JP2011240242A - Catalyst, method for production thereof, and use thereof - Google Patents
Catalyst, method for production thereof, and use thereof Download PDFInfo
- Publication number
- JP2011240242A JP2011240242A JP2010114097A JP2010114097A JP2011240242A JP 2011240242 A JP2011240242 A JP 2011240242A JP 2010114097 A JP2010114097 A JP 2010114097A JP 2010114097 A JP2010114097 A JP 2010114097A JP 2011240242 A JP2011240242 A JP 2011240242A
- Authority
- JP
- Japan
- Prior art keywords
- catalyst
- niobium
- fuel cell
- containing metal
- metal carbonitride
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000003054 catalyst Substances 0.000 title claims abstract description 163
- 238000004519 manufacturing process Methods 0.000 title claims description 27
- 239000010955 niobium Substances 0.000 claims abstract description 105
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 claims abstract description 90
- 229910052758 niobium Inorganic materials 0.000 claims abstract description 89
- 229910052751 metal Inorganic materials 0.000 claims abstract description 76
- 239000002184 metal Substances 0.000 claims abstract description 76
- 238000001228 spectrum Methods 0.000 claims abstract description 30
- 239000003792 electrolyte Substances 0.000 claims abstract description 20
- 238000010521 absorption reaction Methods 0.000 claims abstract description 19
- 239000000446 fuel Substances 0.000 claims description 81
- 238000000034 method Methods 0.000 claims description 43
- 239000012528 membrane Substances 0.000 claims description 24
- 238000005259 measurement Methods 0.000 claims description 20
- 239000011261 inert gas Substances 0.000 claims description 19
- 239000000203 mixture Substances 0.000 claims description 19
- 239000002245 particle Substances 0.000 claims description 19
- 238000000634 powder X-ray diffraction Methods 0.000 claims description 16
- 238000010438 heat treatment Methods 0.000 claims description 15
- 238000002441 X-ray diffraction Methods 0.000 claims description 14
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 11
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 claims description 10
- 229910001882 dioxygen Inorganic materials 0.000 claims description 10
- 239000005518 polymer electrolyte Substances 0.000 claims description 8
- 239000001301 oxygen Substances 0.000 abstract description 57
- 229910052760 oxygen Inorganic materials 0.000 abstract description 57
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 abstract description 56
- 230000009467 reduction Effects 0.000 abstract description 31
- 230000002378 acidificating effect Effects 0.000 abstract description 9
- 238000002253 near-edge X-ray absorption fine structure spectrum Methods 0.000 abstract 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 26
- 229910052799 carbon Inorganic materials 0.000 description 23
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 19
- 239000007789 gas Substances 0.000 description 15
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 13
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 12
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 12
- 229920000642 polymer Polymers 0.000 description 10
- 239000000463 material Substances 0.000 description 9
- 239000012299 nitrogen atmosphere Substances 0.000 description 9
- 229910052697 platinum Inorganic materials 0.000 description 9
- 229920000557 Nafion® Polymers 0.000 description 8
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 8
- 230000003197 catalytic effect Effects 0.000 description 8
- 239000012298 atmosphere Substances 0.000 description 7
- 229910001873 dinitrogen Inorganic materials 0.000 description 7
- 239000000243 solution Substances 0.000 description 7
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 6
- CFJRGWXELQQLSA-UHFFFAOYSA-N azanylidyneniobium Chemical compound [Nb]#N CFJRGWXELQQLSA-UHFFFAOYSA-N 0.000 description 6
- 239000006185 dispersion Substances 0.000 description 5
- 238000011156 evaluation Methods 0.000 description 5
- 239000007788 liquid Substances 0.000 description 5
- UNASZPQZIFZUSI-UHFFFAOYSA-N methylidyneniobium Chemical compound [Nb]#C UNASZPQZIFZUSI-UHFFFAOYSA-N 0.000 description 5
- 239000004570 mortar (masonry) Substances 0.000 description 5
- 239000000843 powder Substances 0.000 description 5
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 4
- 229910021397 glassy carbon Inorganic materials 0.000 description 4
- 239000001257 hydrogen Substances 0.000 description 4
- 229910052739 hydrogen Inorganic materials 0.000 description 4
- 238000000691 measurement method Methods 0.000 description 4
- 229910000484 niobium oxide Inorganic materials 0.000 description 4
- URLJKFSTXLNXLG-UHFFFAOYSA-N niobium(5+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Nb+5].[Nb+5] URLJKFSTXLNXLG-UHFFFAOYSA-N 0.000 description 4
- 150000004767 nitrides Chemical class 0.000 description 4
- 239000002904 solvent Substances 0.000 description 4
- 239000000725 suspension Substances 0.000 description 4
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 239000007864 aqueous solution Substances 0.000 description 3
- 229910052786 argon Inorganic materials 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 238000009792 diffusion process Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000000921 elemental analysis Methods 0.000 description 3
- 230000005284 excitation Effects 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 229910000510 noble metal Inorganic materials 0.000 description 3
- 229910052755 nonmetal Inorganic materials 0.000 description 3
- -1 polyalkylaniline Polymers 0.000 description 3
- 229920000128 polypyrrole Polymers 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 238000010298 pulverizing process Methods 0.000 description 3
- 230000002441 reversible effect Effects 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 239000004215 Carbon black (E152) Substances 0.000 description 2
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 230000005303 antiferromagnetism Effects 0.000 description 2
- 239000006229 carbon black Substances 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 229920001940 conductive polymer Polymers 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 229930195733 hydrocarbon Natural products 0.000 description 2
- 150000002430 hydrocarbons Chemical class 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 150000002843 nonmetals Chemical class 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 230000001590 oxidative effect Effects 0.000 description 2
- 229920000767 polyaniline Polymers 0.000 description 2
- 229920000123 polythiophene Polymers 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 238000005096 rolling process Methods 0.000 description 2
- 239000007784 solid electrolyte Substances 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 125000000542 sulfonic acid group Chemical group 0.000 description 2
- GEYOCULIXLDCMW-UHFFFAOYSA-N 1,2-phenylenediamine Chemical compound NC1=CC=CC=C1N GEYOCULIXLDCMW-UHFFFAOYSA-N 0.000 description 1
- 125000001140 1,4-phenylene group Chemical group [H]C1=C([H])C([*:2])=C([H])C([H])=C1[*:1] 0.000 description 1
- VWBVCOPVKXNMMZ-UHFFFAOYSA-N 1,5-diaminoanthracene-9,10-dione Chemical compound O=C1C2=C(N)C=CC=C2C(=O)C2=C1C=CC=C2N VWBVCOPVKXNMMZ-UHFFFAOYSA-N 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- XMWRBQBLMFGWIX-UHFFFAOYSA-N C60 fullerene Chemical compound C12=C3C(C4=C56)=C7C8=C5C5=C9C%10=C6C6=C4C1=C1C4=C6C6=C%10C%10=C9C9=C%11C5=C8C5=C8C7=C3C3=C7C2=C1C1=C2C4=C6C4=C%10C6=C9C9=C%11C5=C5C8=C3C3=C7C1=C1C2=C4C6=C2C9=C5C3=C12 XMWRBQBLMFGWIX-UHFFFAOYSA-N 0.000 description 1
- 229910052684 Cerium Inorganic materials 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- XWROUVVQGRRRMF-UHFFFAOYSA-N F.O[N+]([O-])=O Chemical compound F.O[N+]([O-])=O XWROUVVQGRRRMF-UHFFFAOYSA-N 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- 229910052778 Plutonium Inorganic materials 0.000 description 1
- SMWDFEZZVXVKRB-UHFFFAOYSA-N Quinoline Chemical class N1=CC=CC2=CC=CC=C21 SMWDFEZZVXVKRB-UHFFFAOYSA-N 0.000 description 1
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 238000003917 TEM image Methods 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical group [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 238000004998 X ray absorption near edge structure spectroscopy Methods 0.000 description 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- 238000000862 absorption spectrum Methods 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 238000013019 agitation Methods 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 239000002134 carbon nanofiber Substances 0.000 description 1
- 229910021393 carbon nanotube Inorganic materials 0.000 description 1
- 239000002041 carbon nanotube Substances 0.000 description 1
- 238000003763 carbonization Methods 0.000 description 1
- ZMIGMASIKSOYAM-UHFFFAOYSA-N cerium Chemical compound [Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce] ZMIGMASIKSOYAM-UHFFFAOYSA-N 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 150000001805 chlorine compounds Chemical class 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- HTXDPTMKBJXEOW-UHFFFAOYSA-N dioxoiridium Chemical compound O=[Ir]=O HTXDPTMKBJXEOW-UHFFFAOYSA-N 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 238000005315 distribution function Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000003487 electrochemical reaction Methods 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 238000003411 electrode reaction Methods 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- UQSQSQZYBQSBJZ-UHFFFAOYSA-N fluorosulfonic acid Chemical compound OS(F)(=O)=O UQSQSQZYBQSBJZ-UHFFFAOYSA-N 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 229910003472 fullerene Inorganic materials 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 229910052735 hafnium Inorganic materials 0.000 description 1
- VBJZVLUMGGDVMO-UHFFFAOYSA-N hafnium atom Chemical compound [Hf] VBJZVLUMGGDVMO-UHFFFAOYSA-N 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 238000001095 inductively coupled plasma mass spectrometry Methods 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 229910052809 inorganic oxide Inorganic materials 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 229910052741 iridium Inorganic materials 0.000 description 1
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 description 1
- 229910000457 iridium oxide Inorganic materials 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 229910052743 krypton Inorganic materials 0.000 description 1
- DNNSSWSSYDEUBZ-UHFFFAOYSA-N krypton atom Chemical compound [Kr] DNNSSWSSYDEUBZ-UHFFFAOYSA-N 0.000 description 1
- 239000011244 liquid electrolyte Substances 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- 239000012982 microporous membrane Substances 0.000 description 1
- 150000007522 mineralic acids Chemical class 0.000 description 1
- 239000011812 mixed powder Substances 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 239000002116 nanohorn Substances 0.000 description 1
- 229910052754 neon Inorganic materials 0.000 description 1
- GKAOGPIIYCISHV-UHFFFAOYSA-N neon atom Chemical compound [Ne] GKAOGPIIYCISHV-UHFFFAOYSA-N 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 150000002821 niobium Chemical class 0.000 description 1
- 229940110728 nitrogen / oxygen Drugs 0.000 description 1
- QGLKJKCYBOYXKC-UHFFFAOYSA-N nonaoxidotritungsten Chemical compound O=[W]1(=O)O[W](=O)(=O)O[W](=O)(=O)O1 QGLKJKCYBOYXKC-UHFFFAOYSA-N 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 150000002926 oxygen Chemical class 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- OYEHPCDNVJXUIW-UHFFFAOYSA-N plutonium atom Chemical compound [Pu] OYEHPCDNVJXUIW-UHFFFAOYSA-N 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 229920001197 polyacetylene Polymers 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 239000010970 precious metal Substances 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 229910052704 radon Inorganic materials 0.000 description 1
- SYUHGPGVQRZVTB-UHFFFAOYSA-N radon atom Chemical compound [Rn] SYUHGPGVQRZVTB-UHFFFAOYSA-N 0.000 description 1
- 239000012495 reaction gas Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- 238000007650 screen-printing Methods 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000004449 solid propellant Substances 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 230000005469 synchrotron radiation Effects 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- TXEYQDLBPFQVAA-UHFFFAOYSA-N tetrafluoromethane Chemical compound FC(F)(F)F TXEYQDLBPFQVAA-UHFFFAOYSA-N 0.000 description 1
- 238000005979 thermal decomposition reaction Methods 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 230000036962 time dependent Effects 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000001926 trapping method Methods 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 229910001930 tungsten oxide Inorganic materials 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- GPPXJZIENCGNKB-UHFFFAOYSA-N vanadium Chemical compound [V]#[V] GPPXJZIENCGNKB-UHFFFAOYSA-N 0.000 description 1
- 239000013585 weight reducing agent Substances 0.000 description 1
- 229910052724 xenon Inorganic materials 0.000 description 1
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Fuel Cell (AREA)
- Catalysts (AREA)
- Inert Electrodes (AREA)
Abstract
Description
本発明は、触媒、その製造方法およびその用途に関する。 The present invention relates to a catalyst, a production method thereof, and an application thereof.
燃料電池には、電解質の種類や電極の種類により種々のタイプに分類され、代表的なものとしては、アルカリ型、リン酸型、溶融炭酸塩型、固体電解質型、固体高分子型がある。この中でも低温(−40℃程度)から120℃程度で作動可能な固体高分子型燃料電池が注目を集め、近年、自動車用低公害動力源としての開発・実用化が進んでいる。固体高分子型燃料電池の用途としては、車両用駆動源や定置型電源が検討されているが、これらの用途に適用されるためには、長期間に渡る耐久性が求められている。 Fuel cells are classified into various types depending on the type of electrolyte and the type of electrode, and representative types include alkali type, phosphoric acid type, molten carbonate type, solid electrolyte type, and solid polymer type. Among them, a polymer electrolyte fuel cell that can operate at a low temperature (about −40 ° C.) to about 120 ° C. attracts attention, and in recent years, development and practical application as a low-pollution power source for automobiles is progressing. As a use of the polymer electrolyte fuel cell, a vehicle driving source and a stationary power source are being studied. However, in order to be applied to these uses, durability over a long period of time is required.
この高分子固体形燃料電池は、高分子固体電解質をアノードとカソードとで挟み、アノードに燃料を供給し、カソードに酸素または空気を供給して、カソードで酸素が還元されて電気を取り出す形式である。燃料には水素またはメタノールなどが主として用いられる。 In this polymer solid fuel cell, a polymer solid electrolyte is sandwiched between an anode and a cathode, fuel is supplied to the anode, oxygen or air is supplied to the cathode, and oxygen is reduced at the cathode to extract electricity. is there. Hydrogen or methanol is mainly used as the fuel.
従来、燃料電池の反応速度を高め、燃料電池のエネルギー変換効率を高めるために、燃料電池のカソード(空気極)表面やアノード(燃料極)表面には、触媒を含む層(以下「燃料電池用触媒層」とも記す。)が設けられていた。 Conventionally, in order to increase the reaction rate of the fuel cell and increase the energy conversion efficiency of the fuel cell, the fuel cell cathode (air electrode) surface or anode (fuel electrode) surface has a layer containing a catalyst (hereinafter referred to as “for fuel cell use”). Also referred to as “catalyst layer”).
この触媒として、一般的に貴金属が用いられており、貴金属の中でも高い電位で安定であり、活性が高い白金が、主として用いられてきた。しかし、白金は価格が高く、また資源量が限られていることから、代替可能な触媒の開発が求められていた。 As this catalyst, a noble metal is generally used, and platinum which is stable at a high potential and has a high activity among noble metals has been mainly used. However, since platinum is expensive and has limited resources, the development of an alternative catalyst has been sought.
また、カソード表面に用いる貴金属は、酸性雰囲気下では、溶解する場合があり、長期間に渡る耐久性が必要な用途には適さないという問題があった。このため酸性雰囲気下で腐食せず、耐久性に優れ、高い酸素還元能を有する触媒の開発が強く求められていた。 In addition, the noble metal used for the cathode surface may be dissolved in an acidic atmosphere, and there is a problem that it is not suitable for applications that require long-term durability. Therefore, there has been a strong demand for the development of a catalyst that does not corrode in an acidic atmosphere, has excellent durability, and has a high oxygen reducing ability.
白金に代わる触媒として、炭素、窒素、ホウ素等の非金属を含む材料が触媒として近年着目されている。これらの非金属を含む材料は、白金などの貴金属と比較して価格が安く、また資源量が豊富であることから、大学、研究機関等で種々の分野への応用が検討されている。 In recent years, materials containing non-metals such as carbon, nitrogen, and boron have attracted attention as catalysts instead of platinum. These non-metal-containing materials are cheaper than precious metals such as platinum and have abundant resources. Therefore, applications to various fields are being studied by universities and research institutions.
例えば、特許文献1には、炭化物、酸化物、窒化物を混合し、真空、不活性または非酸化性雰囲気下、500〜1500℃で熱処理をした炭窒酸化物が開示されている。しかしながら、特許文献1に開示されている炭窒酸化物は、薄膜磁気ヘッドセラミックス基板材料であり、この炭窒酸化物を触媒として用いることは検討されていない。 For example, Patent Document 1 discloses a carbonitride oxide obtained by mixing carbide, oxide, and nitride and performing heat treatment at 500 to 1500 ° C. in a vacuum, an inert or non-oxidizing atmosphere. However, the oxycarbonitride disclosed in Patent Document 1 is a thin film magnetic head ceramic substrate material, and the use of this oxycarbonitride as a catalyst has not been studied.
特許文献2には、白金代替材料として長周期表4族,5族及び14族の元素群から選ばれる1種以上の元素の窒化物を含む酸素還元電極材料が開示されている。しかしながら、これらの非金属を含む材料は、触媒として実用的に充分な酸素還元能が得られていないという問題点があった。 Patent Document 2 discloses an oxygen reduction electrode material containing a nitride of one or more elements selected from the group of elements of Group 4, Group 5 and Group 14 of the long periodic table as a platinum substitute material. However, these materials containing non-metals have a problem that practically sufficient oxygen reducing ability is not obtained as a catalyst.
また、非特許文献1には、Nb2O5を還元してNb12O29を製造する方法が開示されている。しかしながら、非特許文献1に開示されているNb12O29は、反強磁性および導電性を示す材料として開示されており、燃料電池用酸素還元触媒としては検討されていない。 Non-Patent Document 1 discloses a method for producing Nb 12 O 29 by reducing Nb 2 O 5 . However, Nb 12 O 29 disclosed in Non-Patent Document 1 is disclosed as a material exhibiting antiferromagnetism and conductivity, and has not been studied as an oxygen reduction catalyst for fuel cells.
なお、本願出願人は、有用な触媒を特許文献3、4などに開示している。 The applicant of the present application discloses useful catalysts in Patent Documents 3 and 4 and the like.
本発明はこのような従来技術における問題点の解決を課題としており、本発明の目的は、酸性電解質中や高電位で腐食せず、耐久性に優れ、高い酸素還元能を有する触媒を提供することにある。 An object of the present invention is to solve such problems in the prior art, and an object of the present invention is to provide a catalyst that does not corrode in an acidic electrolyte or at a high potential, has excellent durability, and has a high oxygen reduction ability. There is.
本発明者らは、上記従来技術の問題点を解決すべく鋭意検討した結果、X線吸収微細構造(X−ray Absorption Fine Structure、以下「XAFS」と記す。)測定において特定のスペクトルが観測されるニオブ含有金属炭窒酸化物からなる触媒、特にニオブ含有金属炭窒化物を特定の条件下で酸化して得られたニオブ含有金属炭窒酸化物からなる触媒が、高い酸素還元能を有することを見出し、本発明を完成するに至った。なお、非特許文献1に記載された製造方法で得られたNb12O29は、燃料電池用酸素還元触媒として実用的に充分な酸素還元能が得られない。 As a result of intensive studies to solve the above-described problems of the prior art, the present inventors have observed a specific spectrum in the measurement of X-ray absorption fine structure (hereinafter referred to as “XAFS”). The catalyst made of niobium-containing metal carbonitride, especially the catalyst made of niobium-containing metal carbonitride obtained by oxidizing niobium-containing metal carbonitride under specific conditions has high oxygen reducing ability. As a result, the present invention has been completed. Note that Nb 12 O 29 obtained by the production method described in Non-Patent Document 1 cannot provide a practically sufficient oxygen reducing ability as an oxygen reduction catalyst for fuel cells.
本発明は、たとえば以下の[1]〜[13]に関する。
[1]
下記(i)および(ii)の条件を満たすニオブ含有金属炭窒酸化物からなることを特徴とする触媒;
(i)拡張X線吸収微細構造(Extended X−ray Absorption Fine Structure、以下「EXAFS」と記す。)スペクトルにおいて、ニオブ原子から3〜4Åの範囲に、ニオブ原子から0〜6Åの範囲におけるフーリエ変換強度が最大となるピークが観測される、
(ii)X線吸収端微細構造(X−ray Absorption Near Edge Structure、以下「XANES」と記す。)スペクトルにおいて、ニオブ含有金属炭窒酸化物のスペクトルはNb12O29のスペクトルと同一である。
The present invention relates to the following [1] to [13], for example.
[1]
A catalyst comprising a niobium-containing metal carbonitride that satisfies the following conditions (i) and (ii):
(I) Extended X-ray Absorption Fine Structure (hereinafter referred to as “EXAFS”) spectrum, Fourier transform in the range of 3 to 4 cm from niobium atoms and in the range of 0 to 6 cm from niobium atoms. A peak with maximum intensity is observed,
(Ii) In the X-ray absorption near edge structure (hereinafter referred to as “XANES”) spectrum, the spectrum of niobium-containing metal carbonitride is the same as that of Nb 12 O 29 .
[2]
燃料電池用触媒であることを特徴とする[1]に記載の触媒。
[3]
前記ニオブ含有金属炭窒酸化物に対する粉末X線回折法(Cu−Kα線)による測定において、回折角2θ=25.45°〜25.65°間のX線回折強度の最大値をI1とし、回折角2θ=25.65°〜26.0°間のX線回折強度の最大値をI2とした場合、I2/(I1+I2)が0.26〜1.0であることを特徴とする上記[1]または[2]に記載の触媒。
[2]
The catalyst according to [1], which is a fuel cell catalyst.
[3]
In the measurement by the powder X-ray diffraction method (Cu-Kα ray) for the niobium-containing metal carbonitride oxide, the maximum value of the X-ray diffraction intensity between diffraction angles 2θ = 25.55 ° to 25.65 ° is I 1. When the maximum value of the X-ray diffraction intensity between the diffraction angle 2θ = 25.65 ° and 26.0 ° is I 2 , I 2 / (I 1 + I 2 ) is 0.26 to 1.0. The catalyst according to [1] or [2] above, wherein
[4]
前記ニオブ含有金属炭窒酸化物の組成式が、NbCxNyOz(ただし、0.1≦x≦2、0.05≦y≦1、0.1≦z≦2、かつx+y+z≦5である。)で表されることを特徴とする上記[1]〜[3]のいずれかに記載の触媒。
[4]
The composition formula of the niobium-containing metal oxycarbonitride is NbC x N y O z (where 0.1 ≦ x ≦ 2, 0.05 ≦ y ≦ 1, 0.1 ≦ z ≦ 2, and x + y + z ≦ 5). The catalyst according to any one of [1] to [3] above, which is represented by:
[5]
ニオブ含有金属炭窒化物を、酸素ガスを含む不活性ガス中で熱処理することにより、ニオブ含有金属炭窒酸化物からなる触媒を得る工程を含むことを特徴とする触媒の製造方法。
[5]
A method for producing a catalyst, comprising a step of obtaining a catalyst made of niobium-containing metal carbonitride by heat-treating niobium-containing metal carbonitride in an inert gas containing oxygen gas.
[6]
前記熱処理の温度範囲が750〜1050℃であり、前記不活性ガス中の酸素ガスの濃度範囲が0.5〜2容量%であることを特徴とする上記[5]に記載の触媒の製造方法。
[6]
The temperature range of the heat treatment is 750 to 1050 ° C., and the concentration range of oxygen gas in the inert gas is 0.5 to 2% by volume. .
[7]
前記不活性ガスが、水素ガスを4容量%以下の範囲で含むことを特徴とする上記[5]または[6]に記載の触媒の製造方法。
[7]
The method for producing a catalyst according to the above [5] or [6], wherein the inert gas contains hydrogen gas in a range of 4% by volume or less.
[8]
上記[1]〜[4]のいずれかに記載の触媒を含むことを特徴とする燃料電池用触媒層。
[8]
A catalyst layer for a fuel cell comprising the catalyst according to any one of [1] to [4] above.
[9]
さらに電子伝導性粒子を含むことを特徴とする上記[8]に記載の燃料電池用触媒層。
[10]
燃料電池用触媒層と多孔質支持層とを有する電極であって、前記燃料電池用触媒層が上記[8]または[9]に記載の燃料電池用触媒層であることを特徴とする電極。
[9]
The catalyst layer for a fuel cell according to the above [8], further comprising electron conductive particles.
[10]
An electrode having a fuel cell catalyst layer and a porous support layer, wherein the fuel cell catalyst layer is the fuel cell catalyst layer according to the above [8] or [9].
[11]
カソードとアノードと前記カソードおよび前記アノードの間に配置された電解質膜とを有する膜電極接合体であって、前記カソードおよび/または前記アノードが上記[10]に記載の電極であることを特徴とする膜電極接合体。
[11]
A membrane electrode assembly having a cathode, an anode, and an electrolyte membrane disposed between the cathode and the anode, wherein the cathode and / or the anode is the electrode according to the above [10], Membrane electrode assembly.
[12]
上記[11]に記載の膜電極接合体を備えることを特徴とする燃料電池。
[13]
上記[11]に記載の膜電極接合体を備えることを特徴とする固体高分子型燃料電池。
[12]
A fuel cell comprising the membrane electrode assembly according to [11] above.
[13]
A polymer electrolyte fuel cell comprising the membrane electrode assembly according to [11] above.
本発明の触媒は、酸性電解質中や高電位で腐食せず、安定であり、高い酸素還元能を有し、かつ白金と比べ安価である。したがって、前記触媒を備えた燃料電池は、比較的安価で性能が優れている。 The catalyst of the present invention does not corrode in an acidic electrolyte or at a high potential, is stable, has a high oxygen reducing ability, and is inexpensive compared with platinum. Therefore, the fuel cell including the catalyst is relatively inexpensive and has excellent performance.
<触媒>
本発明の触媒は、X線吸収微細構造(XAFS)測定において特定のスペクトルが観測されるニオブ含有金属炭窒酸化物からなることを特徴としている。
<Catalyst>
The catalyst of the present invention is characterized by comprising a niobium-containing metal oxycarbonitride whose specific spectrum is observed in X-ray absorption fine structure (XAFS) measurement.
具体的には、前記ニオブ含有金属炭窒酸化物は、下記(i)および(ii)の条件を満たす。
(i)拡張X線吸収微細構造(EXAFS)スペクトルにおいて、ニオブ原子から3〜4Åの範囲に、ニオブ原子から0〜6Åの範囲におけるフーリエ変換強度が最大となるピークが観測される、
(ii)X線吸収端微細構造(XANES)スペクトルにおいて、ニオブ含有金属炭窒酸化物のスペクトルはNb12O29のスペクトルと同一である。
Specifically, the niobium-containing metal oxycarbonitride satisfies the following conditions (i) and (ii).
(I) In the extended X-ray absorption fine structure (EXAFS) spectrum, a peak having the maximum Fourier transform intensity in the range of 3 to 4 か ら from the niobium atom is observed in the range of 0 to 6 か ら from the niobium atom.
(Ii) In the X-ray absorption edge fine structure (XANES) spectrum, the spectrum of the niobium-containing metal carbonitride is the same as that of Nb 12 O 29 .
XAFSは、X線照射により、内殻電子の励起に起因して得られる吸収スペクトル構造であり、着目元素ごとの情報を得ることができる。また、エネルギー範囲及び励起過程の違いにより、XANESおよびEXAFSに分けられる。XANESは非占有軌道への励起に起因し、着目元素の価数や配位構造等に依存したスペクトル構造である。一方、EXAFSは、励起電子と近接原子からの散乱電子の相互作用に起因して得られる振動構造であり、フーリエ変換により得られる動径分布関数は、着目元素の局所構造(周囲の原子種、配位原子の数、原子間距離)に関する情報を含んでいる。 XAFS is an absorption spectrum structure obtained by X-ray irradiation due to excitation of inner-shell electrons, and information for each element of interest can be obtained. Moreover, it is divided into XANES and EXAFS depending on the difference in energy range and excitation process. XANES originates from excitation into an unoccupied orbit and has a spectral structure that depends on the valence and coordination structure of the element of interest. On the other hand, EXAFS is a vibration structure obtained due to the interaction between excited electrons and scattered electrons from neighboring atoms, and the radial distribution function obtained by Fourier transformation is based on the local structure of the element of interest (the surrounding atomic species, Information on the number of coordination atoms and the distance between atoms).
本発明におけるX線吸収微細構造(XAFS)測定の条件の詳細は、後述する実施例の欄に記載のとおりである。
また、前記ニオブ含有金属炭窒酸化物に対する粉末X線回折法(Cu−Kα線)による測定(測定条件は下記のとおり。)において、回折角2θ=25.45°〜25.65°間のX線回折強度の最大値をI1とし、回折角2θ=25.65°〜26.0°間のX線回折強度の最大値をI2とした場合、I2/(I1+I2)が好ましくは0.26〜1.0であり、さらに好ましく0.4〜1.0である。
The details of the conditions for X-ray absorption fine structure (XAFS) measurement in the present invention are as described in the column of Examples described later.
Moreover, in the measurement by X-ray powder diffraction method (Cu-Kα ray) with respect to the niobium-containing metal carbonitride oxide (measurement conditions are as follows), the diffraction angle 2θ is between 25.45 ° and 25.65 °. When the maximum value of the X-ray diffraction intensity is I 1 and the maximum value of the X-ray diffraction intensity between the diffraction angles 2θ = 25.65 ° to 26.0 ° is I 2 , I 2 / (I 1 + I 2 ) Is preferably 0.26 to 1.0, more preferably 0.4 to 1.0.
<測定条件>
測定装置:PANalytical製のX'Pert PRO
X線出力:45kV、40mA
スキャン軸:2θ/θ
測定範囲(2θ):10°〜89.98°
スキャンサイズ:0.017°
スキャンステップ時間:10.3S
スキャンの種類:Continuous
PSDモード:Scanning
発散スリット(DS)タイプ:固定
照射幅:10mm
測定温度:25℃
ターゲット:Cu
K−Alpha1:1.54060
K−Alpha2:1.54443
K−Beta:1.39225
K−A2/K−A1比:0.5
ゴニオメーター半径:240mm
<Measurement conditions>
Measuring device: X'Pert PRO made by PANalytical
X-ray output: 45 kV, 40 mA
Scan axis: 2θ / θ
Measurement range (2θ): 10 ° to 89.98 °
Scan size: 0.017 °
Scan step time: 10.3S
Scan type: Continuous
PSD mode: Scanning
Divergent slit (DS) type: Fixed Irradiation width: 10 mm
Measurement temperature: 25 ° C
Target: Cu
K-Alpha 1: 1.54060
K-Alpha2: 1.54443
K-Beta: 1.39225
K-A2 / K-A1 ratio: 0.5
Goniometer radius: 240mm
I2/(I1+I2)が上記範囲にあるニオブ含有金属炭窒酸化物からなる触媒は、酸性電解質中や高電位で腐食せず、安定であり、高い酸素還元能を有する。
回折角2θ=25.5°付近に観測される回折線ピークは、Nb2O5骨格(ICSDカード:00-037-1468)に由来し、回折角2θ=25.85°付近に観測される回折線ピークはNb12O29骨格(ICSDカード:01-073-1610)に由来する。したがって、「I2/(I1+I2)」が大きくなるにつれて、ニオブ含有金属炭窒酸化物におけるNb12O29骨格の存在割合が大きくなると考えられる。このようなNb12O29骨格の存在割合が大きいニオブ含有金属炭窒酸化物からなる触媒は高い酸素還元能を有すると、本発明者らは推定している。
A catalyst made of niobium-containing metal carbonitride oxide having I 2 / (I 1 + I 2 ) in the above range does not corrode in an acidic electrolyte or at a high potential, is stable, and has a high oxygen reducing ability.
The diffraction line peak observed near the diffraction angle 2θ = 25.5 ° originates from the Nb 2 O 5 skeleton (ICSD card: 00-037-1468) and is observed near the diffraction angle 2θ = 25.55 °. The diffraction line peak is derived from the Nb 12 O 29 skeleton (ICSD card: 01-073-1610). Therefore, it is considered that as “I 2 / (I 1 + I 2 )” increases, the abundance ratio of the Nb 12 O 29 skeleton in the niobium-containing metal carbonitride oxide increases. The present inventors presume that such a catalyst composed of a niobium-containing metal carbonitride having a large proportion of Nb 12 O 29 skeleton has a high oxygen reducing ability.
回折線ピークとは、試料(結晶質)に様々な角度でX線を照射した場合に、特異的な回折角度および回折強度で得られるピークのことをいう。本発明においては、上記X線回折強度Iは、下記測定法により得られた回折強度からベースラインの強度を差し引いた値と定義する(ただし、負の値の場合は、上記X線回折強度I=0と定義する。)。ベースラインの強度としては、回折角2θ=22.0°における回折強度を採用する。 The diffraction line peak means a peak obtained with a specific diffraction angle and diffraction intensity when a sample (crystalline) is irradiated with X-rays at various angles. In the present invention, the X-ray diffraction intensity I is defined as a value obtained by subtracting the baseline intensity from the diffraction intensity obtained by the following measurement method (however, in the case of a negative value, the X-ray diffraction intensity I is = 0). As the baseline intensity, the diffraction intensity at a diffraction angle 2θ = 22.0 ° is adopted.
「I2/(I1+I2)」が前記範囲を満たすニオブ含有金属炭窒酸化物は、例えば、酸素ガスを含む不活性ガス中で、ニオブ含有金属炭窒化物を熱処理することにより得ることができる。前記熱処理条件を制御することにより、ニオブ含有金属炭窒酸化物におけるNb12O29骨格の存在割合を大きくことができ、最終的に得られる触媒の酸素還元能を高くすることができる。前記ニオブ含有金属炭窒酸化物の製造方法の詳細については後述する。
また、前記ニオブ含有金属炭窒酸化物に対する粉末X線回折法(Cu−Kα線)による測定(測定条件は上記のとおり。)において、回折角2θ=34.5°〜35.5°間のNbC0.5N0.5に由来するX線回折強度の最大値をJ1とし、回折角2θ=23.00°〜24.00°間のNb12O29およびNb2O5に由来するX線回折強度の最大値をJ2とした場合、J/(J1+J2)をDOO(Degree of Oxidation)とする。この値が0.30〜0.95であると触媒活性が高く好ましく、さらに0.50〜0.90であると触媒は著しく高い活性を示し、酸に対する耐久性も高いため好ましい。
A niobium-containing metal carbonitride that satisfies “I 2 / (I 1 + I 2 )” is obtained by, for example, heat-treating niobium-containing metal carbonitride in an inert gas containing oxygen gas. Can do. By controlling the heat treatment conditions, the abundance ratio of the Nb 12 O 29 skeleton in the niobium-containing metal carbonitride can be increased, and the oxygen reduction ability of the finally obtained catalyst can be increased. Details of the method for producing the niobium-containing metal oxycarbonitride will be described later.
Further, in the measurement by the powder X-ray diffraction method (Cu-Kα ray) for the niobium-containing metal carbonitride oxide (measurement conditions are as described above), the diffraction angle is 2θ = 34.5 ° to 35.5 °. Xb-ray diffraction intensity derived from Nb 12 O 29 and Nb 2 O 5 between diffraction angles 2θ = 23.00 ° to 24.00 °, where J 1 is the maximum value of X-ray diffraction intensity derived from NbC 0.5 N 0.5 If the maximum value of the set to J 2, J / a (J 1 + J 2) and DOO (Degree of Oxidation). When this value is from 0.30 to 0.95, the catalyst activity is preferably high, and when it is from 0.50 to 0.90, the catalyst exhibits an extremely high activity and also has high durability against acids, which is preferable.
また、前記ニオブ含有金属炭窒酸化物は通常、組成式がNbCxNyOz(ただし、x、y、zは原子数の比を表し、0.1≦x≦2、0.05≦y≦1、0.1≦z≦2、かつx+y+z≦5である。)で表される。上記組成式において、0.1≦x≦1.5、0.05≦y≦0.95、0.2≦z≦1.9、かつ2.0≦x+y+z≦4.35であることが好ましい。 In addition, the niobium-containing metal carbonitride oxide usually has a composition formula of NbC x N y O z (where x, y, z represent the ratio of the number of atoms, and 0.1 ≦ x ≦ 2, 0.05 ≦ y ≦ 1, 0.1 ≦ z ≦ 2, and x + y + z ≦ 5). In the above composition formula, it is preferable that 0.1 ≦ x ≦ 1.5, 0.05 ≦ y ≦ 0.95, 0.2 ≦ z ≦ 1.9, and 2.0 ≦ x + y + z ≦ 4.35. .
前記ニオブ含有金属炭窒酸化物は、ニオブ以外に、錫、インジウム、白金、タンタル、ジルコニウム、銅、鉄、タングステン、クロム、モリブデン、ハフニウム、チタニウム、バナジウム、コバルト、マンガン、セリウム、水銀、プルトニウム、金、銀、イリジウム、パラジウム、イットリウム、ルテニウムおよびニッケルからなる群より選択された少なくとも1種の金属(以下「金属M」または「M」とも記す。)を含有していてもよい。 In addition to niobium, the niobium-containing metal oxycarbonitride is tin, indium, platinum, tantalum, zirconium, copper, iron, tungsten, chromium, molybdenum, hafnium, titanium, vanadium, cobalt, manganese, cerium, mercury, plutonium, It may contain at least one metal selected from the group consisting of gold, silver, iridium, palladium, yttrium, ruthenium and nickel (hereinafter also referred to as “metal M” or “M”).
ニオブおよびその他の金属Mを含有する前記炭窒酸化物の組成式は、NbaMbCxNyOz(ただし、Mは「金属M」を、a、b、x、y、zは原子数の比を表し、0.01≦a≦1、0≦b≦0.99、0.1≦x≦2、0.05≦y≦1、0.1≦z≦2、a+b=1、かつx+y+z≦5である。)で表される。前記組成式において、0.05≦a≦0.99、0.01≦b≦0.95、0.1≦x≦1.5、0.05≦y≦0.95、0.2≦z≦1.9、かつ2.0≦x+y+z≦4.35であることが好ましい。各原子数の比が前記範囲であると、酸素還元電位が高くなる傾向がある。 The composition formula of the carbonitrous oxide containing niobium and other metals M is Nb a M b C x N y O z (where M is “metal M”, a, b, x, y, z are Represents the ratio of the number of atoms, 0.01 ≦ a ≦ 1, 0 ≦ b ≦ 0.99, 0.1 ≦ x ≦ 2, 0.05 ≦ y ≦ 1, 0.1 ≦ z ≦ 2, a + b = 1 And x + y + z ≦ 5.) In the composition formula, 0.05 ≦ a ≦ 0.99, 0.01 ≦ b ≦ 0.95, 0.1 ≦ x ≦ 1.5, 0.05 ≦ y ≦ 0.95, 0.2 ≦ z It is preferable that ≦ 1.9 and 2.0 ≦ x + y + z ≦ 4.35. When the ratio of the number of atoms is within the above range, the oxygen reduction potential tends to increase.
本発明において「ニオブ含有金属炭窒酸化物」とは、組成式がNbaMbCxNyOzである場合には、組成式がNbaMbCxNyOzで表される化合物、または、ニオブを含有する金属酸化物、ニオブを含有する金属炭化物、ニオブを含有する金属窒化物、ニオブを含有する金属炭窒化物、ニオブを含有する金属炭酸化物もしくはニオブを含有する金属窒酸化物などを含み、組成式が全体としてNbaMbCxNyOzで表される混合物(ただし、NbaMbCxNyOzで表される化合物を含んでいてもいなくてもよい。)、あるいはその両方を意味する。
本発明に用いる触媒の、下記測定法(A)に従って測定される酸素還元開始電位は、可逆水素電極を基準として好ましくは0.5V(vs.NHE)以上である。
In the present invention, the “niobium-containing metal oxycarbonitride” is represented by a composition formula of Nb a M b C x N y O z when the composition formula is Nb a M b C x N y O z. Or niobium-containing metal oxide, niobium-containing metal carbide, niobium-containing metal nitride, niobium-containing metal carbonitride, niobium-containing metal carbonate or niobium-containing metal A mixture represented by Nb a M b C x N y O z as a whole (including a compound represented by Nb a M b C x N y O z). It does not have to be)) or both.
The oxygen reduction initiation potential of the catalyst used in the present invention, measured according to the following measurement method (A), is preferably 0.5 V (vs. NHE) or more with respect to the reversible hydrogen electrode.
〔測定法(A):
電子伝導性粒子である炭素に分散させた触媒が1質量%となるように、該触媒および炭素を溶剤中に入れ、超音波で撹拌し懸濁液を得る。なお、炭素源としては、カーボンブラック(比表面積:100〜300m2/g)(例えばキャボット社製 XC−72)を用い、触媒と炭素とが質量比で95:5になるように分散させる。また、溶剤としては、イソプロピルアルコール:水(質量比)=1:1を用いる。
[Measurement method (A):
The catalyst and carbon are placed in a solvent so that the amount of the catalyst dispersed in the carbon that is the electron conductive particles is 1% by mass, and stirred with ultrasonic waves to obtain a suspension. As a carbon source, carbon black (specific surface area: 100 to 300 m 2 / g) (for example, XC-72 manufactured by Cabot Corporation) is used, and the catalyst and carbon are dispersed so that the mass ratio is 95: 5. As the solvent, isopropyl alcohol: water (mass ratio) = 1: 1 is used.
前記懸濁液を、超音波をかけながら10μl採取し、すばやくグラッシーカーボン電極(直径:5.2mm)上に滴下し、乾燥させる。乾燥することにより触媒を含む燃料電池用触媒層が、グラッシーカーボン電極上に形成される。グラッシーカーボン電極上に、触媒層が2mg付着するまで、前記触媒層の形成操作を繰り返し行う。 10 μl of the suspension is collected while applying ultrasonic waves, and is quickly dropped on a glassy carbon electrode (diameter: 5.2 mm) and dried. By drying, a catalyst layer for a fuel cell containing the catalyst is formed on the glassy carbon electrode. The formation of the catalyst layer is repeated until 2 mg of the catalyst layer is deposited on the glassy carbon electrode.
次いでNAFION(登録商標)(デュポン社 5%NAFION(登録商標)溶液(DE521))をイソプロピルアルコールで10倍に希釈したものを、前記燃料電池用触媒層上に10μl滴下し、これを、60℃で1時間乾燥させる。 Next, 10 μl of NAFION (registered trademark) (DuPont 5% NAFION (registered trademark) solution (DE521)) diluted 10-fold with isopropyl alcohol was dropped on the catalyst layer for the fuel cell. For 1 hour.
このようにして得られた電極を用いて、酸素雰囲気および窒素雰囲気で、0.5mol/Lの硫酸水溶液中、30℃の温度で、同濃度の硫酸水溶液中での可逆水素電極を参照電極とし、5mV/秒の電位走査速度で分極することにより電流−電位曲線を測定した際の、酸素雰囲気での還元電流と窒素雰囲気での還元電流との間に0.2μA/cm2以上の差が現れ始める電位を酸素還元開始電位とする。〕 Using the electrode thus obtained, a reversible hydrogen electrode in a 0.5 mol / L sulfuric acid aqueous solution at a temperature of 30 ° C. in a sulfuric acid aqueous solution of the same concentration was used as a reference electrode in an oxygen atmosphere and a nitrogen atmosphere. There is a difference of 0.2 μA / cm 2 or more between the reduction current in the oxygen atmosphere and the reduction current in the nitrogen atmosphere when the current-potential curve is measured by polarization at a potential scanning speed of 5 mV / sec. The potential at which it begins to appear is defined as the oxygen reduction start potential. ]
上記酸素還元開始電位が0.7V(vs.NHE)未満であると、前記触媒を燃料電池のカソード用の触媒として用いた際に過酸化水素が発生することがある。また酸素還元開始電位は0.85V(vs.NHE)以上であることが、好適に酸素を還元するために好ましい。また、酸素還元開始電位は高い程好ましく、特に上限は無いが、理論値の1.23V(vs.NHE)である。 When the oxygen reduction starting potential is less than 0.7 V (vs. NHE), hydrogen peroxide may be generated when the catalyst is used as a catalyst for a cathode of a fuel cell. Further, the oxygen reduction starting potential is preferably 0.85 V (vs. NHE) or more in order to suitably reduce oxygen. Further, the oxygen reduction starting potential is preferably as high as possible. Although there is no particular upper limit, the theoretical value is 1.23 V (vs. NHE).
この電位が0.4V(vs.NHE)未満の場合、ニオブ含有金属炭窒酸化物の安定性という観点では全く問題はないが、酸素を好適に還元することができず、燃料電池に含まれる膜電極接合体の燃料電池用触媒層としての有用性は乏しい。 When this potential is less than 0.4 V (vs. NHE), there is no problem at all from the viewpoint of the stability of the niobium-containing metal carbonitride, but oxygen cannot be suitably reduced and is included in the fuel cell. The usefulness of the membrane electrode assembly as a fuel cell catalyst layer is poor.
<触媒の製造方法>
上記触媒の製造方法は特に限定されないが、例えば、ニオブ含有金属炭窒化物を、酸素ガスを含む不活性ガス中または酸素ガスおよび水素ガスを含む不活性ガス中で熱処理することにより、ニオブ含有金属炭窒酸化物を得る工程を含む製造方法が挙げられる。
<Method for producing catalyst>
The method for producing the catalyst is not particularly limited. For example, a niobium-containing metal carbonitride is heat-treated in an inert gas containing oxygen gas or in an inert gas containing oxygen gas and hydrogen gas. The manufacturing method including the process of obtaining a carbonitrous oxide is mentioned.
(ニオブ含有金属炭窒化物の製造方法)
前記工程に用いるニオブ含有金属炭窒化物を得る方法としては、酸化ニオブと炭素との混合物を、窒素雰囲気または窒素を含有する不活性ガス中で熱処理することによりニオブ含有金属炭窒化物の一種である炭窒化ニオブを製造する方法(I)、炭化ニオブ、酸化ニオブおよび窒化ニオブの混合物を、窒素雰囲気中などで熱処理することによりニオブ含有金属炭窒化物の一種である炭窒化ニオブを製造する方法(II)や、炭化ニオブおよび窒化ニオブの混合物を、窒素雰囲気中などで熱処理することによりニオブ含有金属炭窒化物の一種である炭窒化ニオブを製造する方法(III)等が挙げられる。また、前記金属Mの酸化物、酸化ニオブ及び炭素との混合物を、窒素雰囲気または窒素を含有する不活性ガス中で熱処理することによりニオブ含有金属炭窒化物を製造する方法(IV)、前記金属Mの酸化物、炭化ニオブおよび窒化ニオブの混合物を、窒素ガスなどの不活性ガス中で熱処理することによりニオブ含有金属炭窒化物を製造する方法(V)、または前記金属Mの酸化物、炭化ニオブ、窒化ニオブおよび酸化ニオブの混合物を、窒素ガスなどの不活性ガス中で熱処理することによりニオブ含有金属炭窒化物を製造する方法(VI)、または前記金属Mを含有する化合物(例えば有機酸塩、塩化物、炭化物、窒化物、錯体など)、炭化ニオブおよび窒化ニオブの混合物を、窒素ガスなどの不活性ガス中で熱処理することによりニオブ含有金属炭窒化物を製造する方法(VII)などが挙げられる。また、前記製造方法(IV)〜(VII)における原料、その他の原料を組み合わせた混合物を、窒素ガスなどの不活性ガス中で熱処理することによりニオブ含有金属炭窒化物を製造する方法(VIII)であってもよい。本発明においては、ニオブ含有金属炭窒化物を得ることができれば特に制限されず、いずれの製造方法を用いても構わない。
(Method for producing niobium-containing metal carbonitride)
As a method for obtaining the niobium-containing metal carbonitride used in the above step, a mixture of niobium oxide and carbon is a kind of niobium-containing metal carbonitride by heat-treating in a nitrogen atmosphere or an inert gas containing nitrogen. A method of producing niobium carbonitride (I), a method of producing niobium carbonitride which is a kind of niobium-containing metal carbonitride by heat-treating a mixture of niobium carbide, niobium oxide and niobium nitride in a nitrogen atmosphere or the like Examples thereof include (II) and a method (III) for producing niobium carbonitride which is a kind of niobium-containing metal carbonitride by heat-treating a mixture of niobium carbide and niobium nitride in a nitrogen atmosphere or the like. Also, a method (IV) for producing a niobium-containing metal carbonitride by heat-treating a mixture of the metal M oxide, niobium oxide and carbon in a nitrogen atmosphere or an inert gas containing nitrogen, the metal Method (V) for producing a niobium-containing metal carbonitride by heat-treating a mixture of M oxide, niobium carbide and niobium nitride in an inert gas such as nitrogen gas, or the metal M oxide, carbonization Method (VI) for producing niobium-containing metal carbonitride by heat-treating a mixture of niobium, niobium nitride and niobium oxide in an inert gas such as nitrogen gas, or a compound (for example, organic acid) containing the metal M Salts, chlorides, carbides, nitrides, complexes, etc.), niobium carbide and niobium nitride mixtures by heat-treating them in an inert gas such as nitrogen gas. A method for producing the carbonitride (VII) can be mentioned. Also, a method (VIII) for producing a niobium-containing metal carbonitride by heat-treating a mixture of the raw materials in the production methods (IV) to (VII) and other raw materials in an inert gas such as nitrogen gas. It may be. In the present invention, there is no particular limitation as long as a niobium-containing metal carbonitride can be obtained, and any production method may be used.
これらの製造方法の詳細は、特許文献3の段落[0056]〜[0082]、特許文献4の段落[0059]〜[0105]などの記載から理解できる。
上記製造方法(I)〜(VIII)で得られたニオブ含有金属炭窒化物は、解砕されることが好ましい。解砕されることにより得られる触媒をより微細な粉末にすることができ、触媒を含む触媒層中に触媒を好適に分散することができる。また、得られる触媒面積が大きく、触媒能に優れるため好ましい。
Details of these production methods can be understood from the description of paragraphs [0056] to [0082] of Patent Document 3, paragraphs [0059] to [0105] of Patent Document 4, and the like.
The niobium-containing metal carbonitride obtained by the above production methods (I) to (VIII) is preferably crushed. The catalyst obtained by pulverization can be made into a finer powder, and the catalyst can be suitably dispersed in the catalyst layer containing the catalyst. Moreover, since the catalyst area obtained is large and it is excellent in catalytic ability, it is preferable.
ニオブ含有金属炭窒化物を解砕する方法としては、例えば、ロール転動ミル、ボールミル、媒体撹拌ミル、気流粉砕機、乳鉢、槽解機による方法等が挙げられ、ニオブ含有金属炭窒化物をより微粒とすることができる点では、気流粉砕機が好ましく、少量処理が容易となる点では、乳鉢による方法が好ましい。 Examples of the method for pulverizing the niobium-containing metal carbonitride include a roll rolling mill, a ball mill, a medium stirring mill, an airflow crusher, a mortar, a method using a tank disintegrator, and the like. An airflow pulverizer is preferable in terms of being able to make finer particles, and a method using a mortar is preferable in terms of facilitating a small amount of processing.
(ニオブ含有金属炭窒酸化物の製造方法)
次に、前記ニオブ含有金属炭窒化物を、酸素ガスを含む不活性ガス中で熱処理することにより、ニオブ含有金属炭窒酸化物を得る工程について説明する。
(Method for producing niobium-containing metal carbonitride oxide)
Next, a process for obtaining a niobium-containing metal carbonitride by heat-treating the niobium-containing metal carbonitride in an inert gas containing oxygen gas will be described.
前記不活性ガスとしては、窒素ガス、ヘリウムガス、ネオンガス、アルゴンガス、クリプトンガス、キセノンガスおよびラドンガスが挙げられる。窒素ガスおよびアルゴンガスが、比較的入手しやすい点で特に好ましい。 Examples of the inert gas include nitrogen gas, helium gas, neon gas, argon gas, krypton gas, xenon gas, and radon gas. Nitrogen gas and argon gas are particularly preferable because they are relatively easily available.
前記熱処理は、温度範囲を750〜1050℃、かつ酸素ガス濃度を0.5〜2容量%として行うことが好ましい。このような条件で熱処理を行うと、XAFS測定において上記(i)、(ii)を満たすニオブ含有金属炭窒酸化物が得られ、このニオブ含有金属炭窒酸化物からなる触媒は、酸性電解質中や高電位で腐食せず、安定であり、高い酸素還元能を有する。 The heat treatment is preferably performed at a temperature range of 750 to 1050 ° C. and an oxygen gas concentration of 0.5 to 2% by volume. When heat treatment is performed under such conditions, a niobium-containing metal oxycarbonitride satisfying the above (i) and (ii) is obtained in the XAFS measurement, and the catalyst made of this niobium-containing metal oxycarbonitride is contained in an acidic electrolyte. It does not corrode at high potentials, is stable, and has a high oxygen reducing ability.
また、前記不活性ガスは、さらに水素ガスを含んでいてもよい。
前記不活性ガス中の水素ガス濃度は、熱処理時間、熱処理温度及び酸素濃度に依存するが、0.1容量%以上5容量%以下であることが好ましい。より好ましくは2容量%以上4容量%以下が好ましい。前記水素ガス濃度が前記範囲内であると、酸化が進み過ぎないように均一な炭窒酸化物が形成する点で好ましい。
The inert gas may further contain hydrogen gas.
The hydrogen gas concentration in the inert gas depends on the heat treatment time, the heat treatment temperature, and the oxygen concentration, but is preferably from 0.1% by volume to 5% by volume. More preferably, it is 2 volume% or more and 4 volume% or less. When the hydrogen gas concentration is within the above range, it is preferable in that a uniform carbonitride oxide is formed so that oxidation does not proceed excessively.
前記熱処理条件を制御することにより、ニオブ含有金属炭窒酸化物におけるNb12O29骨格の存在割合を大きくことができ、最終的に得られる触媒の酸素還元能を高くすることができる。 By controlling the heat treatment conditions, the abundance ratio of the Nb 12 O 29 skeleton in the niobium-containing metal carbonitride can be increased, and the oxygen reduction ability of the finally obtained catalyst can be increased.
当該工程における熱処理方法としては、静置法、撹拌法、落下法、粉末捕捉法などが挙げられる。
これらの熱処理方法の詳細は、特許文献3の段落[0091]〜[0095]、特許文献4の段落[0111]〜[0115]などの記載から理解できる。
Examples of the heat treatment method in this step include a stationary method, a stirring method, a dropping method, and a powder trapping method.
Details of these heat treatment methods can be understood from the descriptions in paragraphs [0091] to [0095] of Patent Document 3, paragraphs [0111] to [0115] of Patent Document 4, and the like.
本発明の触媒としては、上述の製造方法等により得られるニオブ含有金属炭窒酸化物を、そのまま用いてもよいが、得られるニオブ含有金属炭窒酸化物をさらに解砕し、より微細な粉末にしたものを用いてもよい。 As the catalyst of the present invention, the niobium-containing metal carbonitride oxide obtained by the above-described production method or the like may be used as it is, but the niobium-containing metal carbonitride oxide obtained is further crushed to obtain a finer powder. You may use what was made.
ニオブ含有金属炭窒酸化物を解砕する方法としては、例えば、ロール転動ミル、ボールミル、媒体撹拌ミル、気流粉砕機、乳鉢、槽解機による方法等が挙げられ、ニオブ含有金属炭窒酸化物をより微粒とすることができる点では、気流粉砕機による方法が好ましく、少量処理が容易となる点では、乳鉢による方法が好ましい。
本発明の触媒は、上述したニオブ含有金属炭窒酸化物の製造方法により得られる。
Examples of the method for pulverizing the niobium-containing metal carbonitride oxide include a roll rolling mill, a ball mill, a medium agitation mill, an airflow crusher, a mortar, a tank disintegrator method, and the like. A method using an airflow pulverizer is preferable in that the product can be made finer, and a method using a mortar is preferable in that a small amount of processing is easy.
The catalyst of this invention is obtained by the manufacturing method of the niobium containing metal carbonitrous oxide mentioned above.
<用途>
本発明の触媒は、白金触媒の代替触媒として使用することができる。
例えば、燃料電池用触媒、排ガス処理用触媒または有機合成用触媒として使用できる。
本発明の燃料電池用触媒層は、前記触媒を含むことを特徴としている。
<Application>
The catalyst of the present invention can be used as an alternative catalyst for a platinum catalyst.
For example, it can be used as a catalyst for fuel cells, a catalyst for exhaust gas treatment, or a catalyst for organic synthesis.
The fuel cell catalyst layer of the present invention is characterized by containing the catalyst.
燃料電池用触媒層には、アノード触媒層、カソード触媒層があるが、前記触媒はいずれにも用いることができる。前記触媒は、耐久性に優れ、酸素還元能が大きいので、カソード触媒層に用いることが好ましい。 The fuel cell catalyst layer includes an anode catalyst layer and a cathode catalyst layer, and the catalyst can be used for both. Since the catalyst is excellent in durability and has a large oxygen reducing ability, it is preferably used in the cathode catalyst layer.
本発明の燃料電池用触媒層には、さらに電子伝導性粒子を含むことが好ましい。前記触媒を含む燃料電池用触媒層がさらに電子伝導性粒子を含む場合には、還元電流をより高めることができる。電子伝導性粒子は、前記触媒に、電気化学的反応を誘起させるための電気的接点を生じさせるため、還元電流を高めると考えられる。 The catalyst layer for a fuel cell of the present invention preferably further contains electron conductive particles. When the fuel cell catalyst layer containing the catalyst further contains electron conductive particles, the reduction current can be further increased. The electron conductive particles are considered to increase the reduction current because they generate an electrical contact for inducing an electrochemical reaction in the catalyst.
前記電子伝導性粒子は通常、触媒の担体として用いられる。
電子伝導性粒子としては、炭素、導電性高分子、導電性セラミクス、金属または酸化タングステンもしくは酸化イリジウムなどの導電性無機酸化物が挙げられ、それらを単独または組み合わせて用いることができる。特に、炭素は比表面積が大きいため、炭素単独または炭素とその他の電子伝導性粒子との混合物が好ましい。すなわち燃料電池用触媒層は、好ましくは、前記触媒と炭素とを含む。
The electron conductive particles are usually used as a catalyst carrier.
Examples of the electron conductive particles include carbon, conductive polymers, conductive ceramics, metals, and conductive inorganic oxides such as tungsten oxide or iridium oxide, and these can be used alone or in combination. In particular, since carbon has a large specific surface area, carbon alone or a mixture of carbon and other electron conductive particles is preferable. That is, the fuel cell catalyst layer preferably contains the catalyst and carbon.
炭素としては、カーボンブラック、グラファイト、活性炭、カーボンナノチューブ、カーボンナノファイバー、カーボンナノホーン、フラーレンなどが使用できる。カーボンの粒径は、小さすぎると電子伝導パスが形成されにくくなり、また大きすぎると燃料電池用触媒層のガス拡散性が低下し、触媒の利用率が低下する傾向があるため、10〜1000nmの範囲であることが好ましく、10〜100nmの範囲であることがよりに好ましい。 As carbon, carbon black, graphite, activated carbon, carbon nanotube, carbon nanofiber, carbon nanohorn, fullerene and the like can be used. If the particle size of the carbon is too small, it becomes difficult to form an electron conduction path, and if it is too large, the gas diffusibility of the catalyst layer for the fuel cell is lowered and the utilization rate of the catalyst tends to be lowered. Is preferable, and the range of 10 to 100 nm is more preferable.
電子伝導性粒子が、炭素の場合、前記触媒と炭素との質量比(触媒:電子伝導性粒子)は、好ましくは4:1〜1000:1である。
導電性高分子としては特に限定は無いが、例えばポリアセチレン、ポリ−p−フェニレン、ポリアニリン、ポリアルキルアニリン、ポリピロール、ポリチオフェン、ポリインドール、ポリ−1,5−ジアミノアントラキノン、ポリアミノジフェニル、ポリ(o−フェニレンジアミン)、ポリ(キノリニウム)塩、ポリピリジン、ポリキノキサリン、ポリフェニルキノキサリン等が挙げられる。これらの中でも、ポリピロール、ポリアニリン、ポリチオフェンが好ましく、ポリピロールがより好ましい。
When the electron conductive particles are carbon, the mass ratio of the catalyst to carbon (catalyst: electron conductive particles) is preferably 4: 1 to 1000: 1.
The conductive polymer is not particularly limited. For example, polyacetylene, poly-p-phenylene, polyaniline, polyalkylaniline, polypyrrole, polythiophene, polyindole, poly-1,5-diaminoanthraquinone, polyaminodiphenyl, poly (o- Phenylenediamine), poly (quinolinium) salts, polypyridine, polyquinoxaline, polyphenylquinoxaline and the like. Among these, polypyrrole, polyaniline, and polythiophene are preferable, and polypyrrole is more preferable.
高分子電解質としては、燃料電池用触媒層において一般的に用いられているものであれば特に限定されない。具体的には、スルホン酸基を有するパーフルオロカーボン重合体(例えば、NAFION(登録商標)(デュポン社 5%NAFION(登録商標)溶液(DE521)など))、スルホン酸基を有する炭化水素系高分子化合物、リン酸などの無機酸をドープさせた高分子化合物、一部がプロトン伝導性の官能基で置換された有機/無機ハイブリッドポリマー、高分子マトリックスにリン酸溶液や硫酸溶液を含浸させたプロトン伝導体などが挙げられる。これらの中でも、NAFION(登録商標)(デュポン社 5%NAFION(登録商標)溶液(DE521))が好ましい。 The polymer electrolyte is not particularly limited as long as it is generally used in a fuel cell catalyst layer. Specifically, a perfluorocarbon polymer having a sulfonic acid group (for example, NAFION (registered trademark) (DuPont 5% NAFION (registered trademark) solution (DE521), etc.)), a hydrocarbon polymer having a sulfonic acid group. Compound, polymer compound doped with inorganic acid such as phosphoric acid, organic / inorganic hybrid polymer partially substituted with proton conductive functional group, proton impregnated with phosphoric acid solution or sulfuric acid solution in polymer matrix A conductor etc. are mentioned. Among these, NAFION (registered trademark) (DuPont 5% NAFION (registered trademark) solution (DE521)) is preferable.
本発明の燃料電池用触媒層は、アノード触媒層またはカソード触媒層のいずれにも用いることができる。本発明の燃料電池用触媒層は、高い酸素還元能を有し、酸性電解質中において高電位であっても腐蝕しがたい触媒を含むため、燃料電池のカソードに設けられる触媒層(カソード用触媒層)として有用である。特に固体高分子型燃料電池が備える膜電極接合体のカソードに設けられる触媒層に好適に用いられる。 The catalyst layer for a fuel cell of the present invention can be used for either an anode catalyst layer or a cathode catalyst layer. The catalyst layer for a fuel cell of the present invention includes a catalyst layer (catalyst catalyst for cathode) provided on the cathode of a fuel cell because it contains a catalyst having high oxygen reducing ability and hardly corroded even in a high potential in an acidic electrolyte. Layer). In particular, it is suitably used for a catalyst layer provided on the cathode of a membrane electrode assembly provided in a polymer electrolyte fuel cell.
前記触媒を、担体である前記電子伝導性粒子上に分散させる方法としては、気流分散、液中分散等の方法が挙げられる。液中分散は、溶媒中に触媒および電子伝導性粒子を分散したものを、燃料電池用触媒層形成工程に使用できるため好ましい。液中分散としては、オリフィス収縮流による方法、回転せん断流による方法または超音波による方法等があげられる。液中分散の際、使用される溶媒は、触媒や電子伝導性粒子を浸食することがなく、分散できるものであれば特に制限はないが、揮発性の液体有機溶媒または水等が一般に使用される。 Examples of the method for dispersing the catalyst on the electron conductive particles as a support include air flow dispersion and dispersion in liquid. Dispersion in liquid is preferable because a catalyst and electron conductive particles dispersed in a solvent can be used in the fuel cell catalyst layer forming step. Examples of the dispersion in the liquid include a method using an orifice contraction flow, a method using a rotating shear flow, and a method using an ultrasonic wave. The solvent used for dispersion in the liquid is not particularly limited as long as it does not erode the catalyst or electron conductive particles and can be dispersed, but a volatile liquid organic solvent or water is generally used. The
また、触媒を、前記電子伝導性粒子上に分散させる際、さらに上記電解質と分散剤とを同時に分散させてもよい。
燃料電池用触媒層の形成方法としては、特に制限はないが、たとえば、前記触媒と電子伝導性粒子と電解質とを含む懸濁液を、後述する電解質膜またはガス拡散層に塗布する方法が挙げられる。前記塗布する方法としては、ディッピング法、スクリーン印刷法、ロールコーティング法、スプレー法などが挙げられる。また、前記触媒と電子伝導性粒子と電解質とを含む懸濁液を、塗布法またはろ過法により基材に燃料電池用触媒層を形成した後、転写法で電解質膜に燃料電池用触媒層を形成する方法が挙げられる。
Further, when the catalyst is dispersed on the electron conductive particles, the electrolyte and the dispersing agent may be further dispersed at the same time.
The method for forming the catalyst layer for the fuel cell is not particularly limited. For example, a method of applying a suspension containing the catalyst, the electron conductive particles, and the electrolyte to the electrolyte membrane or the gas diffusion layer to be described later. It is done. Examples of the application method include a dipping method, a screen printing method, a roll coating method, and a spray method. In addition, after forming a catalyst layer for a fuel cell on a base material by a coating method or a filtration method using a suspension containing the catalyst, electron conductive particles, and an electrolyte, the catalyst layer for a fuel cell is formed on the electrolyte membrane by a transfer method. The method of forming is mentioned.
本発明の電極は、前記燃料電池用触媒層と多孔質支持層とを有することを特徴としている。
本発明の電極はカソードまたはアノードのいずれの電極にも用いることができる。本発明の電極は、耐久性に優れ、触媒能が大きいので、カソードに用いるとより効果を発揮する。
The electrode of the present invention is characterized by having the fuel cell catalyst layer and a porous support layer.
The electrode of the present invention can be used as either a cathode or an anode. Since the electrode of the present invention is excellent in durability and has a large catalytic ability, it is more effective when used for a cathode.
多孔質支持層とは、ガスを拡散する層(以下「ガス拡散層」とも記す。)である。ガス拡散層としては、電子伝導性を有し、ガスの拡散性が高く、耐食性の高いものであれば何であっても構わないが、一般的にはカーボンペーパー、カーボンクロスなどの炭素系多孔質材料や、軽量化のためにステンレス、耐食材を被服したアルミニウム箔が用いられる。 The porous support layer is a layer that diffuses gas (hereinafter also referred to as “gas diffusion layer”). The gas diffusion layer may be anything as long as it has electron conductivity, high gas diffusibility, and high corrosion resistance. Generally, carbon-based porous materials such as carbon paper and carbon cloth are used. Materials and aluminum foil coated with stainless steel and corrosion-resistant materials for weight reduction are used.
本発明の膜電極接合体は、カソードとアノードと前記カソードおよび前記アノードの間に配置された電解質膜とを有する膜電極接合体であって、前記カソードおよび/または前記アノードが、前記電極であることを特徴としている。 The membrane electrode assembly of the present invention is a membrane electrode assembly having a cathode, an anode, and an electrolyte membrane disposed between the cathode and the anode, wherein the cathode and / or the anode is the electrode. It is characterized by that.
電解質膜としては、例えば、パーフルオロスルホン酸系を用いた電解質膜または炭化水素系電解質膜などが一般的に用いられるが、高分子微多孔膜に液体電解質を含浸させた膜または多孔質体に高分子電解質を充填させた膜などを用いてもよい。 As the electrolyte membrane, for example, an electrolyte membrane using a perfluorosulfonic acid system or a hydrocarbon electrolyte membrane is generally used. However, a membrane or porous body in which a polymer microporous membrane is impregnated with a liquid electrolyte is used. A membrane filled with a polymer electrolyte may be used.
また本発明の燃料電池は、前記膜電極接合体を備えることを特徴としている。
燃料電池の電極反応はいわゆる3相界面(電解質‐電極触媒‐反応ガス)で起こる。燃料電池は、使用される電解質などの違いにより数種類に分類され、溶融炭酸塩型(MCFC)、リン酸型(PAFC)、固体酸化物型(SOFC)、固体高分子型(PEFC)等がある。中でも、本発明の膜電極接合体は、 固体高分子型燃料電池に使用することが好ましい。
The fuel cell according to the present invention includes the membrane electrode assembly.
Fuel cell electrode reactions occur at the so-called three-phase interface (electrolyte-electrode catalyst-reaction gas). Fuel cells are classified into several types depending on the electrolyte used, etc., and include molten carbonate type (MCFC), phosphoric acid type (PAFC), solid oxide type (SOFC), and solid polymer type (PEFC). . Among them, the membrane electrode assembly of the present invention is preferably used for a polymer electrolyte fuel cell.
以下に、本発明を実施例により更に詳細に説明するが、本発明はこれらの実施例に限定されない。
また、実施例および比較例における各種測定は、下記の方法により行なった。
EXAMPLES The present invention will be described below in more detail with reference to examples, but the present invention is not limited to these examples.
In addition, various measurements in Examples and Comparative Examples were performed by the following methods.
[分析方法]
1.X線吸収微細構造(XAFS)測定;
兵庫県の播磨科学公園都市にある大型放射光施設、通称「SPring−8」を用いて、下記の条件で測定を行った。
[Analysis method]
1. X-ray absorption fine structure (XAFS) measurement;
Measurements were performed under the following conditions using a large synchrotron radiation facility, commonly known as “SPring-8”, in the Harima Science Park City, Hyogo Prefecture.
(1)線源
エネルギー領域:3.8〜72 keV
ビームの水平方向の発散:1.0 mrad
光子量:〜10^10 photons/s
エネルギー分解能:ΔE/E 〜 10^-4
高調波除去率:〜10^-4
(2)検出系
図8に示すQXAFS法
(3)EXAFSのフィッティング方法に関する情報
ソフト名:athena, artemis, FEFF
引用指定文献:"IFEFFIT: interactive EXAFS analysis and FEFF fitting" M. Newville, J. Synchrotron Rad. 8, pp 322--324 (2001).
(4)XANESのフィッティング方法に関する情報
吸収端エネルギーに対してVictoreen式(μM=Cλ^3-Dλ^4)でフィッティングさせてバックグラウンド処理を行い、さらに規格化させた。
(1) Radiation source energy range: 3.8 to 72 keV
Horizontal divergence of beam: 1.0 mrad
Photon quantity: ~ 10 ^ 10 photons / s
Energy resolution: ΔE / E ~ 10 ^ -4
Harmonic rejection: ~ 10 ^ -4
(2) Detection system QXAFS method shown in Fig. 8 (3) Information on EXAFS fitting method Software name: athena, artemis, FEFF
Cited designation: "IFEFFIT: interactive EXAFS analysis and FEFF fitting" M. Newville, J. Synchrotron Rad. 8, pp 322--324 (2001).
(4) Information on the XANES fitting method The absorption edge energy was fitted with the Victoreen equation (μM = Cλ ^ 3-Dλ ^ 4), background processing was performed, and standardization was further performed.
2.粉末X線回折;
PANalytical製のX'Pert PROを用いて、試料の粉末X線回折を行った。
2. Powder X-ray diffraction;
Powder X-ray diffraction of the sample was performed using X'Pert PRO manufactured by PANalytical.
各試料の粉末X線回折における回折線ピークの本数は、信号(S)とノイズ(N)との比(S/N)が2以上で検出できるシグナルを1つのピークとしてみなして数えた。X線回折強度Iは、下記測定法により得られた回折強度からベースラインの強度を差し引いた値と定義した(ただし、負の値の場合は、上記X線回折強度I=0と定義した。)。ベースラインの強度としては、回折角2θ=22.0°における回折強度を採用した。 The number of diffraction line peaks in powder X-ray diffraction of each sample was counted by regarding a signal that can be detected at a ratio (S / N) of signal (S) to noise (N) of 2 or more as one peak. The X-ray diffraction intensity I was defined as a value obtained by subtracting the baseline intensity from the diffraction intensity obtained by the following measurement method (however, in the case of a negative value, it was defined as the X-ray diffraction intensity I = 0). ). As the baseline intensity, the diffraction intensity at a diffraction angle 2θ = 22.0 ° was adopted.
3.元素分析;
炭素:試料約0.1gを量り取り、堀場製作所 EMIA−110で測定を行った。
窒素・酸素:試料約0.1gを量り取り、Ni−Cupに封入後、ON分析装置で測定を行った。
ニオブ:試料約0.1gを白金皿に量り取り、硝酸−フッ酸を加えて加熱分解した。この加熱分解物を定容後、希釈し、ICP−MSで定量を行った。
3. Elemental analysis;
Carbon: About 0.1 g of a sample was weighed and measured with Horiba EMIA-110.
Nitrogen / oxygen: About 0.1 g of a sample was weighed and sealed in Ni-Cup, and then measured with an ON analyzer.
Niobium: About 0.1 g of a sample was weighed on a platinum dish, and nitric acid-hydrofluoric acid was added for thermal decomposition. This heat-decomposed product was diluted, diluted, and quantified by ICP-MS.
[実施例1]
1.触媒の調製;
炭化ニオブ6.08g(58mmol)、窒化ニオブ4.81g(45mmol)を充分に粉砕して混合した。この混合粉末を、管状炉において、1600℃で3時間、窒素雰囲気中で加熱することにより、炭窒化ニオブ(1)10.2gを得て、次いで乳鉢で粉砕した。
[Example 1]
1. Preparation of the catalyst;
6.08 g (58 mmol) of niobium carbide and 4.81 g (45 mmol) of niobium nitride were sufficiently pulverized and mixed. This mixed powder was heated in a tube furnace at 1600 ° C. for 3 hours in a nitrogen atmosphere to obtain 10.2 g of niobium carbonitride (1), and then pulverized in a mortar.
炭窒化ニオブ(1)の粉末X線回折スペクトルを図2(下)に示し、当該粉末X線回折スペクトルにおける回折角2θ=20°〜45°の範囲の拡大図を図2(上)に示す。また、炭窒化ニオブ(1)の元素分析結果を表1に示す。 A powder X-ray diffraction spectrum of niobium carbonitride (1) is shown in FIG. 2 (lower), and an enlarged view of the diffraction angle 2θ = 20 ° to 45 ° in the powder X-ray diffraction spectrum is shown in FIG. 2 (upper). . Table 1 shows the elemental analysis results of niobium carbonitride (1).
次にロータリーキルンにおいて、1容量%の酸素ガスを含むアルゴンガスと、3容量%の水素ガスを含む窒素ガスとを容量基準で1:1で流しながら、炭窒化ニオブ(1)0.50gを950℃で8時間、熱処理することにより、ニオブ炭窒酸化物(以下「触媒(1)」または「NbCNO(DOO=0.81)」とも記す)。)を調製した。得られた触媒の重量は0.59gであった。 Next, in the rotary kiln, 950 g of niobium carbonitride (1) 0.50 g was flowed while flowing argon gas containing 1% by volume oxygen gas and nitrogen gas containing 3% by volume hydrogen gas at a volume ratio of 1: 1. Niobium oxycarbonitride (hereinafter also referred to as “catalyst (1)” or “NbCNO (DOO = 0.81)”) by heat treatment at 0 ° C. for 8 hours. ) Was prepared. The weight of the obtained catalyst was 0.59 g.
触媒(1)の元素分析結果を表1に示す。
触媒(1)の粉末X線回折スペクトルを図1(「NbCNO」と記載されたデータ)および図2(「NbCNO(DOO=0.81)」と記載されたデータ)に示す。
触媒(1)のX線吸収端微細構造(XANES)スペクトルを図4(「NbCNO(DOO=0.81)」と記載されたデータ)に示す。
触媒(1)の拡張X線吸収微細構造(EXAFS)スペクトルを図5(「NbCNO(DOO=0.81)」と記載されたデータ)に示す。
Table 1 shows the results of elemental analysis of the catalyst (1).
The powder X-ray diffraction spectrum of the catalyst (1) is shown in FIG. 1 (data described as “NbCNO”) and FIG. 2 (data described as “NbCNO (DOO = 0.81)”).
The X-ray absorption edge fine structure (XANES) spectrum of the catalyst (1) is shown in FIG. 4 (data described as “NbCNO (DOO = 0.81)”).
The extended X-ray absorption fine structure (EXAFS) spectrum of the catalyst (1) is shown in FIG. 5 (data described as “NbCNO (DOO = 0.81)”).
2.燃料電池用電極の製造;
酸素還元能の測定は、次のように行った。触媒(1)0.095gとカーボン(キャボット社製 XC−72)0.005gをイソプロピルアルコール:純水=2:1の質量比で混合した溶液10gに入れ、超音波で撹拌、縣濁して混合した。この混合物30μlをグラッシーカーボン電極(東海カーボン社製、径:5.2mm)に塗布し、120℃で1時間乾燥した。さらに、NAFION(登録商標)(デュポン社 5%NAFION(登録商標)溶液(DE521))を10倍にイソプロピルアルコールで希釈したもの10μlを塗布し、120℃で1時間乾燥し、燃料電池用電極(1)を得た。
2. Production of fuel cell electrodes;
The measurement of the oxygen reducing ability was performed as follows. Catalyst (1) 0.095 g and carbon (Cabot XC-72) 0.005 g were mixed in 10 g of a mixed solution of isopropyl alcohol: pure water = 2: 1, and stirred and suspended with ultrasonic waves. did. 30 μl of this mixture was applied to a glassy carbon electrode (manufactured by Tokai Carbon Co., Ltd., diameter: 5.2 mm) and dried at 120 ° C. for 1 hour. Furthermore, 10 μl of NAFION (registered trademark) (DuPont 5% NAFION (registered trademark) solution (DE521) diluted 10-fold with isopropyl alcohol was applied, dried at 120 ° C. for 1 hour, and an electrode for a fuel cell ( 1) was obtained.
3.酸素還元能の評価;
このようにして作製した燃料電池用電極(1)の触媒能(酸素還元能)を以下の方法で評価した。
3. Evaluation of oxygen reducing ability;
The catalytic ability (oxygen reducing ability) of the thus produced fuel cell electrode (1) was evaluated by the following method.
まず、作製した燃料電池用電極(1)を、酸素雰囲気および窒素雰囲気で、0.5mol/Lの硫酸水溶液中、30℃、5mV/秒の電位走査速度で分極し、電流−電位曲線を測定した。その際、同濃度の硫酸水溶液中での可逆水素電極を参照電極とした。 First, the produced fuel cell electrode (1) was polarized in an oxygen atmosphere and a nitrogen atmosphere in a 0.5 mol / L sulfuric acid aqueous solution at 30 ° C. and a potential scanning speed of 5 mV / second, and a current-potential curve was measured. did. At that time, a reversible hydrogen electrode in an aqueous sulfuric acid solution having the same concentration was used as a reference electrode.
上記測定結果から、酸素雰囲気での還元電流と窒素雰囲気での還元電流とに0.2μA/cm2以上差が現れ始める電位を酸素還元開始電位とし、両者の差を酸素還元電流とした。 From the above measurement results, the potential at which a difference of 0.2 μA / cm 2 or more appears between the reduction current in the oxygen atmosphere and the reduction current in the nitrogen atmosphere was defined as the oxygen reduction start potential, and the difference between the two was defined as the oxygen reduction current.
この酸素還元開始電位および酸素還元電流により作製した燃料電池用電極(1)の触媒能(酸素還元能)を評価した。
すなわち、酸素還元開始電位が高いほど、また、酸素還元電流が大きいほど、燃料電池用電極(1)の触媒能(酸素還元能)が高いことを示す。
The catalytic ability (oxygen reducing ability) of the fuel cell electrode (1) produced by this oxygen reduction starting potential and oxygen reducing current was evaluated.
That is, the higher the oxygen reduction start potential and the larger the oxygen reduction current, the higher the catalytic ability (oxygen reducing ability) of the fuel cell electrode (1).
図7に、上記測定により得られた電流−電位曲線を示す。図7中、DOO=0.81が燃料電池用電極(1)のデータである。
燃料電池用電極(1)は、酸素還元開始電位が0.89V(vs.NHE)であり、高い酸素還元能を有することがわかった。
FIG. 7 shows a current-potential curve obtained by the above measurement. In FIG. 7, DOO = 0.81 is data of the fuel cell electrode (1).
The fuel cell electrode (1) had an oxygen reduction starting potential of 0.89 V (vs. NHE) and was found to have a high oxygen reducing ability.
[実施例2]
熱処理時間を8時間から10時間に変更した以外は実施例1と同様の方法により、ニオブ炭窒酸化物(以下「触媒(2)」または「NbCNO(DOO=0.97)」とも記す)。)を調製した。得られた触媒の重量は0.59gであった。
触媒(2)の粉末X線回折スペクトルを図2(「NbCNO(DOO=0.97)」と記載されたデータ)に示す。
触媒(2)のX線吸収微細構造(XANES)スペクトルを図4(「NbCNO(DOO=0.97)」と記載されたデータ)に示す。
触媒(2)の拡張X線吸収微細構造(EXAFS)スペクトルを図5(「NbCNO(DOO=0.97)」と記載されたデータ)に示す。
[Example 2]
Niobium carbonitride (hereinafter also referred to as “catalyst (2)” or “NbCNO (DOO = 0.97)”) in the same manner as in Example 1 except that the heat treatment time was changed from 8 hours to 10 hours. ) Was prepared. The weight of the obtained catalyst was 0.59 g.
The powder X-ray diffraction spectrum of the catalyst (2) is shown in FIG. 2 (data described as “NbCNO (DOO = 0.97)”).
The X-ray absorption fine structure (XANES) spectrum of the catalyst (2) is shown in FIG. 4 (data described as “NbCNO (DOO = 0.97)”).
The extended X-ray absorption fine structure (EXAFS) spectrum of the catalyst (2) is shown in FIG. 5 (data described as “NbCNO (DOO = 0.97)”).
2.燃料電池用電極の製造および酸素還元能の評価;
触媒(1)に替えて触媒(2)を用いたこと以外は実施例1と同様の方法により燃料電池用電極(以下「燃料電池用電極(2)」と記す。)を作製した。
2. Production of fuel cell electrodes and evaluation of oxygen reduction ability;
A fuel cell electrode (hereinafter referred to as “fuel cell electrode (2)”) was produced in the same manner as in Example 1 except that the catalyst (2) was used instead of the catalyst (1).
実施例1と同様の方法により燃料電池用電極(2)の触媒能(酸素還元能)を評価した。
燃料電池用電極(2)の酸素還元開始電位は、0.86V(vs.NHE)であった。
The catalytic ability (oxygen reducing ability) of the fuel cell electrode (2) was evaluated in the same manner as in Example 1.
The oxygen reduction starting potential of the fuel cell electrode (2) was 0.86 V (vs. NHE).
[実施例3]
熱処理時間を8時間から4時間に変更した以外は実施例1と同様の方法により、ニオブ炭窒酸化物(以下「触媒(3)」または「NbCNO(DOO=0.49)」とも記す。)。)を調製した。得られた触媒の重量は0.59gであった。
触媒(3)の粉末X線回折スペクトルを図2に示す。
[Example 3]
Niobium oxycarbonitride (hereinafter also referred to as “catalyst (3)” or “NbCNO (DOO = 0.49)”) in the same manner as in Example 1 except that the heat treatment time was changed from 8 hours to 4 hours. . ) Was prepared. The weight of the obtained catalyst was 0.59 g.
The powder X-ray diffraction spectrum of the catalyst (3) is shown in FIG.
2.燃料電池用電極の製造および酸素還元能の評価;
触媒(1)に替えて触媒(3)を用いたこと以外は実施例1と同様の方法により燃料電池用電極(以下「燃料電池用電極(3)」と記す。)を作製した。
2. Production of fuel cell electrodes and evaluation of oxygen reduction ability;
A fuel cell electrode (hereinafter referred to as “fuel cell electrode (3)”) was produced in the same manner as in Example 1 except that the catalyst (3) was used instead of the catalyst (1).
実施例1と同様の方法により燃料電池用電極(3)の触媒能(酸素還元能)を評価した。
燃料電池用電極(3)の酸素還元開始電位は、0.87V(vs.NHE)であった。
The catalytic ability (oxygen reducing ability) of the fuel cell electrode (3) was evaluated in the same manner as in Example 1.
The oxygen reduction starting potential of the fuel cell electrode (3) was 0.87 V (vs. NHE).
[比較例1]
1.触媒の調製;
非特許文献1に記載された製造方法にしたがって、Nb2O5を還元してNb12O29(以下「触媒(4)」または「Nb12O29」とも記す。)を調製した。
[Comparative Example 1]
1. Preparation of the catalyst;
According to the production method described in Non-Patent Document 1, Nb 2 O 5 was reduced to prepare Nb 12 O 29 (hereinafter also referred to as “catalyst (4)” or “Nb 12 O 29 ”).
触媒(4)の粉末X線回折スペクトルを図1に示す。当該粉末X線回折スペクトルにおいて、回折角2θ=23°〜28°の間に、Nb12O29骨格に由来する4つの回折線ピークが観測された。ベースラインの強度である回折角2θ=22°のX線回折強度は106であり、回折角2θ=25.45°〜25.65°間のX線回折強度の最大値I1は38であり、回折角25.65°〜26.0°間のX線回折強度の最大値I2は552であり、I2/(I1+I2)は0.94であった。
触媒(4)のX線吸収端微細構造(XANES)スペクトルを図4(「Nb12O29」と記載されたデータ)に示す。
触媒(4)の拡張X線吸収微細構造(EXAFS)スペクトルを図5(「Nb12O29」と記載されたデータ)に示す。
The powder X-ray diffraction spectrum of the catalyst (4) is shown in FIG. In the powder X-ray diffraction spectrum, four diffraction line peaks derived from the Nb 12 O 29 skeleton were observed at a diffraction angle of 2θ = 23 ° to 28 °. The X-ray diffraction intensity at the diffraction angle 2θ = 22 ° which is the intensity of the baseline is 106, and the maximum value I 1 of the X-ray diffraction intensity between the diffraction angle 2θ = 25.55 ° and 25.65 ° is 38. The maximum value I 2 of the X-ray diffraction intensity between the diffraction angles of 25.65 ° and 26.0 ° was 552, and I 2 / (I 1 + I 2 ) was 0.94.
The X-ray absorption edge fine structure (XANES) spectrum of the catalyst (4) is shown in FIG. 4 (data described as “Nb 12 O 29 ”).
The extended X-ray absorption fine structure (EXAFS) spectrum of the catalyst (4) is shown in FIG. 5 (data described as “Nb 12 O 29 ”).
2.燃料電池用電極の製造および酸素還元能の評価;
触媒(1)に替えて触媒(4)を用いたこと以外は実施例1と同様の方法により燃料電池用電極(以下「燃料電池用電極(4)」と記す。)を作製した。
2. Production of fuel cell electrodes and evaluation of oxygen reduction ability;
A fuel cell electrode (hereinafter referred to as “fuel cell electrode (4)”) was prepared in the same manner as in Example 1 except that the catalyst (4) was used instead of the catalyst (1).
実施例1と同様の方法により燃料電池用電極(4)の触媒能(酸素還元能)を評価した。
燃料電池用電極(4)は、酸素還元開始電位が0.60V(vs.NHE)であり、酸素還元能が低いことがわかった。
The catalytic ability (oxygen reducing ability) of the fuel cell electrode (4) was evaluated in the same manner as in Example 1.
It was found that the fuel cell electrode (4) had an oxygen reduction starting potential of 0.60 V (vs. NHE) and a low oxygen reducing ability.
なお、図1、図2、図4、図5における、NbO2、Nb2O5、Nb2CNまたはNbCNO(DOO=0.10)との記載のあるデータは、それぞれ、以下の試料のデータである。 Incidentally, FIGS. 1, 2, 4, in Figure 5, NbO 2, Nb 2 O 5, Nb 2 CN or data with a description of the NbCNO (DOO = 0.10), respectively, the following sample data It is.
NbO2:(株)高純度化学研究所製のNBO02PBNbO2(純度:3N、形状:粉末)
Nb2O5:(株)高純度化学研究所製のNBO07PBNb2O5(純度:3N、形状:粉末)
Nb2CN:前記炭窒化ニオブ(1)
NbCNO(DOO=0.10):熱処理時間を8時間から1時間に変更した以外は実施例1と同様の方法により調製されたニオブ炭窒酸化物
NbO 2 : NBO02PBNbO2 (Purity: 3N, Shape: Powder) manufactured by Kojundo Chemical Laboratory Co., Ltd.
Nb 2 O 5 : NBO07PBNb2O5 (Purity: 3N, Shape: Powder) manufactured by Kojundo Chemical Laboratory Co., Ltd.
Nb 2 CN: Niobium carbonitride (1)
NbCNO (DOO = 0.10): Niobium carbonitride prepared by the same method as in Example 1 except that the heat treatment time was changed from 8 hours to 1 hour
本発明の触媒は、酸性電解質中や高電位で腐食せず、耐久性に優れ、高い酸素還元能を有するので、燃料電池用触媒層、電極、電極接合体または燃料電池に用いることができる。 The catalyst of the present invention does not corrode in an acidic electrolyte or at a high potential, is excellent in durability, and has a high oxygen reducing ability. Therefore, it can be used in a fuel cell catalyst layer, an electrode, an electrode assembly, or a fuel cell.
Claims (13)
(i)拡張X線吸収微細構造(EXAFS)スペクトルにおいて、ニオブ原子から3〜4Åの範囲に、ニオブ原子から0〜6Åの範囲におけるフーリエ変換強度が最大となるピークが観測される、
(ii)X線吸収端微細構造(XANES)スペクトルにおいて、ニオブ含有金属炭窒酸化物のスペクトルはNb12O29のスペクトルと同一である。 A catalyst comprising a niobium-containing metal carbonitride that satisfies the following conditions (i) and (ii):
(I) In the extended X-ray absorption fine structure (EXAFS) spectrum, a peak having the maximum Fourier transform intensity in the range of 3 to 4 か ら from the niobium atom is observed in the range of 0 to 6 か ら from the niobium atom.
(Ii) In the X-ray absorption edge fine structure (XANES) spectrum, the spectrum of the niobium-containing metal carbonitride is the same as that of Nb 12 O 29 .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010114097A JP2011240242A (en) | 2010-05-18 | 2010-05-18 | Catalyst, method for production thereof, and use thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010114097A JP2011240242A (en) | 2010-05-18 | 2010-05-18 | Catalyst, method for production thereof, and use thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2011240242A true JP2011240242A (en) | 2011-12-01 |
Family
ID=45407467
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010114097A Pending JP2011240242A (en) | 2010-05-18 | 2010-05-18 | Catalyst, method for production thereof, and use thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2011240242A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012128287A1 (en) * | 2011-03-24 | 2012-09-27 | 国立大学法人横浜国立大学 | Oxygen reduction catalyst and methods for preparing same |
WO2014010278A1 (en) | 2012-07-11 | 2014-01-16 | 昭和電工株式会社 | Method for operating fuel cell, and electric-power generating device |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009031383A1 (en) * | 2007-09-07 | 2009-03-12 | Showa Denko K.K. | Catalyst, method for producing the same, and use of the same |
WO2009091047A1 (en) * | 2008-01-18 | 2009-07-23 | Showa Denko K.K. | Catalyst, process for production of the same, and use of the same |
WO2009091043A1 (en) * | 2008-01-18 | 2009-07-23 | Showa Denko K.K. | Catalyst, process for production of the same, and use of the same |
WO2009104500A1 (en) * | 2008-02-20 | 2009-08-27 | 昭和電工株式会社 | Catalyst carrier, catalyst and method for producing the same |
WO2009119497A1 (en) * | 2008-03-24 | 2009-10-01 | 昭和電工株式会社 | Method for producing fuel cell catalyst and fuel cell catalyst |
JP2009226311A (en) * | 2008-03-24 | 2009-10-08 | Showa Denko Kk | Catalyst, its manufacturing method and its application |
WO2010041639A1 (en) * | 2008-10-06 | 2010-04-15 | 昭和電工株式会社 | Catalyst, method for producing the same, and use thereof |
WO2010041655A1 (en) * | 2008-10-06 | 2010-04-15 | 昭和電工株式会社 | Catalyst, method for producing the same, and use thereof |
WO2010041650A1 (en) * | 2008-10-06 | 2010-04-15 | 昭和電工株式会社 | Catalyst, method for producing the same, and use thereof |
JP2011194328A (en) * | 2010-03-19 | 2011-10-06 | Nec Corp | Oxygen reduction catalyst |
-
2010
- 2010-05-18 JP JP2010114097A patent/JP2011240242A/en active Pending
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009031383A1 (en) * | 2007-09-07 | 2009-03-12 | Showa Denko K.K. | Catalyst, method for producing the same, and use of the same |
WO2009091047A1 (en) * | 2008-01-18 | 2009-07-23 | Showa Denko K.K. | Catalyst, process for production of the same, and use of the same |
WO2009091043A1 (en) * | 2008-01-18 | 2009-07-23 | Showa Denko K.K. | Catalyst, process for production of the same, and use of the same |
WO2009104500A1 (en) * | 2008-02-20 | 2009-08-27 | 昭和電工株式会社 | Catalyst carrier, catalyst and method for producing the same |
WO2009119497A1 (en) * | 2008-03-24 | 2009-10-01 | 昭和電工株式会社 | Method for producing fuel cell catalyst and fuel cell catalyst |
JP2009226311A (en) * | 2008-03-24 | 2009-10-08 | Showa Denko Kk | Catalyst, its manufacturing method and its application |
WO2010041639A1 (en) * | 2008-10-06 | 2010-04-15 | 昭和電工株式会社 | Catalyst, method for producing the same, and use thereof |
WO2010041655A1 (en) * | 2008-10-06 | 2010-04-15 | 昭和電工株式会社 | Catalyst, method for producing the same, and use thereof |
WO2010041650A1 (en) * | 2008-10-06 | 2010-04-15 | 昭和電工株式会社 | Catalyst, method for producing the same, and use thereof |
JP2011194328A (en) * | 2010-03-19 | 2011-10-06 | Nec Corp | Oxygen reduction catalyst |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012128287A1 (en) * | 2011-03-24 | 2012-09-27 | 国立大学法人横浜国立大学 | Oxygen reduction catalyst and methods for preparing same |
US9748580B2 (en) | 2011-03-24 | 2017-08-29 | Yokohama National University | Oxygen reduction catalyst and method for producing the same |
WO2014010278A1 (en) | 2012-07-11 | 2014-01-16 | 昭和電工株式会社 | Method for operating fuel cell, and electric-power generating device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5462150B2 (en) | Catalyst, method for producing the same and use thereof | |
JP5411123B2 (en) | Catalyst for fuel cell, production method thereof and use thereof | |
JP5578849B2 (en) | Catalyst, method for producing the same and use thereof | |
JP5495798B2 (en) | Catalyst, method for producing the same and use thereof | |
WO2010131636A1 (en) | Catalyst, process for production thereof, and use thereof | |
JP5475245B2 (en) | Catalyst, method for producing the same and use thereof | |
JP5374387B2 (en) | Catalyst, method for producing the same and use thereof | |
JP5037696B2 (en) | Catalyst, method for producing the same and use thereof | |
JP5713891B2 (en) | Catalyst, method for producing the same and use thereof | |
JP5419864B2 (en) | Method for producing fuel cell catalyst and fuel cell catalyst | |
JP5539892B2 (en) | Catalyst, method for producing the same and use thereof | |
JP5537433B2 (en) | Catalyst, method for producing the same and use thereof | |
Liu et al. | Preparation of PtRu/WO3–C by intermittent microwave method with enhanced catalytic activity of methanol oxidation | |
JP2011240242A (en) | Catalyst, method for production thereof, and use thereof | |
Li et al. | Preparation of Pt/XC-72@ CN electrocatalysts by the in-situ carbonization of ionic liquid for methanol oxidation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20130204 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20131226 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140128 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20140527 |