くなるという問題があった。そして、このような外観上の問題と、上述した機械式による無溶接鋼管継手による構造が複雑になるという欠点とがあり、これらをバランスよく解決できる無溶接鋼管継手が求められている。
また、特許文献1では、継手としての耐力がモルタルと鋼管との間の付着耐力で決定するため、耐力が低くなるうえ、モルタルの膨張により内鋼管が座屈するといった品質上の問題もあった。
However, the conventional non-welded steel pipe joint has the following problems.
That is, in Patent Document 1, a thickness dimension is required between the inner steel pipe and the outer steel pipe so that adhesion strength due to expansion mortar and compression struts can be generated, which increases the outer diameter dimension of the outer steel pipe. There was a problem of getting worse. And there exists such a problem on an external appearance, and the fault that the structure by the non-welded steel pipe joint by a mechanical type mentioned above becomes complicated, The non-welded steel pipe joint which can solve these with sufficient balance is calculated | required.
Moreover, in patent document 1, since the yield strength as a joint is determined by the adhesion yield strength between a mortar and a steel pipe, there existed the problem of quality that a yield strength became low and an inner steel pipe buckled by expansion | swelling of the mortar.

本発明は、上述する問題点に鑑みてなされたもので、簡単な構造により施工が容易であるうえ、継手部の耐力や剛性の低下を抑えることができる無溶接鋼管継手および鋼管接合方法を提供することを目的とする。
また、本発明の他の目的は、コンパクトな構造とすることで外観を良くすることができる無溶接鋼管継手および鋼管接合方法を提供することである。
The present invention has been made in view of the above-described problems, and provides a non-welded steel pipe joint and a steel pipe joining method that can be easily constructed with a simple structure and can suppress a decrease in yield strength and rigidity of the joint. The purpose is to do.
Another object of the present invention is to provide a non-welded steel pipe joint and a steel pipe joining method capable of improving the appearance by adopting a compact structure.

上記目的を達成するため、本発明に係る無溶接鋼管継手では、一対の鋼管の端部同士を対向配置させて接合する無溶接鋼管継手であって、一方の第1鋼管の端部内には、隔壁によって液密に区画された充填室を有する内鋼管を備え、他方の第2鋼管の端部には、内鋼管よりも大きな内径寸法をもつ外鋼管を備え、内鋼管を外鋼管に同軸に挿入させた状態で、充填室に膨張性を有する充填材を注入することで内鋼管を膨張させ、内鋼管と外鋼管とを摩擦接合させる構成としたことを特徴としている。   In order to achieve the above object, in the non-welded steel pipe joint according to the present invention, the end parts of a pair of steel pipes are arranged so as to face each other and joined, and in the end part of one of the first steel pipes, An inner steel pipe having a filling chamber partitioned liquid-tightly by a partition wall is provided, and an end of the other second steel pipe is provided with an outer steel pipe having a larger inner diameter than the inner steel pipe, and the inner steel pipe is coaxial with the outer steel pipe. In the inserted state, the inner steel pipe is expanded by injecting an inflatable filler into the filling chamber, and the inner steel pipe and the outer steel pipe are frictionally joined.

また、本発明に係る鋼管接合方法では、端部同士を対向配置させた一対の鋼管を無溶接鋼管継手によって接合するための鋼管接合方法であって、一方の第1鋼管の端部内に、隔壁によって液密に区画された充填室を有する内鋼管を備える工程と、他方の第2鋼管の端部に、内鋼管よりも大きな内径寸法をもつ外鋼管を備える工程と、内鋼管を外鋼管に同軸に挿入する工程と、充填室に膨張性を有する充填材を注入し、内鋼管を膨張させ、内鋼管と外鋼管とを摩擦接合させる工程とを有することを特徴としている。   The steel pipe joining method according to the present invention is a steel pipe joining method for joining a pair of steel pipes whose ends are opposed to each other by a non-welded steel pipe joint, and a partition wall is provided in the end of one first steel pipe. A step of providing an inner steel pipe having a filling chamber partitioned liquid-tightly by the step, a step of providing an outer steel pipe having an inner diameter larger than the inner steel pipe at the end of the other second steel pipe, and an inner steel pipe as an outer steel pipe It is characterized by having a step of inserting coaxially and a step of injecting a filler having an expandability into the filling chamber, expanding the inner steel pipe, and frictionally joining the inner steel pipe and the outer steel pipe.

本発明では、外鋼管に内鋼管を挿入させた状態で内鋼管の充填室に充填材を注入すると、充填室が隔壁によって液密に区画されているので、その充填室内での充填材の膨張作用により内鋼管が外側へ膨らみ、外鋼管の内面に当接することになる。そして、さらに膨張が続くと、内鋼管と外鋼管との間で接触圧が生じ、この接触圧による摩擦により内鋼管と外鋼管との間に作用する軸方向の引張力や曲げモーメントに対抗することになる。つまり、内鋼管に対する外鋼管の拘束圧が十分に確保されることとなり、両鋼管が一体的に接合され、この無溶接鋼管継手により一対の第1鋼管と第2鋼管とが接合されることになる。
また、継手部内に充填材が充填されるため、その継手部における鋼管が座屈することはない。
In the present invention, when the filler is injected into the filling chamber of the inner steel pipe while the inner steel pipe is inserted into the outer steel pipe, the filling chamber is partitioned liquid-tightly by the partition wall, so that the expansion of the filler in the filling chamber is performed. Due to the action, the inner steel pipe swells outward and comes into contact with the inner surface of the outer steel pipe. If the expansion further continues, contact pressure is generated between the inner steel pipe and the outer steel pipe, and the friction caused by this contact pressure counters the axial tensile force and bending moment acting between the inner steel pipe and the outer steel pipe. It will be. That is, the restraining pressure of the outer steel pipe with respect to the inner steel pipe is sufficiently ensured, both the steel pipes are integrally joined, and the pair of the first steel pipe and the second steel pipe are joined by the non-welded steel pipe joint. Become.
Moreover, since the filler is filled in the joint portion, the steel pipe in the joint portion does not buckle.

また、現場での施工は充填室に充填材を注入するだけの極めて簡単な作業となるので施工効率の向上が図れ、しかも無溶接による接合継手のため、現場溶接による欠陥が生じにくく、優れた品質を確保することができる。
さらに、内鋼管と外鋼管との間に充填材を注入して接合する必要がないことから、外鋼管はその内側に内鋼管が挿入されるだけの内径寸法があればよい。つまり、内鋼管と外鋼管との間の間隔を小さくし、或いはほぼ接触した状態に設定できるので、外鋼管の外形を抑えたコンパクトな構造となり、外観を良くすることができるうえ、配置上の制約を受けずに済む。
In addition, construction on site is an extremely simple task of simply injecting filler into the filling chamber, so that construction efficiency can be improved, and because it is a welded joint without welding, defects caused by field welding are less likely to occur. Quality can be ensured.
Furthermore, since it is not necessary to inject and join a filler between the inner steel pipe and the outer steel pipe, the outer steel pipe only needs to have an inner diameter dimension sufficient to insert the inner steel pipe inside thereof. In other words, since the interval between the inner steel pipe and the outer steel pipe can be reduced or set to be almost in contact with each other, the outer structure of the outer steel pipe can be reduced and the appearance can be improved and the arrangement can be improved. There are no restrictions.

また、本発明に係る無溶接鋼管継手では、内鋼管の内周面及び外周面のうち少なくとも一方面に溝が設けられていることが好ましい。
本発明では、内鋼管に溝を設けることでその断面積が小さくなることから、充填材による内鋼管の径方向外側への変形がし易くなり、内鋼管に対する外鋼管の拘束圧をより高めることができる。
In the unwelded steel pipe joint according to the present invention, it is preferable that a groove is provided on at least one of the inner peripheral surface and the outer peripheral surface of the inner steel pipe.
In the present invention, by providing a groove in the inner steel pipe, the cross-sectional area is reduced, so that the inner steel pipe is easily deformed radially outward by the filler, and the restraining pressure of the outer steel pipe with respect to the inner steel pipe is further increased. Can do.

また、本発明に係る無溶接鋼管継手では、溝は内鋼管の軸方向に沿って延びていてもよい。
この場合、内鋼管の軸方向に延びる溝を周方向に沿って一定の間隔をもって配置することで、内鋼管を周方向に均一に径方向外側に膨らませることができ、バランスの取れた継手を実現することができる。
In the unwelded steel pipe joint according to the present invention, the groove may extend along the axial direction of the inner steel pipe.
In this case, by arranging grooves extending in the axial direction of the inner steel pipe at regular intervals along the circumferential direction, the inner steel pipe can be uniformly expanded radially outward in the circumferential direction, and a balanced joint can be obtained. Can be realized.

また、本発明に係る無溶接鋼管継手では、溝は内鋼管の周方向に沿って延びていてもかまわない。
この場合、内鋼管に設けた周方向に沿う溝によって、内鋼管の材軸方向の一部を積極的に膨らませることが可能である。
In the non-welded steel pipe joint according to the present invention, the groove may extend along the circumferential direction of the inner steel pipe.
In this case, it is possible to positively inflate a part of the inner steel pipe in the axial direction by a groove along the circumferential direction provided in the inner steel pipe.

また、本発明に係る無溶接鋼管継手では、外鋼管の内周面は、材軸方向で中央部が最も径方向外側に位置し、中央部の両側には中央部から離れるに従って漸次、内鋼管の外周面に近づくテーパー部が形成されていることがより好ましい。
本発明では、内鋼管を外鋼管のテーパー部に倣って変形させることができる。このとき、内鋼管の材軸方向中央部が径方向外側に凸状に突出した状態で外鋼管に接合した状態となるくさび作用が働き、内鋼管と外鋼管との間に作用する引張軸耐力や曲げ耐力を向上させることができる。
Further, in the non-welded steel pipe joint according to the present invention, the inner peripheral surface of the outer steel pipe has the central portion positioned radially outermost in the material axis direction, and gradually increases as the inner steel pipe is separated from the central portion on both sides of the central portion. It is more preferable that a tapered portion that is closer to the outer peripheral surface is formed.
In the present invention, the inner steel pipe can be deformed following the tapered portion of the outer steel pipe. At this time, a wedge action that is joined to the outer steel pipe in a state in which the central portion of the inner steel pipe in the axial direction protrudes radially outwardly works, and the tensile shaft strength acting between the inner steel pipe and the outer steel pipe And bending strength can be improved.

また、本発明に係る無溶接鋼管継手では、内鋼管の外周面及び外鋼管の内周面の少なくとも一方に摩擦を増大させるための処理が施されていることが好ましい。
本発明では、内鋼管の外周面及び外鋼管の内周面の少なくとも一方にブラスト処理や赤錆等を施すことですべり係数を高め、充填材により膨らんだ内鋼管と外鋼管との間の摩擦を増大させて接触圧を大きくすることができる。
Moreover, in the non-welded steel pipe joint according to the present invention, it is preferable that at least one of the outer peripheral surface of the inner steel pipe and the inner peripheral surface of the outer steel pipe is subjected to a treatment for increasing friction.
In the present invention, at least one of the outer peripheral surface of the inner steel pipe and the inner peripheral surface of the outer steel pipe is subjected to blasting, red rust, or the like, thereby increasing the slip coefficient and reducing the friction between the inner steel pipe and the outer steel pipe expanded by the filler. The contact pressure can be increased by increasing the contact pressure.

本発明の無溶接鋼管継手および鋼管接合方法によれば、内鋼管が充填室に注入された充填材によって径方向外側に膨らんで外鋼管に対して接触圧を生じさせ、これにより内鋼管に対する外鋼管の拘束圧を十分に確保することができ、両鋼管を一体的に接合する構成となるので、継手部の耐力や剛性の低下を抑制することができる。
また、充填材を内鋼管の充填室に注入するといった簡単な構造であるため、施工が容易となる利点がある。
さらに、内鋼管と外鋼管との間に充填材を充填するような十分な間隔を設ける必要がなく、外鋼管の外径寸法が抑えられることから、コンパクトな継手構造を実現でき、外観を良くすることができる効果を奏する。
According to the non-welded steel pipe joint and the steel pipe joining method of the present invention, the inner steel pipe swells radially outward by the filler injected into the filling chamber to generate a contact pressure with respect to the outer steel pipe. Since the restraint pressure of the steel pipe can be sufficiently secured and the both steel pipes are integrally joined, it is possible to suppress a decrease in yield strength and rigidity of the joint portion.
Moreover, since it is a simple structure which inject | pours a filler into the filling chamber of an inner steel pipe, there exists an advantage which construction becomes easy.
Furthermore, there is no need to provide a sufficient space between the inner steel pipe and the outer steel pipe to fill the filler, and the outer diameter of the outer steel pipe can be suppressed, so that a compact joint structure can be realized and the appearance can be improved. The effect which can be done is produced.

本発明の第1の実施の形態による継手部を示す一部破断斜視図である。It is a partially broken perspective view which shows the coupling part by the 1st Embodiment of this invention. 図1に示す継手部の側断面図である。It is a sectional side view of the joint part shown in FIG. 図2に示すA−A線断面図である。It is the sectional view on the AA line shown in FIG. 継手部の作用を説明するための側断面図であって、図2に示すように対応する図である。It is a sectional side view for demonstrating the effect | action of a joint part, Comprising: As shown in FIG. 2, it is a figure corresponding. 同じく継手部の作用を説明するための側断面図であって、図2に示すように対応する図である。It is a sectional side view for demonstrating the effect | action of a coupling part similarly, Comprising: As shown in FIG. 2, it is a figure corresponding. 図5に示すB−B線断面図である。FIG. 6 is a sectional view taken along line B-B shown in FIG. 5. 第2の実施の形態による継手部を示す側断面図である。It is a sectional side view which shows the coupling part by 2nd Embodiment. 第1変形例による継手部を示す側断面図である。It is a sectional side view which shows the coupling part by a 1st modification. 第2変形例による継手部を示す側断面図である。It is a sectional side view which shows the coupling part by a 2nd modification. 実施例による鋼材の降伏特性を示す図である。It is a figure which shows the yield characteristic of the steel materials by an Example. 実施例による鋼材の降伏特性を示すグラフである。It is a graph which shows the yield characteristic of the steel materials by an Example. 他の膨張モルタルの注入方法を示す側断面図であって、図2に対応する図である。It is a sectional side view which shows the injection | pouring method of another expansion mortar, Comprising: It is a figure corresponding to FIG. 他の膨張モルタルの注入方法を示す一部破断斜視図であって、図1に対応する図である。It is a partially broken perspective view which shows the injection | pouring method of another expansion mortar, Comprising: It is a figure corresponding to FIG. 他の膨張モルタルの注入方法を示す側断面図であって、図2に対応する図である。It is a sectional side view which shows the injection | pouring method of another expansion mortar, Comprising: It is a figure corresponding to FIG. 従来の膨張モルタルを用いた無溶接鋼管継手を示す図である。It is a figure which shows the non-welded steel pipe joint using the conventional expansion mortar.

以下、本発明の第1の実施の形態による無溶接鋼管継手および鋼管接合方法について、図面に基づいて説明する。   Hereinafter, a non-welded steel pipe joint and a steel pipe joining method according to a first embodiment of the present invention will be described with reference to the drawings.

図1に示すように、本第1の実施の形態による無溶接鋼管継手(以下、単に「継手部1」という)は、鉄骨造の建物に用いられる円筒状の鋼管柱どうしを無溶接で材軸方向に直列に接合する場合に用いられている。
ここで、鋼管柱のうち図1の符号2は上部柱(第1鋼管)、符号3は下部柱(第2鋼管)を示している。上部柱2と下部柱3は同じ外径寸法をなし、上部柱2の下端と下部柱3の上端とを同軸線上に対向配置させて継手部1によって接合されている。
As shown in FIG. 1, the non-welded steel pipe joint (hereinafter simply referred to as “joint part 1”) according to the first embodiment is made of a cylindrical steel pipe column used in a steel building without welding. It is used when joining in series in the axial direction.
Here, reference numeral 2 in FIG. 1 indicates an upper column (first steel pipe), and reference numeral 3 indicates a lower column (second steel pipe). The upper column 2 and the lower column 3 have the same outer diameter, and the lower end of the upper column 2 and the upper end of the lower column 3 are arranged to face each other on the coaxial line and are joined by the joint portion 1.

図1および図2に示すように、上部柱2の下部には、上下方向に所定の間隔をもって平板形状の隔壁21、22が設けられ、それぞれ壁面方向が上部柱2の上下方向の軸線O1に対して直交する水平方向に向けて配置されている。上下一対の隔壁21、22によって液密に区画されたモルタル注入部23(充填室)には、膨張性を有する膨張モルタル4(充填材)が注入されるようになっている。   As shown in FIG. 1 and FIG. 2, flat partition walls 21 and 22 are provided at predetermined intervals in the vertical direction at the lower part of the upper column 2, and the wall surface direction is set to the vertical axis O <b> 1 of the upper column 2. They are arranged in a horizontal direction perpendicular to the direction. An expandable mortar 4 (filler) having expandability is injected into a mortar injection portion 23 (filling chamber) partitioned liquid-tightly by a pair of upper and lower partition walls 21 and 22.

下側の下部隔壁21は、上部柱2の下端2aに位置し、その外周縁部21aが上部柱2に溶接により液密な状態で固定されている。
上側の上部隔壁22は、下部隔壁21より上方へ上記所定の間隔をもっての上部柱2の内空部に位置し、その外周縁部22aが上部柱2の内周面2bに溶接により液密な状態で固定されている。上部隔壁22には、厚さ方向に貫通する膨張モルタル4用の注入孔24が設けられている。
The lower lower partition wall 21 is located at the lower end 2a of the upper column 2, and its outer peripheral edge 21a is fixed to the upper column 2 in a liquid-tight state by welding.
The upper upper partition wall 22 is positioned above the lower partition wall 21 in the inner space of the upper column 2 with the predetermined interval, and its outer peripheral edge 22a is liquid-tight by welding to the inner peripheral surface 2b of the upper column 2. It is fixed in the state. The upper partition wall 22 is provided with an injection hole 24 for the expansion mortar 4 penetrating in the thickness direction.

ここで、上部柱2のうち上部隔壁22から下方に位置する部分(すなわちモルタル注入部23に相当する部分)を以下、内鋼管20という。   Here, a portion of the upper column 2 located below the upper partition wall 22 (that is, a portion corresponding to the mortar injection portion 23) is hereinafter referred to as an inner steel pipe 20.

内鋼管20には、上部隔壁22の直ぐ下の位置に、鋼管の厚さ方向に貫通する脱気孔25(図2)が適宜数設けられている。この脱気孔25は、注入孔24からモルタル注入部23に膨張モルタル4を充填する際の内部の空気と置換するためのエアー抜き孔である。   The inner steel pipe 20 is provided with an appropriate number of deaeration holes 25 (FIG. 2) penetrating in the thickness direction of the steel pipe at a position immediately below the upper partition wall 22. This deaeration hole 25 is an air vent hole for replacing the air inside when the expansion mortar 4 is filled into the mortar injection part 23 from the injection hole 24.

図1および図3に示すように、下部柱3には、上端3aに内鋼管20の外径寸法より大径の内径寸法をなす外鋼管30がこの軸線O1上に同軸に設けられている。具体的には、下部柱3の上端3aに外鋼管30と同じ外径寸法の円形プレート31が溶着され、その上に外鋼管30の下端30aを当接させて溶接により固着されている。
この外鋼管30には、上述した上部柱2の内鋼管20が挿入可能となっている。そして、外鋼管30の高さ寸法は、前記内鋼管20に対してオーバーラップ可能な長さ寸法で形成されている。
As shown in FIGS. 1 and 3, the lower column 3 is provided with an outer steel pipe 30 having an inner diameter larger than the outer diameter of the inner steel pipe 20 at the upper end 3a on the axis O1. Specifically, a circular plate 31 having the same outer diameter as the outer steel pipe 30 is welded to the upper end 3a of the lower column 3, and the lower end 30a of the outer steel pipe 30 is brought into contact therewith and fixed by welding.
The inner steel pipe 20 of the upper column 2 can be inserted into the outer steel pipe 30. And the height dimension of the outer steel pipe 30 is formed in the length dimension which can overlap with the said inner steel pipe 20. As shown in FIG.

さらに、内鋼管20と外鋼管30との間は、接触した状態、または僅かな隙間s(図3)を有する状態で配置されている。   Further, the inner steel pipe 20 and the outer steel pipe 30 are arranged in a contacted state or a state having a slight gap s (FIG. 3).

そして、図1および図2に示すように、外鋼管30内に内鋼管20が同軸に嵌合され、外鋼管30によって内鋼管20を囲繞するように配置させた状態で、内鋼管20のモルタル注入部23に膨張モルタル4が密に充填されている。このとき、内鋼管20の下端20aが外鋼管30の円形プレート31に当接され、下部柱3が内鋼管20を備えた上部柱2を支持している。   1 and FIG. 2, the inner steel pipe 20 is coaxially fitted in the outer steel pipe 30, and the mortar of the inner steel pipe 20 is disposed so as to surround the inner steel pipe 20 by the outer steel pipe 30. The injecting portion 23 is densely filled with the expanded mortar 4. At this time, the lower end 20 a of the inner steel pipe 20 is brought into contact with the circular plate 31 of the outer steel pipe 30, and the lower column 3 supports the upper column 2 including the inner steel tube 20.

次に、このように構成される継手部1の作用について、図面に基づいて説明する。
図4に示すように、外鋼管30に内鋼管20を挿入させた状態で内鋼管20のモルタル注入部23に膨張モルタル4を注入すると、モルタル注入部23が下部隔壁21と上部隔壁22によって液密に区画されているので、そのモルタル注入部23内で膨張モルタル4のする膨張作用により内鋼管20が所定の膨張圧(図4で符号F1)をもって外側へ膨らみ、外鋼管30の内面に当接することになる。
そして、図5に示すように、さらに膨張が続くと、内鋼管と外鋼管30との間で接触圧が生じ、この接触圧による摩擦により内鋼管20と外鋼管30との間に作用する軸方向の引張力や曲げモーメントに対抗することになる。つまり、内鋼管20に対する外鋼管30の拘束圧(図5で符号F2)が十分に確保されることとなり、両鋼管20、30が一体的に接合され、この継手部1により上部柱2と下部柱3とが接合されることになる。また、継手部1内に膨張モルタル4が充填されるため、その継手部1における鋼管が座屈することはない。
Next, the effect | action of the coupling part 1 comprised in this way is demonstrated based on drawing.
As shown in FIG. 4, when the expanded mortar 4 is injected into the mortar injection portion 23 of the inner steel pipe 20 with the inner steel pipe 20 inserted into the outer steel pipe 30, the mortar injection portion 23 is liquidated by the lower partition wall 21 and the upper partition wall 22. The inner steel pipe 20 swells outward with a predetermined expansion pressure (reference numeral F1 in FIG. 4) due to the expansion action of the expansion mortar 4 in the mortar injecting portion 23 and closes against the inner surface of the outer steel pipe 30. Will be in touch.
As shown in FIG. 5, when the expansion further continues, a contact pressure is generated between the inner steel pipe and the outer steel pipe 30, and a shaft acting between the inner steel pipe 20 and the outer steel pipe 30 due to friction caused by the contact pressure. It will counter the tensile force and bending moment in the direction. That is, the restraining pressure (reference numeral F2 in FIG. 5) of the outer steel pipe 30 with respect to the inner steel pipe 20 is sufficiently secured, and both the steel pipes 20 and 30 are integrally joined. The pillar 3 is joined. Moreover, since the expansion mortar 4 is filled in the joint part 1, the steel pipe in the joint part 1 does not buckle.

なお、継手部1における力学的な釣り合いは、(1)式に示す膨張モルタル4の膨張圧F1と、(2)式に示す内鋼管20と外鋼管30の間で発生する摩擦力(図5で符号F3)により決定される。
膨張圧=内鋼管の拘束圧+外鋼管の拘束圧 ・・・(1)
摩擦力=滑り係数×外鋼管の拘束圧×接触面積 ・・・(2)
In addition, the mechanical balance in the joint part 1 is the friction force (FIG. 5) which generate | occur | produces between the expansion pressure F1 of the expansion mortar 4 shown to (1) Formula, and the inner steel pipe 20 and the outer steel pipe 30 shown to (2) Formula. Is determined by the code F3).
Expansion pressure = Restraint pressure of the inner steel pipe + Restraint pressure of the outer steel pipe (1)
Friction force = slip coefficient x outer steel pipe restraint pressure x contact area (2)

さらに、(2)式において、滑り係数を高めるため、内鋼管20の外側および外鋼管30の内側にブラスト処理や赤錆を発生させるといった摩擦を増大させるための処理を施しておいてもよい。   Further, in the equation (2), in order to increase the slip coefficient, a treatment for increasing friction such as blasting or generating red rust may be performed on the outer side of the inner steel pipe 20 and the inner side of the outer steel pipe 30.

また、現場での施工はモルタル注入部23に膨張モルタル4を注入するだけの極めて簡単な作業となるので施工効率の向上が図れ、しかも無溶接による接合継手のため、現場溶接による欠陥が生じにくく、優れた品質を確保することができる。
さらに、内鋼管20と外鋼管30との間に膨張モルタル4を注入して接合する必要がないことから、外鋼管30はその内側に内鋼管20が挿入されるだけの内径寸法があればよい。つまり、図6に示すように、内鋼管20と外鋼管30との間の間隔s(図3)を小さくし、或いはほぼ接触した状態に設定できるので、外鋼管30の外形を抑えたコンパクトな構造となり、外観を良くすることができるうえ、配置上の制約を受けずに済む。
In addition, on-site construction is an extremely simple task of simply injecting the expanded mortar 4 into the mortar injecting portion 23, so that the construction efficiency can be improved, and because it is a non-welded joint, defects due to on-site welding are less likely to occur. Can ensure excellent quality.
Furthermore, since it is not necessary to inject and join the expansion mortar 4 between the inner steel pipe 20 and the outer steel pipe 30, the outer steel pipe 30 only needs to have an inner diameter dimension that allows the inner steel pipe 20 to be inserted therein. . That is, as shown in FIG. 6, the distance s (FIG. 3) between the inner steel pipe 20 and the outer steel pipe 30 can be reduced or set in a substantially contacted state. It becomes a structure, the appearance can be improved, and there is no restriction on the arrangement.

上述のように本第1の実施の形態による無溶接鋼管継手および鋼管接合方法では、内鋼管20がモルタル注入部23に注入された膨張モルタル4によって径方向外側に膨らんで外鋼管30に対して接触圧を生じさせ、これにより内鋼管20に対する外鋼管30の拘束圧を十分に確保することができ、両鋼管20、30を一体的に接合する構成となるので、継手部の耐力や剛性の低下を抑制することができる。
また、膨張モルタル4を内鋼管20のモルタル注入部23に注入するといった簡単な構造であるため、施工が容易となる利点がある。
さらに、内鋼管20と外鋼管30との間に膨張モルタルを充填するような十分な間隔を設ける必要がなく、外鋼管30の外径寸法が抑えられることから、コンパクトな継手構造を実現でき、外観を良くすることができる効果を奏する。
As described above, in the non-welded steel pipe joint and the steel pipe joining method according to the first embodiment, the inner steel pipe 20 is expanded radially outward by the expanded mortar 4 injected into the mortar injection portion 23 with respect to the outer steel pipe 30. Since the contact pressure is generated, and the restraining pressure of the outer steel pipe 30 with respect to the inner steel pipe 20 can be sufficiently secured, and the both steel pipes 20 and 30 are joined together, the strength and rigidity of the joint portion can be reduced. The decrease can be suppressed.
Moreover, since it is a simple structure which inject | pours the expansion mortar 4 into the mortar injection | pouring part 23 of the inner steel pipe 20, there exists an advantage which construction becomes easy.
Furthermore, there is no need to provide a sufficient interval between the inner steel pipe 20 and the outer steel pipe 30 so as to fill expansion mortar, and the outer diameter of the outer steel pipe 30 can be suppressed, so that a compact joint structure can be realized. There is an effect that the appearance can be improved.

次に、本発明の無溶接鋼管継手および鋼管接合方法による他の実施の形態および変形例について、添付図面に基づいて説明するが、上述の第1の実施の形態と同一又は同様な部材、部分には同一の符号を用いて説明を省略し、第1の実施の形態と異なる構成について説明する。   Next, other embodiments and modifications of the non-welded steel pipe joint and steel pipe joining method of the present invention will be described with reference to the accompanying drawings, but the same or similar members and parts as those of the first embodiment described above. The same reference numerals are used to omit the description, and a configuration different from that of the first embodiment will be described.

また、図7に示すように、第2の実施の形態による無溶接鋼管継手(継手部1A)は、内鋼管20の外周面、或いは内周面(図7では外周面20b)に、縦方向(柱の軸方向)に沿って延びる縦溝26を設けた構成となっている。縦溝26は、内鋼管20の材軸方向(高さ寸法)でほぼ全長の範囲にわたって設けられ、内鋼管20の周方向に一定の間隔をもって複数設けられている。   As shown in FIG. 7, the non-welded steel pipe joint (joint portion 1 </ b> A) according to the second embodiment is arranged in the vertical direction on the outer peripheral surface of the inner steel pipe 20 or the inner peripheral surface (the outer peripheral surface 20 b in FIG. 7). It is the structure which provided the vertical groove | channel 26 extended along (the axial direction of a pillar). The longitudinal grooves 26 are provided over almost the entire length in the material axis direction (height dimension) of the inner steel pipe 20, and a plurality of the longitudinal grooves 26 are provided in the circumferential direction of the inner steel pipe 20 with a constant interval.

本第2の実施の形態による継手部1Aでは、複数の縦溝26、26、…によって内鋼管20の断面積が小さくなることから、膨張モルタル4の膨張による内鋼管20の径方向外側への変形がし易くなり、内鋼管20に対する外鋼管30の拘束圧をより高めることが可能となる。
また、その一方で、軸方向の摩擦力や鋼材断面の減少は最小限に抑えられるため、摩擦力は増大させることができ有効的である。
しかも、この場合、内鋼管20の軸方向に延びる縦溝26を周方向に沿って一定の間隔をもって配置することで、内鋼管20を周方向に均一に径方向外側に膨らませることができ、バランスの取れた継手を実現することができる。
In the joint portion 1A according to the second embodiment, since the cross-sectional area of the inner steel pipe 20 is reduced by the plurality of longitudinal grooves 26, 26,..., The radially outer side of the inner steel pipe 20 due to the expansion of the expansion mortar 4 occurs. It becomes easy to deform | transform and it becomes possible to raise the restraint pressure of the outer steel pipe 30 with respect to the inner steel pipe 20 more.
On the other hand, since the frictional force in the axial direction and the reduction in the cross section of the steel material can be minimized, the frictional force can be increased, which is effective.
Moreover, in this case, by arranging the longitudinal grooves 26 extending in the axial direction of the inner steel pipe 20 at a constant interval along the circumferential direction, the inner steel pipe 20 can be uniformly expanded radially outward in the circumferential direction, A well-balanced joint can be realized.

また、図8に示すように、第1変形例による無溶接鋼管継手(継手部1B)は、内鋼管20の外周面、或いは内周面(図7では外周面20b)に、全周にわたって延びる横溝27を内鋼管20の材軸方向(高さ方向)で略中間位置に設け、外鋼管30には横溝27に対向する位置で最も径方向外側に突出する頂点30bが設けられ、その頂点30bから上下にむけて離れるに従って漸次、内鋼管20の外周面に近づくテーパー部30c、30cが形成されている。   Moreover, as shown in FIG. 8, the non-welded steel pipe joint (joint part 1B) by a 1st modification is extended over the perimeter to the outer peripheral surface of the inner steel pipe 20, or an inner peripheral surface (in FIG. 7, outer peripheral surface 20b). The lateral groove 27 is provided at a substantially intermediate position in the material axis direction (height direction) of the inner steel pipe 20, and the outer steel pipe 30 is provided with a vertex 30b that protrudes radially outward at a position facing the lateral groove 27, and the vertex 30b. The taper parts 30c and 30c which gradually approach the outer peripheral surface of the inner steel pipe 20 are formed as it leaves | separates from up to down.

この場合、内鋼管20に設けた周方向に沿う横溝27によって、内鋼管20の材軸方向の一部を積極的に膨らませることが可能である。
また、内鋼管20を外鋼管30のテーパー部30cに倣って変形させることができる。このとき、内鋼管20の材軸方向中央部が径方向外側に凸状に突出した状態で外鋼管30に接合した状態となるくさび作用が働き、内鋼管20と外鋼管30との間に作用する引張軸耐力や曲げ耐力を向上させることができる。
In this case, it is possible to positively inflate part of the inner steel pipe 20 in the material axis direction by the lateral grooves 27 along the circumferential direction provided in the inner steel pipe 20.
Further, the inner steel pipe 20 can be deformed following the tapered portion 30 c of the outer steel pipe 30. At this time, a wedge action that is joined to the outer steel pipe 30 in a state in which the central portion in the axial direction of the inner steel pipe 20 protrudes radially outwardly acts, and acts between the inner steel pipe 20 and the outer steel pipe 30. It is possible to improve the tensile shaft strength and bending strength.

また、図9に示す第2変形例による無溶接鋼管継手(継手部1C)は、外鋼管30において、上下方向の中間部に筒状部30dを有し、その筒状部30dの上下それぞれにテーパー部30c、30cが設けられた構成となっている。そして、内鋼管20には、筒状部30dとテーパー部30c、30cとの接続部に対応する位置に横溝27(27A、27B)を上下方向に一定の間隔を開けて設けられている。
本第2変形例の継手部1Cにおいても、上述した第1変形例と同様にテーパーによるくさび効果によって引張軸耐力や曲げ耐力を向上させることができる。
Moreover, the unwelded steel pipe joint (joint part 1C) by the 2nd modification shown in FIG. 9 has the cylindrical part 30d in the intermediate part of the up-down direction in the outer steel pipe 30, and is each on the upper and lower sides of the cylindrical part 30d. The taper portions 30c and 30c are provided. The inner steel pipe 20 is provided with lateral grooves 27 (27A, 27B) at regular intervals in the vertical direction at positions corresponding to the connecting portions between the cylindrical portion 30d and the tapered portions 30c, 30c.
Also in the joint portion 1C of the second modified example, the tensile shaft strength and the bending strength can be improved by the wedge effect by the taper as in the first modified example described above.

次に、上述した実施の形態による無溶接鋼管継手による接合効果を裏付けるために行った計算例について以下説明する。   Next, calculation examples performed to support the joining effect of the unwelded steel pipe joint according to the above-described embodiment will be described below.

先ず、鋼管を周方向に塑性化させるために必要な内圧を算出する。
ここで、計算を簡略化するため、SS400の内鋼管の形状として、外径を400mm、厚さ寸法(板厚)を12mmとする。
図10に示すように、円筒殻に発生する応力度である軸方向応力σと、円周方向応力σとは、それぞれ(3)式、(4)式より求められる。ここで、式中のpは内圧であり、rは鋼管の半径であり、tは鋼管の板厚である。
σ=rp/2t ・・・(3)
σ=rp/t ・・・(4)
First, the internal pressure required to plasticize the steel pipe in the circumferential direction is calculated.
Here, in order to simplify the calculation, as the shape of the inner steel pipe of SS400, the outer diameter is 400 mm, and the thickness dimension (plate thickness) is 12 mm.
As shown in FIG. 10, the axial stress σ 1 and the circumferential stress σ 2, which are the degrees of stress generated in the cylindrical shell, are obtained from the equations (3) and (4), respectively. Here, p in the formula is the internal pressure, r is the radius of the steel pipe, and t is the plate thickness of the steel pipe.
σ 1 = rp / 2t (3)
σ 2 = rp / t (4)

次に、内鋼管と外鋼管のクリアランスについて検討する。
鋼管の降伏応力度σを235N/mmとした場合、鋼管の塑性化に必要な内圧は、(5)式により14N/mmとなることから、塑性化に必要な内圧を膨張コンクリートで実現することは、十分に可能である。
なお、膨張モルタルの膨張圧は、49N/mm以上(48時間後)(太平洋マテリアル社のカタログより)とする。
P=tσ/r ・・・(5)
Next, the clearance between the inner steel pipe and the outer steel pipe will be examined.
If the yield stress of sigma y of the steel tube was 235N / mm 2, the pressure required for plasticization of the steel pipe, (5) by the fact that the 14N / mm 2, the pressure required for plasticization with expansion concrete It is fully possible to realize.
The expansion pressure of the expansion mortar is 49 N / mm 2 or more (after 48 hours) (from the catalog of Pacific Materials).
P = tσ 2 / r (5)

また、膨張コンクリートによる膨張圧Pを30N/mmとすると、内鋼管の周方向に発生する応力度は、(6)式より、500N/mmとなる。
σ=rp/t ・・・(6)
When the expansion pressure P due to the expanded concrete is 30 N / mm 2 , the degree of stress generated in the circumferential direction of the inner steel pipe is 500 N / mm 2 from the equation (6).
σ 2 = rp / t (6)

鋼材の降伏特性をバイリニア(σ=235N/mm、ヤング係数E=205000N/mm、第2折れ線のヤング係数E´=E/200)で、図11に示すように仮定すると、鋼管の周方向のひずみ度は、降伏点までのひずみ度εが(7)式より0.001146(1146μ)となり、降伏点以降のひずみ度Δεが(8)式より0.063415となる。したがって、(9)式よりεは0.064561となる。
ε=σ/E ・・・(7)
Δε=Δσ/E´=(σ−σ)/E´ ・・・(8)
ε=ε+Δε ・・・(9)
The breakdown characteristics of the steel by bilinear (σ y = 235N / mm 2 , Young's modulus E = 205000N / mm 2, the Young's modulus of the second fold line E'= E / 200), assuming as shown in FIG. 11, the steel pipe As for the degree of distortion in the circumferential direction, the degree of distortion ε y up to the yield point is 0.001146 (1146 μ) from the expression (7), and the degree of distortion Δε after the yield point is 0.063415 from the expression (8). Therefore, from equation (9), ε 2 is 0.064561.
ε y = σ y / E (7)
Δε = Δσ / E ′ = (σ 2 −σ y ) / E ′ (8)
ε 2 = ε y + Δε (9)

さらに、鋼管の初期半径をr、膨張後の半径をr´とすると、膨張前後の周方向の長さの差は、(10)式で表される。したがって、膨張による鋼管直径の増分は、(11)式より25.8mmとなる。
2π(r´−r)=2πr×ε ・・・(10)
2(r´−r)=2πr×ε ・・・(11)
なお、施工に必要な外鋼管の内径と内鋼管の外径の差を10mmとすれば、上記条件において、内鋼管の膨張によって内鋼管と外鋼管が十分に密着することが確認できる。
Furthermore, if the initial radius of the steel pipe is r and the radius after expansion is r ′, the difference in length in the circumferential direction before and after expansion is expressed by equation (10). Therefore, the increment of the steel pipe diameter due to expansion is 25.8 mm from the equation (11).
2π (r′−r) = 2πr × ε 2 (10)
2 (r′−r) = 2πr × ε 2 (11)
In addition, if the difference of the inner diameter of an outer steel pipe required for construction and the outer diameter of an inner steel pipe is 10 mm, it can be confirmed that the inner steel pipe and the outer steel pipe are sufficiently adhered to each other by the expansion of the inner steel pipe under the above conditions.

また、継手部の圧縮軸力に対しては、メタルタッチで応力を伝達する。
一方、受け側の柱も外鋼管で外周が補強されるため、座屈を起こさずほぼ全強継手として取り扱うことが可能である。
Further, stress is transmitted by metal touch to the compression axial force of the joint.
On the other hand, since the outer column of the receiving side column is reinforced with an outer steel pipe, it can be handled as a nearly strong joint without causing buckling.

次に、継手部の引張軸力に関しては、外鋼管とオーバーラップする内鋼管全周の摩擦耐力で抵抗する。なお、万一、摩擦耐力以上の引張軸力が生じても、オーバーラップ部が存在するため継手部での軸方向に外れたり、面外にずれることはない。
ここで、摩擦による引張軸耐力の具体例を示すが、簡略化するため、外径400mm×厚さ寸法12mmの内鋼管に対して、内径φ410mmの外鋼管を想定する。鋼管接触面のオーバーラップ長を450mm、外鋼管の拘束圧pを20N/mm、滑り係数をμ=0.4とすれば、(12)式より、4645kNとなる。
=μpA ・・・(12)
なお、受け側鋼管の外鋼管の接合は、引張軸力に対して十分な強度設計を行った溶接接合とする。
Next, the tensile axial force of the joint is resisted by the frictional resistance of the entire circumference of the inner steel pipe that overlaps the outer steel pipe. In the unlikely event that a tensile axial force greater than the frictional strength is generated, the overlap portion is present, so that the joint portion does not deviate in the axial direction or deviate out of plane.
Here, although the specific example of the tensile-axis proof stress by friction is shown, in order to simplify, the outer steel pipe of inner diameter (phi) 410mm is assumed with respect to the inner steel pipe of outer diameter 400mm x thickness dimension 12mm. If the overlap length of the steel pipe contact surface is 450 mm, the restraining pressure p of the outer steel pipe is 20 N / mm 2 , and the slip coefficient is μ = 0.4, 4645 kN is obtained from the equation (12).
Q f = μpA (12)
In addition, the joining of the outer steel pipe of the receiving side steel pipe is a welded joint designed with sufficient strength against the tensile axial force.

また、継手部のせん断力に対しては、外鋼管の断面で抵抗するため、ほぼ全強継手として取り扱うことが可能である。   Moreover, since it resists in the cross section of an outer steel pipe with respect to the shearing force of a joint part, it can be handled as a nearly all strong joint.

また、継手部の曲げモーメントに対しては、内部に膨張コンクリートが充填されているため、曲げによる継手部のつぶれを防止する効果(平面保持)を期待することができる。
そして、継手の摩擦耐力が不足する場合には、オーバーラップの長さ寸法、膨張圧を大きくすることや、テーパーを付けてフランジの引抜きを防止する。
これに関しては、簡単のため、400mm×400mmで厚さ寸法12mmの角形鋼管を想定する。なお、柱の圧縮軸力は、安全側に働くことから、ここでは考慮しないものとする。
角形鋼管の降伏強さσを235N/mmとすれば、柱の降伏モーメントMは、(13)式より550kNmとなる。なお、Zは断面係数である。
=σZ ・・・(13)
In addition, with respect to the bending moment of the joint portion, since the inside is filled with expanded concrete, an effect of preventing the joint portion from being crushed by bending (planar holding) can be expected.
When the friction resistance of the joint is insufficient, the length of the overlap and the expansion pressure are increased or the taper is attached to prevent the flange from being pulled out.
In this regard, for the sake of simplicity, a square steel pipe having a size of 400 mm × 400 mm and a thickness of 12 mm is assumed. In addition, since the compression axial force of a column works on the safe side, it shall not be considered here.
If the yield strength sigma y of the square tube and 235N / mm 2, yield moment M y pillar becomes 550kNm than (13). Z is a section modulus.
M y = σ y Z (13)

さらに、継手フェイスに生じる摩擦力をQ、柱成をhとすれば、フランジ継手が負担する曲げモーメントMは、(14)式で表される。
=Qh ・・・(14)
ここで、鋼管接触面のオーバーラップ長を450mmとし、外鋼管の拘束圧pを20N/mmとし、滑り係数μを0.4とすれば、継手フェイスに生じる摩擦力Qは1440kNとなり、(14)式より曲げモーメントMは576kNmとなる。
したがって、柱の降伏曲げモーメントに対して全強で設計することができる。
Furthermore, if the frictional force generated in the joint face is Q f and the columnarity is h, the bending moment M f borne by the flange joint is expressed by the equation (14).
M f = Q f h (14)
Here, if the overlap length of the steel pipe contact surface is 450 mm, the restraining pressure p of the outer steel pipe is 20 N / mm 2 , and the slip coefficient μ is 0.4, the frictional force Q f generated on the joint face is 1440 kN, From the equation (14), the bending moment Mf is 576 kNm.
Therefore, it is possible to design with full strength against the yield bending moment of the column.

以上、本発明による無溶接鋼管継手および鋼管接合方法の実施の形態について説明したが、本発明は上記の実施の形態に限定されるものではなく、その趣旨を逸脱しない範囲で適宜変更可能である。
例えば、本実施の形態では上部柱2と下部柱3を構成する鋼管を円形断面としているが、この形状に限定されることはなく、四角形或いは六角形などの角形断面の鋼管であってもかまわない。また、内鋼管20および外鋼管30についても、同様に円形断面であることに制限されることはない。
As mentioned above, although embodiment of the non-welded steel pipe joint and steel pipe joining method by this invention was described, this invention is not limited to said embodiment, It can change suitably in the range which does not deviate from the meaning. .
For example, in the present embodiment, the steel pipes constituting the upper column 2 and the lower column 3 have a circular cross section. However, the present invention is not limited to this shape, and may be a square or hexagonal steel pipe. Absent. Similarly, the inner steel pipe 20 and the outer steel pipe 30 are not limited to the circular cross section.

また、本実施の形態では内鋼管20の充填室(モルタル注入部23)に注入する材料として膨張モルタル4を採用しているが、これに限らず、例えば膨張性を有するコンクリートであってもかまわない。
さらに、内鋼管20と外鋼管30の材軸方向のオーバーラップ長や、内鋼管20と外鋼管30の間隔、外鋼管30の厚さ寸法、さらに縦溝26および横溝27の間隔、位置、外鋼管30のテーパー部30cの傾斜角度などの構成は、鋼管(上部柱2、下部柱3)の大きさ、内鋼管20の膨張量等に応じて適宜、設定することが可能である。
Moreover, in this Embodiment, although the expansion mortar 4 is employ | adopted as a material inject | poured into the filling chamber (mortar injection | pouring part 23) of the inner steel pipe 20, it is not restricted to this, For example, the concrete which has expansibility may be sufficient. Absent.
Further, the overlap length in the axial direction of the inner steel pipe 20 and the outer steel pipe 30, the distance between the inner steel pipe 20 and the outer steel pipe 30, the thickness dimension of the outer steel pipe 30, and the distance between the longitudinal groove 26 and the lateral groove 27, position, outer The configuration such as the inclination angle of the tapered portion 30c of the steel pipe 30 can be appropriately set according to the size of the steel pipe (upper column 2 and lower column 3), the amount of expansion of the inner steel tube 20, and the like.

また、膨張モルタル4の注入方法に関しては、上述した実施の形態に限定されることはなく、適宜な方法が採用可能であり、例えば、図12に示すように、上部柱2の上部隔壁22の注入孔24に柱梁接合部Tの上側から注入管5が接続され、この注入管5を使用して内鋼管20のモルタル注入部23に膨張モルタル4を注入する方法がある。
さらに、図13に示すように、上部柱2の側面に側面孔28があり、この側面孔28から上部隔壁22の注入孔24に接続される注入管6が設けられており、この注入管6を使用して内鋼管20のモルタル注入部23に膨張モルタル4を注入する方法もある。
さらにまた、図14に示すように、内鋼管20の脱気孔25と同様の位置に配置された注入孔7からモルタル注入部23に膨張モルタル4を注入し、その膨張モルタル4が脱気孔25からオーバーフローするまで注入する方法であってもよい。
そして、モルタル注入部23(充填室)への膨張モルタル4の充填では、モルタルは上部隔壁22と密着することが好ましいが、多少の隙間が生じても、モルタルの膨張により、その隙間はなくなる。一方、充填室の材軸方向の長さがオーバーラップ長さよりも長い場合には、上部隔壁22とモルタル間に多少の隙間が生じてもモルタルは3次元的に膨張するため、オーバーラップ部の内鋼管20は外側へ膨張する。
Further, the method for injecting the expanded mortar 4 is not limited to the above-described embodiment, and an appropriate method can be adopted. For example, as shown in FIG. There is a method in which the injection pipe 5 is connected to the injection hole 24 from the upper side of the column beam joint T, and the expansion mortar 4 is injected into the mortar injection part 23 of the inner steel pipe 20 using the injection pipe 5.
Further, as shown in FIG. 13, a side hole 28 is provided on the side surface of the upper column 2, and an injection pipe 6 connected from the side hole 28 to the injection hole 24 of the upper partition wall 22 is provided. There is also a method of injecting the expanded mortar 4 into the mortar injecting portion 23 of the inner steel pipe 20 using.
Furthermore, as shown in FIG. 14, the expansion mortar 4 is injected into the mortar injection portion 23 from the injection hole 7 disposed at the same position as the deaeration hole 25 of the inner steel pipe 20, and the expansion mortar 4 extends from the deaeration hole 25. It may be a method of injecting until it overflows.
In filling the expanded mortar 4 into the mortar injecting portion 23 (filling chamber), the mortar is preferably in close contact with the upper partition wall 22, but even if a slight gap occurs, the gap disappears due to the expansion of the mortar. On the other hand, when the length of the filling chamber in the material axis direction is longer than the overlap length, the mortar expands three-dimensionally even if a slight gap is generated between the upper partition wall 22 and the mortar. The inner steel pipe 20 expands outward.

1、1A、1B、1C 継手部(無溶接鋼管継手)
2 上部柱(第1鋼管)
3 下部柱(第2鋼管)
4 膨張モルタル(充填材)
20 内鋼管
21 下部隔壁
22 上部隔壁
23 モルタル注入部(充填室)
26 縦溝
27 横溝
30 外鋼管
30c テーパー部
1, 1A, 1B, 1C Joint part (non-welded steel pipe joint)
2 Upper column (first steel pipe)
3 Lower pillar (second steel pipe)
4 Expansion mortar (filler)
20 Inner steel pipe 21 Lower partition wall 22 Upper partition wall 23 Mortar injection part (filling chamber)
26 Longitudinal groove 27 Horizontal groove 30 Outer steel pipe 30c Taper part

Claims (7)

一対の鋼管の端部同士を対向配置させて接合する無溶接鋼管継手であって、
一方の第1鋼管の端部内には、隔壁によって液密に区画された充填室を有する内鋼管を備え、
他方の第2鋼管の端部には、前記内鋼管よりも大きな内径寸法をもつ外鋼管を備え、
前記内鋼管を前記外鋼管に同軸に挿入させた状態で、前記充填室に膨張性を有する充填材を注入することで前記内鋼管を膨張させ、該内鋼管と前記外鋼管とを摩擦接合させる構成としたことを特徴とする無溶接鋼管継手。
It is a non-welded steel pipe joint that joins the ends of a pair of steel pipes facing each other,
In one end of the first steel pipe, an inner steel pipe having a filling chamber partitioned liquid-tightly by a partition wall is provided.
An end of the other second steel pipe is provided with an outer steel pipe having an inner diameter larger than that of the inner steel pipe,
With the inner steel pipe coaxially inserted into the outer steel pipe, the inner steel pipe is expanded by injecting an inflatable filler into the filling chamber, and the inner steel pipe and the outer steel pipe are frictionally joined. A welded steel pipe joint characterized by having a configuration.
前記内鋼管の内周面及び外周面のうち少なくとも一方面に溝が設けられていることを特徴とする請求項1に記載の無溶接鋼管継手。   The non-welded steel pipe joint according to claim 1, wherein a groove is provided on at least one of the inner peripheral surface and the outer peripheral surface of the inner steel pipe. 前記溝は前記内鋼管の軸方向に沿って延びていることを特徴とする請求項2に記載の無溶接鋼管継手。   The unwelded steel pipe joint according to claim 2, wherein the groove extends along an axial direction of the inner steel pipe. 前記溝は前記内鋼管の周方向に沿って延びていることを特徴とする請求項2に記載の無溶接鋼管継手。   The unwelded steel pipe joint according to claim 2, wherein the groove extends along a circumferential direction of the inner steel pipe. 前記外鋼管の内周面は、材軸方向で中央部が最も径方向外側に位置し、前記中央部の両側には該中央部から離れるに従って漸次前記内鋼管の外周面に近づくテーパー部が形成されていることを特徴とする請求項1乃至4のいずれかに記載の無溶接鋼管継手。   The inner peripheral surface of the outer steel pipe has a central portion located radially outermost in the material axis direction, and tapered portions that gradually approach the outer peripheral surface of the inner steel pipe are formed on both sides of the central portion as the distance from the central portion increases. The non-welded steel pipe joint according to any one of claims 1 to 4, wherein the steel pipe joint is not welded. 前記内鋼管の外周面及び外鋼管の内周面の少なくとも一方に摩擦を増大させるための処理が施されていることを特徴とする請求項1乃至5のいずれかに記載の無溶接鋼管継手。   The non-welded steel pipe joint according to any one of claims 1 to 5, wherein a treatment for increasing friction is applied to at least one of the outer peripheral surface of the inner steel pipe and the inner peripheral surface of the outer steel pipe. 端部同士を対向配置させた一対の鋼管を無溶接鋼管継手によって接合するための鋼管接合方法であって、
一方の第1鋼管の端部内に、隔壁によって液密に区画された充填室を有する内鋼管を備える工程と、
他方の第2鋼管の端部に、前記内鋼管よりも大きな内径寸法をもつ外鋼管を備える工程と、
前記内鋼管を前記外鋼管に同軸に挿入する工程と、
前記充填室に膨張性を有する充填材を注入し、前記内鋼管を膨張させ、該内鋼管と前記外鋼管とを摩擦接合させる工程と、
を有することを特徴とする鋼管接合方法。
A steel pipe joining method for joining a pair of steel pipes whose ends are opposed to each other by a non-welded steel pipe joint,
A step of providing an inner steel pipe having a filling chamber liquid-tightly partitioned by a partition wall in an end portion of one first steel pipe;
Providing an outer steel pipe having an inner diameter larger than that of the inner steel pipe at the end of the other second steel pipe;
Inserting the inner steel pipe coaxially into the outer steel pipe;
Injecting an expandable filler into the filling chamber, expanding the inner steel pipe, and frictionally joining the inner steel pipe and the outer steel pipe;
A steel pipe joining method characterized by comprising:
JP2010142698A 2010-06-23 2010-06-23 Non-welded steel pipe joint and method of joining steel pipes Pending JP2012007651A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010142698A JP2012007651A (en) 2010-06-23 2010-06-23 Non-welded steel pipe joint and method of joining steel pipes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010142698A JP2012007651A (en) 2010-06-23 2010-06-23 Non-welded steel pipe joint and method of joining steel pipes

Publications (1)

Publication Number Publication Date
JP2012007651A true JP2012007651A (en) 2012-01-12

Family

ID=45538435

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010142698A Pending JP2012007651A (en) 2010-06-23 2010-06-23 Non-welded steel pipe joint and method of joining steel pipes

Country Status (1)

Country Link
JP (1) JP2012007651A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4997922A (en) * 1973-01-24 1974-09-17
JPH11201343A (en) * 1998-01-08 1999-07-30 Nippon Steel Corp Steel pipe expansion joint structure
JP2000503749A (en) * 1996-01-05 2000-03-28 エス アンド ビー テクニカル プロダクツ インコーポレイテッド Plastic pipe joining structure with overlapping part
JP2002294694A (en) * 2001-04-02 2002-10-09 Sumitomo Metal Ind Ltd Steel pipe joining structure and joining method
JP2004019322A (en) * 2002-06-18 2004-01-22 Shimizu Corp Connection structure between column and beam

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4997922A (en) * 1973-01-24 1974-09-17
JP2000503749A (en) * 1996-01-05 2000-03-28 エス アンド ビー テクニカル プロダクツ インコーポレイテッド Plastic pipe joining structure with overlapping part
JPH11201343A (en) * 1998-01-08 1999-07-30 Nippon Steel Corp Steel pipe expansion joint structure
JP2002294694A (en) * 2001-04-02 2002-10-09 Sumitomo Metal Ind Ltd Steel pipe joining structure and joining method
JP2004019322A (en) * 2002-06-18 2004-01-22 Shimizu Corp Connection structure between column and beam

Similar Documents

Publication Publication Date Title
JP7526830B2 (en) Exposed column base structure and building
JP6832048B2 (en) Joint structure of seismic isolation device and steel pipe column and seismic isolation building
JP6648990B2 (en) Foundation structure
JP4762941B2 (en) Concrete-filled steel segment and its design method
JP5456947B1 (en) Composite pile
KR102020441B1 (en) Concrete filled steel tube column and steel tube column structure
WO2016181669A1 (en) Rigid connection structure for bottom end of pillar and concrete pile
JP4709786B2 (en) Synthetic segment
JP2013087520A (en) Fireproof reinforcement structure of concrete-filled steel pipe column
JP2016223208A (en) Pile foundation structure
JP7294965B2 (en) Joint structure between steel shoring and inverted concrete
JP5527932B2 (en) Design method of pier joint structure
JP6390360B2 (en) Structure and method for joining reinforced concrete beam and steel pipe column
JP2012007651A (en) Non-welded steel pipe joint and method of joining steel pipes
JP4386804B2 (en) Seismic reinforcement structure for existing steel towers
JP5423185B2 (en) Concrete-filled pier structure
JP6213758B2 (en) Cast-in-place steel pipe concrete pile and its construction method
JP5660876B2 (en) Reactor vessel support structure and construction method of reactor vessel support structure
JP2017197975A (en) Joining structure of sc pile and steel column
JP2017128916A (en) Column-to-beam joint structure
JP7557948B2 (en) segment
JP6731225B2 (en) Column connection structure
JP4708295B2 (en) Pile-column connection structure
JP2013159970A (en) Unequal thickness steel pipe and structure employing unequal thickness steel pipe
JP6832053B2 (en) Seismic retrofitting structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130131

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140128

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140527