[go: up one dir, main page]

JP2011240344A - Water treatment apparatus for manufacturing ultrapure water - Google Patents

Water treatment apparatus for manufacturing ultrapure water Download PDF

Info

Publication number
JP2011240344A
JP2011240344A JP2011171580A JP2011171580A JP2011240344A JP 2011240344 A JP2011240344 A JP 2011240344A JP 2011171580 A JP2011171580 A JP 2011171580A JP 2011171580 A JP2011171580 A JP 2011171580A JP 2011240344 A JP2011240344 A JP 2011240344A
Authority
JP
Japan
Prior art keywords
water
gas
oxygen
dissolved
ultrapure water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011171580A
Other languages
Japanese (ja)
Inventor
Hiroshi Morita
博志 森田
Hiroto Tokoshima
裕人 床嶋
Nozomi Ikuno
望 育野
Tomohiko Kunugi
友彦 椚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2011171580A priority Critical patent/JP2011240344A/en
Publication of JP2011240344A publication Critical patent/JP2011240344A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Physical Water Treatments (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

【課題】被処理水にガス又はガス溶解水を添加するガス成分添加手段と、該ガス成分添加手段からの水に紫外線を照射して水中の被処理物質を分解する紫外線照射装置とを有する超純水製造用水処理装置において、ガス添加量を適切なものにする。
【解決手段】超純水の原水は貯留槽2に貯められ、供給配管3、供給ポンプ4を経由して送水され、酸素供給装置5によって酸素が添加された後、UV照射装置6、膜脱気装置7、イオン交換装置8、限外濾過装置9でそれぞれ処理が行われ、ユースポイントへ超純水が供給される。UV照射装置6の一次側のTOC濃度挙動に応じて、溶存酸素計13からの信号に基づいて酸素供給装置5からの酸素量を制御する。
【選択図】図1
A gas component addition means for adding gas or gas-dissolved water to water to be treated and an ultraviolet irradiation device for irradiating water from the gas component addition means with ultraviolet rays to decompose the material to be treated. In the water treatment apparatus for pure water production, the gas addition amount is made appropriate.
The raw water of ultrapure water is stored in a storage tank 2, supplied through a supply pipe 3 and a supply pump 4, and added with oxygen by an oxygen supply device 5. Processing is performed by the gas device 7, the ion exchange device 8, and the ultrafiltration device 9, respectively, and ultrapure water is supplied to the use point. The amount of oxygen from the oxygen supply device 5 is controlled based on the signal from the dissolved oxygen meter 13 according to the TOC concentration behavior on the primary side of the UV irradiation device 6.
[Selection] Figure 1

Description

本発明は紫外線照射装置を備えた超純水製造用水処理装置と、この超純水製造用水処理装置を備えた超純水製造用水処理システムとに関する。   The present invention relates to a water treatment apparatus for producing ultrapure water provided with an ultraviolet irradiation device, and a water treatment system for producing ultrapure water comprising this water treatment apparatus for producing ultrapure water.

シリコンウェハの洗浄等に用いられる超純水の製造装置は、一般に、前処理系システムの処理水が導入される1次純水系システムと、1次純水系システムの処理水が導入される2次純水系システム(サブシステム)とを備えている。1次純水系システムは、イオン交換装置、逆浸透膜装置、脱気装置、紫外線殺菌装置等により構成され、被処理水中に含まれる微粒子、イオン成分、有機物、コロイダル成分等の不純物の大部分を除去するものである。2次純水系システムは、1次純水系システムの処理水導入タンク、紫外線酸化装置、カートリッジポリシャ(非再生型混床式イオン交換装置)、限外濾過膜装置等により構成され、1次純水系システムの処理水中に残存する微量の不純物を取り除くものである(例えば、特開平9−253639号)。   In general, an apparatus for producing ultrapure water used for cleaning silicon wafers or the like is generally used in a primary pure water system into which treated water of a pretreatment system is introduced and a secondary in which treated water of a primary pure water system is introduced. And a pure water system (subsystem). The primary pure water system is composed of an ion exchange device, reverse osmosis membrane device, deaeration device, ultraviolet sterilization device, etc., and most of impurities such as fine particles, ionic components, organic substances, colloidal components contained in the water to be treated. To be removed. The secondary pure water system includes a treated water introduction tank, an ultraviolet oxidizer, a cartridge polisher (non-regenerative mixed bed ion exchanger), an ultrafiltration membrane device, and the like of the primary pure water system. It removes a trace amount of impurities remaining in the treated water of the system (for example, JP-A-9-253639).

この特開平9−253639号には、1次純水システムからの純水から溶存窒素を脱ガス装置で除去した後、酸素又はオゾンを添加し、次いで紫外線照射装置に供給することによりTOCの酸化分解効率を向上させることが記載されている。同号公報の0015段落には、紫外線照射装置で処理される水中に溶存酸素が存在していると、紫外線照射によってヒドロキシラジカルや過酸化水素が生成し、TOC分解効率が向上すると記載されている。   In JP-A-9-253639, after removing dissolved nitrogen from pure water from a primary pure water system by a degassing device, oxygen or ozone is added, and then supplied to an ultraviolet irradiation device to oxidize TOC. It is described that the decomposition efficiency is improved. In paragraph 0015 of the same publication, if dissolved oxygen is present in the water treated by the ultraviolet irradiation apparatus, it is described that hydroxyl radicals and hydrogen peroxide are generated by the ultraviolet irradiation, and the TOC decomposition efficiency is improved. .

特開平9−253639JP-A-9-253639

本発明は、被処理水にガス又はガス溶解水を添加するガス成分添加手段と、該ガス成分添加手段からの水に紫外線を照射して水中の被処理物質を分解する紫外線照射装置とを有する超純水製造用水処理装置において、ガス成分添加量を適切なものにすることを目的とする。   The present invention has a gas component addition means for adding gas or gas-dissolved water to the water to be treated, and an ultraviolet irradiation device for irradiating the water from the gas component addition means with ultraviolet rays to decompose the material to be treated. An object of the present invention is to make an appropriate amount of gas component addition in a water treatment apparatus for producing ultrapure water.

本発明は、その一態様において、適正な酸素添加量にて有機物(TOC成分)を十分に分解することができる超純水製造用水処理装置及び超純水製造用水処理システムを提供することを目的とする。   In one aspect of the present invention, an object of the present invention is to provide a water treatment device for producing ultrapure water and a water treatment system for producing ultrapure water that can sufficiently decompose an organic substance (TOC component) with an appropriate oxygen addition amount. And

また、本発明は、別の一態様において、適正な水素添加量にて過酸化水素を十分に分解することができる超純水製造用水処理装置及び超純水製造用水処理システムを提供することを目的とする。   In another aspect, the present invention provides an ultrapure water production water treatment device and an ultrapure water production water treatment system capable of sufficiently decomposing hydrogen peroxide with an appropriate hydrogen addition amount. Objective.

本発明(請求項1)の超純水製造用水処理装置は、被処理水にガス又はガス溶解水を添加するガス成分添加手段と、該ガス成分添加手段からの水に紫外線を照射して水中の被処理物質を分解する紫外線照射装置とを有する超純水製造用水処理装置において、該紫外線照射装置の前段又は後段に設けられた、水中の被処理物質濃度、ガス成分濃度又は生成物濃度を測定する測定手段と、該測定手段の測定結果に基づいて前記ガス成分添加手段によるガス又はガス溶解水の添加量を制御する制御手段と、を備えたことを特徴とするものである。   The water treatment apparatus for producing ultrapure water according to the present invention (Claim 1) includes a gas component addition means for adding gas or gas-dissolved water to the water to be treated, and water from the gas component addition means by irradiating the water with ultraviolet rays. In an ultrapure water production water treatment device having an ultraviolet irradiation device for decomposing the material to be treated, the concentration of the material to be treated, the gas component concentration or the product concentration in the water provided in the preceding stage or the subsequent stage of the ultraviolet irradiation device. Measuring means for measuring, and control means for controlling the amount of gas or gas dissolved water added by the gas component adding means based on the measurement result of the measuring means.

請求項2の超純水製造用水処理装置は、請求項1において、前記被処理物質は有機物であり、前記ガスは酸素であり、前記測定手段は、溶存酸素濃度を前記ガス成分添加手段の前段及び前記紫外線照射装置の後段の少なくとも一方で測定するものであることを特徴とするものである。   A water treatment apparatus for producing ultrapure water according to a second aspect is the water treatment apparatus according to the first aspect, wherein the material to be treated is an organic substance, the gas is oxygen, and the measuring means sets the dissolved oxygen concentration to the upstream of the gas component addition means. And it measures by at least one of the back | latter stage of the said ultraviolet irradiation device, It is characterized by the above-mentioned.

請求項3の超純水製造用水処理装置は、請求項1において、前記被処理物質は有機物であり、前記ガスは酸素であり、前記測定手段は、溶存酸素濃度及び溶存有機物濃度を前記添加手段の前段及び前記紫外線照射装置の後段の少なくとも一方で測定するものであることを特徴とするものである。   The water treatment apparatus for producing ultrapure water according to claim 3 is the water treatment apparatus according to claim 1, wherein the material to be treated is an organic substance, the gas is oxygen, and the measuring means is a means for adding dissolved oxygen concentration and dissolved organic substance concentration to the adding means. , And at least one of the subsequent stage of the ultraviolet irradiation device.

請求項4の超純水製造用水処理装置は、請求項1において、前記ガスは水素であり、前記被処理水中の被処理物質は過酸化水素であり、前記測定手段は、前記紫外線照射装置からの水中の溶存水素濃度を測定するものであることを特徴とするものである。   According to a fourth aspect of the present invention, there is provided a water treatment apparatus for producing ultrapure water according to the first aspect, wherein the gas is hydrogen, the substance to be treated in the water to be treated is hydrogen peroxide, and the measuring means is from the ultraviolet irradiation apparatus. It measures the dissolved hydrogen concentration in water.

請求項5の超純水製造用水処理装置は、請求項1において、前記ガスは水素であり、前記被処理水中の被処理物質は過酸化水素であり、前記測定手段は、前記紫外線照射装置からの水中の溶存過酸化水素濃度を測定するものであることを特徴とするものである。   The ultrapure water production water treatment device according to claim 5 is the water treatment device according to claim 1, wherein the gas is hydrogen, the material to be treated in the water to be treated is hydrogen peroxide, and the measuring means is from the ultraviolet irradiation device. It measures the dissolved hydrogen peroxide concentration in water.

請求項6の超純水製造用水処理システムは、第1の超純水製造用水処理装置と、該第1の超純水製造用水処理装置からの処理水を処理する第2の超純水製造用水処理装置とを備えてなる超純水製造用水処理システムにおいて、該第1の超純水製造用水処理装置は請求項2又は3に記載の超純水製造用水処理装置であり、該第2の超純水製造用水処理装置は請求項4又は5に記載の超純水製造用水処理装置であることを特徴とするものである。   The water treatment system for producing ultrapure water according to claim 6 is a first ultrapure water production water treatment device and a second ultrapure water production for treating treated water from the first ultrapure water production water treatment device. A water treatment system for producing ultrapure water comprising a water treatment device, wherein the first ultrapure water production water treatment device is the water treatment device for ultrapure water production according to claim 2, wherein the second The ultrapure water production water treatment device is the ultrapure water production water treatment device according to claim 4 or 5.

請求項1の超純水製造用水処理装置によると、被処理物質濃度、ガス成分濃度又は生成物濃度に応じてガス又はガス溶解水を水に添加するので、ガス又はガス溶解水の添加量を適正量とすることができる。   According to the water treatment apparatus for producing ultrapure water according to claim 1, gas or gas-dissolved water is added to water according to the concentration of the substance to be treated, gas component concentration or product concentration. An appropriate amount can be obtained.

請求項2,3の超純水製造用水処理装置によれば酸素の添加量を適正量とすることができる。   According to the water treatment apparatus for producing ultrapure water according to claims 2 and 3, the amount of oxygen added can be set to an appropriate amount.

請求項4,5の超純水製造用水処理装置によれば、水素の添加量を適正量とすることができる。   According to the water treatment apparatus for producing ultrapure water according to claims 4 and 5, the amount of hydrogen to be added can be set to an appropriate amount.

請求項6の超純水製造用水処理システムによれば、適正量の酸素及び水素を添加して有機物及び過酸化水素を十分に除去することができる。   According to the water treatment system for producing ultrapure water according to the sixth aspect, the organic substances and hydrogen peroxide can be sufficiently removed by adding appropriate amounts of oxygen and hydrogen.

実施の形態に係る超純水製造用水処理装置及び超純水製造用水処理システムの系統図である。1 is a system diagram of a water treatment apparatus for producing ultrapure water and a water treatment system for producing ultrapure water according to an embodiment. 別の実施の形態に係る超純水製造用水処理装置及び超純水製造用水処理システムの系統図である。It is a systematic diagram of a water treatment apparatus for producing ultrapure water and a water treatment system for producing ultrapure water according to another embodiment.

以下、本発明についてさらに詳細に説明する。なお、以下、紫外線をUVと記載することがある。   Hereinafter, the present invention will be described in more detail. Hereinafter, ultraviolet rays may be described as UV.

まず、UV照射によるTOC成分分解機構とH発生抑制機構について説明する。 First, the TOC component decomposition mechanism by UV irradiation and the H 2 O 2 generation suppression mechanism will be described.

通常、水はUVの照射エネルギーによって励起され次式のようにHラジカルとOHラジカルに解離し、瞬時にまた水に戻る反応を繰り返している。   Usually, water is excited by UV irradiation energy, dissociates into H radicals and OH radicals as shown in the following formula, and repeats the reaction of returning to water instantly.

Figure 2011240344
Figure 2011240344

解離したOHラジカルの一部がTOC成分と反応し、TOC成分酸化分解に寄与するが、大部分は再結合して水に戻る。TOC成分分解量を上げるためにはTOC成分と反応するOHラジカル量を増やす必要がある。   A part of the dissociated OH radical reacts with the TOC component and contributes to the TOC component oxidative decomposition, but most recombines and returns to water. In order to increase the amount of TOC component decomposition, it is necessary to increase the amount of OH radicals that react with the TOC component.

本発明請求項2、3のようにUV照射の一次側に酸素ガス又は酸素溶解水を注入した場合、次式のようにして、解離した一部のHラジカルと注入した酸素源が結合し、水に戻る反応が起こる。このとき水が解離して生成されたOHラジカルの一部が余り、このOHラジカルがTOC成分の酸化分解に寄与し、TOC成分分解効率を上げていると考えられる。   When oxygen gas or oxygen-dissolved water is injected on the primary side of UV irradiation as in claims 2 and 3 of the present invention, the dissociated part of the H radicals and the injected oxygen source are combined as follows: A reaction to return to water occurs. At this time, a part of the OH radical generated by the dissociation of water remains, and this OH radical contributes to the oxidative decomposition of the TOC component, and is considered to increase the TOC component decomposition efficiency.

Figure 2011240344
Figure 2011240344

UV照射によるH発生機構は次式のように考えられている。 The mechanism of generating H 2 O 2 by UV irradiation is considered as follows.

Figure 2011240344
Figure 2011240344

即ち、UV照射によって、HラジカルとOHラジカルが生成し、その大部分は再結合して水に戻るが、一部のOHラジカル同士が結合することによりHが生成する。このときHラジカル同士も結合しHが生成すると考えられる。 That is, H radicals and OH radicals are generated by UV irradiation, and most of them are recombined to return to water, but H 2 O 2 is generated by binding of some OH radicals. At this time, it is considered that H radicals are also bonded to form H 2 .

このときUV照射の一次側に水素源を注入した場合の反応式を次に示す。   At this time, the reaction formula when a hydrogen source is injected on the primary side of UV irradiation is shown below.

Figure 2011240344
Figure 2011240344

この反応では、水の解離により生じたOHラジカルの一部が、注入したHと結合し水に戻る反応が起こるため、Hの生成量が減少すると考えられる。 In this reaction, a part of the OH radicals generated by the dissociation of water is combined with the injected H 2 and returns to water, so that the amount of H 2 O 2 produced is thought to decrease.

第1図は、酸素注入によってTOC成分除去効果を高めるようにした請求項2、3の実施の形態に係る超純水製造用水処理装置の説明図である。   FIG. 1 is an explanatory view of a water treatment apparatus for producing ultrapure water according to embodiments of claims 2 and 3 in which the TOC component removal effect is enhanced by oxygen injection.

超純水製造の原水は貯留槽2に貯められ、供給配管3、供給ポンプ4を経由して送水され、酸素供給装置5によって酸素が添加された後、UV照射装置6、膜脱気装置7、イオン交換装置8、限外濾過装置9でそれぞれ処理が行われて超純水となり、ユースポイントへ供給される。そして、ユースポイントで使用されなかった超純水は超純水戻り配管10を経由して、貯留槽2に返送される。ユースポイントで使用された水量分は、補給配管1を経由して、貯留槽2に純水が補給される。   Raw water for the production of ultrapure water is stored in the storage tank 2, supplied through a supply pipe 3 and a supply pump 4, and after oxygen is added by an oxygen supply device 5, a UV irradiation device 6 and a membrane deaeration device 7. Each of the ion exchange device 8 and the ultrafiltration device 9 is treated to form ultrapure water, which is supplied to the use point. Then, the ultrapure water not used at the use point is returned to the storage tank 2 via the ultrapure water return pipe 10. Pure water is supplied to the storage tank 2 through the supply pipe 1 for the amount of water used at the use point.

酸素供給装置5としては、酸素ガスを注入するものであっても良く、酸素水を注入するものであっても良いが、酸素水を注入するタイプの方が、酸素添加量の制御が容易であり、好ましい。   The oxygen supply device 5 may be one that injects oxygen gas or one that injects oxygen water, but the oxygen injection amount is easier to control in the type in which oxygen water is injected. Yes, it is preferable.

酸素供給装置5によって酸素が添加される前のUV照射装置6の一次側の水の一部は、サンプリング配管11からサンプリング弁12にて流量調整され、溶存酸素計13とTOC計14に送られる。溶存酸素計13とTOC計14に特に制限はない。   A part of the water on the primary side of the UV irradiation device 6 before oxygen is added by the oxygen supply device 5 is adjusted in flow rate by the sampling valve 12 from the sampling pipe 11 and sent to the dissolved oxygen meter 13 and the TOC meter 14. . There are no particular restrictions on the dissolved oxygen meter 13 and the TOC meter 14.

この実施の形態では、UV照射装置6からの処理水の一部を、サンプリング配管15及び流量調整弁16を介して溶存酸素計13及びTOC計14に導入し、UV処理水中の溶存酸素濃度及びTOC濃度を測定する。さらに、限外濾過装置9を透過した超純水の一部をサンプリング配管17及び流量調整弁18を介して溶存酸素計13及びTOC計14に導入し、超純水中の酸素濃度及びTOC濃度を測定する。   In this embodiment, a part of the treated water from the UV irradiation apparatus 6 is introduced into the dissolved oxygen meter 13 and the TOC meter 14 via the sampling pipe 15 and the flow rate adjusting valve 16, and the dissolved oxygen concentration in the UV treated water and Measure TOC concentration. Further, a part of the ultrapure water that has passed through the ultrafiltration device 9 is introduced into the dissolved oxygen meter 13 and the TOC meter 14 via the sampling pipe 17 and the flow rate adjusting valve 18, and the oxygen concentration and the TOC concentration in the ultrapure water. Measure.

この実施の形態では、UV照射装置6の一次側のTOC濃度挙動に応じて、溶存酸素計13からの信号に基づいて酸素供給装置5からの酸素量を制御する。具体的には、例えばUV照射装置6からの流出水中の溶存酸素濃度が約0.5〜50ppbとなるように酸素供給装置5を制御する。   In this embodiment, the amount of oxygen from the oxygen supply device 5 is controlled based on the signal from the dissolved oxygen meter 13 in accordance with the TOC concentration behavior on the primary side of the UV irradiation device 6. Specifically, for example, the oxygen supply device 5 is controlled so that the dissolved oxygen concentration in the effluent from the UV irradiation device 6 is about 0.5 to 50 ppb.

酸素注入量は、システム構成などによるため一概ではないが、未反応の酸素や酸素を注入して増加した分のHが分解することによって生じる酸素などが、後段の膜脱気装置18で除去できる範囲で、システム出口溶存酸素濃度に影響を及ぼさない範囲に限られる。その注入量は上記の通りUV照射装置6からの流出水中の溶存酸素濃度が約0.5〜50ppb、例えば概ね10ppb程度となる量が好ましいが、1ppb程度でも効果が見込まれる。 The amount of oxygen injection is not general because it depends on the system configuration or the like, but unreacted oxygen or oxygen generated by the decomposition of the increased amount of H 2 O 2 by injecting oxygen is used as the membrane deaerator 18 in the subsequent stage. However, it is limited to the range that does not affect the dissolved oxygen concentration at the system outlet. The injection amount is preferably such that the dissolved oxygen concentration in the effluent from the UV irradiation apparatus 6 is about 0.5 to 50 ppb, for example, about 10 ppb, but the effect is expected even at about 1 ppb.

第2図は、水素注入によって過酸化水素を除去するようにした請求項4、5の超純水製造用水処理装置の系統図である。   FIG. 2 is a system diagram of the water treatment apparatus for producing ultrapure water according to claims 4 and 5, wherein hydrogen peroxide is removed by hydrogen injection.

この実施の形態では、ポンプ4からUV照射装置6へ送られる純水に対し、水素供給装置20から水素を添加する。この水素は、ガスであってもよく、水素溶解水であってもよいが、水素溶解水の方が、注入量制御が容易であり、好ましい。   In this embodiment, hydrogen is added from the hydrogen supply device 20 to the pure water sent from the pump 4 to the UV irradiation device 6. The hydrogen may be a gas or hydrogen-dissolved water, but hydrogen-dissolved water is preferable because the injection amount can be easily controlled.

この実施の形態では、UV照射装置6からの流出水の一部をサンプリング配管15及び流量調整弁16を介して溶存水素計21及び溶存過酸化水素計22へ送り、溶存水素濃度及び溶存過酸化水素濃度を測定している。   In this embodiment, a part of the effluent water from the UV irradiation device 6 is sent to the dissolved hydrogen meter 21 and the dissolved hydrogen peroxide meter 22 through the sampling pipe 15 and the flow rate adjusting valve 16, and the dissolved hydrogen concentration and dissolved peroxidation. The hydrogen concentration is measured.

この溶存水素計21及び溶存過酸化水素計22の測定値に基づいて、水素供給装置20からの水素注入量を制御する。この制御は、溶存水素計21における水素濃度が1〜50ppb特に2〜10ppbとなるように行われるのが好ましい。   Based on the measured values of the dissolved hydrogen meter 21 and the dissolved hydrogen peroxide meter 22, the amount of hydrogen injected from the hydrogen supply device 20 is controlled. This control is preferably performed so that the hydrogen concentration in the dissolved hydrogen meter 21 is 1 to 50 ppb, particularly 2 to 10 ppb.

第2図のその他の構成及び作動は第1図と同様であり、同一符号は同一部分を示している。   Other configurations and operations in FIG. 2 are the same as those in FIG. 1, and the same reference numerals denote the same parts.

本発明では、上記第1図の超純水製造用水処理装置の限外濾過装置9からの流出水を第2図の装置に供給し、水素添加UV照射処理を行って超純水を製造するようにしてもよい。   In the present invention, the effluent water from the ultrafiltration device 9 of the water treatment device for producing ultrapure water shown in FIG. 1 is supplied to the device shown in FIG. 2, and hydrogenated UV irradiation treatment is performed to produce ultrapure water. You may do it.

以下、実施例及び比較例について説明する。   Hereinafter, examples and comparative examples will be described.

実施例1
第1図に示すシステムを次の条件で稼動させた。
Example 1
The system shown in FIG. 1 was operated under the following conditions.

補給水中のTOC濃度…9ppb
補給水中の溶存酸素濃度…1.5ppb
低圧UVランプ…日本フォトサイエンス社製 低圧UVランプ
酸素供給装置…栗田工業(株)製酸素水供給装置
TOC計…シーバース社シーバース500RL
溶存酸素計…ハックウルトラアナリティクスジャパン製溶存酸素計モデル3610
ポンプ4からの送水量…6m/h
超純水中要求酸素濃度…5ppb以下
超純水中要求TOC濃度…3ppb以下
この実施例1では、溶存酸素計13でポンプ4吐出水中の溶存酸素濃度を測定し、この測定値に基づいて、酸素供給装置5からの注入量を制御し、UV照射装置一次側の溶存酸素濃度から1ppb増加させた。UV照射装置一次側の溶存酸素濃度は1ppbであった。
TOC concentration in make-up water ... 9ppb
Dissolved oxygen concentration in make-up water ... 1.5ppb
Low pressure UV lamp ... Nippon Photo Science Co., Ltd. Low pressure UV lamp Oxygen supply device ... Kurita Kogyo Co., Ltd. oxygen water supply device TOC meter ... Seaverse Seaverse 500RL
Dissolved oxygen meter ... Hack Ultra Analytics Japan's dissolved oxygen meter model 3610
Amount of water supplied from the pump 4 ... 6 m 3 / h
Ultrapure water required oxygen concentration: 5 ppb or less Ultrapure water required TOC concentration: 3 ppb or less In this Example 1, the dissolved oxygen meter 13 measured the dissolved oxygen concentration in the pump 4 discharge water, and based on this measured value, The injection amount from the oxygen supply device 5 was controlled, and the dissolved oxygen concentration on the primary side of the UV irradiation device was increased by 1 ppb. The dissolved oxygen concentration on the primary side of the UV irradiation apparatus was 1 ppb.

酸素注入の結果、UV照射装置一次側のTOC濃度が5ppbのとき、ユースポイントへ送水される超純水中のTOC濃度は1ppb、溶存酸素濃度は1ppb以下であった。   As a result of oxygen injection, when the TOC concentration on the primary side of the UV irradiation apparatus was 5 ppb, the TOC concentration in the ultrapure water fed to the use point was 1 ppb, and the dissolved oxygen concentration was 1 ppb or less.

比較例1
実施例1の運転を継続した後、酸素供給装置5から酸素注入を停止して比較例の運転を行った。酸素注入を停止した時点から、ユースポイントへ供給される超純水中のTOC濃度は上がり始め、最終的には超純水中のTOC濃度は4ppbにまで上昇した。
Comparative Example 1
After the operation of Example 1 was continued, the oxygen injection was stopped from the oxygen supply device 5 and the operation of the comparative example was performed. From the time when the oxygen injection was stopped, the TOC concentration in the ultrapure water supplied to the use point began to increase, and finally the TOC concentration in the ultrapure water increased to 4 ppb.

実施例2
第2図に示すシステムを次の条件で稼動させた。その他の条件は実施例1と同一である。
Example 2
The system shown in FIG. 2 was operated under the following conditions. Other conditions are the same as those in the first embodiment.

水素供給装置…栗田工業(株)製水素水供給装置
溶存水素計…ハックウルトラアナリティクスジャパン製溶存水素計モデル3600
溶存過酸化水素計…栗田工業(株)製過酸化水素モニター
貯留槽2からの純水中の溶存水素濃度…0ppb
貯留槽2からの純水中の溶存過酸化水素濃度…0ppb
溶存水素計21の検出値が10ppbとなるように水素溶解水を水素供給装置20から添加した。その結果、過酸化水素計22の検出過酸化水素濃度は5ppbとなった。
Hydrogen supply device ... Hydrogen water supply device manufactured by Kurita Kogyo Co., Ltd. Dissolved hydrogen meter ... Dissolved hydrogen meter model 3600 manufactured by Hack Ultra Analytics Japan
Dissolved hydrogen peroxide meter ... Hydrogen peroxide monitor manufactured by Kurita Kogyo Co., Ltd. Dissolved hydrogen concentration in pure water from storage tank 2 ... 0 ppb
Dissolved hydrogen peroxide concentration in pure water from storage tank 2 ... 0 ppb
Hydrogen-dissolved water was added from the hydrogen supply device 20 so that the detected value of the dissolved hydrogen meter 21 was 10 ppb. As a result, the hydrogen peroxide concentration detected by the hydrogen peroxide meter 22 was 5 ppb.

比較例2
実施例2の運転を継続した後、水素供給装置20からの水素添加を停止した。その結果、過酸化水素計22の検出値は20ppbにまで上昇した。
Comparative Example 2
After the operation of Example 2 was continued, the hydrogen addition from the hydrogen supply device 20 was stopped. As a result, the detection value of the hydrogen peroxide meter 22 increased to 20 ppb.

以上の実施例及び比較例より明らかな通り、低溶存酸素(5ppb以下)状態において、低濃度(5ppb以下)までTOCをUV照射装置により分解する場合、本発明によると、従来技術よりもUV照射出力を低くすることが可能となる。また、UV照射にともなって発生するH濃度を低減することが可能となった。 As is clear from the above examples and comparative examples, when the TOC is decomposed to a low concentration (5 ppb or less) by a UV irradiation apparatus in a low dissolved oxygen (5 ppb or less) state, according to the present invention, the UV irradiation is performed more than the conventional technique. The output can be lowered. In addition, the H 2 O 2 concentration generated with UV irradiation can be reduced.

5 酸素供給装置
6 紫外線照射装置
7 膜脱気装置
8 イオン交換装置
9 限外濾過装置
20 水素供給装置
5 Oxygen supply device 6 Ultraviolet irradiation device 7 Membrane degassing device 8 Ion exchange device 9 Ultrafiltration device 20 Hydrogen supply device

本発明は紫外線照射装置を備えた超純水製造用水処理装置に関する。 The present invention relates to the ultrapure water production water treatment equipment provided with a ultraviolet irradiation device.

シリコンウェハの洗浄等に用いられる超純水の製造装置は、一般に、前処理系システムの処理水が導入される1次純水系システムと、1次純水系システムの処理水が導入される2次純水系システム(サブシステム)とを備えている。1次純水系システムは、イオン交換装置、逆浸透膜装置、脱気装置、紫外線殺菌装置等により構成され、被処理水中に含まれる微粒子、イオン成分、有機物、コロイダル成分等の不純物の大部分を除去するものである。2次純水系システムは、1次純水系システムの処理水導入タンク、紫外線酸化装置、カートリッジポリシャ(非再生型混床式イオン交換装置)、限外濾過膜装置等により構成され、1次純水系システムの処理水中に残存する微量の不純物を取り除くものである(例えば、特開平9−253639号)。   In general, an apparatus for producing ultrapure water used for cleaning silicon wafers or the like is generally used in a primary pure water system into which treated water of a pretreatment system is introduced and a secondary in which treated water of a primary pure water system is introduced. And a pure water system (subsystem). The primary pure water system is composed of an ion exchange device, reverse osmosis membrane device, deaeration device, ultraviolet sterilization device, etc., and most of impurities such as fine particles, ionic components, organic substances, colloidal components contained in the water to be treated. To be removed. The secondary pure water system includes a treated water introduction tank, an ultraviolet oxidizer, a cartridge polisher (non-regenerative mixed bed ion exchanger), an ultrafiltration membrane device, and the like of the primary pure water system. It removes a trace amount of impurities remaining in the treated water of the system (for example, JP-A-9-253639).

この特開平9−253639号には、1次純水システムからの純水から溶存窒素を脱ガス装置で除去した後、酸素又はオゾンを添加し、次いで紫外線照射装置に供給することによりTOCの酸化分解効率を向上させることが記載されている。同号公報の0015段落には、紫外線照射装置で処理される水中に溶存酸素が存在していると、紫外線照射によってヒドロキシラジカルや過酸化水素が生成し、TOC分解効率が向上すると記載されている。   In JP-A-9-253639, after removing dissolved nitrogen from pure water from a primary pure water system by a degassing device, oxygen or ozone is added, and then supplied to an ultraviolet irradiation device to oxidize TOC. It is described that the decomposition efficiency is improved. In paragraph 0015 of the same publication, if dissolved oxygen is present in the water treated by the ultraviolet irradiation apparatus, it is described that hydroxyl radicals and hydrogen peroxide are generated by the ultraviolet irradiation, and the TOC decomposition efficiency is improved. .

特開平9−253639JP-A-9-253639

本発明は、被処理水にガス又はガス溶解水を添加するガス成分添加手段と、該ガス成分添加手段からの水に紫外線を照射して水中の被処理物質を分解する紫外線照射装置とを有する超純水製造用水処理装置において、ガス成分添加量を適切なものにすることを目的とする。   The present invention has a gas component addition means for adding gas or gas-dissolved water to the water to be treated, and an ultraviolet irradiation device for irradiating the water from the gas component addition means with ultraviolet rays to decompose the material to be treated. An object of the present invention is to make an appropriate amount of gas component addition in a water treatment apparatus for producing ultrapure water.

本発明は、その一態様において、適正な酸素添加量にて有機物(TOC成分)を十分に分解することができる超純水製造用水処理装置を提供することを目的とする The present invention, in one aspect thereof, and to provide ultrapure water production water treatment equipment which can sufficiently decompose the organic matter (TOC component) in proper oxygenation.

本発明(請求項1)の超純水製造用水処理装置は、被処理水にガス又はガス溶解水を添加するガス成分添加手段と、該ガス成分添加手段からの水に紫外線を照射して水中の被処理物質を分解する紫外線照射装置とを有する超純水製造用水処理装置において、前記被処理物質は有機物であり、前記ガスは酸素であり、該紫外線照射装置の前段及び後段に設けられた溶存酸素度測定手段と、該測定手段の測定結果に基づいて前記ガス成分添加手段によるガス又はガス溶解水の添加量を制御する制御手段と、を備えたことを特徴とするものである。 The water treatment apparatus for producing ultrapure water according to the present invention (Claim 1) includes a gas component addition means for adding gas or gas-dissolved water to the water to be treated, and water from the gas component addition means by irradiating with ultraviolet rays to In the water treatment apparatus for producing ultrapure water having an ultraviolet irradiation device for decomposing the material to be treated, the material to be treated is an organic substance, and the gas is oxygen, provided at the front and rear stages of the ultraviolet irradiation device. and the dissolved oxygen concentration Dohaka constant means, is characterized in that and a control means for controlling the amount of gas or gas-dissolved water by the gas component addition means based on the measurement result of the measuring means .

請求項2の超純水製造用水処理装置は、請求項1において、記測定手段は、溶存酸素濃度を前記ガス成分添加手段の前段及び前記紫外線照射装置の後段で測定するものであることを特徴とするものである。 It ultrapure water production water treatment apparatus according to claim 2, in claim 1, before Symbol measuring means is for measuring the dissolved oxygen concentration in the stage after the preceding stage and the ultraviolet irradiation apparatus of the gas component addition means It is characterized by.

請求項3の超純水製造用水処理装置は、請求項1又は2において、更に、水中の溶存有機物濃度を前記ガス成分添加手段の前段及び前記紫外線照射装置の後段の少なくとも一方で測定する手段を有することを特徴とするものである The water treatment apparatus for producing ultrapure water according to claim 3 is the water treatment apparatus according to claim 1 or 2 , further comprising means for measuring the concentration of dissolved organic matter in water at least one of the front stage of the gas component addition means and the rear stage of the ultraviolet irradiation device. It is characterized by having .

請求項1の超純水製造用水処理装置によると、溶存酸素濃度に応じてガス又はガス溶解水を水に添加するので、酸素の添加量を適正量とすることができる According to an ultrapure water production water treatment apparatus of claim 1, the gas or gas dissolved water so added to water, it can be an appropriate amount of the amount of oxygen in response to dissolved oxygen concentration.

実施の形態に係る超純水製造用水処理装置及び超純水製造用水処理システムの系統図である。1 is a system diagram of a water treatment apparatus for producing ultrapure water and a water treatment system for producing ultrapure water according to an embodiment. 参考例に係る超純水製造用水処理装置及び超純水製造用水処理システムの系統図である。It is a systematic diagram of a water treatment device for ultrapure water production and a water treatment system for ultrapure water production according to a reference example .

以下、本発明についてさらに詳細に説明する。なお、以下、紫外線をUVと記載することがある。   Hereinafter, the present invention will be described in more detail. Hereinafter, ultraviolet rays may be described as UV.

まず、UV照射によるTOC成分分解機構とH発生抑制機構について説明する。 First, the TOC component decomposition mechanism by UV irradiation and the H 2 O 2 generation suppression mechanism will be described.

通常、水はUVの照射エネルギーによって励起され次式のようにHラジカルとOHラジカルに解離し、瞬時にまた水に戻る反応を繰り返している。   Usually, water is excited by UV irradiation energy, dissociates into H radicals and OH radicals as shown in the following formula, and repeats the reaction of returning to water instantly.

Figure 2011240344
Figure 2011240344

解離したOHラジカルの一部がTOC成分と反応し、TOC成分酸化分解に寄与するが、大部分は再結合して水に戻る。TOC成分分解量を上げるためにはTOC成分と反応するOHラジカル量を増やす必要がある。   A part of the dissociated OH radical reacts with the TOC component and contributes to the TOC component oxidative decomposition, but most recombines and returns to water. In order to increase the amount of TOC component decomposition, it is necessary to increase the amount of OH radicals that react with the TOC component.

本発明のようにUV照射の一次側に酸素ガス又は酸素溶解水を注入した場合、次式のようにして、解離した一部のHラジカルと注入した酸素源が結合し、水に戻る反応が起こる。このとき水が解離して生成されたOHラジカルの一部が余り、このOHラジカルがTOC成分の酸化分解に寄与し、TOC成分分解効率を上げていると考えられる。 If this onset bright oxygen gas or oxygen-dissolved water in the primary side of the UV irradiation as has been injected, as follows, source of oxygen injected as part of H radicals dissociated binds returns to the water reaction Happens. At this time, a part of the OH radical generated by the dissociation of water remains, and this OH radical contributes to the oxidative decomposition of the TOC component, and is considered to increase the TOC component decomposition efficiency.

Figure 2011240344
Figure 2011240344

UV照射によるH発生機構は次式のように考えられている。 The mechanism of generating H 2 O 2 by UV irradiation is considered as follows.

Figure 2011240344
Figure 2011240344

即ち、UV照射によって、HラジカルとOHラジカルが生成し、その大部分は再結合して水に戻るが、一部のOHラジカル同士が結合することによりHが生成する。このときHラジカル同士も結合しHが生成すると考えられる。 That is, H radicals and OH radicals are generated by UV irradiation, and most of them are recombined to return to water, but H 2 O 2 is generated by binding of some OH radicals. At this time, it is considered that H radicals are also bonded to form H 2 .

このときUV照射の一次側に水素源を注入した場合の反応式を次に示す。   At this time, the reaction formula when a hydrogen source is injected on the primary side of UV irradiation is shown below.

Figure 2011240344
Figure 2011240344

この反応では、水の解離により生じたOHラジカルの一部が、注入したHと結合し水に戻る反応が起こるため、Hの生成量が減少すると考えられる。 In this reaction, a part of the OH radicals generated by the dissociation of water is combined with the injected H 2 and returns to water, so that the amount of H 2 O 2 produced is thought to decrease.

第1図は、酸素注入によってTOC成分除去効果を高めるようにした実施の形態に係る超純水製造用水処理装置の説明図である。 Figure 1 is an illustration of the ultrapure water production water treatment apparatus according to implementation in a form so as to increase the TOC component removing effect by oxygen implantation.

超純水製造の原水は貯留槽2に貯められ、供給配管3、供給ポンプ4を経由して送水され、酸素供給装置5によって酸素が添加された後、UV照射装置6、膜脱気装置7、イオン交換装置8、限外濾過装置9でそれぞれ処理が行われて超純水となり、ユースポイントへ供給される。そして、ユースポイントで使用されなかった超純水は超純水戻り配管10を経由して、貯留槽2に返送される。ユースポイントで使用された水量分は、補給配管1を経由して、貯留槽2に純水が補給される。   Raw water for the production of ultrapure water is stored in the storage tank 2, supplied through a supply pipe 3 and a supply pump 4, and after oxygen is added by an oxygen supply device 5, a UV irradiation device 6 and a membrane deaeration device 7. Each of the ion exchange device 8 and the ultrafiltration device 9 is treated to form ultrapure water, which is supplied to the use point. Then, the ultrapure water not used at the use point is returned to the storage tank 2 via the ultrapure water return pipe 10. Pure water is supplied to the storage tank 2 through the supply pipe 1 for the amount of water used at the use point.

酸素供給装置5としては、酸素ガスを注入するものであっても良く、酸素水を注入するものであっても良いが、酸素水を注入するタイプの方が、酸素添加量の制御が容易であり、好ましい。   The oxygen supply device 5 may be one that injects oxygen gas or one that injects oxygen water, but the oxygen injection amount is easier to control in the type in which oxygen water is injected. Yes, it is preferable.

酸素供給装置5によって酸素が添加される前のUV照射装置6の一次側の水の一部は、サンプリング配管11からサンプリング弁12にて流量調整され、溶存酸素計13とTOC計14に送られる。溶存酸素計13とTOC計14に特に制限はない。   A part of the water on the primary side of the UV irradiation device 6 before oxygen is added by the oxygen supply device 5 is adjusted in flow rate by the sampling valve 12 from the sampling pipe 11 and sent to the dissolved oxygen meter 13 and the TOC meter 14. . There are no particular restrictions on the dissolved oxygen meter 13 and the TOC meter 14.

この実施の形態では、UV照射装置6からの処理水の一部を、サンプリング配管15及び流量調整弁16を介して溶存酸素計13及びTOC計14に導入し、UV処理水中の溶存酸素濃度及びTOC濃度を測定する。さらに、限外濾過装置9を透過した超純水の一部をサンプリング配管17及び流量調整弁18を介して溶存酸素計13及びTOC計14に導入し、超純水中の酸素濃度及びTOC濃度を測定する。   In this embodiment, a part of the treated water from the UV irradiation apparatus 6 is introduced into the dissolved oxygen meter 13 and the TOC meter 14 via the sampling pipe 15 and the flow rate adjusting valve 16, and the dissolved oxygen concentration in the UV treated water and Measure TOC concentration. Further, a part of the ultrapure water that has passed through the ultrafiltration device 9 is introduced into the dissolved oxygen meter 13 and the TOC meter 14 via the sampling pipe 17 and the flow rate adjusting valve 18, and the oxygen concentration and the TOC concentration in the ultrapure water. Measure.

この実施の形態では、UV照射装置6の一次側のTOC濃度挙動に応じて、溶存酸素計13からの信号に基づいて酸素供給装置5からの酸素量を制御する。具体的には、例えばUV照射装置6からの流出水中の溶存酸素濃度が約0.5〜50ppbとなるように酸素供給装置5を制御する。   In this embodiment, the amount of oxygen from the oxygen supply device 5 is controlled based on the signal from the dissolved oxygen meter 13 in accordance with the TOC concentration behavior on the primary side of the UV irradiation device 6. Specifically, for example, the oxygen supply device 5 is controlled so that the dissolved oxygen concentration in the effluent from the UV irradiation device 6 is about 0.5 to 50 ppb.

酸素注入量は、システム構成などによるため一概ではないが、未反応の酸素や酸素を注入して増加した分のHが分解することによって生じる酸素などが、後段の膜脱気装置18で除去できる範囲で、システム出口溶存酸素濃度に影響を及ぼさない範囲に限られる。その注入量は上記の通りUV照射装置6からの流出水中の溶存酸素濃度が約0.5〜50ppb、例えば概ね10ppb程度となる量が好ましいが、1ppb程度でも効果が見込まれる。 The amount of oxygen injection is not general because it depends on the system configuration or the like, but unreacted oxygen or oxygen generated by the decomposition of the increased amount of H 2 O 2 by injecting oxygen is used as the membrane deaerator 18 in the subsequent stage. However, it is limited to the range that does not affect the dissolved oxygen concentration at the system outlet. The injection amount is preferably such that the dissolved oxygen concentration in the effluent from the UV irradiation apparatus 6 is about 0.5 to 50 ppb, for example, about 10 ppb, but the effect is expected even at about 1 ppb.

第2図は、水素注入によって過酸化水素を除去するようにした超純水製造用水処理装置の系統図である。 FIG. 2 is a system diagram of a water treatment apparatus for producing ultrapure water in which hydrogen peroxide is removed by hydrogen injection.

この参考例では、ポンプ4からUV照射装置6へ送られる純水に対し、水素供給装置20から水素を添加する。この水素は、ガスであってもよく、水素溶解水であってもよいが、水素溶解水の方が、注入量制御が容易であり、好ましい。 In this reference example , hydrogen is added from the hydrogen supply device 20 to the pure water sent from the pump 4 to the UV irradiation device 6. The hydrogen may be a gas or hydrogen-dissolved water, but hydrogen-dissolved water is preferable because the injection amount can be easily controlled.

この参考例では、UV照射装置6からの流出水の一部をサンプリング配管15及び流量調整弁16を介して溶存水素計21及び溶存過酸化水素計22へ送り、溶存水素濃度及び溶存過酸化水素濃度を測定している。 In this reference example , a part of the effluent from the UV irradiation device 6 is sent to the dissolved hydrogen meter 21 and the dissolved hydrogen peroxide meter 22 via the sampling pipe 15 and the flow rate adjusting valve 16, and the dissolved hydrogen concentration and dissolved hydrogen peroxide are measured. The concentration is measured.

この溶存水素計21及び溶存過酸化水素計22の測定値に基づいて、水素供給装置20からの水素注入量を制御する。この制御は、溶存水素計21における水素濃度が1〜50ppb特に2〜10ppbとなるように行われるのが好ましい。   Based on the measured values of the dissolved hydrogen meter 21 and the dissolved hydrogen peroxide meter 22, the amount of hydrogen injected from the hydrogen supply device 20 is controlled. This control is preferably performed so that the hydrogen concentration in the dissolved hydrogen meter 21 is 1 to 50 ppb, particularly 2 to 10 ppb.

第2図のその他の構成及び作動は第1図と同様であり、同一符号は同一部分を示している。   Other configurations and operations in FIG. 2 are the same as those in FIG. 1, and the same reference numerals denote the same parts.

本発明では、上記第1図の超純水製造用水処理装置の限外濾過装置9からの流出水を第2図の装置に供給し、水素添加UV照射処理を行って超純水を製造するようにしてもよい。   In the present invention, the effluent water from the ultrafiltration device 9 of the water treatment device for producing ultrapure water shown in FIG. 1 is supplied to the device shown in FIG. 2, and hydrogenated UV irradiation treatment is performed to produce ultrapure water. You may do it.

以下、実施例及び比較例について説明する。   Hereinafter, examples and comparative examples will be described.

実施例1
第1図に示すシステムを次の条件で稼動させた。
Example 1
The system shown in FIG. 1 was operated under the following conditions.

補給水中のTOC濃度…9ppb
補給水中の溶存酸素濃度…1.5ppb
低圧UVランプ…日本フォトサイエンス社製 低圧UVランプ
酸素供給装置…栗田工業(株)製酸素水供給装置
TOC計…シーバース社シーバース500RL
溶存酸素計…ハックウルトラアナリティクスジャパン製溶存酸素計モデル3610
ポンプ4からの送水量…6m/h
超純水中要求酸素濃度…5ppb以下
超純水中要求TOC濃度…3ppb以下
この実施例1では、溶存酸素計13でポンプ4吐出水中の溶存酸素濃度を測定し、この測定値に基づいて、酸素供給装置5からの注入量を制御し、UV照射装置一次側の溶存酸素濃度から1ppb増加させた。UV照射装置一次側の溶存酸素濃度は1ppbであった。
TOC concentration in make-up water ... 9ppb
Dissolved oxygen concentration in make-up water ... 1.5ppb
Low pressure UV lamp ... Nippon Photo Science Co., Ltd. Low pressure UV lamp Oxygen supply device ... Kurita Kogyo Co., Ltd. oxygen water supply device TOC meter ... Seaverse Seaverse 500RL
Dissolved oxygen meter ... Hack Ultra Analytics Japan's dissolved oxygen meter model 3610
Amount of water supplied from the pump 4 ... 6 m 3 / h
Ultrapure water required oxygen concentration: 5 ppb or less Ultrapure water required TOC concentration: 3 ppb or less In this Example 1, the dissolved oxygen meter 13 measured the dissolved oxygen concentration in the pump 4 discharge water, and based on this measured value, The injection amount from the oxygen supply device 5 was controlled, and the dissolved oxygen concentration on the primary side of the UV irradiation device was increased by 1 ppb. The dissolved oxygen concentration on the primary side of the UV irradiation apparatus was 1 ppb.

酸素注入の結果、UV照射装置一次側のTOC濃度が5ppbのとき、ユースポイントへ送水される超純水中のTOC濃度は1ppb、溶存酸素濃度は1ppb以下であった。   As a result of oxygen injection, when the TOC concentration on the primary side of the UV irradiation apparatus was 5 ppb, the TOC concentration in the ultrapure water fed to the use point was 1 ppb, and the dissolved oxygen concentration was 1 ppb or less.

比較例1
実施例1の運転を継続した後、酸素供給装置5から酸素注入を停止して比較例の運転を行った。酸素注入を停止した時点から、ユースポイントへ供給される超純水中のTOC濃度は上がり始め、最終的には超純水中のTOC濃度は4ppbにまで上昇した。
Comparative Example 1
After the operation of Example 1 was continued, the oxygen injection was stopped from the oxygen supply device 5 and the operation of the comparative example was performed. From the time when the oxygen injection was stopped, the TOC concentration in the ultrapure water supplied to the use point began to increase, and finally the TOC concentration in the ultrapure water increased to 4 ppb.

参考
第2図に示すシステムを次の条件で稼動させた。その他の条件は実施例1と同一である。
Reference example 1
The system shown in FIG. 2 was operated under the following conditions. Other conditions are the same as those in the first embodiment.

水素供給装置…栗田工業(株)製水素水供給装置
溶存水素計…ハックウルトラアナリティクスジャパン製溶存水素計モデル3600
溶存過酸化水素計…栗田工業(株)製過酸化水素モニター
貯留槽2からの純水中の溶存水素濃度…0ppb
貯留槽2からの純水中の溶存過酸化水素濃度…0ppb
溶存水素計21の検出値が10ppbとなるように水素溶解水を水素供給装置20から添加した。その結果、過酸化水素計22の検出過酸化水素濃度は5ppbとなった。
Hydrogen supply device ... Hydrogen water supply device manufactured by Kurita Kogyo Co., Ltd. Dissolved hydrogen meter ... Dissolved hydrogen meter model 3600 manufactured by Hack Ultra Analytics Japan
Dissolved hydrogen peroxide meter ... Hydrogen peroxide monitor manufactured by Kurita Kogyo Co., Ltd. Dissolved hydrogen concentration in pure water from storage tank 2 ... 0 ppb
Dissolved hydrogen peroxide concentration in pure water from storage tank 2 ... 0 ppb
Hydrogen-dissolved water was added from the hydrogen supply device 20 so that the detected value of the dissolved hydrogen meter 21 was 10 ppb. As a result, the hydrogen peroxide concentration detected by the hydrogen peroxide meter 22 was 5 ppb.

比較例2
参考の運転を継続した後、水素供給装置20からの水素添加を停止した。その結果、過酸化水素計22の検出値は20ppbにまで上昇した。
Comparative Example 2
After the operation of Reference Example 1 was continued, hydrogen addition from the hydrogen supply device 20 was stopped. As a result, the detection value of the hydrogen peroxide meter 22 increased to 20 ppb.

以上の実施例及び比較例より明らかな通り、低溶存酸素(5ppb以下)状態において、低濃度(5ppb以下)までTOCをUV照射装置により分解する場合、本発明によると、従来技術よりもUV照射出力を低くすることが可能となる。また、UV照射にともなって発生するH濃度を低減することが可能となった。 As is clear from the above examples and comparative examples, when the TOC is decomposed to a low concentration (5 ppb or less) by a UV irradiation apparatus in a low dissolved oxygen (5 ppb or less) state, according to the present invention, the UV irradiation is performed more than the conventional technique. The output can be lowered. In addition, the H 2 O 2 concentration generated with UV irradiation can be reduced.

5 酸素供給装置
6 紫外線照射装置
7 膜脱気装置
8 イオン交換装置
9 限外濾過装置
20 水素供給装置
5 Oxygen supply device 6 Ultraviolet irradiation device 7 Membrane degassing device 8 Ion exchange device 9 Ultrafiltration device 20 Hydrogen supply device

Claims (6)

被処理水にガス又はガス溶解水を添加するガス成分添加手段と、
該ガス成分添加手段からの水に紫外線を照射して水中の被処理物質を分解する紫外線照射装置と
を有する超純水製造用水処理装置において、
該紫外線照射装置の前段又は後段に設けられた、水中の被処理物質濃度、ガス成分濃度又は生成物濃度を測定する測定手段と、
該測定手段の測定結果に基づいて前記ガス成分添加手段によるガス又はガス溶解水の添加量を制御する制御手段と、
を備えたことを特徴とする超純水製造用水処理装置。
Gas component addition means for adding gas or gas-dissolved water to the water to be treated;
In a water treatment apparatus for producing ultrapure water having an ultraviolet irradiation apparatus for irradiating water from the gas component addition means with ultraviolet rays to decompose a substance to be treated in water,
A measuring means for measuring the concentration of the substance to be treated, the gas component concentration or the product concentration in the water provided in the front stage or the rear stage of the ultraviolet irradiation device;
Control means for controlling the amount of gas or gas dissolved water added by the gas component addition means based on the measurement result of the measurement means;
A water treatment apparatus for producing ultrapure water, comprising:
請求項1において、
前記被処理物質は有機物であり、
前記ガスは酸素であり、
前記測定手段は、溶存酸素濃度を前記ガス成分添加手段の前段及び前記紫外線照射装置の後段の少なくとも一方で測定するものであることを特徴とする超純水製造用水処理装置。
In claim 1,
The substance to be treated is an organic substance,
The gas is oxygen;
The water treatment apparatus for producing ultrapure water, wherein the measurement means measures the dissolved oxygen concentration at least one of a front stage of the gas component addition means and a rear stage of the ultraviolet irradiation device.
請求項1において、
前記被処理物質は有機物であり、
前記ガスは酸素であり、
前記測定手段は、溶存酸素濃度及び溶存有機物濃度を前記添加手段の前段及び前記紫外線照射装置の後段の少なくとも一方で測定するものであることを特徴とする超純水製造用水処理装置。
In claim 1,
The substance to be treated is an organic substance,
The gas is oxygen;
The water treatment apparatus for producing ultrapure water, wherein the measuring means measures dissolved oxygen concentration and dissolved organic substance concentration at least one of the former stage of the adding means and the latter stage of the ultraviolet irradiation device.
請求項1において、
前記ガスは水素であり、
前記被処理水中の被処理物質は過酸化水素であり、
前記測定手段は、前記紫外線照射装置からの水中の溶存水素濃度を測定するものであることを特徴とする超純水製造用水処理装置。
In claim 1,
The gas is hydrogen;
The substance to be treated in the treated water is hydrogen peroxide,
The said measurement means measures the dissolved hydrogen concentration in the water from the said ultraviolet irradiation apparatus, The water treatment apparatus for ultrapure water manufacture characterized by the above-mentioned.
請求項1において、
前記ガスは水素であり、
前記被処理水中の被処理物質は過酸化水素であり、
前記測定手段は、前記紫外線照射装置からの水中の溶存過酸化水素濃度を測定するものであることを特徴とする超純水製造用水処理装置。
In claim 1,
The gas is hydrogen;
The substance to be treated in the treated water is hydrogen peroxide,
The said measurement means measures the dissolved hydrogen peroxide density | concentration in the water from the said ultraviolet irradiation apparatus, The water treatment apparatus for ultrapure water manufacture characterized by the above-mentioned.
第1の超純水製造用水処理装置と、該第1の超純水製造用水処理装置からの処理水を処理する第2の超純水製造用水処理装置とを備えてなる超純水製造用水処理システムにおいて、
該第1の超純水製造用水処理装置は請求項2又は3に記載の超純水製造用水処理装置であり、
該第2の超純水製造用水処理装置は請求項4又は5に記載の超純水製造用水処理装置であることを特徴とする超純水製造用水処理システム。
Ultrapure water production water comprising a first ultrapure water production water treatment device and a second ultrapure water production water treatment device for treating treated water from the first ultrapure water production water treatment device In the processing system,
The first water treatment apparatus for producing ultrapure water is the water treatment apparatus for producing ultrapure water according to claim 2 or 3,
The water treatment apparatus for producing ultrapure water according to claim 4 or 5, wherein the second water treatment apparatus for producing ultrapure water is the water treatment apparatus for producing ultrapure water.
JP2011171580A 2011-08-05 2011-08-05 Water treatment apparatus for manufacturing ultrapure water Pending JP2011240344A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011171580A JP2011240344A (en) 2011-08-05 2011-08-05 Water treatment apparatus for manufacturing ultrapure water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011171580A JP2011240344A (en) 2011-08-05 2011-08-05 Water treatment apparatus for manufacturing ultrapure water

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2007108417A Division JP4835498B2 (en) 2007-04-17 2007-04-17 Water treatment apparatus for ultrapure water production and water treatment system for ultrapure water production

Publications (1)

Publication Number Publication Date
JP2011240344A true JP2011240344A (en) 2011-12-01

Family

ID=45407549

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011171580A Pending JP2011240344A (en) 2011-08-05 2011-08-05 Water treatment apparatus for manufacturing ultrapure water

Country Status (1)

Country Link
JP (1) JP2011240344A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015231609A (en) * 2014-06-10 2015-12-24 栗田工業株式会社 Method for producing ultrapure water
JP2021535998A (en) * 2018-08-13 2021-12-23 エヴォクア ウォーター テクノロジーズ エルエルシーEvoqua Water Technologies LLC Systems and methods for measuring water composition

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0440292A (en) * 1990-06-06 1992-02-10 Nakano Koji Process for simultaneous removal of organic substance and dissolved oxygen
JPH0691277A (en) * 1992-05-15 1994-04-05 Matsushita Electric Ind Co Ltd Pure water preparation apparatus and pure water preparation method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0440292A (en) * 1990-06-06 1992-02-10 Nakano Koji Process for simultaneous removal of organic substance and dissolved oxygen
JPH0691277A (en) * 1992-05-15 1994-04-05 Matsushita Electric Ind Co Ltd Pure water preparation apparatus and pure water preparation method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015231609A (en) * 2014-06-10 2015-12-24 栗田工業株式会社 Method for producing ultrapure water
JP2021535998A (en) * 2018-08-13 2021-12-23 エヴォクア ウォーター テクノロジーズ エルエルシーEvoqua Water Technologies LLC Systems and methods for measuring water composition
JP7402217B2 (en) 2018-08-13 2023-12-20 エヴォクア ウォーター テクノロジーズ エルエルシー Systems and methods for measuring water composition

Similar Documents

Publication Publication Date Title
JP3491666B2 (en) Method and apparatus for controlling TOC component removal
TWI732970B (en) Water treatment method and apparatus
WO2000064568A1 (en) Apparatus for producing water containing dissolved ozone
TW201829321A (en) Water treatment method and apparatus
JP5441714B2 (en) Pure water production method and apparatus, ozone water production method and apparatus, and cleaning method and apparatus
JP2014168743A (en) Pure water manufacturing method
JP5512357B2 (en) Pure water production method and apparatus
JP5750236B2 (en) Pure water production method and apparatus
JP4835498B2 (en) Water treatment apparatus for ultrapure water production and water treatment system for ultrapure water production
JP4978275B2 (en) Primary pure water production process water treatment method and apparatus
JP6290654B2 (en) Ultrapure water production equipment
JP2011240344A (en) Water treatment apparatus for manufacturing ultrapure water
JP3506171B2 (en) Method and apparatus for removing TOC component
JP5678436B2 (en) Ultrapure water production method and apparatus
JP3849766B2 (en) Apparatus and method for treating water containing organic matter
JP4519930B2 (en) Ultrapure water production method and ultrapure water production apparatus
JP2016005829A (en) Method and apparatus for producing ultrapure water
JP5512358B2 (en) Pure water production method and apparatus
JP4635827B2 (en) Ultrapure water production method and apparatus
JP2008173617A (en) Water treatment apparatus and water treatment method
JP2000308815A (en) Ozone dissolved water production equipment
JPH09253639A (en) Ultrapure water making apparatus
JP2006192352A (en) Ultrapure water production apparatus and ultrapure water production method
JP5720122B2 (en) Ultrapure water production system
JP4159823B2 (en) Ultrapure water production method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120605

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120705

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120807