[go: up one dir, main page]

JP2011246810A - Nonoriented magnetic steel sheet and motor core using the same - Google Patents

Nonoriented magnetic steel sheet and motor core using the same Download PDF

Info

Publication number
JP2011246810A
JP2011246810A JP2011018783A JP2011018783A JP2011246810A JP 2011246810 A JP2011246810 A JP 2011246810A JP 2011018783 A JP2011018783 A JP 2011018783A JP 2011018783 A JP2011018783 A JP 2011018783A JP 2011246810 A JP2011246810 A JP 2011246810A
Authority
JP
Japan
Prior art keywords
steel sheet
less
oriented electrical
electrical steel
compressive stress
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011018783A
Other languages
Japanese (ja)
Other versions
JP5699642B2 (en
Inventor
Yoshihiko Oda
善彦 尾田
Masaaki Kono
雅昭 河野
Hiroaki Toda
広朗 戸田
Yoshiaki Zaizen
善彰 財前
Akira Fujita
藤田  明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2011018783A priority Critical patent/JP5699642B2/en
Publication of JP2011246810A publication Critical patent/JP2011246810A/en
Application granted granted Critical
Publication of JP5699642B2 publication Critical patent/JP5699642B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

【課題】10MPa以上の高い圧縮応力が付与される圧縮応力下においても、鉄損劣化が小さい無方向性電磁鋼板を提供する。
【解決手段】質量%で、C:0.005%以下、Si:2.0〜6.0%、Al:3.0%以下、P:0.1%以下、Mn:0.05〜4.0%、S:0.005%以下、N:0.005%以下、O:0.005%以下およびZr:0.002%以下を含有し、残部Feおよび不可避不純物からなる無方向性電磁鋼板において、平均結晶粒径を30〜120μmとし、表面から10μm以内の領域に存在する直径:0.1〜1μmの介在物数密度を3×105個/mm2以下とする。
【選択図】図1
The present invention provides a non-oriented electrical steel sheet with small iron loss deterioration even under a compressive stress to which a high compressive stress of 10 MPa or more is applied.
SOLUTION: In mass%, C: 0.005% or less, Si: 2.0 to 6.0%, Al: 3.0% or less, P: 0.1% or less, Mn: 0.05 to 4.0%, S: 0.005% or less, N: 0.005% Hereinafter, in the non-oriented electrical steel sheet containing O: 0.005% or less and Zr: 0.002% or less and comprising the balance Fe and inevitable impurities, the average crystal grain size is 30 to 120 μm, and it exists in a region within 10 μm from the surface. Diameter: The number density of inclusions of 0.1 to 1 μm is 3 × 10 5 pieces / mm 2 or less.
[Selection] Figure 1

Description

本発明は、磁束密度の低下を招くことなしに、無方向性電磁鋼板に付与される圧縮応力に起因した鉄損の劣化を効果的に抑制した無方向性電磁鋼板およびそれを用いたモータコアに関するものである。   The present invention relates to a non-oriented electrical steel sheet that effectively suppresses deterioration of iron loss due to compressive stress applied to the non-oriented electrical steel sheet without causing a decrease in magnetic flux density, and a motor core using the same. Is.

家庭用エアコンのコンプレッサーモータは、周波数が50〜300Hz程度の可変速領域で運転されており、近年では、さらにPWM制御等により数kHzのキャリア周波数が重畳した状態でも運転されている。
また、最近、急速に普及しているハイブリッド電気自動車の駆動モータや発電機用のモータも、高出力かつ小型化等の観点から数kHzの周波数で使用されることが多い。これらのモータのコア材用の無方向性電磁鋼板としては、高周波での鉄損が低い電磁鋼板が所望されているため、鋼中成分であるSiとAlが、合計で3〜4質量%程度である高グレードの電磁鋼板が用いられている。
The compressor motor of a home air conditioner is operated in a variable speed region with a frequency of about 50 to 300 Hz, and in recent years, it is also operated in a state where a carrier frequency of several kHz is superimposed by PWM control or the like.
Recently, a drive motor for a hybrid electric vehicle and a motor for a generator, which are rapidly spreading, are often used at a frequency of several kHz from the viewpoint of high output and miniaturization. As a non-oriented electrical steel sheet for the core material of these motors, an electrical steel sheet with low iron loss at high frequency is desired, and therefore, Si and Al as steel components are about 3 to 4% by mass in total. A high grade electrical steel sheet is used.

ところで、コンプレッサーモータでは、コアの締結に焼きばめが行われている。そのため、モータコアには常に30〜100MPa程度の圧縮応力が加わった状態となっている。また、ハイブリッドEVの駆動モータにも樹脂モールド等が用いられているが、このモータコアにもまた圧縮応力が加わることとなる。上記した圧縮応力下では、電磁鋼板の磁気特性は大きく劣化するため、圧縮応力下における鉄損劣化等の磁気特性の劣化が少ない電磁鋼板が求められている。   By the way, in the compressor motor, shrink fitting is performed for fastening the core. For this reason, the motor core is always subjected to a compressive stress of about 30 to 100 MPa. In addition, a resin mold or the like is used for the drive motor of the hybrid EV, but a compressive stress is also applied to the motor core. Under the above-described compressive stress, the magnetic properties of the electrical steel sheet are greatly deteriorated. Therefore, there is a demand for an electrical steel sheet with little deterioration of magnetic properties such as iron loss deterioration under the compressive stress.

ここに、圧縮応力下での電磁鋼板の鉄損劣化を抑制したものとして、例えば特許文献1には、鋼板に、Si:0.1〜4.0質量%およびAl:0.1〜4.0質量%を含有させ、さらに鋼板中の結晶{111}面のX線ランダム強度比を2.5以上10.0以下として、圧縮応力下における鉄損劣化を小さくした無方向性電磁鋼板が開示されている。   Here, as what suppressed the iron loss deterioration of the electromagnetic steel plate under a compressive stress, for example, in patent document 1, Si: 0.1-4.0 mass% and Al: 0.1-4.0 mass% are contained in a steel plate, Furthermore, A non-oriented electrical steel sheet is disclosed in which the X-ray random intensity ratio of the crystal {111} plane in the steel sheet is set to 2.5 or more and 10.0 or less to reduce iron loss deterioration under compressive stress.

しかしながら、上記した無方向性電磁鋼板においては、磁気特性に好ましくない{111}面の集合組織をも発達させてしまうため、圧縮応力下での鉄損劣化は小さくなるものの、圧縮応力付与前における鋼板の鉄損そのものが高くなってしまうという問題があった。   However, in the non-oriented electrical steel sheet described above, the {111} plane texture which is undesirable for the magnetic properties is also developed, so that the iron loss deterioration under compressive stress is reduced, but before the compressive stress is applied. There was a problem that the iron loss of the steel sheet itself was high.

特開2008-189976号公報JP 2008-189976 A

発明者らは、上記課題を解決すべく鋭意検討したところ、鋼板の成分を限定しかつ鋼板の結晶粒径を小さくすることで、圧縮応力下における無方向性電磁鋼板の鉄損劣化の抑制に一定の効果があることが分かった。
また、さらに検討を重ねた結果、鋼板の表面近傍における微小介在物を所定量以下に低減することで、圧縮応力下での鉄損劣化の抑制、特に、高周波領域での鉄損の抑制に効果があることを知見した。
The inventors have intensively studied to solve the above-mentioned problems, and by restricting the components of the steel sheet and reducing the crystal grain size of the steel sheet, the iron loss deterioration of the non-oriented electrical steel sheet under compressive stress can be suppressed. It turns out that there is a certain effect.
In addition, as a result of further investigation, by reducing the fine inclusions in the vicinity of the surface of the steel sheet to a predetermined amount or less, it is effective in suppressing iron loss deterioration under compressive stress, especially in high frequency region. I found out that there is.

本発明は、上記知見に基づいてなされたもので、無方向性電磁鋼板に、10MPa以上の高い圧縮応力が付与される圧縮応力下においても、磁束密度の低下を招くことなしに、鉄損劣化を抑制することができる無方向性電磁鋼板およびそれを用いたモータコアを提供することを目的とする。   The present invention has been made on the basis of the above knowledge, iron loss deterioration without causing a decrease in magnetic flux density even under a compressive stress in which a high compressive stress of 10 MPa or more is applied to a non-oriented electrical steel sheet. An object of the present invention is to provide a non-oriented electrical steel sheet and a motor core using the same.

すなわち、本発明の要旨構成は次のとおりである。
1.質量%で、C:0.005%以下、Si:2.0〜6.0%、Al:3.0%以下、P:0.1%以下、Mn:0.05〜4.0%、S:0.005%以下、N:0.005%以下、O:0.005%以下およびZr:0.002%以下を含有し、残部Feおよび不可避不純物からなり、10MPa以上の圧縮応力が付与されるモータコアに使用する無方向性電磁鋼板において、該無方向性電磁鋼板の平均結晶粒径を30〜120μmとし、該無方向性電磁鋼板の表面から10μm以内の領域に存在する直径:0.1〜1μmの介在物数密度を3×105個/mm2以下とすることを特徴とする無方向性電磁鋼板。
That is, the gist configuration of the present invention is as follows.
1. By mass%, C: 0.005% or less, Si: 2.0 to 6.0%, Al: 3.0% or less, P: 0.1% or less, Mn: 0.05 to 4.0%, S: 0.005% or less, N: 0.005% or less, O: In non-oriented electrical steel sheets used for motor cores containing 0.005% or less and Zr: 0.002% or less, the balance being Fe and inevitable impurities, and applying a compressive stress of 10 MPa or more, the average crystal of the non-oriented electrical steel sheet The grain size is 30 to 120 μm, and the inclusion density of the diameter: 0.1 to 1 μm existing in the region within 10 μm from the surface of the non-oriented electrical steel sheet is 3 × 10 5 pieces / mm 2 or less. Non-oriented electrical steel sheet.

2.前記無方向性電磁鋼板が、さらに質量%で、Cr:0.05〜6.0%を含有することを特徴とする前記1に記載の無方向性電磁鋼板。   2. 2. The non-oriented electrical steel sheet according to 1 above, wherein the non-oriented electrical steel sheet further contains Cr: 0.05 to 6.0% by mass.

3.前記無方向性電磁鋼板が、さらに質量%で、Sn:0.002〜0.10%およびSb:0.001〜0.05%のうちから選択した一種または二種を含有することを特徴とする前記1または2に記載の無方向性電磁鋼板。   3. 3. Said 1 or 2 characterized by the said non-oriented electrical steel sheet further containing 1 type or 2 types selected from Sn: 0.002-0.10% and Sb: 0.001-0.05% by the mass%. Non-oriented electrical steel sheet.

4.前記無方向性電磁鋼板の固有抵抗が64×10-8〜85×10-8Ωmであることを特徴とする前記1〜3のいずれかに記載の無方向性電磁鋼板。 4). 4. The non-oriented electrical steel sheet according to any one of 1 to 3, wherein the non-oriented electrical steel sheet has a specific resistance of 64 × 10 −8 to 85 × 10 −8 Ωm.

5.前記1〜4のいずれかに記載の電磁鋼板の積層体からなるモータコアであって、該積層体の外周面から内部方向に10MPa以上の圧縮応力が付与されたことを特徴とするモータコア。   5. 5. A motor core comprising a laminate of electromagnetic steel sheets according to any one of 1 to 4, wherein a compressive stress of 10 MPa or more is applied in an inner direction from the outer peripheral surface of the laminate.

本発明の無方向性電磁鋼板およびそれを用いたモータコアによれば、磁束密度B50の低下を招くことなく、無方向性電磁鋼板に付与される圧縮応力に起因した鉄損W10/3kの劣化を効果的に抑制することができ、その結果、小型でも高出力なモータを得ることができる。 According to the non-oriented electrical steel sheet of the present invention and the motor core using the non-oriented electrical steel sheet, the iron loss W 10 / 3k caused by the compressive stress applied to the non-oriented electrical steel sheet without causing a decrease in the magnetic flux density B 50 is achieved . Degradation can be effectively suppressed, and as a result, a small-sized and high-output motor can be obtained.

鋼板の結晶粒径と鉄損W10/3kの関係を示したグラフである。It is the graph which showed the relationship between the crystal grain size of a steel plate, and the iron loss W10 / 3k . 鋼板表面から10μm以内の領域における介在物数密度と圧縮応力下の鉄損W10/3kとの関係を示したグラフである。It is the graph which showed the relationship between the number density of inclusions in the area | region within 10 micrometers from a steel plate surface, and the iron loss W10 / 3k under a compressive stress. モータコアに付与される圧縮応力の説明図である。It is explanatory drawing of the compressive stress provided to a motor core.

以下、本発明について具体的に説明する。
電気自動車モータやハイブリッド電気自動車用のモータでは、モータコアの固定のために、ハウジングへのモータコアの焼きばめや圧入が行われる。焼きばめや圧入によってモータコアに付与される圧縮応力は30〜150MPa程度と言われており、このような圧縮応力下における鉄損劣化の少ない電磁鋼板が望まれているのは前述したとおりである。
Hereinafter, the present invention will be specifically described.
In motors for electric vehicle motors and hybrid electric vehicles, the motor core is shrink-fitted or press-fitted into the housing in order to fix the motor core. The compressive stress imparted to the motor core by shrink fitting or press fitting is said to be about 30 to 150 MPa, and the electrical steel sheet with less iron loss deterioration under such compressive stress is desired as described above. .

発明者らは、このような圧縮応力下での鉄損特性の変動挙動について調査したところ、圧縮応力によってヒステリシス損の増加のみならず、渦電流損も増加することが明らかとなった。   The inventors investigated the fluctuation behavior of the iron loss characteristics under such a compressive stress and found that not only the hysteresis loss but also the eddy current loss increased due to the compressive stress.

ここに、ハイブリッドEVモータや電気自動車モータは、高周波域で駆動されるだけでなく、インバーター制御が行われており、数kHzの高調波も加わっているため、渦電流損劣化を抑制することも必要である。
そこで、この渦電流損劣化の原因について調査したところ、モータコアに圧縮応力を付与した場合、圧縮応力を緩和するために、鋼板の板面方向に磁化ベクトルが指向する現象が生じることが分かった。また、この状態で鋼板を磁化すると、鋼板板面内に渦電流が流れることとなり、その結果、渦電流損劣化が生じることが分かった。
Here, hybrid EV motors and electric vehicle motors are not only driven in the high frequency range, but also are controlled by inverters, and because harmonics of several kHz are added, eddy current loss degradation can also be suppressed. is necessary.
Therefore, the cause of the deterioration of the eddy current loss was investigated, and it was found that when compressive stress was applied to the motor core, a phenomenon in which the magnetization vector was directed in the plate surface direction of the steel sheet in order to relieve the compressive stress. In addition, when the steel plate is magnetized in this state, it has been found that eddy current flows in the surface of the steel plate, resulting in deterioration of eddy current loss.

次に、磁化ベクトルが鋼板の板面方向を指向することを低減する手法について検討した。その結果、鋼板中の結晶粒径を小さくすることにより、圧縮応力の付与時における渦電流損の増加を抑制できることが分かった。   Next, a method for reducing the direction of the magnetization vector in the direction of the plate surface of the steel plate was studied. As a result, it was found that an increase in eddy current loss during application of compressive stress can be suppressed by reducing the crystal grain size in the steel sheet.

以下、結晶粒径を限定するに至った試験内容および限定理由について述べる。なお、以下、鋼板成分に関する「%」表示は特に断らない限り質量%を意味するものとする。
まず、磁気特性に及ぼす結晶粒径の影響について調査するため、C:0.0012%、Si:3.1%、Mn:1.5%、Al:1.2%、P:0.01%、S:0.0007%およびN:0.0020%を含有し、残部Feおよび不可避不純物からなる鋼を実験室にて溶解し、熱間圧延を行った。引続き、この熱間圧延板を酸洗後、100%N雰囲気中にて1000℃、30sの熱延板焼鈍を施し、板厚:0.30mmまで冷間圧延し、ついで30%H-70%N雰囲気中にて、温度:850〜1050℃の範囲で、10sの仕上焼鈍を行うことにより結晶粒径を大きく変化させた。
Hereinafter, the test contents that led to limiting the crystal grain size and the reasons for limitation will be described. In the following, “%” in relation to steel plate components means mass% unless otherwise specified.
First, C: 0.0012%, Si: 3.1%, Mn: 1.5%, Al: 1.2%, P: 0.01%, S: 0.0007% and N: 0.0020% to investigate the effect of crystal grain size on magnetic properties The steel which consists of remainder and Fe which consists of inevitable impurities was melt | dissolved in the laboratory, and it hot-rolled. Subsequently, the hot-rolled sheet was pickled, subjected to hot-rolled sheet annealing at 1000 ° C. for 30 s in a 100% N 2 atmosphere, cold-rolled to a thickness of 0.30 mm, and then 30% H 2 -70. % N at 2 atmosphere, temperature range of from 850 to 1,050 ° C., was significantly changing the crystal grain size by performing the 10s of finish annealing.

この材料から、圧延方向および圧延直角方向がそれぞれ長手方向となるよう、長さ:180mm、幅:30mmの単板試験片を2種切り出し、それぞれの長手方向に50MPaの圧縮力を付与した状態で、鉄損(W10/3k)を測定した。
図1に、鋼板の結晶粒径とW10/3kとの関係について調べた結果を示す。なお、図中の値は、圧延方向および圧延直角方向の測定値の平均値を示している。また、鋼板の結晶粒径は、鋼板を表面から50μm研磨し、JIS G 0551に準拠して測定することで求めた。ここで、上記試験中、周波数:3kHzでの鉄損を評価したのは、電気自動車用モータやハイブリッド電気自動車用モータの場合、400〜1kHz程度の周波数の基本波に3〜7kHzの周波数の高調波が畳重しているため、3kHz程度の周波数における鉄損とモータ効率との相関関係が強いからである。
From this material, two types of single-sheet test pieces with a length of 180 mm and a width of 30 mm were cut out so that the rolling direction and the direction perpendicular to the rolling direction were the longitudinal directions, respectively, and a compressive force of 50 MPa was applied to each longitudinal direction. The iron loss (W 10 / 3k ) was measured.
In FIG. 1, the result of having investigated about the relationship between the crystal grain diameter of a steel plate and W10 / 3k is shown. In addition, the value in a figure has shown the average value of the measured value of a rolling direction and a rolling orthogonal direction. The crystal grain size of the steel sheet was determined by polishing the steel sheet from the surface by 50 μm and measuring it according to JIS G 0551. Here, during the test, the iron loss at a frequency of 3 kHz was evaluated in the case of an electric vehicle motor or a hybrid electric vehicle motor with a fundamental wave having a frequency of about 400 to 1 kHz and a harmonic of a frequency of 3 to 7 kHz. This is because since the waves are superimposed, the correlation between iron loss and motor efficiency at a frequency of about 3 kHz is strong.

図1より、圧縮応力が無い場合は、鉄損の結晶粒径依存性が小さいのに対し、圧縮応力が付与された場合には、特に鋼板の結晶粒径が30〜120μmの領域で、鉄損が低下することが判明した。ここで、結晶粒径が120μmを超える粗大粒側において、鋼板の鉄損が増加する理由は、渦電流損が著しく増加していることによるものであることが分かった。   As shown in FIG. 1, when there is no compressive stress, the iron grain loss is less dependent on the crystal grain size, whereas when compressive stress is applied, the steel grain has a crystal grain size of 30 to 120 μm. It was found that the loss was reduced. Here, it has been found that the reason why the iron loss of the steel sheet increases on the coarse grain side where the crystal grain size exceeds 120 μm is that the eddy current loss significantly increases.

上記した渦電流損の増加の原因は、以下のように考えられる。
通常の高級電磁鋼板のように、正磁歪を有している結晶粒の大きな鋼板では、圧縮応力の付与により、鋼板の磁化ベクトルは鋼板の板面方向を指向することとなる。そのため、鋼板の磁化によって鋼板板面内に渦電流が流れることとなり、無応力の場合に比べて渦電流損が大きく増加することとなる。
The cause of the increase in the eddy current loss is considered as follows.
In a steel plate with a large crystal grain having positive magnetostriction like a normal high-grade electromagnetic steel plate, the magnetization vector of the steel plate is directed in the plate surface direction of the steel plate due to the application of compressive stress. Therefore, an eddy current flows in the steel plate surface due to the magnetization of the steel plate, and the eddy current loss greatly increases as compared with the case of no stress.

これに対して、電磁鋼板の結晶粒径を小さくした場合は、隣り合う結晶によって磁化ベクトルの変化が抑制されるため、板面方向を指向する磁化ベクトルが少なく、それ故、板面内での渦電流が小さくなったものと考えられる。
一方、粒径30μm未満の小粒径領域では、圧縮応力下で、ヒステリシス損が大きくなるため、やはり鉄損は劣化する。
以上のことから、本発明では、無方向性電磁鋼板の結晶粒径は30〜120μmの範囲に限定した。好ましくは40〜90μmである。
On the other hand, when the crystal grain size of the electrical steel sheet is reduced, the change of the magnetization vector is suppressed by the adjacent crystal, so that the magnetization vector directed in the plate surface direction is small, and therefore in the plate surface. It is thought that the eddy current has decreased.
On the other hand, in a small particle size region having a particle size of less than 30 μm, the hysteresis loss is increased under compressive stress, so that the iron loss is deteriorated.
From the above, in the present invention, the crystal grain size of the non-oriented electrical steel sheet is limited to the range of 30 to 120 μm. Preferably it is 40-90 micrometers.

上述したとおり、鋼板の結晶粒径を所定の大きさとすることで、鋼板の鉄損劣化が抑制されることが分かったが、一部の鋼板では、必ずしも鋼板の鉄損劣化を抑制できない場合があった。
この原因について検討したところ、圧縮応力下では、磁化ベクトルが鋼板板面方向を向いた状態で磁化されるため、鋼板の表面近傍に磁壁移動を妨げる析出物、例えば、酸化物等があると磁壁移動が著しく阻害されて鉄損が増加する可能性が考えられた。
As described above, it was found that iron loss deterioration of the steel sheet is suppressed by setting the crystal grain size of the steel sheet to a predetermined size. However, in some steel sheets, iron loss deterioration of the steel sheet may not necessarily be suppressed. there were.
When this cause was examined, under the compressive stress, the magnetization vector is magnetized in the state of facing the steel plate surface, and therefore, if there are precipitates, such as oxides, that hinder the domain wall movement near the surface of the steel plate, It was thought that the iron loss could increase due to the significant inhibition of movement.

そこで、鋼板の析出物の影響を調査するため、C:0.0012%、Si:3.1%、Mn:1.0%、Al:1.4%、P:0.01%、S:0.0007%およびN:0.0020%を含有し、残部Feおよび不可避不純物からなる鋼を実験室にて溶解し、脱酸時間を種々変えることで鋼中の介在物量を変化させ、インゴットとして熱間圧延を行った。引続き、熱延板を、10〜100sの範囲で酸洗時間を変化させて酸洗後、100%N雰囲気中にて1000℃、30sの熱延板焼鈍を施し、板厚:0.30mmまで冷間圧延し、ついで、30%H-70%N雰囲気中にて950℃、10sの仕上焼鈍を行った。
ここで、Si含有量が2.0%以上となる場合、熱延板焼鈍を行わないと製品の表面にリジングが発生する。一方、鋼板表層のスケール層が一種の触媒作用をして熱延板焼鈍時の内部酸化、窒化を促すために、熱間圧延後の表面状態によって最終製品における鋼板中の介在物量が変化することが明らかとなった。そこで、熱間圧延後の酸洗時間を変化させて、その影響を調べたのである。
Therefore, in order to investigate the influence of precipitates on the steel sheet, C: 0.0012%, Si: 3.1%, Mn: 1.0%, Al: 1.4%, P: 0.01%, S: 0.0007% and N: 0.0020% are contained. The steel consisting of the remaining Fe and inevitable impurities was melted in the laboratory, and the amount of inclusions in the steel was changed by variously changing the deoxidation time, and hot rolling was performed as an ingot. Subsequently, the hot-rolled sheet was pickled by changing the pickling time in the range of 10 to 100 s, and then subjected to hot-rolled sheet annealing at 1000 ° C. for 30 s in a 100% N 2 atmosphere until the sheet thickness: 0.30 mm Cold rolling was performed, followed by finish annealing at 950 ° C. for 10 s in a 30% H 2 -70% N 2 atmosphere.
Here, when the Si content is 2.0% or more, ridging occurs on the surface of the product unless hot-rolled sheet annealing is performed. On the other hand, the scale layer of the steel sheet surface layer acts as a kind of catalyst to promote internal oxidation and nitriding during hot-rolled sheet annealing, so that the amount of inclusions in the steel sheet in the final product varies depending on the surface condition after hot rolling. Became clear. Therefore, the effect of changing the pickling time after hot rolling was investigated.

図2に、鋼板表面から10μm以内の領域における介在物数密度と圧縮応力下での鉄損との関係を示す。
同図2より、圧縮応力下の鉄損を低減するためには、鋼板表面から10μm以内の領域の介在物数密度を3×105個/mm2以下とする必要があることが分かる。
ここで、圧縮応力下の鉄損測定は、図1と同様、サンプルの長手方向に50MPaの圧縮応力を付与して行った。介在物の観察は、エネルギー分散型蛍光X線分析装置(EDX)による分析により、介在物が酸化物、窒化物、硫化物のいずれであるかを同定し、さらに走査電子顕微鏡(SEM)を用い、5000倍で表面近傍の観察を行い、円相当の直径が0.1〜1μmの介在物の単位面積当たりの個数(数密度)を求めた。なお、上記介在物数密度の測定は、鋼板を樹脂モールドに埋込み、断面を研磨して、鋼板の表層近傍部分の介在物を観察することにより行った。
また、本発明の介在物とは、Al2O3、SiO2、AlN、MnS等が考えられる。
FIG. 2 shows the relationship between the number of inclusions in the region within 10 μm from the steel sheet surface and the iron loss under compressive stress.
FIG. 2 shows that in order to reduce the iron loss under compressive stress, the inclusion number density in the region within 10 μm from the steel plate surface needs to be 3 × 10 5 pieces / mm 2 or less.
Here, the iron loss measurement under the compressive stress was performed by applying a compressive stress of 50 MPa in the longitudinal direction of the sample as in FIG. For the observation of inclusions, the energy dispersive X-ray fluorescence spectrometer (EDX) is used to identify whether the inclusions are oxides, nitrides or sulfides, and using a scanning electron microscope (SEM). The area near the surface was observed at a magnification of 5000, and the number (number density) of inclusions per unit area having a diameter corresponding to a circle of 0.1 to 1 μm was determined. The inclusion number density was measured by embedding a steel plate in a resin mold, polishing the cross section, and observing inclusions in the vicinity of the surface layer of the steel plate.
Further, the inclusions of the present invention may be Al 2 O 3 , SiO 2 , AlN, MnS and the like.

また、直径:0.1μm〜1μmの大きさの介在物を対象としたのは、0.1μm未満ではSEMで観察することが困難であり、磁気特性への影響も少ないためである。一方、1μmを超えると、磁界の磁壁移動への影響が小さいためである。   The inclusions with a diameter of 0.1 μm to 1 μm were targeted because it is difficult to observe with SEM below 0.1 μm and the influence on the magnetic properties is small. On the other hand, when the thickness exceeds 1 μm, the influence of the magnetic field on the domain wall movement is small.

さらに、鋼板表面から10μm以内の領域(以下、単に表層部とも言う。)で介在物数密度の調査を行ったのは、圧縮応力下では、鋼板表層部の介在物数密度の磁気特性への影響が大きく、また、熱延板焼鈍および仕上焼鈍時に生成する酸化物、窒化物等は、主に表層部に生じるためである。   Furthermore, the investigation of the inclusion number density in the region within 10 μm from the steel sheet surface (hereinafter also simply referred to as the surface layer part) was performed under the compressive stress to the magnetic properties of the inclusion number density of the steel sheet surface layer part. This is because the influence is great, and oxides, nitrides and the like generated during hot-rolled sheet annealing and finish annealing are mainly generated in the surface layer portion.

また、表面から70μm程度の領域に、鋳造時に生成した酸化物が多数認められた鋼板において、鋼板全体での介在物の数密度を測定した。すなわち、鋼板断面について、表面から150μmまでの深さの測定では4×105個/ mm2、一方、表層部では2×105個/ mm2であった。この鋼板に対して、圧縮応力を付与する試験を実施したが、鉄損劣化は認められなかった。このことからも、表層部の介在物を低減することが最も重要であることが分かる。 Further, the number density of inclusions in the entire steel plate was measured in a steel plate in which many oxides generated during casting were observed in a region of about 70 μm from the surface. That is, for the cross section of the steel sheet, the depth from the surface to 150 μm was 4 × 10 5 pieces / mm 2 , while the surface layer portion was 2 × 10 5 pieces / mm 2 . Although the test which gives a compressive stress was implemented with respect to this steel plate, iron loss deterioration was not recognized. This also shows that it is most important to reduce the inclusions in the surface layer.

本発明において、表層部の介在物は、熱延板焼鈍前に酸洗を行うと共に、仕上焼鈍時の水素分圧を20体積%以上、より好ましくは30体積%以上とするか、または、仕上焼鈍後、酸洗を行い、その際の酸洗の時間を調整することにより、所定の範囲内に調整することができる。   In the present invention, the inclusions in the surface layer portion are pickled before hot-rolled sheet annealing, and the hydrogen partial pressure during finish annealing is 20% by volume or more, more preferably 30% by volume or more, It can adjust within the predetermined range by performing pickling after annealing and adjusting the time of pickling at that time.

次に、本発明において、鋼板の成分組成を前記の範囲に限定した理由について説明する。
C:0.005%以下
Cは、0.005%を超えると、磁気時効により鉄損が増加するため0.005%以下とした。
Next, the reason why the component composition of the steel sheet is limited to the above range in the present invention will be described.
C: 0.005% or less When C exceeds 0.005%, the iron loss increases due to magnetic aging, so the content is made 0.005% or less.

Si:2.0〜6.0%
Siは、固有抵抗を上げるために有効な元素であるが、6.0%を超えると飽和磁束密度の低下に伴い磁束密度が低下するだけでなく、圧延が困難となるため上限を6.0%とした。一方、Siが2.0%に満たないと固有抵抗が低くなり鉄損が増加するため下限を2.0%とした。
Si: 2.0-6.0%
Si is an effective element for increasing the specific resistance, but if it exceeds 6.0%, not only does the magnetic flux density decrease as the saturation magnetic flux density decreases, but rolling becomes difficult, so the upper limit was made 6.0%. On the other hand, if Si is less than 2.0%, the specific resistance decreases and the iron loss increases, so the lower limit was set to 2.0%.

Al:3.0%以下
Alは、鋼板の固有抵抗を上げるために有効な元素であるが、3.0%を超えると磁束密度が低下するため、上限を3.0%とした。
Al: 3.0% or less
Al is an effective element for increasing the specific resistance of the steel sheet. However, if it exceeds 3.0%, the magnetic flux density decreases, so the upper limit was made 3.0%.

本発明において、鋼板成分中のSiとAlの質量比の合計は特に規定しないが、固有抵抗増大を防止する観点から4.1%以上とすることが好ましい。   In the present invention, the total mass ratio of Si and Al in the steel plate components is not particularly defined, but is preferably 4.1% or more from the viewpoint of preventing increase in specific resistance.

P:0.1%以下
Pは、0.1%を超えると、鋼板が脆化し、圧延が困難となるため、0.1%以下とした。
P: 0.1% or less When P exceeds 0.1%, the steel sheet becomes brittle and rolling becomes difficult.

Mn:0.05〜4.0%
Mnは、赤熱脆性抑制のため0.05%以上必要であり、好ましくは1.5%以上である。一方、4.0%を超えると磁束密度が低下するため、上限を4.0%とした。
Mn: 0.05-4.0%
Mn is required to be 0.05% or more, preferably 1.5% or more for suppressing red heat brittleness. On the other hand, if it exceeds 4.0%, the magnetic flux density decreases, so the upper limit was made 4.0%.

S:0.005%以下
Sは、含有量が多い場合には硫化物が多くなり、鉄損が増加するため0.005%以下とする。
S: 0.005% or less S is 0.005% or less because the amount of sulfide increases and the iron loss increases when the content is large.

N:0.005%以下
Nは、含有量が多い場合には窒化物が多くなり、鉄損が増加するため0.005%以下とする。
N: 0.005% or less N is 0.005% or less because the amount of nitride increases and the iron loss increases when the content is large.

O:0.005%以下
Oは、含有量が多い場合には酸化物が多くなり、鉄損が増加するため0.005%以下とする。
O: 0.005% or less O contains 0.005% or less because the amount of oxide increases and the iron loss increases when the content is large.

Zr:0.002%以下
Zrは、窒化物形成能の強い元素であり、Zrが高い場合には表層部の窒化物量が増加し、圧縮応力下での鉄損が高くなるため0.002%以下とする。
Zr: 0.002% or less
Zr is an element having a strong nitride forming ability. When Zr is high, the amount of nitride in the surface layer portion increases and the iron loss under compressive stress increases, so the content is made 0.002% or less.

Cr:0.05〜6.0%
Crは、Mn同様、鋼板の固有抵抗を上げるのに有効な元素である。このためCrを添加する場合は、下限を0.05%とする。一方、6.0%を超えると磁束密度が低下するため、上限を6.0%とする。
Cr: 0.05-6.0%
Cr, like Mn, is an element effective for increasing the specific resistance of a steel sheet. Therefore, when adding Cr, the lower limit is made 0.05%. On the other hand, if it exceeds 6.0%, the magnetic flux density decreases, so the upper limit is made 6.0%.

Sn:0.002〜0.10%
Snは、表層部における鋼板の窒化を抑制し、鉄損を低下させるのに効果的な元素である。その効果は0.002%以上の添加で得られる。一方、0.10%を超えると鋼板が脆くなり、製造が難しくなるため上限を0.10%とする。
Sn: 0.002 to 0.10%
Sn is an element effective in suppressing nitriding of the steel sheet in the surface layer portion and reducing iron loss. The effect is obtained by adding 0.002% or more. On the other hand, if it exceeds 0.10%, the steel sheet becomes brittle and difficult to manufacture, so the upper limit is made 0.10%.

Sb:0.001〜0.05%
SbもSn同様、鋼板の表層窒化抑制に効果的な元素であり、その添加効果はSnよりも強い。このため下限は0.001%とする。一方、0.05%を超えた場合には鋼板が脆くなり、製造が難しくなるため上限を0.05%とする。
Sb: 0.001 to 0.05%
Sb, like Sn, is an element effective for suppressing surface nitriding of the steel sheet, and its additive effect is stronger than Sn. For this reason, the lower limit is set to 0.001%. On the other hand, if it exceeds 0.05%, the steel sheet becomes brittle and difficult to manufacture, so the upper limit is made 0.05%.

本発明では、さらに、Ni、Cu等を磁気特性が劣化しない範囲で添加することができる。添加する場合、好ましい範囲は、Niは0.03〜5%、またCuは0.05〜3%の範囲である。   In the present invention, Ni, Cu or the like can be further added within a range in which the magnetic characteristics are not deteriorated. When added, the preferred range is 0.03% to 5% for Ni and 0.05% to 3% for Cu.

本発明において、鋼板の固有抵抗は64×10-8〜85×10-8Ωm程度とするのが好ましい。というのは、固有抵抗が64×10-8Ωm未満の場合、渦電流損の増加によって高周波鉄損が高くなってしまうためである。一方、固有抵抗が85×10-8Ωm超の材料を製造しようした場合、種々の合金を多量に添加する必要があるため、大幅なコストアップとなるだけでなく、材料が硬く、脆くなるため製造が非常に困難となるためである。 In the present invention, the specific resistance of the steel sheet is preferably about 64 × 10 −8 to 85 × 10 −8 Ωm. This is because when the specific resistance is less than 64 × 10 −8 Ωm, the high-frequency iron loss increases due to the increase in eddy current loss. On the other hand, when producing a material with a specific resistance exceeding 85 × 10 -8 Ωm, it is necessary to add a large amount of various alloys, which not only significantly increases the cost, but also makes the material hard and brittle. This is because manufacturing becomes very difficult.

本発明において、上記した鋼板の固有抵抗を64×10-8〜85×10-8Ωm程度とする製造条件は、Si,Al,Mn,Crの各含有量[Si]、[Al]、[Mn]、[Cr](%)を[Si]+[Al]+([Mn]+[Cr])/2=5.0〜7.5の範囲とすることが例示され、その他の製造条件は常法に従えば良い。 In the present invention, the manufacturing conditions for the above-mentioned specific resistance of the steel sheet to be about 64 × 10 −8 to 85 × 10 −8 Ωm are the contents of Si, Al, Mn, Cr [Si], [Al], [ Mn] and [Cr] (%) are exemplified as [Si] + [Al] + ([Mn] + [Cr]) / 2 = 5.0 to 7.5. Follow it.

本発明では、モータコアの焼きばめ時の圧縮応力は10MPa以上を前提とする。これは、圧縮応力が10MPa未満では、モータコアをハウジングに良好に固定することができないためである。一方、圧縮応力の上限は特に規定しないが、圧縮応力が高くなるとそれに伴って鉄損劣化が大きくなるため、上限は250MPa程度とする。なお、好ましくは、20MPa以上、より好ましくは、50MPa以上である。
本発明において、圧縮応力とは、図3に示したように、モータコア(鋼板の積層体)の外周面から内部方向に向かう力を意味する。また、本発明において、鋼板の板面方向とは、図3(a)の上下方向を意味する。図中、符号1はバックヨーク部、2はリング、3はティース部、4は焼きばめリング(ハウジング)である。
In the present invention, it is assumed that the compression stress during shrink fitting of the motor core is 10 MPa or more. This is because the motor core cannot be satisfactorily fixed to the housing when the compressive stress is less than 10 MPa. On the other hand, the upper limit of the compressive stress is not particularly defined, but as the compressive stress increases, the iron loss deterioration increases accordingly, so the upper limit is set to about 250 MPa. The pressure is preferably 20 MPa or more, more preferably 50 MPa or more.
In the present invention, the compressive stress means a force directed from the outer peripheral surface of the motor core (a laminated body of steel plates) toward the inside as shown in FIG. Moreover, in this invention, the plate | board surface direction of a steel plate means the up-down direction of Fig.3 (a). In the figure, reference numeral 1 is a back yoke portion, 2 is a ring, 3 is a teeth portion, and 4 is a shrink-fitted ring (housing).

本発明は、高周波域にて鉄損の低い無方向性電磁鋼板を提供するものであり、特に、1kHz以上の周波数で使用されるモータに適用することが好ましい。本発明に言う周波数とは、基本波周波数以外にキャリア周波数が1kHz以上となっている場合にも効果的である。   The present invention provides a non-oriented electrical steel sheet having low iron loss in a high frequency range, and is particularly preferably applied to a motor used at a frequency of 1 kHz or more. The frequency referred to in the present invention is also effective when the carrier frequency is 1 kHz or more in addition to the fundamental frequency.

本発明においては、成分、結晶粒径、表層部の介在物量が、前記した本発明の範囲内であれば良いが、そのための製造工程としては、例えば、以下が例示される。なお、表層部の介在物量や鋼板の固有抵抗を制御する製造条件は、前述したとおりである。
所定の成分原料を転炉で吹練し、溶鋼として脱ガス処理し、所定の成分・介在物量となるよう調整して、鋳造を行いスラブとする。その後、スラブに常法にて熱間圧延を施す。
次いで、リジングを防止するための熱延板焼鈍を必須として行うが、前述のとおり、表層部の介在物の生成を抑制するため、熱延板焼鈍に先立ち、酸洗を行う必要がある。その後、1回の冷間または温間圧延、もしくは中間焼鈍をはさんだ2回以上の冷間または温間圧延により所定の板厚とし、仕上焼鈍を行う。
ここで、熱間圧延時の仕上温度、巻取り温度は特に規定する必要はなく、常法に従えばよい。
In the present invention, the component, the crystal grain size, and the amount of inclusions in the surface layer portion may be within the above-described range of the present invention. Examples of the manufacturing process therefor include the following. The manufacturing conditions for controlling the amount of inclusions in the surface layer part and the specific resistance of the steel sheet are as described above.
Predetermined component raw materials are blown in a converter, degassed as molten steel, adjusted to have predetermined component / inclusion amounts, cast, and made into a slab. Thereafter, the slab is hot-rolled by a conventional method.
Next, hot-rolled sheet annealing for preventing ridging is performed as essential, but as described above, pickling must be performed prior to hot-rolled sheet annealing in order to suppress the formation of inclusions in the surface layer portion. Thereafter, finish annealing is performed with a predetermined plate thickness by two or more cold or warm rolling sandwiched by one cold or warm rolling or intermediate annealing.
Here, the finishing temperature and the coiling temperature at the time of hot rolling do not need to be specified in particular, and may be in accordance with ordinary methods.

仕上げ焼鈍後、表層部の介在物を除去するために酸洗を行うか、仕上げ焼鈍時の介在物形成を抑制するため、前述したとおり、20体積%以上の水素分圧雰囲気で焼鈍を行うことが望ましい。   After finish annealing, perform pickling to remove inclusions on the surface layer, or to suppress inclusion formation during finish annealing, as described above, perform annealing in a hydrogen partial pressure atmosphere of 20% by volume or more. Is desirable.

また、本発明における鋼板の板厚に、特に限定はないが、高周波鉄損低減の観点から0.35mm以下が好ましく、より好ましくは0.3mm以下である。一方、下限は生産性の観点から0.05mm程度とすることが好ましい。   In addition, the thickness of the steel sheet in the present invention is not particularly limited, but is preferably 0.35 mm or less, more preferably 0.3 mm or less from the viewpoint of reducing high-frequency iron loss. On the other hand, the lower limit is preferably about 0.05 mm from the viewpoint of productivity.

さらに、上記鋼板を用いて、鋼板の積層体の外周面から内部方向に10MPa以上の圧縮応力が付与されたモータコアを作製する。なお、本発明におけるモータコアの作製方法は、本発明に従う鋼板を用いること、および上記圧縮応力を鋼板に付与すること以外の製造条件は、常法を用いることができる。   Furthermore, using the steel plate, a motor core to which a compressive stress of 10 MPa or more is applied in the inner direction from the outer peripheral surface of the laminate of steel plates is produced. In addition, the manufacturing method of the motor core in this invention can use a conventional method for manufacturing conditions other than using the steel plate according to this invention, and providing the said compressive stress to a steel plate.

真空溶解炉にて、表1−1および表1−2に示す成分組成に調製した溶鋼を、鋳造し、小スラブとした。このスラブを1100℃で1h加熱した後、板厚:1.6mmまで熱間圧延を行った。熱延仕上げ温度は800℃とした。巻取り温度は500℃とし、巻取り後、表1−1および表1−2に示す種々の時間で酸洗を行った。その後、100体積%N2雰囲気中にて、1000℃、30sの熱延板焼鈍を施し、板破断を防止するため150℃の温度にて、表1−1および表1−2に示す板厚まで温間圧延を行った。圧延後、仕上げ焼鈍を表1−1および表1−2に示す条件で、30体積%H2-70体積%N2雰囲気中にて行った。仕上げ焼鈍後の鋼板表面を目視で確認したところ、いずれもリジングの発生は認められなかった。なお、その他の製造条件は常法に従った。 In the vacuum melting furnace, the molten steel prepared to the component composition shown in Table 1-1 and Table 1-2 was cast into a small slab. The slab was heated at 1100 ° C. for 1 h, and then hot-rolled to a thickness of 1.6 mm. The hot rolling finishing temperature was 800 ° C. The coiling temperature was 500 ° C., and after the coiling, pickling was performed at various times shown in Table 1-1 and Table 1-2. Thereafter, in a 100% by volume N 2 atmosphere, hot strip annealing at 1000 ° C. for 30 s was performed, and the plate thicknesses shown in Table 1-1 and Table 1-2 at a temperature of 150 ° C. in order to prevent plate breakage. Until hot rolling. After rolling, finish annealing was performed in a 30% by volume H 2 -70% by volume N 2 atmosphere under the conditions shown in Table 1-1 and Table 1-2. When the surface of the steel sheet after finish annealing was visually confirmed, generation of ridging was not recognized in any case. Other production conditions were in accordance with ordinary methods.

鋼板の結晶粒径は、鋼板を表面から50μm研磨し、JIS G 0551に準拠して測定することで求めた。また、鋼板表層部の介在物の数密度は、SEMを用い、5000倍で表面から10μm以内の領域の観察を行い、円相当の直径が0.1〜1μmの介在物の単位面積当たりの個数を数えることで求めた。
さらに、磁気特性の測定は、圧延方向および圧延直角方向がそれぞれ長手方向となるよう、長さ:180mm、幅:30mmの単板試験片を2種切り出し、それぞれ長手方向に圧縮力を付与しながら、鋼板の圧縮力付与方向の磁気特性(鉄損W10/3kおよび磁束密度B50)を測定した。結果を表1−1および表1−2に併記する。なお、表1−1および表1−2に示した磁気特性は圧延方向と圧延直角方向の平均値である。
The crystal grain size of the steel plate was determined by polishing the steel plate from the surface by 50 μm and measuring it according to JIS G 0551. In addition, the number density of inclusions on the surface layer of the steel sheet is determined by observing a region within 10 μm from the surface at 5000 times using SEM and counting the number of inclusions with a circle equivalent diameter of 0.1 to 1 μm per unit area. Asked.
Furthermore, the magnetic properties were measured by cutting out two types of single-sheet test pieces having a length of 180 mm and a width of 30 mm so that the rolling direction and the direction perpendicular to the rolling direction are the longitudinal directions, respectively, while applying a compressive force in the longitudinal direction. The magnetic properties (iron loss W 10 / 3k and magnetic flux density B 50 ) of the steel sheet in the compressive force application direction were measured. The results are shown in Table 1-1 and Table 1-2. The magnetic characteristics shown in Table 1-1 and Table 1-2 are average values in the rolling direction and the direction perpendicular to the rolling direction.

加えて、モータコアでの磁気特性を確認するため、表1−1および表1−2に示した成分および板厚の無方向性電磁鋼板を用い、12スロットのステータコアを、打ち抜きにより作製した。ここで、ステータ外径は100 mm、バックヨーク幅:20 mm、積み厚:25 mmとし、モータコアの焼きばめ代:0〜100μmとしてモータケースに焼きばめを行った。また、バックヨークの中央部の周方向の応力を、歪みゲージを用いて測定した。さらに、バックヨーク部に、励磁コイルおよびピックアップコイルを巻き線することで、モータコア円周方向の鉄損を測定した。その際、磁束密度は1T、周波数は3kHzとした。結果を表1−1および表1−2に併記する。   In addition, in order to confirm the magnetic characteristics of the motor core, a 12-slot stator core was manufactured by punching using the non-oriented electrical steel sheets having the components and thicknesses shown in Table 1-1 and Table 1-2. Here, the outer diameter of the stator was 100 mm, the back yoke width was 20 mm, the stacking thickness was 25 mm, and the shrinkage of the motor core was 0 to 100 μm. Further, the stress in the circumferential direction at the center of the back yoke was measured using a strain gauge. Furthermore, the iron loss in the circumferential direction of the motor core was measured by winding an excitation coil and a pickup coil around the back yoke portion. At that time, the magnetic flux density was 1 T, and the frequency was 3 kHz. The results are shown in Table 1-1 and Table 1-2.

同表より、本発明の範囲になる成分、結晶粒径および表層部の介在物数密度となった場合には、それぞれ圧縮応力下の磁気特性、すなわち、良好な磁束密度の下で、鉄損の劣化が抑制されていることが分かる。なお、Alの含有量が本発明の範囲の上限値を外れているNo.28、Mnの含有量が本発明の範囲の上限値を外れているNo.32およびSiの含有量が本発明の範囲の下限値を外れているNo.47は、鉄損値は低いものの磁束密度に劣っていた。
また、固有抵抗が本発明の範囲の上限値を外れているNo.23およびSiの含有量が本発明の範囲の上限値を外れているNo.25は、冷間圧延時に割れを生じてしまった。
According to the table, when the component, crystal grain size, and inclusion number density in the surface layer are within the scope of the present invention, the magnetic properties under compressive stress, that is, iron loss under good magnetic flux density, respectively. It can be seen that the degradation of is suppressed. The content of Al is No. 28 out of the upper limit of the range of the present invention, the content of Mn is out of the upper limit of the range of the present invention, and the content of Si and No. 32 of the present invention. No. 47 out of the lower limit of the range had a low iron loss value but was inferior in magnetic flux density.
Further, No. 23 whose specific resistance is out of the upper limit of the range of the present invention and No. 25 whose Si content is out of the upper limit of the range of the present invention are cracked during cold rolling. It was.

さらに、同表より、本発明の範囲内の成分、結晶粒径、表層介在物量をいずれも満足する鋼板を用いたときに、焼きばめ時、すなわち鋼板の積層体の外周面から内部方向に圧縮応力が付与された場合であっても、鉄損特性に優れたモータコアが得られていることが分かる。   Furthermore, from the same table, when using a steel sheet that satisfies all of the components, crystal grain size, and surface layer inclusions within the scope of the present invention, during shrink fitting, that is, from the outer peripheral surface of the laminate of steel sheets to the inner direction. It can be seen that a motor core having excellent iron loss characteristics is obtained even when compressive stress is applied.

本発明によれば、圧縮応力下において高周波領域における鉄損の低い無方向性電磁鋼板を得ることができる。従って、かかる無方向性電磁鋼板を用いてモータコアを製造した場合、特に、コア材料に圧縮力が付与されるエアコン用コンプレッサーモータ、ハイブリッドEV用駆動モータ、EV用駆動モータ、FCEV用駆動モータ、高速発電機用高周波回転機においては、その鉄損が低減し、各種設備の省エネルギー化に貢献する。   According to the present invention, a non-oriented electrical steel sheet having low iron loss in a high frequency region under compressive stress can be obtained. Therefore, when a motor core is manufactured using such a non-oriented electrical steel sheet, in particular, a compressor motor for an air conditioner, a hybrid EV drive motor, an EV drive motor, an FCEV drive motor, and a high-speed motor that apply a compressive force to the core material. In the high-frequency rotating machine for generators, the iron loss is reduced, contributing to energy saving of various facilities.

1 バックヨーク部
2 リング
3 ティース部
4 焼きばめリング(ハウジング)
1 Back yoke part 2 Ring 3 Teeth part 4 Shrink fit ring (housing)

Claims (5)

質量%で、C:0.005%以下、Si:2.0〜6.0%、Al:3.0%以下、P:0.1%以下、Mn:0.05〜4.0%、S:0.005%以下、N:0.005%以下、O:0.005%以下およびZr:0.002%以下を含有し、残部Feおよび不可避不純物からなり、10MPa以上の圧縮応力が付与されるモータコアに使用する無方向性電磁鋼板において、該無方向性電磁鋼板の平均結晶粒径を30〜120μmとし、該無方向性電磁鋼板の表面から10μm以内の領域に存在する直径:0.1〜1μmの介在物数密度を3×105個/mm2以下とすることを特徴とする無方向性電磁鋼板。 By mass%, C: 0.005% or less, Si: 2.0 to 6.0%, Al: 3.0% or less, P: 0.1% or less, Mn: 0.05 to 4.0%, S: 0.005% or less, N: 0.005% or less, O: In non-oriented electrical steel sheets used for motor cores containing 0.005% or less and Zr: 0.002% or less, the balance being Fe and inevitable impurities, and applying a compressive stress of 10 MPa or more, the average crystal of the non-oriented electrical steel sheet The grain size is 30 to 120 μm, and the inclusion density of the diameter: 0.1 to 1 μm existing in the region within 10 μm from the surface of the non-oriented electrical steel sheet is 3 × 10 5 pieces / mm 2 or less. Non-oriented electrical steel sheet. 前記無方向性電磁鋼板が、さらに質量%で、Cr:0.05〜6.0%を含有することを特徴とする請求項1に記載の無方向性電磁鋼板。   The non-oriented electrical steel sheet according to claim 1, wherein the non-oriented electrical steel sheet further contains Cr: 0.05 to 6.0% by mass. 前記無方向性電磁鋼板が、さらに質量%で、Sn:0.002〜0.10%およびSb:0.001〜0.05%のうちから選択した一種または二種を含有することを特徴とする請求項1または2に記載の無方向性電磁鋼板。   The non-oriented electrical steel sheet further contains one or two kinds selected from Sn: 0.002 to 0.10% and Sb: 0.001 to 0.05% in mass%. Non-oriented electrical steel sheet. 前記無方向性電磁鋼板の固有抵抗が64×10-8〜85×10-8Ωmであることを特徴とする請求項1〜3のいずれかに記載の無方向性電磁鋼板。 The non-oriented electrical steel sheet according to claim 1, wherein a specific resistance of the non-oriented electrical steel sheet is 64 × 10 −8 to 85 × 10 −8 Ωm. 請求項1〜4のいずれかに記載の電磁鋼板の積層体からなるモータコアであって、該積層体の外周面から内部方向に10MPa以上の圧縮応力が付与されたことを特徴とするモータコア。
A motor core comprising a laminate of electromagnetic steel sheets according to any one of claims 1 to 4, wherein a compressive stress of 10 MPa or more is applied in an inner direction from an outer peripheral surface of the laminate.
JP2011018783A 2010-04-30 2011-01-31 Motor core Active JP5699642B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011018783A JP5699642B2 (en) 2010-04-30 2011-01-31 Motor core

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010105772 2010-04-30
JP2010105772 2010-04-30
JP2011018783A JP5699642B2 (en) 2010-04-30 2011-01-31 Motor core

Publications (2)

Publication Number Publication Date
JP2011246810A true JP2011246810A (en) 2011-12-08
JP5699642B2 JP5699642B2 (en) 2015-04-15

Family

ID=45412430

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011018783A Active JP5699642B2 (en) 2010-04-30 2011-01-31 Motor core

Country Status (1)

Country Link
JP (1) JP5699642B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3556878A4 (en) * 2016-12-19 2019-11-20 Posco NON-ORIENTED GRAIN MAGNETIC STEEL SHEET AND MANUFACTURING METHOD THEREOF
EP3556882A4 (en) * 2016-12-19 2019-11-20 Posco NON-ORIENTED ELECTRIC STEEL SHEET AND METHOD FOR MANUFACTURING THE SAME
WO2020091039A1 (en) * 2018-11-02 2020-05-07 日本製鉄株式会社 Non-oriented electromagnetic steel sheet
WO2020136993A1 (en) * 2018-12-27 2020-07-02 Jfeスチール株式会社 Non-oriented electrical steel sheet and method for producing same
CN112513299A (en) * 2018-11-02 2021-03-16 日本制铁株式会社 Non-oriented electromagnetic steel sheet
JPWO2021199400A1 (en) * 2020-04-02 2021-10-07
JP2022506636A (en) * 2018-11-08 2022-01-17 ティッセンクルップ スチール ヨーロッパ アクチェンゲゼルシャフト Electric steel strips or sheet steel for high frequency electric motor applications with improved polarization and low magnetic loss
JP2022509677A (en) * 2018-11-30 2022-01-21 ポスコ Non-oriented electrical steel sheet and its manufacturing method
KR20220158843A (en) * 2020-04-16 2022-12-01 닛폰세이테츠 가부시키가이샤 Non-oriented electrical steel sheet and manufacturing method thereof
WO2023149287A1 (en) * 2022-02-01 2023-08-10 Jfeスチール株式会社 Method for manufacturing hot-rolled steel sheet for non-oriented electrical steel sheet, method for manufacturing non-oriented electrical steel sheet, and hot-rolled steel sheet for non-oriented electrical steel sheet
JP2023538317A (en) * 2020-09-01 2023-09-07 ティッセンクルップ スチール ヨーロッパ アクチェンゲゼルシャフト Non-oriented metal flat products, methods of manufacturing non-oriented metal flat products, and uses of non-oriented metal flat products
WO2023176865A1 (en) * 2022-03-15 2023-09-21 日本製鉄株式会社 Non-oriented electromagnetic steel sheet, motor core, and methods for producing same
WO2023176866A1 (en) * 2022-03-15 2023-09-21 日本製鉄株式会社 Non-oriented electromagnetic steel sheet and method for manufacturing same
JP2023554680A (en) * 2020-12-21 2023-12-28 ポスコ カンパニー リミテッド Non-oriented electrical steel sheet and its manufacturing method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002088452A (en) * 2000-09-14 2002-03-27 Nkk Corp Non-oriented electrical steel sheet with low iron loss and excellent fatigue properties
JP2002226953A (en) * 2001-02-02 2002-08-14 Nkk Corp Non-oriented electrical steel sheet for high frequency with excellent low magnetic field characteristics
JP2005307258A (en) * 2004-04-20 2005-11-04 Nippon Steel Corp Non-oriented electrical steel sheet with small iron loss deterioration due to compressive stress and method for producing the same
JP2009167480A (en) * 2008-01-17 2009-07-30 Jfe Steel Corp Manufacturing method of non-oriented electrical steel sheet for etching and motor core

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002088452A (en) * 2000-09-14 2002-03-27 Nkk Corp Non-oriented electrical steel sheet with low iron loss and excellent fatigue properties
JP2002226953A (en) * 2001-02-02 2002-08-14 Nkk Corp Non-oriented electrical steel sheet for high frequency with excellent low magnetic field characteristics
JP2005307258A (en) * 2004-04-20 2005-11-04 Nippon Steel Corp Non-oriented electrical steel sheet with small iron loss deterioration due to compressive stress and method for producing the same
JP2009167480A (en) * 2008-01-17 2009-07-30 Jfe Steel Corp Manufacturing method of non-oriented electrical steel sheet for etching and motor core

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11060170B2 (en) 2016-12-19 2021-07-13 Posco Non-oriented electrical steel sheet and manufacturing method therefor
EP3556882A4 (en) * 2016-12-19 2019-11-20 Posco NON-ORIENTED ELECTRIC STEEL SHEET AND METHOD FOR MANUFACTURING THE SAME
EP3556878A4 (en) * 2016-12-19 2019-11-20 Posco NON-ORIENTED GRAIN MAGNETIC STEEL SHEET AND MANUFACTURING METHOD THEREOF
US11319619B2 (en) 2016-12-19 2022-05-03 Posco Non-oriented electrical steel sheet and manufacturing method therefor
CN112513299A (en) * 2018-11-02 2021-03-16 日本制铁株式会社 Non-oriented electromagnetic steel sheet
JP7143900B2 (en) 2018-11-02 2022-09-29 日本製鉄株式会社 Non-oriented electrical steel sheet
KR20210036948A (en) * 2018-11-02 2021-04-05 닛폰세이테츠 가부시키가이샤 Non-oriented electromagnetic steel plate
CN112654723A (en) * 2018-11-02 2021-04-13 日本制铁株式会社 Non-oriented electromagnetic steel sheet
CN112654723B (en) * 2018-11-02 2023-04-04 日本制铁株式会社 Non-oriented electromagnetic steel sheet
JPWO2020091039A1 (en) * 2018-11-02 2021-09-02 日本製鉄株式会社 Non-oriented electrical steel sheet
KR102570981B1 (en) * 2018-11-02 2023-08-28 닛폰세이테츠 가부시키가이샤 non-oriented electromagnetic steel
US12148555B2 (en) 2018-11-02 2024-11-19 Nippon Steel Corporation Non-oriented electrical steel sheet
US20210343458A1 (en) * 2018-11-02 2021-11-04 Nippon Steel Corporation Non-oriented electrical steel sheet
WO2020091039A1 (en) * 2018-11-02 2020-05-07 日本製鉄株式会社 Non-oriented electromagnetic steel sheet
JP2022506636A (en) * 2018-11-08 2022-01-17 ティッセンクルップ スチール ヨーロッパ アクチェンゲゼルシャフト Electric steel strips or sheet steel for high frequency electric motor applications with improved polarization and low magnetic loss
US11970757B2 (en) 2018-11-08 2024-04-30 Thyssenkrupp Steel Europe Ag Electric steel strip or sheet for higher frequency electric motor applications, with improved polarization and low magnetic losses
JP7587497B2 (en) 2018-11-08 2024-11-20 ティッセンクルップ スチール ヨーロッパ アクチェンゲゼルシャフト Electrical steel strip or sheet for high frequency electric motor applications with improved polarization and low magnetic losses
JP2022509677A (en) * 2018-11-30 2022-01-21 ポスコ Non-oriented electrical steel sheet and its manufacturing method
JP7253055B2 (en) 2018-11-30 2023-04-05 ポスコ カンパニー リミテッド Non-oriented electrical steel sheet and manufacturing method thereof
WO2020136993A1 (en) * 2018-12-27 2020-07-02 Jfeスチール株式会社 Non-oriented electrical steel sheet and method for producing same
JP6738056B1 (en) * 2018-12-27 2020-08-12 Jfeスチール株式会社 Non-oriented electrical steel sheet and method for manufacturing the same
CN115398012A (en) * 2020-04-02 2022-11-25 日本制铁株式会社 Non-oriented electromagnetic steel sheet and method for producing the same
JPWO2021199400A1 (en) * 2020-04-02 2021-10-07
KR102794711B1 (en) 2020-04-02 2025-04-16 닛폰세이테츠 가부시키가이샤 Non-oriented electrical steel sheet and method for manufacturing the same
EP4130304A4 (en) * 2020-04-02 2023-05-17 Nippon Steel Corporation NON-ORIENTED GRAIN ELECTROMAGNETIC STEEL SHEET AND METHOD FOR PRODUCTION THEREOF
WO2021199400A1 (en) * 2020-04-02 2021-10-07 日本製鉄株式会社 Non-oriented electromagnetic steel sheet and method for producing same
KR20220144400A (en) * 2020-04-02 2022-10-26 닛폰세이테츠 가부시키가이샤 Non-oriented electrical steel sheet and manufacturing method thereof
JP7469694B2 (en) 2020-04-02 2024-04-17 日本製鉄株式会社 Non-oriented electrical steel sheet and its manufacturing method
KR20220158843A (en) * 2020-04-16 2022-12-01 닛폰세이테츠 가부시키가이샤 Non-oriented electrical steel sheet and manufacturing method thereof
KR102794671B1 (en) 2020-04-16 2025-04-16 닛폰세이테츠 가부시키가이샤 Non-oriented electrical steel sheet and method for manufacturing the same
JP7559220B2 (en) 2020-09-01 2024-10-01 ティッセンクルップ スチール ヨーロッパ アクチェンゲゼルシャフト Non-oriented metal flat plate product, method for producing non-oriented metal flat plate product, and use of non-oriented metal flat plate product
JP2023538317A (en) * 2020-09-01 2023-09-07 ティッセンクルップ スチール ヨーロッパ アクチェンゲゼルシャフト Non-oriented metal flat products, methods of manufacturing non-oriented metal flat products, and uses of non-oriented metal flat products
JP2023554680A (en) * 2020-12-21 2023-12-28 ポスコ カンパニー リミテッド Non-oriented electrical steel sheet and its manufacturing method
TWI847510B (en) * 2022-02-01 2024-07-01 日商杰富意鋼鐵股份有限公司 Manufacturing method of hot-rolled steel sheet for non-oriented electromagnetic steel sheet, manufacturing method of non-oriented electromagnetic steel sheet, and hot-rolled steel sheet for non-oriented electromagnetic steel sheet
JP7609266B2 (en) 2022-02-01 2025-01-07 Jfeスチール株式会社 Manufacturing method of hot-rolled steel sheet for non-oriented electrical steel sheet and manufacturing method of non-oriented electrical steel sheet
WO2023149287A1 (en) * 2022-02-01 2023-08-10 Jfeスチール株式会社 Method for manufacturing hot-rolled steel sheet for non-oriented electrical steel sheet, method for manufacturing non-oriented electrical steel sheet, and hot-rolled steel sheet for non-oriented electrical steel sheet
EP4467669A4 (en) * 2022-02-01 2025-05-14 JFE Steel Corporation Method for producing hot-rolled steel sheet for non-orientated electrical steel sheet, method for producing non-orientated electrical steel sheet, and hot-rolled steel sheet for non-orientated electrical steel sheet
WO2023176866A1 (en) * 2022-03-15 2023-09-21 日本製鉄株式会社 Non-oriented electromagnetic steel sheet and method for manufacturing same
WO2023176865A1 (en) * 2022-03-15 2023-09-21 日本製鉄株式会社 Non-oriented electromagnetic steel sheet, motor core, and methods for producing same

Also Published As

Publication number Publication date
JP5699642B2 (en) 2015-04-15

Similar Documents

Publication Publication Date Title
JP5699642B2 (en) Motor core
JP4329538B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP4855222B2 (en) Non-oriented electrical steel sheet for split core
JP6665794B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP6057082B2 (en) Non-oriented electrical steel sheet with excellent magnetic properties
WO2015025759A1 (en) Non-oriented magnetic steel sheet having high magnetic flux density, and motor
JP4855220B2 (en) Non-oriented electrical steel sheet for split core
JP5429411B1 (en) Non-oriented electrical steel sheet
JP5671872B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP5515451B2 (en) Core material for split motor
JP5646745B2 (en) Steel plate for rotor core of IPM motor and manufacturing method thereof
JP2014196539A (en) Magnetic steel sheet
JP4311127B2 (en) High tension non-oriented electrical steel sheet and method for producing the same
JP6339768B2 (en) Steel plate for rotor core of IPM motor excellent in field weakening and manufacturing method thereof
JP4507316B2 (en) DC brushless motor
JP6623795B2 (en) Electrical steel sheet and method for manufacturing electrical steel sheet
JP2014196538A (en) Magnetic steel sheet
JP6123234B2 (en) Electrical steel sheet
WO2022210895A1 (en) Rotating electric machine, set of iron core of stator and iron core of rotor, method for manufacturing rotating electric machine, method for manufacturing non-oriented electrical steel sheet for stator and non-oriented electrical steel sheet for rotor, method for manufacturing stator and rotor, and set of non-oriented electrical steel sheets
JP5515485B2 (en) Split motor core
JP5526701B2 (en) Motor core
JP6685491B2 (en) Non-oriented electrical steel sheet for motor and manufacturing method thereof
JP6110097B2 (en) High power reluctance motor steel core steel plate and manufacturing method thereof, rotor for reluctance motor using the same, stator and reluctance motor
JP2006249555A (en) Electrical steel sheet with low iron loss in high frequency region and method for producing the same
JP5826284B2 (en) Wire rods, steel wires having excellent magnetic properties, and methods for producing them

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140826

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141021

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150120

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150202

R150 Certificate of patent or registration of utility model

Ref document number: 5699642

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250