JP2012001794A - Steel for element of belt type CVT and element using the same - Google Patents
Steel for element of belt type CVT and element using the same Download PDFInfo
- Publication number
- JP2012001794A JP2012001794A JP2010140213A JP2010140213A JP2012001794A JP 2012001794 A JP2012001794 A JP 2012001794A JP 2010140213 A JP2010140213 A JP 2010140213A JP 2010140213 A JP2010140213 A JP 2010140213A JP 2012001794 A JP2012001794 A JP 2012001794A
- Authority
- JP
- Japan
- Prior art keywords
- steel
- hardness
- type cvt
- belt type
- mass
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Heat Treatment Of Articles (AREA)
Abstract
【課題】所定の焼入れ焼き戻し熱処理を行うことで、耐疲労性、特に、低・中サイクルの耐疲労性を高めつつ未固溶炭化物量を減じても耐摩耗性にも優れたエレメントを与え得るエレメント用鋼及びこれを用いたエレメントの提供。
【解決手段】少なくともC、Si、Mn、Crを含み、元素Mの質量%を[M]とすると、10.8[C]+5.6[Si]+2.7[Mn]+0.3[Cr]≦13を満たす成分組成を有する鋼からなるベルト式CVTのエレメント用鋼である。鋼は、質量%で、必須添加元素として、C:0.50〜0.70%、Si:0.10〜0.60%、Mn:0.50〜1.50%、Cr:0.20〜1.00%を含むとともに、任意添加元素として、P:≦0.025%、S:≦0.015%を含み得る残部Fe及び不可避的不純物からなり、軟化熱処理を行うことにより88HRB以下の硬さを有する。
【選択図】なし[PROBLEMS] To provide an element excellent in wear resistance even when the amount of undissolved carbide is reduced while improving fatigue resistance, in particular, low and medium cycle fatigue resistance, by performing predetermined quenching and tempering heat treatment. Provided element steel and element using the same
When at least C, Si, Mn, and Cr and the mass% of the element M is [M], 10.8 [C] +5.6 [Si] +2.7 [Mn] +0.3 [Cr ] Belt type CVT element steel made of steel having a component composition satisfying ≦ 13. Steel is by mass%, and C: 0.50 to 0.70%, Si: 0.10 to 0.60%, Mn: 0.50 to 1.50%, Cr: 0.20 as essential additive elements It is comprised of the balance Fe and unavoidable impurities that may contain P: ≦ 0.025% and S: ≦ 0.015% as optional additional elements, and is less than 88HRB by performing a softening heat treatment. Has hardness.
[Selection figure] None
Description
本発明は、ベルト式の連続可変トランスミッション(Continuously Variable Transmission:CVT)のスチールベルトに組み込まれるエレメントを製造するためのエレメント用鋼及びこれを用いたエレメントに関する。 The present invention relates to an element steel for manufacturing an element incorporated in a steel belt of a belt-type continuously variable transmission (CVT) and an element using the element steel.
一対の入力側及び出力側プーリーの間にスチールベルトを架回したベルト式の連続可変トランスミッションが知られている。出力側プーリーの外周に刻まれた溝幅を調整することでスチールベルトの回転半径を連続的に変化させて、入力側と出力側プーリーの回転比率を無段階に変化させ得る。ここでスチールベルトは、板状リングにコマ状のエレメントを複数個組み込んで構成される。エレメントには、比較的炭素量の多い炭素鋼、例えば、JIS SKS95(質量%で、C:0.80〜0.90%、Si:0.50%以下、Mn:0.80〜1.10%、P:0.030%以下、S:0.030%以下、Cr:0.20〜0.60%)などが使用される。冷間圧延材をこれに含まれる炭化物を球状化処理した後にエレメントの形状に冷間打ち抜きし、平衡状態図上でAcm点以上の温度から焼入れ焼戻しされて、一定量の未固溶炭化物を分散させた焼戻しマルテンサイト組織を与えて使用される。 A belt-type continuously variable transmission is known in which a steel belt is looped between a pair of input side and output side pulleys. By adjusting the groove width carved on the outer periphery of the output pulley, the rotation radius of the steel belt can be continuously changed, and the rotation ratio of the input pulley and the output pulley can be changed steplessly. Here, the steel belt is constructed by incorporating a plurality of coma elements in a plate-like ring. The element includes a carbon steel having a relatively large amount of carbon, for example, JIS SKS95 (mass%, C: 0.80 to 0.90%, Si: 0.50% or less, Mn: 0.80 to 1.10. %, P: 0.030% or less, S: 0.030% or less, Cr: 0.20 to 0.60%) and the like. The cold-rolled material is spheroidized with carbides contained in the cold-rolled material, then cold-punched into the shape of the element, and quenched and tempered from the temperature above the Acm point on the equilibrium diagram to disperse a certain amount of undissolved carbide. Used with a given tempered martensite structure.
エレメントは、出力側プーリーの溝と摺動するため耐摩耗性に特に優れることを特に要求される。耐摩耗性については、エレメントの材料の硬さが高く未固溶炭化物を多く含むほど、すなわち炭素量が多いほど優れると考えられてきた。一方で、焼戻し時に結晶粒界に沿って炭化物がFilm状に析出し易くなって、耐衝撃性や耐疲労性が低下してしまう。 The element is particularly required to be particularly excellent in wear resistance because it slides with the groove of the output pulley. Regarding the wear resistance, it has been considered that the higher the hardness of the material of the element and the greater the amount of undissolved carbide, that is, the higher the amount of carbon, the better. On the other hand, during tempering, carbides are likely to precipitate in the form of a film along the crystal grain boundary, and impact resistance and fatigue resistance are lowered.
例えば、特許文献1では、上記したような比較的炭素量の多い炭素鋼において、質量%で0.6%までの炭素量ではその増加に応じて硬さを上昇させ得るが、これを超えて炭素量を増やすと軟質の残留オーステナイトが増加し、靭性の低いマルテンサイトとなって、硬さの上昇が鈍化することを述べた上で、特に耐衝撃性を向上させた炭素鋼を開示している。すなわち、C:0.60〜1.30%、Si:≦1.0%、Mn:0.2〜1.5%、P:≦0.02%、S:≦0.02%の鋼において、焼入れ、焼戻しした組織で、
8.5<15.3×C%−Vf<10.0
を満たす体積率Vf(体積%)の所定量の未固溶炭化物を残存させ、且つ、粒径1.0μm以上の粗大な未固溶炭化物を観察面積100μm2あたり2個以下に規制すべきことを開示している。
For example, in Patent Document 1, in the carbon steel having a relatively large amount of carbon as described above, the hardness can be increased according to the increase in the amount of carbon up to 0.6% in mass%, but beyond this, Increasing the carbon content increases soft retained austenite, resulting in martensite with low toughness and a dull increase in hardness, and disclosed carbon steel with particularly improved impact resistance. Yes. That is, in steels of C: 0.60 to 1.30%, Si: ≦ 1.0%, Mn: 0.2 to 1.5%, P: ≦ 0.02%, S: ≦ 0.02% , Hardened and tempered tissue,
8.5 <15.3 × C% −V f <10.0
A predetermined amount of undissolved carbide having a volume ratio V f (volume%) satisfying the above condition should remain, and coarse undissolved carbide having a particle size of 1.0 μm or more should be regulated to 2 or less per 100 μm 2 of the observation area. It is disclosed.
また、例えば、特許文献2では、耐衝撃性だけでなく、疲労特性に対しても優れる比較的炭素量の多い炭素鋼を開示している。すなわち、C:0.50〜0.70%、Si:≦0.5%、Mn:1.0〜2.0%、P:≦0.02%、S:≦0.02%、Al:0.001〜0.10%に加えて、V:0.05〜0.50%、Ti:0.02〜0.20%、Nb:0.01〜0.50%の1種又は2種以上を含み、焼鈍し時において未固溶炭化物の球状化率を95%以上、且つ、粒径2.5μm以上の粗大な未固溶炭化物を生成させない焼鈍鋼板を開示している。 For example, Patent Document 2 discloses a carbon steel having a relatively large amount of carbon that is excellent not only in impact resistance but also in fatigue characteristics. That is, C: 0.50 to 0.70%, Si: ≤ 0.5%, Mn: 1.0 to 2.0%, P: ≤ 0.02%, S: ≤ 0.02%, Al: In addition to 0.001 to 0.10%, V: 0.05 to 0.50%, Ti: 0.02 to 0.20%, Nb: 0.01 to 0.50%, 1 type or 2 types The annealing steel plate which contains the above and does not produce | generate the coarse insoluble carbide | carbonized_material of the spheroidization rate of an insoluble carbide | carbonized_material 95% or more and a particle size of 2.5 micrometers or more at the time of annealing is disclosed.
ところで、近年のベルト式の連続可変トランスミッションでは、プーリーへの進入の際の衝撃負荷のような低・中サイクル(103〜105サイクル程度)の耐疲労性を改善することも求められている。一般的に、代表的な粒界強化元素であるMo、Si等を添加すれば疲労強度を向上させ得るが、球状化処理した後の冷間打ち抜きが困難となりやすく、しかも、コストを上昇させてしまう。 By the way, recent belt-type continuously variable transmissions are also required to improve the fatigue resistance of low / medium cycles (about 10 3 to 10 5 cycles) such as an impact load when entering a pulley. . Generally, fatigue strength can be improved by adding typical grain boundary strengthening elements such as Mo and Si, but cold punching after spheroidizing treatment tends to be difficult, and the cost is increased. End up.
本発明はかかる状況に鑑みてなされたものであって、その目的とするところは、上記したようなベルト式CVTのエレメントの製造工程における冷間打ち抜きを良好に達成し得るとともにエレメント用鋼であって、これを所定の焼入れ焼き戻し熱処理を行うことで、耐疲労性、特に、低・中サイクルの耐疲労性を高めつつ未固溶炭化物量を減じても耐摩耗性にも優れたエレメントを与え得るエレメント用鋼を提供することになる。また、これを用いたエレメントを提供することも併せて目的とする。 The present invention has been made in view of such a situation, and an object of the present invention is to provide a steel for an element that can satisfactorily achieve the cold punching in the manufacturing process of the belt type CVT element as described above. By applying a predetermined quenching and tempering heat treatment to this, an element that is excellent in wear resistance even when the amount of undissolved carbide is reduced while improving fatigue resistance, particularly fatigue resistance of low and medium cycles. The steel for element which can be given will be provided. Another object is to provide an element using the same.
本発明によるベルト式CVTのエレメント用鋼は、少なくともC、Si、Mn、Crを含み、元素Mの質量%を[M]とすると、10.8[C]+5.6[Si]+2.7[Mn]+0.3[Cr]≦13を満たす成分組成を有する鋼からなるベルト式CVTのエレメント用鋼であって、前記鋼は、質量%で、必須添加元素として、C:0.50〜0.70%、Si:0.10〜0.60%、Mn:0.50〜1.50%、Cr:0.20〜1.00%を含むとともに、任意添加元素として、P:≦0.025%、S:≦0.015%を含み得る残部Fe及び不可避的不純物からなり、軟化熱処理を行って88HRB以下の硬さを与えたことを特徴とする。 The steel for element of the belt type CVT according to the present invention contains at least C, Si, Mn, and Cr, and when the mass% of the element M is [M], 10.8 [C] +5.6 [Si] +2.7 Belt type CVT element steel made of steel having a component composition satisfying [Mn] +0.3 [Cr] ≦ 13. The steel is in mass%, and C: 0.50 as an essential additive element. In addition to 0.70%, Si: 0.10 to 0.60%, Mn: 0.50 to 1.50%, Cr: 0.20 to 1.00%, and as an optional additive element, P: ≦ 0 0.025%, S: remaining balance Fe that may include ≦ 0.015% and inevitable impurities, and a softening heat treatment is performed to give a hardness of 88HRB or less.
かかる発明によれば、ベルト式CVTのエレメントの形状に良好に冷間打ち抜きできるとともに、これを所定の焼入れ焼き戻し熱処理を行うことで、耐疲労性、特に、低・中サイクルについての耐疲労性を高めつつ未固溶炭化物量を減じても耐摩耗性にも優れたベルト式CVTのエレメントが製造できるのである。 According to this invention, it is possible to satisfactorily cold-punch into the shape of the belt type CVT element, and by subjecting this to a predetermined quenching and tempering heat treatment, fatigue resistance, in particular, fatigue resistance for low and medium cycles. Even if the amount of undissolved carbide is reduced while increasing the resistance, a belt-type CVT element having excellent wear resistance can be produced.
上記した発明において、前記任意添加元素として、更に、Mo:≦0.50%、B:≦0.0050%、Ti:≦0.10%を含み得て、10.8[C]+5.6[Si]+2.7[Mn]+0.3[Cr]+7.8[Mo]≦13を満たすことを特徴としてもよい。かかる発明によれば、粒界強度をより高めて、最終的に得られるベルト式CVTのエレメントの耐疲労性、特に、低・中サイクルについての耐疲労性を高め得るのである。 In the above-described invention, the optional additive element may further include Mo: ≦ 0.50%, B: ≦ 0.0050%, Ti: ≦ 0.10%, and 10.8 [C] +5.6 [Si] +2.7 [Mn] +0.3 [Cr] +7.8 [Mo] ≦ 13 may be satisfied. According to this invention, the grain boundary strength can be further increased, and the fatigue resistance of the finally obtained belt-type CVT element, in particular, the fatigue resistance for low and medium cycles can be enhanced.
上記した発明において、前記任意添加元素として、更に、Ni:≦0.50%、V:≦0.50%、Nb:≦0.20%を含み得て、10.8[C]+5.6[Si]+2.7[Mn]+0.3[Cr]+7.8[Mo]+3.6[Ni]≦13を満たすことを特徴としてもよい。かかる発明によれば、最終的に得られるベルト式CVTのエレメントの機械的強度を高め得るのである。 In the above-described invention, the optional additive element may further include Ni: ≦ 0.50%, V: ≦ 0.50%, Nb: ≦ 0.20%, and 10.8 [C] +5.6 [Si] +2.7 [Mn] +0.3 [Cr] +7.8 [Mo] +3.6 [Ni] ≦ 13 may be satisfied. According to this invention, the mechanical strength of the finally obtained belt-type CVT element can be increased.
本発明によるベルト式CVTのエレメントは、上記した発明のうちのいずれか1つからなるベルト式CVTのエレメント用鋼を所定形状に冷間打ち抜きし、結晶粒の粗大化を防止しつつ炭化物を溶解させるようAcm温度近傍に加熱保持し焼入れ焼き戻し熱処理を行って640Hv以上の硬さを与えられたことを特徴とする。 The belt type CVT element according to the present invention is made by cold punching a belt type CVT element steel comprising any one of the above-mentioned inventions into a predetermined shape to dissolve carbides while preventing coarsening of crystal grains. It is characterized by being heated and held near the A cm temperature and subjected to quenching and tempering heat treatment to give a hardness of 640 Hv or more.
かかる発明によれば、耐疲労性、特に、低・中サイクルについての耐疲労性を高めつつ未固溶炭化物量を減じても耐摩耗性にも優れるのである。つまり、機械的強度に優れるベルト式CVTのエレメントを得られるのである。 According to this invention, even if the amount of undissolved carbides is reduced while improving the fatigue resistance, in particular, the fatigue resistance for low and medium cycles, the wear resistance is also excellent. That is, an element of a belt type CVT having excellent mechanical strength can be obtained.
上記した発明において、断面組織において円相当径で0.20μm以上の未固溶炭化物を1mm四方当たり1.6×105個以下としたことを特徴としてもよい。かかる発明によれば、低・中サイクルについての耐疲労性を高めつつ未固溶炭化物量をより減じても耐摩耗性にも優れるのである。 In the above-described invention, the cross-sectional structure may be characterized in that the number of insoluble carbides having an equivalent circle diameter of 0.20 μm or more is 1.6 × 10 5 or less per 1 mm square. According to this invention, the wear resistance is excellent even if the amount of undissolved carbide is further reduced while improving the fatigue resistance of the low and medium cycles.
本発明者は、従来材のJIS SKS95からなるエレメントと比較して特に耐疲労性に優れたエレメントを得るにあたって、鋼のC量を低減させることを想到した。つまり、粒界に沿ってFilm状に析出する炭化物の量を減じて耐疲労性、特に低・中サイクルの耐疲労性を向上させ、その上で耐摩耗性を従来材と同等以上にできればよいと考えた。その一方で、エレメントは冷間打ち抜きにより形状を加工された後に熱処理で強度を調整されて供される。すなわち、熱処理前のエレメント用鋼では従来材と同等程度の打ち抜き性(硬さ)を有することが好ましい。そこで、Cの含有量とともに、Si、Mn、Crなど所定の元素の成分量を調整した鋼を製造し、(1)エレメント用鋼として必要とされる硬さの評価、(2)熱処理後のエレメントとして必要とされる機械的特性(耐疲労強度及び耐摩耗強度)の評価を行った。 The present inventor has conceived that the amount of C in steel is reduced in obtaining an element particularly excellent in fatigue resistance as compared with an element made of JIS SKS95 which is a conventional material. In other words, it is only necessary to reduce the amount of carbide precipitated in the form of a film along the grain boundary to improve fatigue resistance, particularly low / medium cycle fatigue resistance, and to make the wear resistance equal to or higher than that of conventional materials. I thought. On the other hand, the element is provided with a strength adjusted by heat treatment after the shape is processed by cold punching. That is, it is preferable that the element steel before heat treatment has a punchability (hardness) comparable to that of the conventional material. Therefore, a steel with the content of C and the amount of a predetermined element such as Si, Mn, Cr adjusted is manufactured. (1) Evaluation of hardness required as element steel, (2) After heat treatment The mechanical properties (fatigue resistance and wear resistance) required for the element were evaluated.
まず、上記した評価のための試験方法について図1乃至図4を用いて説明する。 First, the test method for the above evaluation will be described with reference to FIGS.
図1に示した実施例1乃至10及び比較例1乃至13の成分組成を有する鋼について試験片を各々用意した。まず、母合金150kgを真空誘導炉で溶製しインゴットとし、1200℃で3時間保持した後、直径25mmの略円柱形状の丸棒に熱間鍛造した。このときの鍛造終了温度は900℃以上であった。続いて、この丸棒を840℃で60分間保持し空冷する焼準し熱処理を行った。更に、760℃で1時間保持し、10℃/hrで650℃まで冷却し、その後空冷する1回目の球状化焼鈍し熱処理を行った。 Test pieces were prepared for the steels having the component compositions of Examples 1 to 10 and Comparative Examples 1 to 13 shown in FIG. First, 150 kg of a master alloy was melted in a vacuum induction furnace to form an ingot, which was held at 1200 ° C. for 3 hours, and then hot forged into a substantially cylindrical round bar having a diameter of 25 mm. The forging completion temperature at this time was 900 degreeC or more. Subsequently, this round bar was kept at 840 ° C. for 60 minutes and air-cooled and heat treated. Further, it was held at 760 ° C. for 1 hour, cooled to 650 ° C. at 10 ° C./hr, and then air-cooled for the first spheroidizing annealing and heat treatment was performed.
これらの軟化熱処理の後、丸棒の一部を結晶粒の粗大化を防止しつつ炭化物を溶解させるようAcm温度近傍、つまり800℃で30分保持後、70℃の油浴に焼入れ、180℃で120分だけ焼き戻す焼入れ焼戻し熱処理を行った。これを加工して後述する摩耗試験片13(図4参照)とした。かかる試験片13については、後述する焼入焼戻し後の硬さの測定及び未固溶炭化物の個数の測定にも供した。 After these softening heat treatments, a part of the round bar is kept in the vicinity of the A cm temperature, that is, at 800 ° C. for 30 minutes so as to dissolve the carbide while preventing the coarsening of crystal grains, and then quenched in a 70 ° C. oil bath, 180 A quenching and tempering heat treatment was carried out at 120C for 120 minutes. This was processed into a wear test piece 13 (see FIG. 4) described later. About this test piece 13, it used for the measurement of the hardness after quenching and tempering mentioned later, and the measurement of the number of undissolved carbides.
更に、丸棒の一部を厚さ1.5mmに冷間圧延し、1回目と同様の球状化焼鈍しの熱処理を行って、その一部を後述する打ち抜き性の評価のための硬さ試験片とした。 Further, a part of the round bar is cold-rolled to a thickness of 1.5 mm, subjected to the same spheroidizing annealing heat treatment as in the first time, and a part of the hardness test for evaluation of punchability described later. It was a piece.
更に、圧延材の一部を所定形状に冷間打ち抜きし、これに焼入れ焼戻し熱処理を施して、曲げ疲労試験片1(図2参照)とした。 Further, a part of the rolled material was cold punched into a predetermined shape, and subjected to quenching and tempering heat treatment to obtain a bending fatigue test piece 1 (see FIG. 2).
ここで、打ち抜き性の評価は上記した硬さ試験片についてロックウェル硬度試験装置でその硬さを測定して行った。硬さは任意の5点で測定しその平均値を採用した(球状化焼鈍し硬さ)。 Here, the punchability was evaluated by measuring the hardness of the above-described hardness test piece with a Rockwell hardness tester. The hardness was measured at five arbitrary points and the average value was adopted (spheroidizing annealing and hardness).
耐疲労強度の評価は、上記した曲げ疲労試験片1について、図3に示すような疲労試験機4を使用して行った。図2及び図3を参照すると、疲労試験機4は、曲げ疲労試験片1を保持する固定部5と、曲げ疲労試験片1のレッグ部3に当接するロッド6と、ロッド6の上端に取り付けられた繰り返し応力付与部7とを含む。繰り返し応力付与部7によってロッド6を50Hzの振動数で上下方向に振動させ、曲げ疲労試験片1のレッグ部3と接続部8との間のR部に繰り返し曲げ荷重を与える。ロッド6を105回振動させたときにレッグ部3を破断させる荷重を曲げ疲労強度とし、JIS SKS95(比較例1)の曲げ疲労強度との比を曲げ疲労強度比とした。 Evaluation of fatigue strength was performed on the above-described bending fatigue test piece 1 using a fatigue tester 4 as shown in FIG. Referring to FIGS. 2 and 3, the fatigue testing machine 4 is attached to the fixing portion 5 that holds the bending fatigue test piece 1, the rod 6 that contacts the leg portion 3 of the bending fatigue test piece 1, and the upper end of the rod 6. And the repeated stress applying portion 7. The rod 6 is vibrated up and down at a frequency of 50 Hz by the repetitive stress applying portion 7, and a repetitive bending load is applied to the R portion between the leg portion 3 and the connecting portion 8 of the bending fatigue test piece 1. The load for breaking the leg portion 3 when the rod 6 was vibrated 10 5 times was defined as bending fatigue strength, and the ratio to the bending fatigue strength of JIS SKS95 (Comparative Example 1) was defined as the bending fatigue strength ratio.
耐摩耗性の評価は、上記した幅15.75mm、高さ10.16mm、厚さ6.35mmの略直方体形状の摩耗試験片13(図4参照)について、図4に示すような摩耗試験装置10を使用して行った。摩耗試験装置10は、110℃のオイル12を蓄えた槽14と、オイル12にその一部を浸されて回転するリング11とを含む。リング11は、外径35mm、厚み8.74mmの環状体で、プーリーを模したSCM420の浸炭焼入焼戻し材を750Hv程度の硬度に調質した鋼からなる。リング11を0.05m/secの滑り速度となるように回転させながら、これに摩耗試験片13を1200Nの荷重で接触させ、相対的に滑った距離3000mにおける摩耗試験片13の摩耗量を測定した(ブロック・オン・リング法)。摩耗量は摩耗試験片13の摩耗部の断面積を測定し、比較例1の摩耗量との比を摩耗比とした。 The wear resistance evaluation was performed on the wear test piece 13 (see FIG. 4) having a substantially rectangular parallelepiped shape having a width of 15.75 mm, a height of 10.16 mm, and a thickness of 6.35 mm, as shown in FIG. 10 was used. The abrasion test apparatus 10 includes a tank 14 in which oil 12 at 110 ° C. is stored, and a ring 11 that is rotated by being partially immersed in the oil 12. The ring 11 is an annular body having an outer diameter of 35 mm and a thickness of 8.74 mm, and is made of steel obtained by tempering a carburizing and tempering material of SCM420 simulating a pulley to a hardness of about 750 Hv. While rotating the ring 11 so that the sliding speed is 0.05 m / sec, the wear test piece 13 is brought into contact with the load with a load of 1200 N, and the wear amount of the wear test piece 13 at a relatively slid distance of 3000 m is measured. (Block-on-ring method). The amount of wear was determined by measuring the cross-sectional area of the worn portion of the wear test piece 13, and the ratio with the amount of wear in Comparative Example 1 was taken as the wear ratio.
焼入れ焼き戻し後の硬さは、一般的なビッカース硬度計を用いて測定した(焼入れ焼き戻し後硬さ)。摩耗試験片13の断面において表面から約25μmの深さの位置におけるビッカース硬度を5点測定し、これらの平均値を採用した。また、未固溶炭化物の個数の測定は、摩耗試験片13の断面組織観察から円相当径0.20μm以上の未固溶炭化物の100μm四方あたりに存在する個数を画像解析により測定し、これを1mm四方あたりに存在する個数に換算した。 The hardness after quenching and tempering was measured using a general Vickers hardness tester (hardness after quenching and tempering). Five points of Vickers hardness at a position of a depth of about 25 μm from the surface in the cross section of the abrasion test piece 13 were measured, and an average value thereof was adopted. The number of undissolved carbides is measured by image analysis of the number of undissolved carbides having an equivalent circle diameter of 0.20 μm or more per 100 μm square from the cross-sectional structure observation of the wear test piece 13. It converted into the number which exists per 1mm square.
図5に各試験の結果を示した。なお、比較例1は、エレメントの従来材であるJIS SKS95の結果である。 FIG. 5 shows the results of each test. In addition, the comparative example 1 is a result of JIS SKS95 which is the conventional material of an element.
C、Si、Mn、Crの4元素の含有量の異なる実施例1乃至4では、球状化焼鈍し硬さは、比較例1の88HRBよりも小さく、従来材よりも打ち抜き性に優れることが予測される。一方、焼入れ焼戻し後硬さは、640〜714Hvの範囲であって、比較例1とほぼ同程度でありながら、曲げ疲労強度比は1を越えるとともに、摩耗比は1よりも小さく、従来材よりも耐疲労強度及び耐摩耗性に優れることが判る。 In Examples 1 to 4 in which the contents of the four elements C, Si, Mn, and Cr are different, the spheroidizing annealing hardness is smaller than that of 88HRB of Comparative Example 1, and is predicted to be better than the conventional material. Is done. On the other hand, the hardness after quenching and tempering is in the range of 640 to 714 Hv, which is almost the same as that of Comparative Example 1, while the bending fatigue strength ratio exceeds 1 and the wear ratio is smaller than 1, which is lower than that of the conventional material. It can also be seen that it is excellent in fatigue strength and wear resistance.
ところで、C、Si、Mn、Crの4元素の含有量に対する球状化焼鈍し硬さについて、実施例1乃至4を含むいくつかの鋼について回帰計算を行ってその予測式を作った。すなわち、元素Mの質量%を[M]、球状化焼鈍し硬さの予測値H1は、
H1=75+10.8[C]+5.6[Si]+2.7[Mn]+0.3[Cr] (式1)
で表すことが出来る。図6には、この予測値H1と実施例及び比較例における球状化焼鈍し硬さの実測値を表した。
By the way, the regression calculation was performed about several steel including Examples 1-4 about the spheroidizing annealing hardness with respect to content of 4 elements, C, Si, Mn, and Cr, and the prediction formula was made. That is, the mass% of the element M is [M], and the spheroidizing annealing hardness value H1 is
H1 = 75 + 10.8 [C] +5.6 [Si] +2.7 [Mn] +0.3 [Cr] (Formula 1)
It can be expressed as FIG. 6 shows the predicted value H1 and the measured values of spheroidizing annealing hardness in Examples and Comparative Examples.
参考として、従来材に対して、Cの含有量を減じるとともにCrを増加させた比較例2及び3では、焼入焼戻し後硬さは538Hv及び584Hvと低く、特に、摩耗比が大きく、耐摩耗性に劣ることが判る。 For reference, in Comparative Examples 2 and 3 in which the content of C is decreased and the Cr content is increased with respect to the conventional material, the hardness after quenching and tempering is low as 538 Hv and 584 Hv, in particular, the wear ratio is large and the wear resistance is high. It turns out that it is inferior.
従来材に対して、Cの含有量を増加させた比較例4では、球状化焼鈍し硬さは90HRBと高く、打ち抜き性に劣ることが予測される。また、焼入焼戻し後硬さは高いながら、曲げ疲労強度比は1よりも小さく、摩耗比は1よりも大きかった。つまり、耐疲労強度及び耐摩耗性に劣ることが判る。ここで、未固溶炭化物量は比較例1よりも非常に多く、これにより耐摩耗性が低くなったものと考えられる。 In Comparative Example 4 in which the content of C is increased with respect to the conventional material, the spheroidizing annealing and the hardness are as high as 90 HRB, and it is predicted that the punchability is inferior. Further, although the hardness after quenching and tempering was high, the bending fatigue strength ratio was smaller than 1, and the wear ratio was larger than 1. That is, it turns out that it is inferior to fatigue strength and abrasion resistance. Here, it is considered that the amount of undissolved carbide is much larger than that of Comparative Example 1 and the wear resistance is thereby lowered.
従来材に対して、SiやMnの含有量を増加させた比較例5及び6では、球状化焼鈍し硬さは比較例1程度であったが、上記したようにして算出される予測値H1では、実測値よりも高くなってしまうことからも、打ち抜き性に劣る傾向にあると予測される。 In Comparative Examples 5 and 6 in which the content of Si or Mn was increased with respect to the conventional material, the spheroidizing annealing and the hardness were about Comparative Example 1, but the predicted value H1 calculated as described above. Then, since it becomes higher than an actual measurement value, it is predicted that it tends to be inferior in punchability.
一方、従来材に対して、Mnの含有量を減じた比較例7では、球状化焼鈍し硬さは低く、打ち抜き性は良好であると予測される。しかしながら、摩耗比は1よりも非常に大きく、耐摩耗性に大きく劣ることが判る。 On the other hand, in Comparative Example 7 in which the content of Mn is reduced with respect to the conventional material, spheroidizing annealing is performed, the hardness is low, and the punchability is predicted to be good. However, it can be seen that the wear ratio is much greater than 1 and is greatly inferior in wear resistance.
従来材に対して、Crの含有量を増加させた比較例8では、同様に打ち抜き性は良好であると予測されたが、摩耗比は1よりも大きく、耐摩耗性に劣ることが判る。 In Comparative Example 8 in which the Cr content was increased with respect to the conventional material, the punchability was similarly predicted to be good, but the wear ratio was larger than 1, indicating that the wear resistance was inferior.
一方、従来材に対して、Crの含有量を減じた比較例9でも摩耗比は1よりも大きく、耐摩耗性に劣ることが判る。 On the other hand, it can be seen that even in Comparative Example 9 in which the Cr content was reduced compared to the conventional material, the wear ratio was larger than 1 and the wear resistance was inferior.
従来材に対して、Cの含有量を減じ、Si及びMnの含有量を増加させた比較例13では、球状化焼鈍し硬さは90HRBと高く、打ち抜き性に劣ることが予測される。 In Comparative Example 13 in which the C content is reduced and the Si and Mn contents are increased compared to the conventional material, the spheroidizing annealing and the hardness are as high as 90 HRB, and it is predicted that the punchability is inferior.
以上に加え、C、Si、Mn、Crの4元素以外の元素の影響について調査した。 In addition to the above, the influence of elements other than the four elements of C, Si, Mn, and Cr was investigated.
従来材に対して、Pの含有量を増加させた比較例10、及び、Sの含有量を増加させた比較例11では、曲げ疲労強度比がいずれも1よりも低く、耐疲労強度に劣ることが判る。これは、非金属介在物の増加により疲労強度が低下したと考えられる。 In Comparative Example 10 in which the P content is increased and Comparative Example 11 in which the S content is increased with respect to the conventional material, the bending fatigue strength ratios are both lower than 1 and inferior in fatigue resistance strength. I understand that. This is considered that the fatigue strength decreased due to an increase in non-metallic inclusions.
従来材に対して、Moを加えた比較例12では、球状化焼鈍し硬さが高く、打ち抜き性に劣ると予測された。 In Comparative Example 12 in which Mo was added to the conventional material, it was predicted that spheroidizing annealing was performed and the hardness was high and the punchability was poor.
これに対して、比較例12よりもMoの含有量の少ない実施例5では、打ち抜き性に優れると予測されるとともに、耐疲労強度及び耐摩耗性のいずれも良好であることが判る。 On the other hand, Example 5 having a smaller Mo content than Comparative Example 12 is predicted to be excellent in punchability, and it can be seen that both fatigue strength and wear resistance are good.
また、更にMoの含有量を下げる代わりに、TiとBを加えた実施例6でも、打ち抜き性に優れると予測されるとともに、耐疲労強度及び耐摩耗性のいずれも良好であることが判る。 Further, in Example 6 in which Ti and B are added instead of lowering the Mo content, it is predicted that the punchability is excellent, and it is understood that both the fatigue resistance and the wear resistance are good.
また、Moを加えず、TiとBを加えた実施例7及び8でも、打ち抜き性に優れると予測されるとともに、耐疲労強度及び耐摩耗性のいずれも良好であることが判る。 In addition, in Examples 7 and 8 where Mo and Ti and B are added, it is predicted that the punching property is excellent, and it is understood that both the fatigue strength and the wear resistance are good.
また、Ti及びBの他に、Nbを加えた実施例9でも、打ち抜き性に優れると予測されるとともに、耐疲労強度及び耐摩耗性のいずれも良好であることが判る。 Further, in Example 9 in which Nb is added in addition to Ti and B, it is predicted that the punching property is excellent, and it is understood that both the fatigue strength and the wear resistance are good.
特に、Ti及びBを加えた実施例6乃至9では、摩耗比が0.68〜0.76と非常に小さく、耐摩耗性に非常に優れていることが判る。 In particular, in Examples 6 to 9 to which Ti and B are added, the wear ratio is as very small as 0.68 to 0.76, and it can be seen that the wear resistance is very excellent.
Ni及びVを加えた実施例10でも、打ち抜き性に優れると予測されるとともに、耐疲労強度及び耐摩耗性のいずれも良好であることが判る。 In Example 10 to which Ni and V are added, it is predicted that the punching property is excellent, and it is understood that both the fatigue resistance and the wear resistance are good.
ところで、上記したように、予測値H1の値が88以下であれば従来材よりも打ち抜き性に優れることを予測できる。つまり、
10.8[C]+5.6[Si]+2.7[Mn]+0.3[Cr]≦13 (式2)
を満たせば、従来材よりも打ち抜き性に優れることを予測できる。
By the way, as described above, when the predicted value H1 is 88 or less, it can be predicted that the punching property is superior to that of the conventional material. In other words,
10.8 [C] +5.6 [Si] +2.7 [Mn] +0.3 [Cr] ≦ 13 (Formula 2)
If it satisfies, it can be predicted that the punching performance is superior to that of the conventional material.
また、上記した予測値H1に併せ、[Mo]の影響について同様に球状化焼鈍し硬さの予測値を求めると、
H2=10.8[C]+5.6[Si]+2.7[Mn]+0.3[Cr]+7.8[Mo]+75 (式3)
であった。つまり、この値が88以下であれば、つまり、
10.8[C]+5.6[Si]+2.7[Mn]+0.3[Cr]+7.8[Mo]≦13 (式4)
を満たせば、従来材よりも打ち抜き性に優れることを予測できる。
In addition to the predicted value H1 described above, the influence of [Mo] is similarly spheroidized and the predicted value of hardness is obtained.
H2 = 10.8 [C] +5.6 [Si] +2.7 [Mn] +0.3 [Cr] +7.8 [Mo] +75 (Formula 3)
Met. In other words, if this value is 88 or less, that is,
10.8 [C] +5.6 [Si] +2.7 [Mn] +0.3 [Cr] +7.8 [Mo] ≦ 13 (Formula 4)
If it satisfies, it can be predicted that the punching performance is superior to that of the conventional material.
更に、[Ni]の影響について、同様に球状化焼鈍し硬さの予測値H3を求めると、
H3=10.8[C]+5.6[Si]+2.7[Mn]+0.3[Cr]+7.8[Mo]+3.6[Ni]+75 (式5)
となった。つまり、
10.8[C]+5.6[Si]+2.7[Mn]+0.3[Cr]+7.8[Mo]+3.6[Ni]≦13 (式6)
であれば、従来材よりも打ち抜き性に優れることを予測できる。
Further, regarding the influence of [Ni], when the spheroidizing annealing and the predicted hardness value H3 are obtained,
H3 = 10.8 [C] +5.6 [Si] +2.7 [Mn] +0.3 [Cr] +7.8 [Mo] +3.6 [Ni] +75 (Formula 5)
It became. In other words,
10.8 [C] +5.6 [Si] +2.7 [Mn] +0.3 [Cr] +7.8 [Mo] +3.6 [Ni] ≦ 13 (Formula 6)
If so, it can be predicted that the punching property is superior to that of the conventional material.
ところで、図7に示すように、摩耗は表面からの微小亀裂23の成長と表面の剥離によって進行すると考える。図8を併せて参照すると、微小亀裂23は未固溶炭化物27と母相28との界面を優先的に伝播していることが判る。つまり、未固溶炭化物27の個数が減じられると、耐摩耗性が向上すると考えられる。そこで、図9には、未固溶炭化物の個数に対する摩耗比をグラフに示した。未固溶炭化物の個数の減少とともに摩耗比は低下し、すなわち耐摩耗性が向上していることを示している。 By the way, as shown in FIG. 7, it is considered that the wear proceeds by the growth of the microcracks 23 from the surface and the peeling of the surface. Referring also to FIG. 8, it can be seen that the microcracks 23 preferentially propagate through the interface between the undissolved carbide 27 and the parent phase 28. That is, it is considered that the wear resistance is improved when the number of insoluble carbides 27 is reduced. FIG. 9 is a graph showing the wear ratio with respect to the number of insoluble carbides. It shows that the wear ratio decreases as the number of insoluble carbides decreases, that is, the wear resistance is improved.
一方、未固溶炭化物の個数は、Cの含有量に依存し、未固溶炭化物を減じるようにCの含有量を減じると、硬さも低下し耐摩耗性を低下させることが予測される。そこで、図10には、摩耗比に対する焼入焼戻し後硬さの関係をグラフに示した。640Hv以下の硬さにおいて、摩耗比は急激に上昇、すなわち耐摩耗性は大きく劣化している。以上のことから、耐摩耗性については、Cの含有量の好適な範囲が存在する。 On the other hand, the number of undissolved carbides depends on the C content, and if the C content is reduced so as to reduce the insoluble carbides, it is predicted that the hardness also decreases and the wear resistance decreases. FIG. 10 is a graph showing the relationship between the hardness after quenching and tempering and the wear ratio. At a hardness of 640 Hv or less, the wear ratio increases rapidly, that is, the wear resistance is greatly degraded. From the above, there is a suitable range of the C content for wear resistance.
また、Cの含有量は、耐疲労強度にも影響を与えることと予測される。そこで、図11には、曲げ疲労強度比に対するCの含有量の関係をグラフに示した。従来材である0.85%からCの含有量を減じると、疲労強度が上昇する傾向にある。これは未固溶炭化物が減じられるとともに粒界にフィルム状に析出する炭化物も減少し、少なくとも103〜105サイクル程度の中・低サイクル疲労に対しては、粒界での亀裂の進展を抑制するものであると考える。ところが、0.60%程度から更にCの含有量を減じると、疲労強度は低下する傾向にある。これはCの含有量の低下に伴う耐力の低下によると考える。 The C content is also expected to affect the fatigue strength. FIG. 11 is a graph showing the relationship of the C content to the bending fatigue strength ratio. When the C content is reduced from 0.85% which is a conventional material, the fatigue strength tends to increase. This is because undissolved carbides are reduced and carbides precipitated in the form of film at the grain boundaries are also reduced. For medium and low cycle fatigue of at least about 10 3 to 10 5 cycles, the growth of cracks at the grain boundaries is prevented. We think that it is thing to suppress. However, when the C content is further reduced from about 0.60%, the fatigue strength tends to decrease. This is considered to be due to a decrease in yield strength accompanying a decrease in the C content.
耐摩耗性及び耐疲労強度、特に中・低サイクル疲労に対する耐疲労強度との両立を与えるCの含有量の範囲は、質量%で、0.50〜0.70%であり、ここでは硬さが640Hv以上且つ円相当径で0.20μm以上の未固溶炭化物が1mm四方当たり1.524×105個以下、すなわち、1mm四方当たり約1.6×105個以下であることを要求される。 The range of the content of C that gives both wear resistance and fatigue strength, particularly fatigue strength against medium / low cycle fatigue, is 0.50 to 0.70% in terms of mass%. Is required to be 1.524 × 10 5 or less per 1 mm square, that is, approximately 1.6 × 10 5 or less per 1 mm square. The
以上述べてきたように、従来から使用されているJIS SKS95と比較してCの含有量を低減させても、所定の添加元素及び熱処理により、耐疲労性を高めつつ、未固溶炭化物量を減じられながらも耐摩耗性にも優れたエレメントを与え得るエレメント用鋼を得られるのである。 As described above, even if the content of C is reduced as compared with JIS SKS95 that has been used conventionally, the amount of undissolved carbides can be reduced while increasing fatigue resistance by a predetermined additive element and heat treatment. It is possible to obtain steel for an element that can provide an element that is reduced but also has excellent wear resistance.
上記したようにC、Si、Mn、Cr、Mo及びNiについて、式2、式4及び式6を満たすことで、ある特定の軟化熱処理により硬さを88HRB以下にし得る。すなわち、良好な打ち抜き性を得られるが、加えて、エレメント用鋼としての組成範囲を以下のような指針で定めた。まず、必須添加元素であるC、Si、Mn、Crについて説明する。 As described above, with respect to C, Si, Mn, Cr, Mo, and Ni, by satisfying Equation 2, Equation 4, and Equation 6, the hardness can be reduced to 88 HRB or less by a specific softening heat treatment. That is, good punchability can be obtained, but in addition, the composition range as elemental steel was determined by the following guidelines. First, the essential additive elements C, Si, Mn, and Cr will be described.
Cは、上記したように、エレメントとして必要とされる耐疲労強度と耐摩耗性を確保するために最も重要な元素である。Cの添加量が少なすぎると、焼入れ焼戻し後に硬さが確保できず、エレメントとして必要とされる耐摩耗性の低下を招く。しかし、Cの過剰添加は、焼入れ後も多量の未固溶炭化物を残存させ、エレメントとして必要とされる耐摩耗性の悪化を招く。また、焼戻し時に粒界にフィルム状に炭化物を析出させ、粒界強度の低下を招き、エレメントして必要とされる疲労強度が確保できない。上記したように、質量%で、Cは、0.50〜0.70%の範囲内である。 As described above, C is the most important element for ensuring fatigue resistance and wear resistance required as an element. If the amount of C added is too small, the hardness cannot be ensured after quenching and tempering, resulting in a decrease in wear resistance required as an element. However, excessive addition of C causes a large amount of undissolved carbide to remain even after quenching, resulting in deterioration of wear resistance required as an element. Further, carbides are precipitated in the form of a film at the grain boundaries during tempering, leading to a decrease in grain boundary strength, and the fatigue strength required for the elements cannot be ensured. As described above, in mass%, C is in the range of 0.50 to 0.70%.
Siは、鋼の脱酸元素として有効な元素である。更に鉄炭化物中にはほとんど固溶せず、鉄炭化物の粒界生成を抑制し、粒界強度の低下を抑制するため、エレメントとして必要とされる疲労強度を確保するために添加が必須である。しかし、過剰に添加すると球状化焼鈍し処理後の硬さを高くしてしまい、エレメント用鋼として必要とされる打ち抜き性の悪化を招く。そこで、質量%で、Siは0.10〜0.60%の範囲内である。 Si is an effective element as a deoxidizing element for steel. Furthermore, it is hardly dissolved in iron carbide, and it is essential to add the iron carbide to ensure the fatigue strength required for the element in order to suppress the formation of grain boundaries of iron carbide and to suppress the decrease in grain boundary strength. . However, if added excessively, the hardness after spheroidizing annealing is increased and the punchability required for element steel is deteriorated. Therefore, in mass%, Si is in the range of 0.10 to 0.60%.
Mnは、鋼の焼入れ性を向上させ、エレメントとして必要とされる強度及び耐摩耗性の確保に有効である。しかし、Mnの過剰添加は、エレメント用鋼として必要とされる打ち抜き性の悪化を招く。そこで、質量%で、Mnは0.50〜1.50%の範囲内である。 Mn improves the hardenability of steel and is effective in ensuring the strength and wear resistance required as an element. However, excessive addition of Mn leads to deterioration of punchability required as elemental steel. Therefore, in terms of mass%, Mn is in the range of 0.50 to 1.50%.
Crは、鋼の焼入れ性を向上させ、エレメントとして必要とされる強度、硬さ及び耐摩耗性の確保に有効である。しかし、Crの過剰な添加は、鉄炭化物中に容易に固溶することにより未固溶炭化物を安定化させ、増加を助長させるので、エレメントとして必要とされる耐摩耗性の低下を招く。そこで、質量%で、Crは0.20〜1.00%の範囲内である。 Cr improves the hardenability of steel and is effective in securing the strength, hardness and wear resistance required as an element. However, excessive addition of Cr stabilizes undissolved carbide by easily dissolving in iron carbide and promotes the increase, resulting in a decrease in wear resistance required as an element. Therefore, Cr is in the range of 0.20 to 1.00% by mass%.
次に、任意添加元素について説明する。任意添加元素については、上記した必須添加元素によるエレメントとしての特性を損なわない範囲においてその上限値を定めた。 Next, the optional additive element will be described. For the optional additive element, the upper limit value was determined within a range that does not impair the characteristics of the element by the above essential additive element.
Pは、結晶粒界の強度を低下させる。そこで、質量%で、Pは0.025%以下の範囲内である。 P decreases the strength of the grain boundaries. Therefore, in mass%, P is in the range of 0.025% or less.
Sは、Mnと結合しMnS介在物を生成するので、過剰に含有させると、応力集中の起点となる介在物量を増加させてエレメントとして必要とされる疲労強度の低下を招く。そこで、質量%で、Sは0.015%以下の範囲内である。 Since S combines with Mn to generate MnS inclusions, if excessively contained, the amount of inclusions that are the starting point of stress concentration is increased, leading to a decrease in fatigue strength required as an element. Therefore, in mass%, S is within a range of 0.015% or less.
Moは、結晶粒界へのフィルム状の炭化物の生成を抑制する効果を持ち、添加することでエレメントとして必要とされる曲げ疲労強度の更なる向上を期待できる。また、Moは焼入れ性を大幅に高める効果があり、添加を推奨される。しかし、Moの過剰な添加は、エレメント用鋼として必要とされる打ち抜き性の大幅な劣化及びコストの増大を招く。そこで、質量%で、Moは0.50%以下の範囲内である。 Mo has the effect of suppressing the formation of film-like carbides at the crystal grain boundaries, and can be expected to further improve the bending fatigue strength required as an element when added. Further, Mo has an effect of greatly increasing the hardenability, and addition is recommended. However, excessive addition of Mo causes a significant deterioration in punchability and an increase in cost required as element steel. Therefore, in mass%, Mo is in the range of 0.50% or less.
Bは、Pなどの不純物の粒界偏析を抑制し、粒界強度を高める効果があるため、エレメントとして必要とされる曲げ疲労強度の更なる度向上のために添加を推奨される。しかし、Bの過剰な添加は、コストの増大を招く。そこで、質量%で、Bは0.0050%以下の範囲内である。 Since B has the effect of suppressing grain boundary segregation of impurities such as P and increasing the grain boundary strength, addition of B is recommended to further improve the bending fatigue strength required as an element. However, excessive addition of B causes an increase in cost. Therefore, in mass%, B is in the range of 0.0050% or less.
Tiは、Ti窒化物となり得てB窒化物の形成を抑制し、Bによる粒界強度の向上に寄与する。しかし、Tiの過剰な添加はコストの増大を招く。そこで、質量%で、Tiは0.20%以下の範囲内である。 Ti can be Ti nitride, suppresses formation of B nitride, and contributes to improvement of grain boundary strength by B. However, excessive addition of Ti causes an increase in cost. Therefore, by mass%, Ti is in the range of 0.20% or less.
Niは、鋼の粒内強度を高める作用があり、エレメントとして必要とされる疲労強度の向上に有効である。しかし、Niの過剰な添加は、素材の加工性を低下させるために製造性を悪化させ、また、コストの増大を招く。そこで、質量%で、Niは0.50%以下の範囲内である。 Ni has the effect of increasing the intragranular strength of steel, and is effective in improving the fatigue strength required as an element. However, excessive addition of Ni deteriorates manufacturability in order to reduce the workability of the material, and causes an increase in cost. Therefore, in mass%, Ni is in the range of 0.50% or less.
Vは、鋼中に微細なV炭化物を形成し、結晶粒を微細にさせるので、エレメントとして必要とされる疲労強度及び耐摩耗性を更に向上させるために有効である。しかし、Vの過剰な添加は、V炭化物を過剰に生成させて炭素を消費し、焼入れ性を低下させる。そこで、質量%で、Vは0.50%以下の範囲内である。 V forms fine V carbides in the steel and makes the crystal grains fine, so it is effective for further improving the fatigue strength and wear resistance required for the element. However, excessive addition of V causes excessive generation of V carbides, consumes carbon, and decreases hardenability. Therefore, in mass%, V is in the range of 0.50% or less.
Nbは、鋼中に微細なNb炭化物を形成し、結晶粒を微細にさせるので、エレメントとして必要とされる疲労強度及び耐摩耗性を更に向上させるために有効である。しかし、Nbの過度な添加は、Nb炭化物を過剰に生成させて炭素を消費し、焼入れ性を低下させる。そこで、質量%で、Nbは0.20%以下の範囲内である。 Nb forms fine Nb carbides in the steel and makes the crystal grains fine, so it is effective for further improving the fatigue strength and wear resistance required for the element. However, excessive addition of Nb causes excessive production of Nb carbides, consumes carbon, and decreases hardenability. Therefore, Nb is in the range of 0.20% or less in terms of mass%.
ここまで本発明による代表的実施例及びこれに基づく変形例について説明したが、本発明は必ずしもこれらに限定されるものではない。当業者であれば、添付した特許請求の範囲を逸脱することなく、種々の代替実施例及び改変例を見出すことができるだろう。 Up to this point, the representative embodiments according to the present invention and the modifications based thereon have been described, but the present invention is not necessarily limited thereto. Those skilled in the art will recognize a variety of alternative embodiments and modifications without departing from the scope of the appended claims.
1 曲げ疲労強度試験片
4 疲労試験機
10 摩耗試験装置
13 摩耗試験片
DESCRIPTION OF SYMBOLS 1 Bending fatigue strength test piece 4 Fatigue testing machine 10 Wear test apparatus 13 Wear test piece
Claims (5)
10.8[C]+5.6[Si]+2.7[Mn]+0.3[Cr]≦13
を満たす成分組成を有する鋼からなるベルト式CVTのエレメント用鋼であって、
前記鋼は、質量%で、必須添加元素として、
C:0.50〜0.70%、
Si:0.10〜0.60%、
Mn:0.50〜1.50%、
Cr:0.20〜1.00%
を含むとともに、任意添加元素として、
P:≦0.025%、
S:≦0.015%
を含み得る残部Fe及び不可避的不純物からなり、軟化熱処理を行って88HRB以下の硬さを与えたことを特徴とする耐疲労性を高めつつ未固溶炭化物量を減じても耐摩耗性にも優れたベルト式CVTのエレメントを製造するためのベルト式CVTのエレメント用鋼。 When containing at least C, Si, Mn, Cr, and the mass% of the element M is [M],
10.8 [C] +5.6 [Si] +2.7 [Mn] +0.3 [Cr] ≦ 13
A steel for element of belt type CVT made of a steel having a component composition satisfying
The steel is in mass% as an essential additive element,
C: 0.50 to 0.70%,
Si: 0.10 to 0.60%,
Mn: 0.50 to 1.50%,
Cr: 0.20 to 1.00%
As an optional additive element,
P: ≦ 0.025%,
S: ≦ 0.015%
It is composed of the remaining Fe and unavoidable impurities, and is softened by heat treatment to give a hardness of 88 HRB or less. Steel for belt type CVT elements to produce excellent belt type CVT elements.
Mo:≦0.50%、
B:≦0.0050%、
Ti:≦0.10%、
を含み得て、
10.8[C]+5.6[Si]+2.7[Mn]
+0.3[Cr]+7.8[Mo]≦13
を満たすことを特徴とする請求項1記載のベルト式CVTのエレメント用鋼。 As the optional additive element,
Mo: ≦ 0.50%,
B: ≦ 0.0050%,
Ti: ≦ 0.10%,
Can include
10.8 [C] +5.6 [Si] +2.7 [Mn]
+0.3 [Cr] +7.8 [Mo] ≦ 13
The steel for element of belt type CVT according to claim 1, wherein:
Ni:≦0.50%、
V:≦0.50%、
Nb:≦0.20%、
を含み得て、
10.8[C]+5.6[Si]+2.7[Mn]
+0.3[Cr]+7.8[Mo]+3.6[Ni]≦13
を満たすことを特徴とする請求項1又は2に記載のベルト式CVTのエレメント用鋼。 As the optional additive element,
Ni: ≦ 0.50%,
V: ≦ 0.50%
Nb: ≦ 0.20%
Can include
10.8 [C] +5.6 [Si] +2.7 [Mn]
+0.3 [Cr] +7.8 [Mo] +3.6 [Ni] ≦ 13
The steel for element of belt type CVT according to claim 1 or 2, characterized by satisfying.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010140213A JP5594521B2 (en) | 2010-06-21 | 2010-06-21 | Steel for element of belt type CVT and element using the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010140213A JP5594521B2 (en) | 2010-06-21 | 2010-06-21 | Steel for element of belt type CVT and element using the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2012001794A true JP2012001794A (en) | 2012-01-05 |
JP5594521B2 JP5594521B2 (en) | 2014-09-24 |
Family
ID=45534108
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010140213A Expired - Fee Related JP5594521B2 (en) | 2010-06-21 | 2010-06-21 | Steel for element of belt type CVT and element using the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5594521B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012224896A (en) * | 2011-04-18 | 2012-11-15 | Honda Motor Co Ltd | Steel for cold punching and element obtained using the same for steel belt |
JP2016148409A (en) * | 2015-02-12 | 2016-08-18 | 本田技研工業株式会社 | Metal belt element for continuously variable transmission |
JP2021533256A (en) * | 2018-07-27 | 2021-12-02 | ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツングRobert Bosch Gmbh | A foundation material composition, a method of making a cross member for a drive belt from such a foundation material, and a drive belt comprising the cross member thus manufactured. |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004300531A (en) * | 2003-03-31 | 2004-10-28 | Daido Steel Co Ltd | High-toughness high-carbon steel for cold-punched product |
-
2010
- 2010-06-21 JP JP2010140213A patent/JP5594521B2/en not_active Expired - Fee Related
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004300531A (en) * | 2003-03-31 | 2004-10-28 | Daido Steel Co Ltd | High-toughness high-carbon steel for cold-punched product |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012224896A (en) * | 2011-04-18 | 2012-11-15 | Honda Motor Co Ltd | Steel for cold punching and element obtained using the same for steel belt |
JP2016148409A (en) * | 2015-02-12 | 2016-08-18 | 本田技研工業株式会社 | Metal belt element for continuously variable transmission |
JP2021533256A (en) * | 2018-07-27 | 2021-12-02 | ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツングRobert Bosch Gmbh | A foundation material composition, a method of making a cross member for a drive belt from such a foundation material, and a drive belt comprising the cross member thus manufactured. |
Also Published As
Publication number | Publication date |
---|---|
JP5594521B2 (en) | 2014-09-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5862802B2 (en) | Carburizing steel | |
JP6089131B2 (en) | High carbon cold rolled steel sheet and method for producing the same | |
CN101321885A (en) | Heat-treated steel for high-strength springs | |
JP5558887B2 (en) | Manufacturing method of high strength parts using Ti and B added steels with excellent low cycle fatigue strength | |
JP2007177317A (en) | Steel for machine structure excellent in strength, ductility, toughness and wear resistance, method for producing the same, and metal belt using the same | |
JP2017043835A (en) | Steel for machine structural use for cold-working, and production method therefor | |
JP5897975B2 (en) | Steel for belt type CVT pulley and belt type CVT pulley | |
US11174543B2 (en) | Case hardening steel, method of producing case hardening steel, and method of producing gear part | |
JP5804832B2 (en) | Steel material made of carburizing steel with excellent torsional fatigue properties | |
JP5594521B2 (en) | Steel for element of belt type CVT and element using the same | |
JP2004027334A (en) | Induction tempering steel and method for producing the same | |
US20160160306A1 (en) | Coil spring, and method for manufacturing same | |
JP6390685B2 (en) | Non-tempered steel and method for producing the same | |
JP2012052218A (en) | Spring steel wire, method for producing the same, and spring | |
JP5332410B2 (en) | Manufacturing method of carburizing steel | |
CN117888030A (en) | Case hardening steel, method for producing same, and method for producing gear member | |
KR101575435B1 (en) | Material for high carburizing steel and method for producing gear using the same | |
JP5619668B2 (en) | Cold stamping steel and steel belt element using the same | |
JP2023144640A (en) | Steel for nitriding having excellent cold forging property and cold forged nitrided component | |
JP2020509158A (en) | Spring wire and steel wire excellent in corrosion fatigue resistance, and their manufacturing methods | |
JP7031428B2 (en) | Steel for soaking and quenching, soaking and quenching parts and their manufacturing methods | |
JP6838508B2 (en) | Vacuum carburizing steel and carburized parts | |
JP2015127435A (en) | Steel material having excellent flexural fatigue properties after carburization, production method thereof and carburization component | |
JP7168059B2 (en) | Steel for nitriding and quenching treatment, nitriding and quenching parts, and manufacturing method thereof | |
JP2014227581A (en) | Oil temper wire and method of producing oil temper wire |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20120501 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20121122 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20140124 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140128 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140320 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20140711 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20140723 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5594521 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |