JP2012006813A - Fiber reinforced cement mortar for spraying - Google Patents
Fiber reinforced cement mortar for spraying Download PDFInfo
- Publication number
- JP2012006813A JP2012006813A JP2010146687A JP2010146687A JP2012006813A JP 2012006813 A JP2012006813 A JP 2012006813A JP 2010146687 A JP2010146687 A JP 2010146687A JP 2010146687 A JP2010146687 A JP 2010146687A JP 2012006813 A JP2012006813 A JP 2012006813A
- Authority
- JP
- Japan
- Prior art keywords
- cement mortar
- fiber
- fibers
- spraying
- reinforced cement
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B26—HAND CUTTING TOOLS; CUTTING; SEVERING
- B26D—CUTTING; DETAILS COMMON TO MACHINES FOR PERFORATING, PUNCHING, CUTTING-OUT, STAMPING-OUT OR SEVERING
- B26D3/00—Cutting work characterised by the nature of the cut made; Apparatus therefor
- B26D3/16—Cutting rods or tubes transversely
- B26D3/169—Hand held tube cutters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B26—HAND CUTTING TOOLS; CUTTING; SEVERING
- B26B—HAND-HELD CUTTING TOOLS NOT OTHERWISE PROVIDED FOR
- B26B17/00—Hand cutting tools, i.e. with the cutting action actuated by muscle power with two jaws which come into abutting contact
- B26B17/006—Hand cutting tools, i.e. with the cutting action actuated by muscle power with two jaws which come into abutting contact having cutting edges parallel to a pivot axis
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W30/00—Technologies for solid waste management
- Y02W30/50—Reuse, recycling or recovery technologies
- Y02W30/91—Use of waste materials as fillers for mortars or concrete
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Forests & Forestry (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Curing Cements, Concrete, And Artificial Stone (AREA)
Abstract
【課題】 本発明は圧縮強度と引張強度を相乗的に向上し、比類のない補修強度が期待できる吹き付け用繊維強化セメントモルタルを提供する。
【解決手段】 水結合材比(W/B%)を15〜25%とした低流動性セメントモルタル8中にばらの短繊維5a又は/及び短繊維を収束して成る収束繊維6を配合すると共に、同セメントモルタル中に起泡剤を配合し、該起泡剤の配合による発泡により同セメントモルタルの流動性を高めて上記繊維の分散を促し、該発泡繊維強化セメントモルタル10の吹き付けによって同セメントモルタル中の気泡を放散する吹き付け用繊維強化セメントモルタル。
【選択図】 図6PROBLEM TO BE SOLVED: To provide a fiber reinforced cement mortar for spraying which can synergistically improve compressive strength and tensile strength and can be expected to have unparalleled repair strength.
SOLUTION: A converging fiber 6 formed by converging short short fibers 5a and / or short fibers is blended in a low flow cement mortar 8 having a water binder ratio (W / B%) of 15 to 25%. In addition, a foaming agent is blended in the cement mortar, the foaming of the foaming agent enhances the fluidity of the cement mortar to promote the dispersion of the fibers, and the foamed fiber reinforced cement mortar 10 sprays the same. Fiber reinforced cement mortar for spraying to dissipate bubbles in cement mortar.
[Selection] Figure 6
Description
セメントモルタル中に補強繊維を配合して成る吹き付け用繊維強化セメントモルタルに関する。 The present invention relates to a fiber reinforced cement mortar for spraying, in which a reinforcing fiber is blended in a cement mortar.
普通セメントモルタルにポリエチレン、ビニロン等から成る補強繊維を配合した繊維強化セメントモルタルは、引張強度において相当程度の改善が認められる。 A fiber reinforced cement mortar in which reinforcing fibers made of polyethylene, vinylon, etc. are blended with ordinary cement mortar shows a considerable improvement in tensile strength.
普通セメントモルタルの水結合材比(W/B%)が40〜60%の富加水であるのに対し、該水結合材比(W/B%)を15〜25%の貧加水にしセメントモルタルを緻密にした超高強度セメントモルタルは、圧縮強度において相当程度の改善が認められる。 The cement binder mortar has a water binder ratio (W / B%) of 40-60%, while the water binder ratio (W / B%) is poorly hydrolyzed 15-25%. The ultra-high-strength cement mortar that has been made dense has a considerable improvement in compressive strength.
上記のように、セメントモルタル中に補強繊維を配合することにより、同セメントモルタルの引張強度を大幅に向上することが実証されている。他方、貧加水にしてセメントモルタルを緻密にすることにより、同セメントモルタルの圧縮強度を著しく向上することが実証されている。 As described above, it has been demonstrated that the tensile strength of the cement mortar can be significantly improved by blending the reinforcing fibers into the cement mortar. On the other hand, it has been demonstrated that the compressive strength of the cement mortar is remarkably improved by dehydrating and densifying the cement mortar.
しかし、水結合材比(W/B%)が15〜25%の低流動性のセメントモルタル(上記超高強度セメントモルタル)では、上記補強繊維の均一な分散ができず、繊維を配合して引張強度を高める効果をあげることが困難である。
他方、水結合材比(W/B%)が40〜60%の高流動性の普通セメントモルタルでは、上記補強繊維の均一な分散が可能であるが、補強繊維配合による効果が大幅に損なわれる。
However, in the low fluidity cement mortar (the above ultra-high strength cement mortar) having a water binder ratio (W / B%) of 15 to 25%, the reinforcing fibers cannot be uniformly dispersed, and the fibers are blended. It is difficult to increase the tensile strength.
On the other hand, with a high fluidity ordinary cement mortar having a water binder ratio (W / B%) of 40 to 60%, the reinforcing fibers can be uniformly dispersed, but the effect of the reinforcing fibers is greatly impaired. .
本発明は上記低流動性の超高強度セメントモルタルを基材として用いつつ、同超高強度セメントモルタル中への補強繊維の均一な配合を可能にし、超高強度セメントモルタルが有する圧縮強度と繊維強化セメントモルタルが有する引張強度を相乗的に向上した吹き付け用繊維強化セメントモルタルの提供を目的とする。 The present invention enables the uniform blending of reinforcing fibers into the ultra-high-strength cement mortar while using the low-flowability ultra-high-strength cement mortar as a base material. An object is to provide a fiber reinforced cement mortar for spraying in which the tensile strength of the reinforced cement mortar is synergistically improved.
本発明は水結合材比(W/B%)を15〜25%とした低流動性セメントモルタル中にばらの短繊維又は/及び短繊維を収束して成る収束繊維を配合すると共に、同セメントモルタル中に起泡剤を配合し、該起泡剤の配合による発泡により同セメントモルタルの流動性を高めて上記繊維の分散を促し、該発泡繊維強化セメントモルタルの吹き付けによって同セメントモルタル中の気泡を放散する。 In the present invention, a low-flowing cement mortar having a water binder ratio (W / B%) of 15 to 25% is blended with short fibers or / and converging fibers formed by converging short fibers, and the cement. A foaming agent is blended in the mortar, the foaming of the foaming agent enhances the fluidity of the cement mortar to promote the dispersion of the fibers, and the foamed fiber reinforced cement mortar sprays the bubbles in the cement mortar. To dissipate.
具体例として、上記発泡繊維強化セメントモルタルの練りあがり時の、起泡剤混入による気泡を含めた空気量を体積比15〜30%とし、該空気量を空気圧で吹き付けする時の衝撃で削減し体積比10%以下とする。 As a specific example, when the foamed fiber reinforced cement mortar is kneaded, the volume of air including bubbles due to mixing of the foaming agent is set to 15 to 30% by volume, and the volume of air is reduced by impact when sprayed with air pressure. The volume ratio is 10% or less.
ばらの短繊維と収束繊維の相対配合比(重量比)は1〜6(ばらの短繊維):1〜6(収束繊維)の範囲で選択する。好ましい相対配合比は略1:1である。 The relative blending ratio (weight ratio) of the short staple fiber and the convergent fiber is selected in the range of 1 to 6 (short staple fiber): 1 to 6 (converged fiber). A preferred relative blending ratio is approximately 1: 1.
又好ましい例示として、上記セメントモルタルは、
水 300〜400kg/m3
セメント 800〜1600kg/m3
シリカフューム 50〜350kg/m3
細骨材
(最大粒径が1mm以下) 100〜500kg/m3
高性能AE減水剤
又は高性能減水剤 セメント重量の5%以下
の配合から成る低流動性セメントモルタルに対し、
ばらの短繊維又は/及び収束繊維 5〜40kg/m3
起泡剤(粉体として) 0.2〜1kg/m3
を配合する。
As a preferred example, the cement mortar is
Water 300-400kg / m 3
Cement 800-1600kg / m 3
Silica fume 50-350kg / m 3
Fine aggregate
(Maximum particle size is 1 mm or less) 100 to 500 kg / m 3
High-performance AE water-reducing agent or high-performance water-reducing agent For low-flowing cement mortar composed of less than 5% of cement weight,
Rose short fibers and / or convergent fibers 5-40 kg / m 3
Foaming agent (as powder) 0.2-1 kg / m 3
Is blended.
又好ましい例示として上記ばらの短繊維は、
長さ 6〜12mm
直径 0.006〜0.05mm
引張強度 2.0GPa以上
の条件を備えるものを使用する。
As a preferred example, the above short fibers are
Length 6-12mm
0.006-0.05mm in diameter
A material having a tensile strength of 2.0 GPa or more is used.
又好ましい例示として上記収束繊維は、
長さ 6〜25mm
直径 0.5〜3mm
引張強度 2.0GPa以上
の条件を備えるものを使用する。
As a preferred example, the convergent fiber is
Length 6-25mm
Diameter 0.5-3mm
A material having a tensile strength of 2.0 GPa or more is used.
本発明は水結合材比(W/B%)を15〜25%とした低流動性のセメントモルタル(超高強度セメントモルタル)中に起泡剤を配合し、該起泡剤の配合による発泡により同セメントモルタルの流動性を高めて上記繊維の分散を促し、該繊維配合による引張強度向上を図りつつ、上記発泡繊維強化セメントモルタルの吹き付けによって同セメントモルタル中の気泡を放散して、セメントモルタル全体を緻密化し圧縮強度向上を図り、超高強度セメントモルタルが有する圧縮強度と繊維強化セメントモルタルが有する引張強度を相乗的に向上した吹き付け用繊維強化セメントモルタルを提供できる。 In the present invention, a foaming agent is blended in a low fluidity cement mortar (ultra high strength cement mortar) having a water binder ratio (W / B%) of 15 to 25%, and foaming by blending the foaming agent. By increasing the fluidity of the cement mortar to promote the dispersion of the fibers, and improving the tensile strength by blending the fibers, the bubbles in the cement mortar are diffused by spraying the foamed fiber reinforced cement mortar. It is possible to provide a fiber reinforced cement mortar for spraying which is densified as a whole to improve the compressive strength and synergistically improves the compressive strength of the ultra high strength cement mortar and the tensile strength of the fiber reinforced cement mortar.
上記吹き付け用繊維強化セメントモルタルは、鉄筋コンクリートと同程度又はそれ以上の比類のない補修強度が期待でき、橋梁や農業用水路等のコンクリート構築物の補修に使用する吹き付け用セメントモルタルとして適性材である。 The above-mentioned fiber reinforced cement mortar for spraying can be expected to have an unparalleled repair strength equal to or higher than that of reinforced concrete, and is a suitable material as a spray cement mortar used for repairing concrete structures such as bridges and agricultural waterways.
以下本発明を実施するための形態を図1乃至図7に基づいて説明する。
本発明に係る吹き付け用繊維強化セメントモルタルは、図6に示すように、水結合材比(W/B%)を15〜25%とした低流動性のセメントモルタル(超高強度セメントモルタル)8中に補強繊維としてばらの短繊維5aと、短繊維5bを収束して成る収束繊維6の双方を配合し、又は、具体的には図示しないが、上記セメントモルタル8中に上記短繊維5aと上記収束繊維6の一方を配合する。
Hereinafter, embodiments for carrying out the present invention will be described with reference to FIGS.
As shown in FIG. 6, the fiber-reinforced cement mortar for spraying according to the present invention has a low fluidity cement mortar (ultra high strength cement mortar) 8 having a water binder ratio (W / B%) of 15 to 25%. Both short fibers 5a as reinforcing fibers and converging fibers 6 formed by converging the short fibers 5b are blended, or although not specifically shown, the short fibers 5a and the cement mortar 8 are combined with the short fibers 5a. One of the convergent fibers 6 is blended.
具体的には上記低流動性のセメントモルタル8中に起泡剤を配合し、該起泡剤の配合による発泡で発生した気泡9により同セメントモルタル8の流動性を高めて上記繊維5a、6の分散を促し、該繊維5a、6が団子状に絡まる現象を防止して、発泡繊維強化セメントモルタル10を得る。 Specifically, a foaming agent is blended in the low-fluidity cement mortar 8, and the fluidity of the cement mortar 8 is increased by the bubbles 9 generated by foaming by blending the foaming agent, whereby the fibers 5a, 6 The foamed fiber reinforced cement mortar 10 is obtained by preventing the fibers 5a and 6 from being entangled in a dumpling shape.
本発明は上記発泡繊維強化セメントモルタル10の吹き付けによって同セメントモルタル10中の気泡9を放散することにより、超高強度セメントモルタルが有する圧縮強度と繊維強化セメントモルタルが有する引張強度を相乗的に向上した吹き付け用繊維強化セメントモルタルの提供を目的としている。 The present invention synergistically improves the compressive strength of the ultra-high-strength cement mortar and the tensile strength of the fiber-reinforced cement mortar by discharging the bubbles 9 in the cement mortar 10 by spraying the foamed fiber reinforced cement mortar 10. The purpose is to provide a sprayed fiber reinforced cement mortar.
本発明に係る吹き付け用繊維強化セメントモルタルは、好ましい例示として、
水 300〜400kg/m3
セメント(ポルトランドセメント) 800〜1600kg/m3
シリカフューム 50〜350kg/m3
珪砂等の細骨材
(最大粒径が1mm以下) 100〜500kg/m3
高性能AE減水剤
又は高性能減水剤 セメント重量の5%以下
の配合から成る上記低流動性セメントモルタル8に対し、
ばらの短繊維5a又は/及び収束繊維6 5〜40kg/m3
起泡剤(粉体として) 0.2〜1kg/m3
を配合して、上記発泡繊維強化セメントモルタル10とする。尚本発明は上記低流動性セメントモルタル8に配合される水、セメント(ポルトランドセメント)、シリカフューム、珪砂等の細骨材、高性能AE減水剤又は高性能減水剤と上記ばらの短繊維5a又は/及び収束繊維6、起泡剤とを一緒に配合する場合を排除しない。
The fiber-reinforced cement mortar for spraying according to the present invention is a preferable example,
Water 300-400kg / m 3
Cement (Portland cement) 800-1600kg / m 3
Silica fume 50-350kg / m 3
Fine aggregate such as silica sand
(Maximum particle size is 1 mm or less) 100 to 500 kg / m 3
High-performance AE water reducing agent or high-performance water reducing agent For the above low flow cement mortar 8 comprising 5% or less of the cement weight,
Rose short fibers 5a and / or convergent fibers 65 to 40 kg / m 3
Foaming agent (as powder) 0.2-1 kg / m 3
To make the foamed fiber reinforced cement mortar 10. In the present invention, water, cement (Portland cement), fine aggregate such as silica fume, silica sand, etc., high-performance AE water-reducing agent or high-performance water-reducing agent and the above-mentioned short short fibers 5a or / And the case where the convergence fiber 6 and the foaming agent are blended together is not excluded.
本発明は水結合材比(W/B%)を15〜25%の貧加水にし低流動性にした上記セメントモルタル8に上記配合範囲で起泡剤を配合し、該起泡剤の配合による発泡により同セメントモルタル8の流動性を高めて上記ばらの短繊維5a又は/及び収束繊維6の分散を促し、発泡繊維強化セメントモルタル10とする。ここで、水結合材比(W/B%)とは水(高性能AE減水剤、高性能減水剤等の液体を含む)と固体(粉体)の結合材、例えば上記配合中、セメント、シリカヒューム等との比率をいう。 In the present invention, a foaming agent is blended in the above blending range into the cement mortar 8 having a water binder ratio (W / B%) of 15 to 25% which is poorly hydrolyzed and has low fluidity. The fluidity of the cement mortar 8 is increased by foaming to promote the dispersion of the short fibers 5a and / or the converging fibers 6 to obtain a foam fiber reinforced cement mortar 10. Here, the water binder ratio (W / B%) is a binder of water (including liquids such as high performance AE water reducing agent and high performance water reducing agent) and solid (powder), such as cement, The ratio with silica fume etc.
上記ばらの短繊維5a又は/及び収束繊維6は上記配合範囲で上記低流動性セメントモルタル8(繊維5a,6以外の全ての配合材を含むモルタル)中に体積比で1〜3%配合する。好ましい配合量は2〜3%である。 The above-mentioned short short fibers 5a and / or convergent fibers 6 are blended in an amount of 1 to 3% by volume in the low flow cement mortar 8 (a mortar including all blending materials other than the fibers 5a and 6) within the above blending range. . A preferred blending amount is 2-3%.
又上記起泡剤は上記配合量の範囲で上記発泡繊維強化セメントモルタル10の練りあがり時の空気量が体積比で15〜30%となるように配合する。尚上記起泡剤は水結合材比(W/B%)への影響を考慮し粉体として配合するのが望ましい。 The foaming agent is blended so that the amount of air when the foamed fiber reinforced cement mortar 10 is kneaded is in the range of 15-30% by volume. The foaming agent is desirably blended as a powder in consideration of the influence on the water binder ratio (W / B%).
上記起泡剤は上記した補強繊維5a,6の分散性のみに寄与するのではなく、上記発泡繊維強化セメントモルタル10の練りあがり時の空気量を増大して体積を増加し、吹き付け性をも良好にする。 The foaming agent not only contributes to the dispersibility of the reinforcing fibers 5a and 6 described above, but increases the amount of air when kneading the foamed fiber reinforced cement mortar 10 to increase the volume, and also has sprayability. Make good.
上記補強繊維としての短繊維5a,5bと結束繊維7とは、ポリエチレン繊維、ビニロン繊維の他、カーボン繊維、アラミド繊維、ザイロン繊維、ダイニーマ繊維が使用される。 For the short fibers 5a and 5b and the binding fibers 7 as the reinforcing fibers, a carbon fiber, an aramid fiber, a xylon fiber, and a dyneema fiber are used in addition to a polyethylene fiber and a vinylon fiber.
上記ダイニーマは東洋紡績株式会社(大阪市北区堂島浜二丁目2番8号)の商標であり、このダイニーマは超高分子量ポリエチレンでできており、超高強力、高弾性率を有し、軽く、耐疲労性と、耐衝撃性と、耐光性等に優れ、吹き付け用繊維強化セメントモルタルに配合する補強繊維として適材である。 The above Dyneema is a trademark of Toyobo Co., Ltd. (2-8-8 Dojimahama, Kita-ku, Osaka). This Dyneema is made of ultra-high molecular weight polyethylene, has super high strength, high elasticity, light weight, It is excellent in fatigue resistance, impact resistance, light resistance, etc., and is a suitable material as a reinforcing fiber to be blended in a fiber reinforced cement mortar for spraying.
又上記ザイロンは同じ東洋紡績株式会社のポリパラフェニレンベンズオキサゾール(PBO)繊維の商標であり、同繊維はポリベンズアゾール系ポリマーであり、剛直で極めて直線性の高い分子構造を持つ繊維であり、引張強度、耐衝撃特性と耐光性等に富み、吹き付け用繊維強化セメントモルタルに配合する補強繊維として適材である。 Moreover, the above xylon is a trademark of polyparaphenylene benzoxazole (PBO) fiber of the same Toyobo Co., Ltd., which is a polybenzazole-based polymer, a fiber having a rigid and extremely high linear molecular structure, Rich in tensile strength, impact resistance and light resistance, etc., it is a suitable material as a reinforcing fiber to be blended in fiber reinforced cement mortar for spraying.
上記ポリエチレン繊維、ビニロン繊維の他、カーボン繊維、アラミド繊維、ザイロン繊維、ダイニーマ繊維等の繊維は互いに組み合わせて用いることができる。 In addition to the polyethylene fiber and the vinylon fiber, fibers such as carbon fiber, aramid fiber, xylon fiber, and dynea fiber can be used in combination with each other.
図5(A)に示すように、上記ばらの短繊維5aの長さL1は6〜12mm、同直径R1は0.006〜0.05mmの範囲で夫々選択する。 As shown in FIG. 5A, the length L1 of the loose short fibers 5a is selected in the range of 6 to 12 mm, and the diameter R1 is selected in the range of 0.006 to 0.05 mm.
他方、上記収束繊維6の長さL2は6〜25mm、同直径R2は0.5〜3mmの範囲で選択し、収束繊維6を形成する短繊維5bの直径は0.006〜0.05mm、同本数は200〜5000本の範囲で選択する。上記直径R2は短繊維5bの本数によって定まる。 On the other hand, the length L2 of the converging fiber 6 is 6 to 25 mm, and the diameter R2 is selected within the range of 0.5 to 3 mm. The diameter of the short fiber 5b forming the converging fiber 6 is 0.006 to 0.05 mm, The number is selected in the range of 200 to 5000. The diameter R2 is determined by the number of short fibers 5b.
又上記ばらの短繊維5aと収束繊維6の双方を配合する場合には、ばらの短繊維5aと収束繊維6の相対長は略1:1〜4となるように上記長さの範囲で選択する。好ましくは繊維長9mmのばらの短繊維5aを選択するとき、同12mmの収束繊維6を選択し、同様に繊維長12mmのばらの短繊維5aを選択するとき、同15mmの収束繊維6を選択するというように、相対長が短い短繊維5aと該短繊維5aより相対長が長い収束繊維6とを混ぜて低流動性セメントモルタル8中に配合する。 When both the short fiber 5a and the converging fiber 6 are blended, the relative length of the short fiber 5a and the converging fiber 6 is selected within the above range so that the relative length is about 1: 1 to 4. To do. Preferably, when selecting a short fiber 5a having a length of 9 mm, the convergent fiber 6 having the same length of 12 mm is selected. Similarly, when selecting a short fiber 5a having a length of 12 mm, the convergent fiber 6 having the same length of 15 mm is selected. As described above, the short fibers 5a having a short relative length and the converging fibers 6 having a longer relative length than the short fibers 5a are mixed and blended in the low flow cement mortar 8.
更に好ましくは収束繊維6の長さが短繊維5aの長さに対し2〜5mm程度長いものを用い、短繊維5aの破断後のひび割れ拡大に対する耐力を発揮せしめる。 More preferably, the converging fiber 6 has a length of about 2 to 5 mm longer than the length of the short fiber 5a, and exhibits the resistance to crack expansion after the short fiber 5a breaks.
上記ばらの短繊維5aと収束繊維6の相対配合比(重量比)は1〜6:1〜6の範囲で選択する。好ましい相対配合比は略1:1である。 The relative blending ratio (weight ratio) of the short fibers 5a and the converging fibers 6 is selected in the range of 1 to 6: 1 to 6. A preferred relative blending ratio is approximately 1: 1.
図5(B)は上記収束繊維6の収束手段を例示しており、図示のように多数本の短直状の短繊維5bを直線に引き揃えて束にし、或いは捩りを与えて束にし、該束の周面に結束繊維7をスパイラル状に巻装し融着することによって収束繊維6を形成する。 FIG. 5 (B) exemplifies the means for converging the converging fibers 6, and as shown in the drawing, a number of short straight fibers 5b are aligned in a straight line to form a bundle, or twisted to form a bundle, The converging fibers 6 are formed by winding the binding fibers 7 in a spiral shape on the peripheral surface of the bundle and fusing them.
又図5(C)に示すように、上記収束繊維6を波形に付形した波形収束繊維6を用い低流動性セメントモルタル8との結合効果を向上することができる。 Further, as shown in FIG. 5C, the bonding effect with the low fluidity cement mortar 8 can be improved by using the corrugated converging fiber 6 formed by corrugating the converging fiber 6.
又は図5(D)に示すように、収束繊維6の長さ方向の局部に、一箇所又は複数箇所の加圧融着部1bを設け収束状態にした収束繊維6を用いる。 Or as shown in FIG.5 (D), the convergence fiber 6 which provided the one-point or several pressurization melt | fusion part 1b in the local part of the length direction of the convergence fiber 6 and made it the convergence state is used.
本発明は図5(C)に示す波形収束繊維6に上記加圧融着部1bを設けた例を含む。 The present invention includes an example in which the above-mentioned pressure-bonding portion 1b is provided in the corrugated fiber 6 shown in FIG.
上記加圧融着部1bを設け収束状態にした収束繊維6は両端におけるさばけ性が良好であり、このさばけによって低流動性セメントモルタル8との結合強度を向上できる。加えてひび割れ発生に伴う引張力が融着部を介して全短繊維5bに加わり、全短繊維5bを引張抗力繊維として寄与させることができる。 The convergent fibers 6 that are provided with the pressure-bonding portion 1b and are in a converged state have good diffusibility at both ends, and this puncture can improve the bond strength with the low-fluidity cement mortar 8. In addition, the tensile force associated with the occurrence of cracks is applied to all the short fibers 5b through the fused portion, and the all short fibers 5b can be contributed as tensile drag fibers.
上記スパイラル状に巻装した結束繊維7とばらの短繊維5aと収束繊維6を形成する短繊維5bとは、同じ材質で同じ直径0.006〜0.05mmの繊維を用いる。但し本発明は結束繊維7とばらの短繊維5aと収束繊維6を形成する短繊維5bの夫々を異材質、異径のもので構成する場合を含む。 The above-described spirally wound bundling fiber 7, the short short fiber 5a, and the short fiber 5b forming the converging fiber 6 are made of the same material and have the same diameter of 0.006 to 0.05 mm. However, the present invention includes the case where the binding fibers 7, the short fibers 5a, and the short fibers 5b forming the converging fibers 6 are made of different materials and different diameters.
本発明は、図7に示すように、水結合材比(W/B%)を15〜25%とした低流動性セメントモルタル8中にばらの短繊維5a又は/及び収束繊維6を配合すると共に、同セメントモルタル8中に起泡剤を配合し、該起泡剤の配合による発泡により同セメントモルタル8の流動性を高めて上記繊維5a、6の分散を促し、ミキサー15内で混練し、攪拌して両繊維5a、6を均一に分散せしめる。 In the present invention, as shown in FIG. 7, loose short fibers 5 a and / or converging fibers 6 are blended in a low flow cement mortar 8 having a water binder ratio (W / B%) of 15 to 25%. At the same time, a foaming agent is blended in the cement mortar 8 and the fluidity of the cement mortar 8 is enhanced by foaming by blending the foaming agent to promote dispersion of the fibers 5a and 6 and kneaded in the mixer 15. The two fibers 5a and 6 are uniformly dispersed by stirring.
又上記攪拌後の発泡繊維強化セメントモルタル10を圧送ポンプ16のホッパー16a内に投入し、該圧送ポンプ16により吹き付けノズル17に圧送し圧縮空気18により加圧して補修対象物Pに吹き付ける。この吹き付けによって上記発泡繊維強化セメントモルタル10が補修対象物Pに衝突し、その衝撃で同発泡繊維強化セメントモルタル10中の気泡9を放散する。 Further, the foamed fiber reinforced cement mortar 10 after stirring is put into a hopper 16a of a pressure feed pump 16, and is fed to the spray nozzle 17 by the pressure feed pump 16 and pressurized by the compressed air 18 and sprayed to the repair object P. By the spraying, the foamed fiber reinforced cement mortar 10 collides with the repair object P, and the bubbles 9 in the foamed fiber reinforced cement mortar 10 are diffused by the impact.
上記吹き付け時の衝撃により上記発泡繊維強化セメントモルタル10中の気泡9を含めた空気量を削減してセメントモルタルを緻密にし圧縮強度向上を図る。これにより、超高強度セメントモルタルが有する圧縮強度と繊維強化セメントモルタルが有する引張強度を相乗的に向上した本発明に係る吹き付け用繊維強化セメントモルタルの提供が達成できる。尚上記空気量は上記発泡繊維強化セメントモルタル10の練りあがり時には体積比15〜30%とし、吹き付け時の衝撃で削減した後は体積比10%以下とするのが好ましい。 The amount of air including the bubbles 9 in the foamed fiber reinforced cement mortar 10 is reduced by the impact at the time of spraying to make the cement mortar dense and to improve the compressive strength. Thereby, provision of the fiber reinforced cement mortar for spraying according to the present invention in which the compressive strength of the ultra high strength cement mortar and the tensile strength of the fiber reinforced cement mortar are synergistically improved can be achieved. The amount of air is preferably 15 to 30% by volume when the foamed fiber reinforced cement mortar 10 is kneaded, and preferably 10% or less after being reduced by impact during spraying.
引張強度に関する試験として、図1に示すように、上記した好ましい例示に従い配合した本発明に係る吹き付け用繊維強化セメントモルタルでダンベル形供試体1を形成し、該供試体1の両端をクランプCによって把持し、矢印で示す引張応力2に対する小径の伸び部1aのひび割れ3とひずみ発生状況、破壊に至る関係を試験した結果、図2のグラフに示すように、引張応力が4N/mm2程度に達したときに、表層に微細なひび割れ3(0.05〜0.1mm以下)が発生し、5N/mm2程度の引張応力が加わりひずみ量3%程度の伸びが生ずるまで、表層部の微細なひび割れ3の発生が繰り返され、該ひずみ発生から上記微細ひび割れ3が拡大して破壊に至る時間を下記の比較例に比べ大幅に遅延することが証明された。 As a test for tensile strength, as shown in FIG. 1, a dumbbell-shaped specimen 1 is formed with a fiber-reinforced cement mortar for spraying according to the present invention blended according to the above-described preferred examples, and both ends of the specimen 1 are clamped by clamps C. As shown in the graph of FIG. 2, the tensile stress was about 4 N / mm 2 as a result of testing the relationship between the crack 3 of the small-diameter elongated portion 1 a, the strain generation state, and the fracture with respect to the tensile stress 2 indicated by the arrow. When it reaches, fine cracks 3 (0.05 to 0.1 mm or less) are generated on the surface layer, and until the tensile stress of about 5 N / mm 2 is applied and the elongation of about 3% is generated, the fineness of the surface layer portion is increased. It was proved that generation of the crack 3 was repeated, and the time from the generation of the strain to the expansion of the fine crack 3 to breakage was significantly delayed compared to the following comparative example.
図1に示すように、比較例として繊維強化ポリマーセメントモルタル(基材として普通セメントモルタルを使用)から成るダンベル形供試体1を形成し、該供試体1の両端をクランプCによって把持し、矢印で示す引張応力2に対する小径の伸び部1aのひび割れ3とひずみ発生状況、破壊に至る関係を試験した結果、図2のグラフに示すように、引張応力が3.5N/mm2程度に達したときに、表層に浅く微細なひび割れ3が発生し、4N/mm2程度の引張応力が加わりひずみ量が略1.5%強の伸びで破壊に至ることが証明された。 As shown in FIG. 1, a dumbbell-shaped specimen 1 made of a fiber reinforced polymer cement mortar (using ordinary cement mortar as a base material) is formed as a comparative example, and both ends of the specimen 1 are gripped by clamps C, and arrows As shown in the graph of FIG. 2, the tensile stress reached about 3.5 N / mm 2 as a result of testing the relationship between the crack 3 of the small-diameter elongated portion 1a, the strain occurrence state, and the fracture with respect to the tensile stress 2 shown in FIG. Occasionally, shallow fine cracks 3 occurred on the surface layer, and it was proved that a tensile stress of about 4 N / mm 2 was applied, and the fracture was caused by an elongation of about 1.5% or more.
即ち比較例の引張応力に対する破壊に至るひずみ量が1.5%強であるのに対し、本発明の実施例の場合にはそれが3%程度に向上し、ひずみが発生して破壊に至る時間を大幅に遅延し、鉄筋コンクリートに比類する引張強度を有する吹き付け用繊維強化セメントモルタルであることが証明された。 That is, the amount of strain leading to fracture in the comparative example is slightly over 1.5%, but in the case of the example of the present invention, it is improved to about 3%, and strain is generated to cause fracture. It was proved to be a fiber reinforced cement mortar for spraying with a time delay significantly and a tensile strength comparable to that of reinforced concrete.
本発明は低流動性セメントモルタル8中に補強繊維として配合したばらの短繊維5a又は/及び収束繊維6とにより、微細ひび割れ3が生じてから破壊に至る迄の伸び長、即ち強度に影響が少ない浅く微細なひび割れ3発生を維持する伸び長を大幅に増大し、補強鉄筋を配筋せずに橋梁の床版や橋脚(鉄筋コンクリート)と同程度の引張強度を得ることができ、補強に供する吹き付け用繊維強化セメントモルタルとして極めて有効である。 In the present invention, the short fiber 5a and / or the converging fiber 6 blended as the reinforcing fiber in the low flow cement mortar 8 has an influence on the elongation length from the occurrence of the fine crack 3 to the breakage, that is, the strength. The stretch length that maintains the generation of few shallow and fine cracks 3 is greatly increased, and it is possible to obtain the same tensile strength as bridge decks and piers (reinforced concrete) without reinforcing steel reinforcing bars. It is extremely effective as a fiber reinforced cement mortar for spraying.
又圧縮強度に関する試験に関しては、具体的には図示しないが、地震等による災害時の早期復旧を想定し、材齢7日(養生期間7日)で圧縮強度を測定したところ、80N/mm2以上であり、比類ない圧縮強度を有する吹き付け用繊維強化セメントモルタルであることが証明された。 Also for the test on the compressive strength, the place although not specifically shown, assumes the early recovery in the event of a disaster caused by an earthquake or the like, to measure the compressive strength at the age of 7 days (curing period 7 days), 80N / mm 2 The above proved to be a fiber reinforced cement mortar for spraying having unparalleled compressive strength.
更には補修効果に関する載荷試験として、図3Aに示すように、配筋した繊維強化ポリマーセメントモルタル(基材として普通セメントモルタルを使用)で形成したI形供試体11の上フランジ体11bに対して柱体11aに損傷を与えるための一次載荷を行い、該一次載荷による損傷部分12の表層コンクリートを除去し、図3Bに示すように、上記した好ましい例示に従い配合した本発明に係る吹き付け用繊維強化セメントモルタルで吹き付け補修したI形供試体11の上フランジ体11bに対して材齢7日(養生期間7日)で二次載荷を行い、一次,二次載荷における上記柱体11aの水平変位を測定した。尚図3中の11cは鉄筋を示している。 Furthermore, as a loading test regarding the repair effect, as shown in FIG. 3A, with respect to the upper flange body 11b of the I-shaped specimen 11 formed of a reinforced fiber-reinforced polymer cement mortar (using ordinary cement mortar as a base material). The primary loading for damaging the column 11a is performed, and the surface concrete of the damaged portion 12 due to the primary loading is removed, and as shown in FIG. Secondary loading is performed on the upper flange body 11b of the I-shaped specimen 11 repaired by spraying with cement mortar at an age of 7 days (curing period 7 days), and the horizontal displacement of the column 11a in the primary and secondary loading is determined. It was measured. In addition, 11c in FIG. 3 has shown the reinforcing bar.
上記一次,二次載荷は軸力を一定とした静的正負交番載荷であり、即ち図3A・Bに示すように、I形供試体11の上フランジ11bに対して鉛直方向に軸力13を一定にして載荷し、水平方向においては矢印で示す正方向の載荷14Aと負方向の載荷14Bを交互に行った。 The primary and secondary loads are static positive and negative alternating loads with a constant axial force, that is, as shown in FIGS. 3A and 3B, an axial force 13 is applied vertically to the upper flange 11b of the I-shaped specimen 11. Loading was carried out at a constant level, and in the horizontal direction, loading 14A in the positive direction and loading 14B in the negative direction indicated by arrows were alternately performed.
上記一次載荷、即ち損傷を与えるための載荷は、上記正方向載荷14Aと負方向載荷14Bを柱体11aの降伏変位(δy)までは水平変位が2.5mm刻みで増加するように載荷を行い、1δy以降は8δyまでδy刻みで増加するように載荷を行い、8δy以降は2δy刻みで増加するように載荷を行った。又上記二次載荷、即ち補修後の載荷は、上記正方向載荷14Aと負方向載荷14Bを柱体11aの降伏変位(δy)までは水平変位が2.5mm刻みで増加するように載荷を行い、1δy以降は6δyまでδy刻みで増加するように載荷を行い、6δy以降は2δy刻みで増加するように載荷を行った。 The primary loading, that is, loading for damaging, loads the positive loading 14A and the negative loading 14B so that the horizontal displacement increases in 2.5 mm increments until the yield displacement (δy) of the column 11a. After 1δy, loading was performed so as to increase in increments of δy up to 8δy, and after 8δy, loading was performed so as to increase in increments of 2δy. The secondary loading, that is, the loading after the repair, is carried out so that the horizontal displacement increases in 2.5 mm increments until the yield displacement (δy) of the column body 11a with respect to the positive load 14A and the negative load 14B. After 1δy, loading was performed so as to increase in increments of δy up to 6δy, and after 6δy, loading was performed so as to increase in increments of 2δy.
上記一次,二次載荷による水平変位の変化、破壊に至る関係を試験した結果、図4(A)のグラフに示すように、損傷を与えるための載荷時のグラフ(一次載荷時のグラフ)では6δy(グラフ中、左右端の頂点から4つ目の頂点)まで最大荷重が180kN程度を維持し続け、8δy(グラフ中、左右端の頂点から3つ目の頂点)で荷重が急低下し12δy(グラフ中、左右端の頂点)で終局に至ることが証明された。 As a result of testing the relationship between the change in horizontal displacement due to the primary and secondary loading and the failure, as shown in the graph of FIG. 4 (A), the loading graph for damaging (the graph during the primary loading) The maximum load continues to be about 180 kN up to 6δy (fourth vertex from the left and right vertex in the graph), and the load suddenly decreases at 8δy (third vertex from the left and right vertex in the graph). It was proved that it reached the end at (vertical left and right vertices in the graph).
又図4(B)のグラフに示すように、補修後のグラフ(二次載荷時のグラフ)では4δy(グラフ中、左右端の頂点から9つ目の頂点)まで荷重が増加し、その後14δy(グラフ中、左右端の頂点から3つ目の頂点)まで最大荷重が200kN程度を維持し続け、16δy(グラフ中、左右端の頂点から2つ目の頂点)で荷重が急低下し18δy(グラフ中、左右端の頂点)で終局に至ることが証明された。 Also, as shown in the graph of FIG. 4B, in the graph after repair (the graph at the time of secondary loading), the load increases to 4δy (the ninth vertex from the left and right vertices in the graph), and then 14δy. The maximum load continues to be maintained at about 200 kN (from the left and right vertex to the third vertex in the graph), and at 16δy (the second vertex from the left and right vertex in the graph), the load suddenly decreases to 18δy ( It was proved that the graph reached the end at the left and right vertices in the graph.
即ち損傷を与えるための載荷時のグラフ(一次載荷時のグラフ)では最大荷重180kN程度であると共に、12δyで終局に至ったのに対し、本発明の実施例の場合には最大荷重が200kN程度、終局変位が18δyであり、従来の鉄筋コンクリート(上記配筋した繊維強化ポリマーセメントモルタル)以上の圧縮強度と引張強度を有する吹きつけ用繊維強化セメントモルタルであることが証明された。 That is, in the graph at the time of loading to give damage (graph at the time of primary loading), the maximum load is about 180 kN and the final load is reached at 12δy, whereas in the embodiment of the present invention, the maximum load is about 200 kN. The final displacement was 18δy, which proved to be a sprayed fiber reinforced cement mortar having a compressive strength and tensile strength higher than those of conventional reinforced concrete (the above-mentioned reinforced fiber reinforced polymer cement mortar).
本発明は上記低流動性セメントモルタル8にスチレンブタジエン樹脂系、ポリアクリル酸エステル樹脂系(アクリル樹脂系)、エチレン酢ビ樹脂系、酢ビ・ベオバ樹脂系等から成るポリマー樹脂の流動材を配合した場合を含む。 In the present invention, the low fluidity cement mortar 8 is blended with a polymer resin fluidized material composed of styrene butadiene resin, polyacrylic ester resin (acrylic resin), ethylene vinyl acetate resin, vinyl acetate / veova resin, or the like. Including the case.
即ち、上気した低流動性セメントモルタル8に上記ポリマー樹脂を配合してポリマーセメントモルタルにした場合を含む。上記ポリマー樹脂を配合する場合は、その配合量は50〜150kg/m3とする。 That is, it includes the case where the polymer resin mortar is blended with the low-flowing cement mortar 8 which has been aired to form a polymer cement mortar. When the polymer resin is blended, the blending amount is 50 to 150 kg / m 3 .
以上、下限値と上限値間を「〜」で示した数値範囲は、該下限値と上限値間の全ての数値(整数値と小数値)を表したものである。請求項の記載においても同様である。 As described above, the numerical range indicated by “˜” between the lower limit value and the upper limit value represents all the numerical values (integer value and decimal value) between the lower limit value and the upper limit value. The same applies to the claims.
1…ダンベル形供試体、1a…小径の伸び部、1b…加圧融着部、2…引張応力、3…微細なひび割れ、5a…ばらの短繊維、5b…収束繊維を形成する短繊維、6…収束繊維、7…結束繊維、8…セメントモルタル、9…気泡、10…発泡繊維強化セメントモルタル、11…I形供試体、11a…柱体、11b…上フランジ、11c…鉄筋、12…損傷部分、13…軸力、14A…正方向載荷、14B…負方向載荷、15…ミキサー、16…圧送ポンプ、16a…ホッパー、17…吹き付けノズル、18…圧縮空気、C…クランプ、P…補修対象物。 DESCRIPTION OF SYMBOLS 1 ... Dumbbell-shaped specimen, 1a ... Elongation part of small diameter, 1b ... Pressure fusion part, 2 ... Tensile stress, 3 ... Fine crack, 5a ... Short fiber of loose, 5b ... Short fiber which forms a convergence fiber, 6 ... Converging fiber, 7 ... Bundling fiber, 8 ... Cement mortar, 9 ... Air bubble, 10 ... Foamed fiber reinforced cement mortar, 11 ... I-shaped specimen, 11a ... Column, 11b ... Upper flange, 11c ... Reinforcing bar, 12 ... Damaged part, 13 ... Axial force, 14A ... Positive load, 14B ... Negative load, 15 ... Mixer, 16 ... Pressure pump, 16a ... Hopper, 17 ... Blow nozzle, 18 ... Compressed air, C ... Clamp, P ... Repair Object.
Claims (6)
セメント 800〜1600kg/m3
シリカフューム 50〜350kg/m3
細骨材
(最大粒径が1mm以下) 100〜500kg/m3
高性能AE減水剤
又は高性能減水剤 セメント重量の5%以下
の配合から成る上記低流動性セメントモルタルに対し、
ばらの短繊維又は/及び収束繊維 5〜40kg/m3
起泡剤(粉体として) 0.2〜1kg/m3
を配合したことを特徴とする請求項1乃至請求項3のいずれかに記載の吹き付け用繊維強化セメントモルタル。 Water 300-400kg / m 3
Cement 800-1600kg / m 3
Silica fume 50-350kg / m 3
Fine aggregate
(Maximum particle size is 1 mm or less) 100 to 500 kg / m 3
High-performance AE water reducing agent or high-performance water reducing agent For the above low flow cement mortar composed of 5% or less of cement weight,
Rose short fibers and / or convergent fibers 5-40 kg / m 3
Foaming agent (as powder) 0.2-1 kg / m 3
The fiber-reinforced cement mortar for spraying according to any one of claims 1 to 3, wherein:
長さ 6〜12mm
直径 0.006〜0.05mm
引張強度 2.0GPa以上
であることを特徴とする請求項1乃至請求項4のいずれかに記載の吹き付け用繊維強化セメントモルタル。 The above short fibers are
Length 6-12mm
0.006-0.05mm in diameter
The fiber-reinforced cement mortar for spraying according to any one of claims 1 to 4, wherein the tensile strength is 2.0 GPa or more.
長さ 6〜25mm
直径 0.5〜3mm
引張強度 2.0GPa以上
であることを特徴とする請求項1乃至請求項5のいずれかに記載の吹き付け用繊維強化セメントモルタル。 The convergent fiber is
Length 6-25mm
Diameter 0.5-3mm
The fiber-reinforced cement mortar for spraying according to any one of claims 1 to 5, wherein the tensile strength is 2.0 GPa or more.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010146687A JP2012006813A (en) | 2010-06-28 | 2010-06-28 | Fiber reinforced cement mortar for spraying |
KR20110005802A KR20120001584A (en) | 2010-06-28 | 2011-01-20 | Fiber reinforced cement mortar for spraying |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010146687A JP2012006813A (en) | 2010-06-28 | 2010-06-28 | Fiber reinforced cement mortar for spraying |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2012006813A true JP2012006813A (en) | 2012-01-12 |
Family
ID=45537809
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010146687A Pending JP2012006813A (en) | 2010-06-28 | 2010-06-28 | Fiber reinforced cement mortar for spraying |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2012006813A (en) |
KR (1) | KR20120001584A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3434656A1 (en) * | 2017-07-27 | 2019-01-30 | Basf Se | Engineered cementitious composites comprising pbo fibers |
CN110320078A (en) * | 2019-07-10 | 2019-10-11 | 卡本科技集团股份有限公司 | A kind of preparation method of carbon fiber mesh bond stress sample |
JP2022042864A (en) * | 2020-09-03 | 2022-03-15 | 鹿島建設株式会社 | Cement-based spraying material and construction method |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015152567A1 (en) * | 2014-03-31 | 2015-10-08 | 강원대학교산학협력단 | Apparatus for manufacturing fiber-reinforced concrete through shooting after inserting bubbles into normal concrete and method for manufacturing same |
KR101692017B1 (en) * | 2014-03-31 | 2017-01-03 | 강원대학교산학협력단 | The fiber reinforced concrete and manufacturing method thereof |
KR102566467B1 (en) * | 2020-10-07 | 2023-08-10 | 한양대학교 산학협력단 | Cementitious composites and method for manufacturing the cementitious composites |
KR102398226B1 (en) | 2022-03-02 | 2022-05-13 | 김용태 | Cement Concrete Composition with Water-Cured Polyurethane and Fiber Reinforcement for Improved Tensile Strength and Manufacturing Method for it |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004324285A (en) * | 2003-04-25 | 2004-11-18 | Kajima Corp | Surface protection method for skeleton concrete |
JP2007223870A (en) * | 2006-02-27 | 2007-09-06 | Denki Kagaku Kogyo Kk | Cement composition for spraying and spraying method using the same |
JP2009256121A (en) * | 2008-04-14 | 2009-11-05 | Denki Kagaku Kogyo Kk | Spraying material and spray repairing method using the same |
JP2010116274A (en) * | 2008-11-11 | 2010-05-27 | Teijin Techno Products Ltd | Short fiber-reinforced cement formed body |
-
2010
- 2010-06-28 JP JP2010146687A patent/JP2012006813A/en active Pending
-
2011
- 2011-01-20 KR KR20110005802A patent/KR20120001584A/en not_active Withdrawn
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004324285A (en) * | 2003-04-25 | 2004-11-18 | Kajima Corp | Surface protection method for skeleton concrete |
JP2007223870A (en) * | 2006-02-27 | 2007-09-06 | Denki Kagaku Kogyo Kk | Cement composition for spraying and spraying method using the same |
JP2009256121A (en) * | 2008-04-14 | 2009-11-05 | Denki Kagaku Kogyo Kk | Spraying material and spray repairing method using the same |
JP2010116274A (en) * | 2008-11-11 | 2010-05-27 | Teijin Techno Products Ltd | Short fiber-reinforced cement formed body |
Non-Patent Citations (2)
Title |
---|
JPN6012031149; 新 セメント・コンクリート用混和材料 第1版第1刷, 20070115, 第163-168頁、第274-277頁, 技術書院 * |
JPN6013008471; 新 セメント・コンクリート用混和材料 第1版第1刷, 20070115, 第75頁, 技術書院 * |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3434656A1 (en) * | 2017-07-27 | 2019-01-30 | Basf Se | Engineered cementitious composites comprising pbo fibers |
CN110320078A (en) * | 2019-07-10 | 2019-10-11 | 卡本科技集团股份有限公司 | A kind of preparation method of carbon fiber mesh bond stress sample |
CN110320078B (en) * | 2019-07-10 | 2022-07-12 | 卡本科技集团股份有限公司 | Preparation method of carbon fiber grid bond stress sample |
JP2022042864A (en) * | 2020-09-03 | 2022-03-15 | 鹿島建設株式会社 | Cement-based spraying material and construction method |
JP7640238B2 (en) | 2020-09-03 | 2025-03-05 | 鹿島建設株式会社 | How to build it |
Also Published As
Publication number | Publication date |
---|---|
KR20120001584A (en) | 2012-01-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2012006813A (en) | Fiber reinforced cement mortar for spraying | |
JP6470315B2 (en) | Cement reinforcing fiber material | |
Tabatabaei et al. | Comparative impact behavior of four long carbon fiber reinforced concretes | |
JP4980392B2 (en) | Fiber reinforced cement mortar | |
KR101253249B1 (en) | Manufacturing methods of ultra-high performance fiber reinforecd concrete mixing the steel fiber of wave and straight type | |
US20090075076A1 (en) | Impact resistant strain hardening brittle matrix composite for protective structures | |
JP2010116274A (en) | Short fiber-reinforced cement formed body | |
JP4105754B1 (en) | Reinforced cured body and method for producing the same | |
JP5415015B2 (en) | Spray repair method | |
KR20170140848A (en) | Steel fiber for reinforcing cement composition | |
JP5758597B2 (en) | Reinforcing material and molded article containing the reinforcing material | |
CN107345454A (en) | A kind of building aseismicity ball being mixed in concrete | |
JP2018111631A (en) | Fiber material for cement reinforcement | |
Kwon et al. | Cyclic behavior of high-performance fiber-reinforced cement composite coupling beam having diagonal reinforcement | |
Shewale et al. | Enhancing Load-Carrying Capacity of Reinforced Concrete Columns with High Aspect Ratio Using Textile-Reinforced Mortar Systems | |
Pourfalah et al. | Development of engineered cementitious composite mixtures using locally available materials in the UK | |
CN106431147A (en) | Micro-hoop restraint-reinforced concrete | |
Si Youcef et al. | Geometrical effect on the behavior of CFRP confined and unconfined concrete columns | |
JP5823698B2 (en) | Polymer cement composition | |
Kwon et al. | Compressive and tensile behavior of polyetylene fiber reinforced composite according to silica sand and fly ash | |
JP3974509B2 (en) | High-toughness cementitious composite and premix material for producing high-toughness cementitious composite | |
KR102390964B1 (en) | Steel fiber | |
y Basalo et al. | Fiber reinforced cementitious matrix composites for infrastructure rehabilitation | |
Yoo et al. | A Study on the Experiment of Flexural Behavior of Composite Beam with Steel Fiber Reinforced UHPC and Inverted-T Steel Considering Compressive Strength Level | |
KR101126264B1 (en) | A Polyamide fiber having two layer for reinforcing cement structure |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20120607 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120619 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120820 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20130305 |