JP2011233748A - Substrate polishing method - Google Patents
Substrate polishing method Download PDFInfo
- Publication number
- JP2011233748A JP2011233748A JP2010103416A JP2010103416A JP2011233748A JP 2011233748 A JP2011233748 A JP 2011233748A JP 2010103416 A JP2010103416 A JP 2010103416A JP 2010103416 A JP2010103416 A JP 2010103416A JP 2011233748 A JP2011233748 A JP 2011233748A
- Authority
- JP
- Japan
- Prior art keywords
- polishing
- abrasive
- cerium oxide
- film
- substrate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000005498 polishing Methods 0.000 title claims abstract description 195
- 238000000034 method Methods 0.000 title claims abstract description 41
- 239000000758 substrate Substances 0.000 title claims description 40
- 239000002245 particle Substances 0.000 claims abstract description 64
- 229910000420 cerium oxide Inorganic materials 0.000 claims abstract description 54
- BMMGVYCKOGBVEV-UHFFFAOYSA-N oxo(oxoceriooxy)cerium Chemical compound [Ce]=O.O=[Ce]=O BMMGVYCKOGBVEV-UHFFFAOYSA-N 0.000 claims abstract description 54
- 150000001875 compounds Chemical class 0.000 claims abstract description 14
- 239000003795 chemical substances by application Substances 0.000 claims description 22
- 125000000217 alkyl group Chemical group 0.000 claims description 7
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 abstract description 33
- 229910052814 silicon oxide Inorganic materials 0.000 abstract description 25
- -1 polyoxyethylene Polymers 0.000 abstract description 8
- 229920003171 Poly (ethylene oxide) Polymers 0.000 abstract description 6
- 239000003082 abrasive agent Substances 0.000 abstract description 5
- 239000011229 interlayer Substances 0.000 abstract description 5
- 239000005380 borophosphosilicate glass Substances 0.000 abstract description 4
- 238000005516 engineering process Methods 0.000 abstract description 4
- 230000009467 reduction Effects 0.000 abstract description 2
- 239000010408 film Substances 0.000 description 70
- 239000004065 semiconductor Substances 0.000 description 26
- 239000002270 dispersing agent Substances 0.000 description 25
- 239000010410 layer Substances 0.000 description 19
- 235000012431 wafers Nutrition 0.000 description 18
- 239000002002 slurry Substances 0.000 description 16
- 238000007517 polishing process Methods 0.000 description 12
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 12
- 238000004519 manufacturing process Methods 0.000 description 11
- 239000007787 solid Substances 0.000 description 11
- 229920003169 water-soluble polymer Polymers 0.000 description 10
- 229910052581 Si3N4 Inorganic materials 0.000 description 9
- 238000009826 distribution Methods 0.000 description 9
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 9
- 239000000654 additive Substances 0.000 description 8
- 230000000996 additive effect Effects 0.000 description 8
- 239000004744 fabric Substances 0.000 description 8
- 230000008569 process Effects 0.000 description 8
- 238000012360 testing method Methods 0.000 description 8
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 7
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 7
- 238000002955 isolation Methods 0.000 description 7
- 239000008367 deionised water Substances 0.000 description 6
- 229910021641 deionized water Inorganic materials 0.000 description 6
- 239000007789 gas Substances 0.000 description 6
- 230000001965 increasing effect Effects 0.000 description 6
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 5
- 239000002253 acid Substances 0.000 description 5
- 235000011114 ammonium hydroxide Nutrition 0.000 description 5
- 239000007864 aqueous solution Substances 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 5
- 239000006185 dispersion Substances 0.000 description 5
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 5
- 229920000058 polyacrylate Polymers 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 239000002202 Polyethylene glycol Substances 0.000 description 4
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- 239000013078 crystal Substances 0.000 description 4
- 230000007547 defect Effects 0.000 description 4
- 238000007865 diluting Methods 0.000 description 4
- 238000011156 evaluation Methods 0.000 description 4
- 239000011521 glass Substances 0.000 description 4
- 238000004518 low pressure chemical vapour deposition Methods 0.000 description 4
- 230000003287 optical effect Effects 0.000 description 4
- 229920001223 polyethylene glycol Polymers 0.000 description 4
- 238000004062 sedimentation Methods 0.000 description 4
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 3
- 229910004298 SiO 2 Inorganic materials 0.000 description 3
- 125000000129 anionic group Chemical group 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- WPKYZIPODULRBM-UHFFFAOYSA-N azane;prop-2-enoic acid Chemical compound N.OC(=O)C=C WPKYZIPODULRBM-UHFFFAOYSA-N 0.000 description 3
- 239000007853 buffer solution Substances 0.000 description 3
- 125000002091 cationic group Chemical group 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 238000005229 chemical vapour deposition Methods 0.000 description 3
- 229910021485 fumed silica Inorganic materials 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 238000007254 oxidation reaction Methods 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 229910052698 phosphorus Inorganic materials 0.000 description 3
- 239000011574 phosphorus Substances 0.000 description 3
- 229920005575 poly(amic acid) Polymers 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 238000010298 pulverizing process Methods 0.000 description 3
- 239000006228 supernatant Substances 0.000 description 3
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 2
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 2
- 229920002125 Sokalan® Polymers 0.000 description 2
- 229910052783 alkali metal Inorganic materials 0.000 description 2
- 150000001340 alkali metals Chemical class 0.000 description 2
- 150000003973 alkyl amines Chemical class 0.000 description 2
- 150000005215 alkyl ethers Chemical class 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- 229910021529 ammonia Inorganic materials 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 229910052796 boron Inorganic materials 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000007334 copolymerization reaction Methods 0.000 description 2
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 239000002612 dispersion medium Substances 0.000 description 2
- 238000010304 firing Methods 0.000 description 2
- 238000005227 gel permeation chromatography Methods 0.000 description 2
- KWIUHFFTVRNATP-UHFFFAOYSA-N glycine betaine Chemical compound C[N+](C)(C)CC([O-])=O KWIUHFFTVRNATP-UHFFFAOYSA-N 0.000 description 2
- 238000000227 grinding Methods 0.000 description 2
- 229910052736 halogen Inorganic materials 0.000 description 2
- 150000002367 halogens Chemical class 0.000 description 2
- 238000007689 inspection Methods 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 239000004584 polyacrylic acid Substances 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 2
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 2
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- RZRILSWMGXWSJY-UHFFFAOYSA-N 2-[bis(2-hydroxyethyl)amino]ethanol;sulfuric acid Chemical compound OS(O)(=O)=O.OCCN(CCO)CCO RZRILSWMGXWSJY-UHFFFAOYSA-N 0.000 description 1
- HVYJSOSGTDINLW-UHFFFAOYSA-N 2-[dimethyl(octadecyl)azaniumyl]acetate Chemical compound CCCCCCCCCCCCCCCCCC[N+](C)(C)CC([O-])=O HVYJSOSGTDINLW-UHFFFAOYSA-N 0.000 description 1
- MUHFRORXWCGZGE-KTKRTIGZSA-N 2-hydroxyethyl (z)-octadec-9-enoate Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OCCO MUHFRORXWCGZGE-KTKRTIGZSA-N 0.000 description 1
- 229940044192 2-hydroxyethyl methacrylate Drugs 0.000 description 1
- RFVNOJDQRGSOEL-UHFFFAOYSA-N 2-hydroxyethyl octadecanoate Chemical compound CCCCCCCCCCCCCCCCCC(=O)OCCO RFVNOJDQRGSOEL-UHFFFAOYSA-N 0.000 description 1
- HRPVXLWXLXDGHG-UHFFFAOYSA-N Acrylamide Chemical compound NC(=O)C=C HRPVXLWXLXDGHG-UHFFFAOYSA-N 0.000 description 1
- 229920001817 Agar Polymers 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 1
- 235000013162 Cocos nucifera Nutrition 0.000 description 1
- 244000060011 Cocos nucifera Species 0.000 description 1
- 239000001879 Curdlan Substances 0.000 description 1
- 229920002558 Curdlan Polymers 0.000 description 1
- FPVVYTCTZKCSOJ-UHFFFAOYSA-N Ethylene glycol distearate Chemical compound CCCCCCCCCCCCCCCCCC(=O)OCCOC(=O)CCCCCCCCCCCCCCCCC FPVVYTCTZKCSOJ-UHFFFAOYSA-N 0.000 description 1
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 1
- WOBHKFSMXKNTIM-UHFFFAOYSA-N Hydroxyethyl methacrylate Chemical compound CC(=C)C(=O)OCCO WOBHKFSMXKNTIM-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 241000403354 Microplus Species 0.000 description 1
- 229910002651 NO3 Inorganic materials 0.000 description 1
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 1
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 229920002230 Pectic acid Polymers 0.000 description 1
- 229920000805 Polyaspartic acid Polymers 0.000 description 1
- 108010020346 Polyglutamic Acid Proteins 0.000 description 1
- 108010039918 Polylysine Proteins 0.000 description 1
- 229920005830 Polyurethane Foam Polymers 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- 239000004373 Pullulan Substances 0.000 description 1
- 229920001218 Pullulan Polymers 0.000 description 1
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 229910004166 TaN Inorganic materials 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 239000006061 abrasive grain Substances 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 239000008272 agar Substances 0.000 description 1
- 235000010419 agar Nutrition 0.000 description 1
- 239000000783 alginic acid Substances 0.000 description 1
- 235000010443 alginic acid Nutrition 0.000 description 1
- 229920000615 alginic acid Polymers 0.000 description 1
- 229960001126 alginic acid Drugs 0.000 description 1
- 150000004781 alginic acids Chemical class 0.000 description 1
- 150000001339 alkali metal compounds Chemical class 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- BTBJBAZGXNKLQC-UHFFFAOYSA-N ammonium lauryl sulfate Chemical compound [NH4+].CCCCCCCCCCCCOS([O-])(=O)=O BTBJBAZGXNKLQC-UHFFFAOYSA-N 0.000 description 1
- 229940063953 ammonium lauryl sulfate Drugs 0.000 description 1
- 150000003863 ammonium salts Chemical class 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 1
- 229960003237 betaine Drugs 0.000 description 1
- 239000001768 carboxy methyl cellulose Substances 0.000 description 1
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 1
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 1
- 239000004359 castor oil Substances 0.000 description 1
- 235000019438 castor oil Nutrition 0.000 description 1
- 150000001785 cerium compounds Chemical class 0.000 description 1
- 238000003889 chemical engineering Methods 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000002178 crystalline material Substances 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 235000019316 curdlan Nutrition 0.000 description 1
- 229940078035 curdlan Drugs 0.000 description 1
- MROCJMGDEKINLD-UHFFFAOYSA-N dichlorosilane Chemical compound Cl[SiH2]Cl MROCJMGDEKINLD-UHFFFAOYSA-N 0.000 description 1
- JZKFHQMONDVVNF-UHFFFAOYSA-N dodecyl sulfate;tris(2-hydroxyethyl)azanium Chemical compound OCCN(CCO)CCO.CCCCCCCCCCCCOS(O)(=O)=O JZKFHQMONDVVNF-UHFFFAOYSA-N 0.000 description 1
- SYELZBGXAIXKHU-UHFFFAOYSA-N dodecyldimethylamine N-oxide Chemical compound CCCCCCCCCCCC[N+](C)(C)[O-] SYELZBGXAIXKHU-UHFFFAOYSA-N 0.000 description 1
- ZEMPKEQAKRGZGQ-XOQCFJPHSA-N glycerol triricinoleate Natural products CCCCCC[C@@H](O)CC=CCCCCCCCC(=O)OC[C@@H](COC(=O)CCCCCCCC=CC[C@@H](O)CCCCCC)OC(=O)CCCCCCCC=CC[C@H](O)CCCCCC ZEMPKEQAKRGZGQ-XOQCFJPHSA-N 0.000 description 1
- 229940100608 glycol distearate Drugs 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 229940094506 lauryl betaine Drugs 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- DVEKCXOJTLDBFE-UHFFFAOYSA-N n-dodecyl-n,n-dimethylglycinate Chemical compound CCCCCCCCCCCC[N+](C)(C)CC([O-])=O DVEKCXOJTLDBFE-UHFFFAOYSA-N 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 239000004745 nonwoven fabric Substances 0.000 description 1
- UPHWVVKYDQHTCF-UHFFFAOYSA-N octadecylazanium;acetate Chemical compound CC(O)=O.CCCCCCCCCCCCCCCCCCN UPHWVVKYDQHTCF-UHFFFAOYSA-N 0.000 description 1
- 239000013307 optical fiber Substances 0.000 description 1
- 239000012788 optical film Substances 0.000 description 1
- 239000005304 optical glass Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 239000003002 pH adjusting agent Substances 0.000 description 1
- 238000010979 pH adjustment Methods 0.000 description 1
- LCLHHZYHLXDRQG-ZNKJPWOQSA-N pectic acid Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)O[C@H](C(O)=O)[C@@H]1OC1[C@H](O)[C@@H](O)[C@@H](OC2[C@@H]([C@@H](O)[C@@H](O)[C@H](O2)C(O)=O)O)[C@@H](C(O)=O)O1 LCLHHZYHLXDRQG-ZNKJPWOQSA-N 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- XNGIFLGASWRNHJ-UHFFFAOYSA-L phthalate(2-) Chemical compound [O-]C(=O)C1=CC=CC=C1C([O-])=O XNGIFLGASWRNHJ-UHFFFAOYSA-L 0.000 description 1
- 108010064470 polyaspartate Proteins 0.000 description 1
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 1
- 239000010318 polygalacturonic acid Substances 0.000 description 1
- 229920002643 polyglutamic acid Polymers 0.000 description 1
- 229920000656 polylysine Polymers 0.000 description 1
- 229920001282 polysaccharide Polymers 0.000 description 1
- 239000005017 polysaccharide Substances 0.000 description 1
- 150000004804 polysaccharides Chemical class 0.000 description 1
- 229920005591 polysilicon Polymers 0.000 description 1
- 239000011496 polyurethane foam Substances 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 229910001414 potassium ion Inorganic materials 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 235000019423 pullulan Nutrition 0.000 description 1
- 229910052594 sapphire Inorganic materials 0.000 description 1
- 239000010980 sapphire Substances 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- FDNAPBUWERUEDA-UHFFFAOYSA-N silicon tetrachloride Chemical group Cl[Si](Cl)(Cl)Cl FDNAPBUWERUEDA-UHFFFAOYSA-N 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910001415 sodium ion Inorganic materials 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- 238000005979 thermal decomposition reaction Methods 0.000 description 1
- 229920002803 thermoplastic polyurethane Polymers 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 238000001132 ultrasonic dispersion Methods 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
Landscapes
- Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
- Mechanical Treatment Of Semiconductor (AREA)
Abstract
Description
本発明は、半導体素子製造技術である、基板表面の平坦化工程、特に、層間絶縁膜、BPSG(ボロン、リンをドープした二酸化珪素膜)膜の平坦化工程、シャロートレンチ分離(STI)の形成工程等において使用される、研磨剤を用いた基板の研磨方法に関する。 The present invention is a semiconductor element manufacturing technique, a planarization process of a substrate surface, in particular, an interlayer insulation film, a planarization process of a BPSG (silicon dioxide film doped with boron and phosphorus) film, and formation of shallow trench isolation (STI). The present invention relates to a method for polishing a substrate using an abrasive used in a process or the like.
現在のULSI半導体素子製造工程では、高密度・微細化のための加工技術が研究開発されており、その1つであるCMP(ケミカルメカニカルポリッシング:化学機械研磨)技術は、半導体素子の製造工程において、層間絶縁膜の平坦化、STI形成、プラグ及び埋め込み金属配線形成等を行う際に、必須の技術となってきている。 In the current ULSI semiconductor device manufacturing process, processing technology for high density and miniaturization has been researched and developed, and one of them, CMP (Chemical Mechanical Polishing) technology, is used in the semiconductor device manufacturing process. It has become an indispensable technique when performing planarization of an interlayer insulating film, STI formation, plug and embedded metal wiring formation, and the like.
従来、半導体素子の製造工程において、プラズマ−CVD(化学気相成長)、低圧−CVD(化学気相成長)等の方法で、酸化珪素絶縁膜等の無機絶縁膜層が形成されており、この無機絶縁膜層を平坦化するための化学機械研磨剤として、ヒュームドシリカ系の研磨剤が一般的に検討されている。
ヒュームドシリカ系の研磨剤は、四塩化珪酸を熱分解する等の方法で粒成長させ、pH調整を行って製造している。
但し、この様な研磨剤は、研磨速度が遅いという技術課題がある。
Conventionally, in a semiconductor device manufacturing process, an inorganic insulating film layer such as a silicon oxide insulating film is formed by a method such as plasma-CVD (chemical vapor deposition) or low-pressure CVD (chemical vapor deposition). As a chemical mechanical polishing agent for planarizing the inorganic insulating film layer, a fumed silica-based polishing agent is generally studied.
Fumed silica-based abrasives are produced by growing grains by a method such as thermal decomposition of tetrachlorosilicic acid and adjusting pH.
However, such an abrasive has a technical problem that the polishing rate is slow.
また、デザインルール:0.25μm以降の世代では、集積回路内の素子分離にSTIが用いられている。STIでは、基板上に成膜した余分の酸化珪素膜を除くためにCMPが使用され、任意の深さにて研磨を停止させるために、酸化珪素膜の下に研磨速度の遅いストッパ膜が形成される。
ストッパ膜には、窒化珪素等が使用され、酸化珪素膜とストッパ膜との研磨速度比が大きいことが望ましいが、従来のヒュームドシリカ系の研磨剤は、前述した酸化珪素膜とストッパ膜の研磨速度比が3程度と小さく、STI用としては実用に耐える特性を有していなかった。
In addition, in the generation after design rule: 0.25 μm, STI is used for element isolation in an integrated circuit. In STI, CMP is used to remove an extra silicon oxide film formed on a substrate, and a stopper film having a slow polishing rate is formed under the silicon oxide film in order to stop polishing at an arbitrary depth. Is done.
For the stopper film, silicon nitride or the like is used, and it is desirable that the polishing rate ratio between the silicon oxide film and the stopper film is large. However, the conventional fumed silica-based polishing agent uses the above-described silicon oxide film and stopper film. The polishing rate ratio was as small as about 3, and it did not have the characteristics to withstand practical use for STI.
一方、フォトマスクやレンズ等のガラス表面研磨剤として、酸化セリウム研磨剤が用いられている。酸化セリウム粒子は、シリカ粒子やアルミナ粒子に比べ硬度が低く、従って、研磨表面に傷が入りにくいことから、仕上げ鏡面研磨に有用である。
また、酸化セリウム研磨剤は、シリカ研磨剤に比べ、研磨速度が速い利点がある。
On the other hand, a cerium oxide abrasive is used as a glass surface abrasive for photomasks and lenses. Cerium oxide particles have a lower hardness than silica particles and alumina particles, and are therefore useful for finishing mirror polishing because they do not easily scratch the polished surface.
Further, the cerium oxide abrasive has an advantage that the polishing rate is faster than the silica abrasive.
近年、高純度酸化セリウム砥粒を用いた半導体用CMP研磨剤が、多く使用されてきており、例えば、その技術は特許文献1に開示されている。
更に、研磨剤にポリオキシアルキレンアルキルエーテルを添加することで、研磨傷を低減する技術が、特許文献2に開示されている。
In recent years, many CMP polishing agents for semiconductors using high-purity cerium oxide abrasive grains have been used. For example, the technique is disclosed in Patent Document 1.
Furthermore, Patent Document 2 discloses a technique for reducing polishing scratches by adding polyoxyalkylene alkyl ether to an abrasive.
また、酸化セリウム研磨剤の研磨速度を制御し、半導体基板全面にわたる平坦性を向上させるために添加剤を加えることが知られており、例えば、特許文献3に開示されている。 Further, it is known to add an additive in order to control the polishing rate of the cerium oxide abrasive and improve the flatness over the entire surface of the semiconductor substrate, which is disclosed in Patent Document 3, for example.
しかしながら、上記のような酸化セリウムを用いた研磨剤に対しても、生産性向上のために研磨時間の短縮が求められており、この実現のためには研磨速度を速くする事が必要である。また、配線やSTIのデザインルール微細化により、更なる研磨傷の低減が求められている。 However, polishing agents using cerium oxide as described above are also required to reduce the polishing time in order to improve productivity. For this purpose, it is necessary to increase the polishing rate. . In addition, there is a demand for further reduction of polishing scratches by miniaturization of design rules for wiring and STI.
そこで、本発明は、層間絶縁膜、BPSG膜、STI膜を平坦化するCMP技術において、酸化珪素膜等の研磨時間を短縮するために研磨速度を速くして、研磨後の研磨傷低減を容易に行うことができる研磨方法を提供することを目的とする。 Accordingly, the present invention provides a CMP technique for flattening an interlayer insulating film, a BPSG film, and an STI film by increasing the polishing speed in order to shorten the polishing time of a silicon oxide film and the like, and easily reducing polishing scratches after polishing. An object of the present invention is to provide a polishing method that can be performed.
本発明は、以下のものに関する。
(1)以下の工程により基板を研磨する基板の研磨方法。
(a)酸化セリウム粒子を含有する研磨剤を用いて基板を研磨する工程(第1研磨工程)。
(b)工程(a)に用いた粒径よりも小さい粒径の酸化セリウム粒子を含有する研磨剤を用いて基板を研磨する工程(第2研磨工程)。
The present invention relates to the following.
(1) A substrate polishing method for polishing a substrate by the following steps.
(A) The process of grind | polishing a board | substrate using the abrasive | polishing agent containing a cerium oxide particle (1st grinding | polishing process).
(B) A step of polishing the substrate with an abrasive containing cerium oxide particles having a particle size smaller than that used in step (a) (second polishing step).
(2)第1研磨工程用及び第2研磨工程用の研磨剤が、いずれもN−置換ポリオキシエチレン化合物を含み、そのN−置換ポリオキシアルキレン化合物のNには、複数のポリオキシアルキレン基が結合し、Nには少なくとも1つ以上のアルキル基又はアミド結合を介したアルキル基が結合している(1)に記載の基板の研磨方法。 (2) The polishing agent for the first polishing step and the second polishing step both contain an N-substituted polyoxyethylene compound, and N in the N-substituted polyoxyalkylene compound includes a plurality of polyoxyalkylene groups. The method for polishing a substrate according to (1), wherein at least one alkyl group or an alkyl group via an amide bond is bonded to N.
本発明によれば、層間絶縁膜、BPSG膜、STI等を平坦化するCMP技術において、酸化珪素膜等の研磨速度を速くして研磨時間を短縮し、かつ研磨後の研磨傷低減を行うことができる、研磨方法を提供することができる。 According to the present invention, in CMP technology for flattening an interlayer insulating film, a BPSG film, an STI, etc., the polishing speed of a silicon oxide film or the like is increased to shorten the polishing time and reduce polishing scratches after polishing. It is possible to provide a polishing method.
一般に酸化セリウムは、炭酸塩、硝酸塩、硫酸塩、しゅう酸塩のセリウム化合物を、酸化することによって得られる。
テトラエトキシシラン(TEOS)をSi源に用いたTEOS−CVD法等で形成される酸化珪素膜の研磨に使用する酸化セリウム研磨剤は、粒径が大きく、且つ結晶歪みが少ない程、即ち結晶性が良い程、高速研磨が可能であり生産性の向上ができるが、研磨傷が入りやすい傾向がある。また、粒径が小さいと、研磨速度は遅くなり生産性が下がるが、研磨傷が入りにくい傾向がある。
そこで、研磨初期の第1研磨工程において粒径が大きい研磨剤で研磨を行うことで研磨時間を短縮し、主に平坦化を行う第2研磨工程では粒径の小さい研磨剤で研磨傷を減らすことで、研磨時間の短縮と研磨傷の低減を実現する。
これより、本発明の研磨方法にて用いる酸化セリウム粒子は、その製造方法を限定するものではないが、第1研磨工程では粒径が150〜500nmであることが好ましく、第2研磨工程では粒径が1〜250nmであることが好ましい。また、第1研磨工程にて用いる酸化セリウム粒子の粒径を、第2研磨工程で用いる酸化セリウムの粒径より大きくすることで、研磨速度の向上と研磨傷の低減を実現できる。
また、半導体素子の製造に係る研磨に使用することから、アルカリ金属及びハロゲン類の含有率は、酸化セリウム粒子中10ppm以下に抑えることが好ましい。
In general, cerium oxide is obtained by oxidizing a cerium compound of carbonate, nitrate, sulfate, or oxalate.
The cerium oxide abrasive used for polishing a silicon oxide film formed by TEOS-CVD using tetraethoxysilane (TEOS) as a Si source has a larger grain size and smaller crystal distortion, that is, crystallinity. The better, the higher the speed of polishing and the higher the productivity, but there is a tendency for polishing flaws to occur. On the other hand, if the particle size is small, the polishing rate becomes slow and the productivity is lowered, but there is a tendency that polishing scratches are difficult to occur.
Therefore, the polishing time is shortened by polishing with a polishing agent having a large particle size in the first polishing step in the initial stage of polishing, and the polishing scratches are reduced with a polishing agent having a small particle size in the second polishing step in which flattening is mainly performed. As a result, the polishing time is shortened and the polishing scratches are reduced.
From this, the cerium oxide particles used in the polishing method of the present invention are not limited in its production method, but the particle size is preferably 150 to 500 nm in the first polishing step, and the particles in the second polishing step. The diameter is preferably 1 to 250 nm. Further, by increasing the particle size of the cerium oxide particles used in the first polishing step than the particle size of the cerium oxide used in the second polishing step, it is possible to improve the polishing rate and reduce polishing scratches.
Moreover, since it uses for the grinding | polishing which concerns on manufacture of a semiconductor element, it is preferable to suppress the content rate of an alkali metal and halogens to 10 ppm or less in a cerium oxide particle.
酸化セリウム粒子を作製する方法としては、焼成又は過酸化水素等による酸化法が使用でき、焼成温度を、350〜900℃とすることが好ましい。 As a method for producing the cerium oxide particles, firing or an oxidation method using hydrogen peroxide or the like can be used, and the firing temperature is preferably 350 to 900 ° C.
前記の方法により製造された酸化セリウム粒子は、凝集しているため、機械的に粉砕することが好ましい。粉砕方法としては、ジェットミル等による乾式粉砕や、遊星ビーズミル等による湿式粉砕方法を用いることができる。
尚、ジェットミルについては、例えば、化学工学論文集、第6巻、第5号、(1980)、527〜532頁に説明されている。
Since the cerium oxide particles produced by the above method are agglomerated, it is preferably mechanically pulverized. As the pulverization method, dry pulverization using a jet mill or the like, or wet pulverization using a planetary bead mill or the like can be used.
The jet mill is described, for example, in Chemical Engineering Papers, Vol. 6, No. 5, (1980), pages 527-532.
このような酸化セリウム粒子を、主な分散媒である水中に分散させる方法としては、通常の攪拌機による分散処理の他に、ホモジナイザ、超音波分散機、湿式ボールミル等を用いることができる。 As a method of dispersing such cerium oxide particles in water, which is a main dispersion medium, a homogenizer, an ultrasonic disperser, a wet ball mill, or the like can be used in addition to a dispersion treatment using a normal stirrer.
前記の方法により分散された酸化セリウムを、更に微粒子化する方法として、酸化セリウム分散液を長時間静置することで大粒子を沈降させ、上澄みをポンプで汲み取る沈降分級法が用いられる。
他に、分散媒中の酸化セリウム粒子同士を、高圧力で衝突させる高圧ホモジナイザを使用する方法も使用できる。
As a method for further micronizing the cerium oxide dispersed by the above method, a sedimentation classification method is used in which large particles are settled by allowing the cerium oxide dispersion to stand for a long time, and the supernatant is pumped out by a pump.
In addition, a method using a high-pressure homogenizer that causes cerium oxide particles in the dispersion medium to collide with each other at a high pressure can be used.
研磨剤中の酸化セリウム粒子の平均粒径は、1〜500nmであることが好ましく、第1研磨工程では150〜500nmであることが好ましく、第2研磨工程では粒径が1〜250nmであることが好ましい。酸化セリウム粒子の平均粒径が1nm未満であると、研磨速度が遅くなる傾向があり、500nmを超えると、研磨する膜に傷がつきやすくなる傾向がある。また、第1研磨工程で用いる酸化セリウム粒子の粒径を、第2研磨工程で用いる酸化セリウムの粒径より大きくすることで、研磨速度を速くする事と研磨傷の低減を実現できる。
尚、ここで述べる酸化セリウム粒子の平均粒径とは、レーザ回折式粒度分布計で測定したD50の値(体積分布のメジアン径、累積中央値)をいう。
The average particle size of the cerium oxide particles in the abrasive is preferably 1 to 500 nm, preferably 150 to 500 nm in the first polishing step, and 1 to 250 nm in the second polishing step. Is preferred. When the average particle diameter of the cerium oxide particles is less than 1 nm, the polishing rate tends to be slow, and when it exceeds 500 nm, the film to be polished tends to be damaged. Further, by increasing the particle size of the cerium oxide particles used in the first polishing step to be larger than that of the cerium oxide used in the second polishing step, it is possible to increase the polishing rate and reduce polishing scratches.
In addition, the average particle diameter of the cerium oxide particle described here refers to the value of D50 (median diameter of volume distribution, cumulative median value) measured with a laser diffraction particle size distribution meter.
研磨剤は、例えば、酸化セリウム粒子と、分散剤と、水とを配合して粒子を分散させ、更に水溶性高分子とN−置換ポリオキシアルキレン化合物を添加することによって得られる。
酸化セリウム粒子の濃度は、研磨剤100質量%当たり、0.1〜20質量%の範囲が好ましい。より好ましくは、0.1〜5質量%であり、更に好ましくは、0.5〜1.5質量%である。酸化セリウム粒子の濃度が低すぎると、研磨速度が遅くなる傾向があり、高すぎると、凝集し研磨傷を発生させる傾向があるためである。
The abrasive is obtained, for example, by blending cerium oxide particles, a dispersant, and water to disperse the particles, and further adding a water-soluble polymer and an N-substituted polyoxyalkylene compound.
The concentration of the cerium oxide particles is preferably in the range of 0.1 to 20% by mass per 100% by mass of the abrasive. More preferably, it is 0.1-5 mass%, More preferably, it is 0.5-1.5 mass%. This is because if the concentration of the cerium oxide particles is too low, the polishing rate tends to be slow, and if it is too high, the particles tend to aggregate and cause polishing flaws.
分散剤としては、例えば、水溶性陰イオン性分散剤、水溶性非イオン性分散剤、水溶性陽イオン性分散剤、水溶性両性分散剤等が挙げられる。また、共重合成分として、アクリル酸アンモニウム塩を含む高分子分散剤が好ましく、例えば、ポリアクリル酸アンモニウム、アクリル酸アミドとアクリル酸アンモニウムの共重合体等が挙げられる。 Examples of the dispersant include a water-soluble anionic dispersant, a water-soluble nonionic dispersant, a water-soluble cationic dispersant, and a water-soluble amphoteric dispersant. Moreover, the polymeric component containing an ammonium acrylate salt as a copolymerization component is preferable, for example, the polyacrylic acid ammonium, the copolymer of acrylic acid amide, and an ammonium acrylate etc. are mentioned.
更に、分散剤としては、共重合成分としてアクリル酸アンモニウム塩を含む高分子分散剤の少なくとも1種類と、水溶性陰イオン性分散剤、水溶性非イオン性分散剤、水溶性陽イオン性分散剤、水溶性両性分散剤から選ばれた、少なくとも1種類とを含む2種類以上の分散剤を併用してもよい。
研磨剤は、半導体素子の製造に係る研磨に使用することから、分散剤中のナトリウムイオン、カリウムイオン等のアルカリ金属及びハロゲン、イオウの含有率は、10ppm以下に抑えることが好ましい。
Further, as the dispersant, at least one kind of a polymer dispersant containing an ammonium acrylate salt as a copolymerization component, a water-soluble anionic dispersant, a water-soluble nonionic dispersant, a water-soluble cationic dispersant. Two or more kinds of dispersants including at least one kind selected from water-soluble amphoteric dispersants may be used in combination.
Since the abrasive is used for polishing in the manufacture of semiconductor elements, the content of alkali metals such as sodium ions and potassium ions, halogens, and sulfur in the dispersant is preferably suppressed to 10 ppm or less.
水溶性陰イオン性分散剤としては、例えば、ラウリル硫酸トリエタノールアミン、ラウリル硫酸アンモニウム、ポリオキシエチレンアルキルエーテル硫酸トリエタノールアミン、特殊ポリカルボン酸型高分子分散剤等が挙げられる。 Examples of the water-soluble anionic dispersant include lauryl sulfate triethanolamine, ammonium lauryl sulfate, polyoxyethylene alkyl ether sulfate triethanolamine, and a special polycarboxylic acid type polymer dispersant.
水溶性非イオン性分散剤としては、例えば、ポリエチレングリコールモノラウレート、ポリエチレングリコールモノステアレート、ポリエチレングリコールジステアレート、ポリエチレングリコールモノオレエート、ポリオキシエチレンアルキルアミン、ポリオキシエチレン硬化ヒマシ油、2−ヒドロキシエチルメタクリレート、アルキルアルカノールアミド等が挙げられる。 Examples of the water-soluble nonionic dispersant include polyethylene glycol monolaurate, polyethylene glycol monostearate, polyethylene glycol distearate, polyethylene glycol monooleate, polyoxyethylene alkylamine, polyoxyethylene hydrogenated castor oil, 2 -Hydroxyethyl methacrylate, alkyl alkanolamides and the like.
水溶性陽イオン性分散剤としては、例えば、ポリビニルピロリドン、ココナットアミンアセテート、ステアリルアミンアセテート等が挙げられる。 Examples of the water-soluble cationic dispersant include polyvinyl pyrrolidone, coconut amine acetate, stearyl amine acetate and the like.
水溶性両性分散剤としては、例えば、ラウリルベタイン、ステアリルベタイン、ラウリルジメチルアミンオキサイド、2−アルキル−N−カルボキシメチル−N−ヒドロキシエチルイミダゾリニウムベタイン等が挙げられる。 Examples of the water-soluble amphoteric dispersant include lauryl betaine, stearyl betaine, lauryl dimethylamine oxide, 2-alkyl-N-carboxymethyl-N-hydroxyethylimidazolinium betaine and the like.
これらの分散剤添加量は、スラリ状の研磨剤中の粒子の分散性及び沈降防止、更に研磨傷と分散剤添加量との関係から、酸化セリウム粒子100質量%に対して、0.01〜10質量%の範囲が好ましい。
分散剤の重量平均分子量は、100〜150,000が好ましく、1,000〜20,000がより好ましい。分散剤の重量平均分子量が100未満の場合は、酸化珪素膜あるいは窒化珪素膜を研磨するときに、十分な研磨速度が得られにくく、分散剤の重量平均分子量が150,000を超えた場合は、粘度が高くなり、研磨剤の保存安定性が低下する場合があるからである。
尚、本発明において重量平均分子量は、GPC(Gel Permeation Chromatography:ゲル浸透クロマトグラフィー)で測定し、標準ポリオキシエチレン換算した値である。
The amount of these dispersants added is 0.01 to 100% by mass with respect to 100% by mass of the cerium oxide particles from the relationship between the dispersibility of particles in the slurry-like abrasive and the sedimentation prevention, and the relationship between the polishing scratches and the amount of the dispersant added. A range of 10% by mass is preferred.
The weight average molecular weight of the dispersant is preferably 100 to 150,000, and more preferably 1,000 to 20,000. When the weight average molecular weight of the dispersant is less than 100, it is difficult to obtain a sufficient polishing rate when polishing the silicon oxide film or the silicon nitride film, and when the weight average molecular weight of the dispersant exceeds 150,000 This is because the viscosity may increase and the storage stability of the abrasive may decrease.
In the present invention, the weight average molecular weight is a value measured by GPC (Gel Permeation Chromatography) and converted to standard polyoxyethylene.
また、N−置換ポリオキシアルキレン化合物としては、そのN−置換ポリオキシアルキレン化合物のNには、複数のポリオキシアルキレン基が結合し、Nには少なくとも1つ以上のアルキル基又はアミド結合を介したアルキル基が結合しているものが好ましく、例えば、ジポリオキシエチレンアルキルアミン、ジポリオキシエチレンアルキルジアミン、ジポリオキシエチレンアルキルアミド等があげられ、これらは2種類以上を併用することもできる。 In addition, as the N-substituted polyoxyalkylene compound, a plurality of polyoxyalkylene groups are bonded to N of the N-substituted polyoxyalkylene compound, and N is bonded via at least one alkyl group or amide bond. Preferred are those having an alkyl group bonded thereto, for example, dipolyoxyethylenealkylamine, dipolyoxyethylenealkyldiamine, dipolyoxyethylenealkylamide, etc., and these can be used in combination of two or more. .
水溶性高分子としては、例えば、アルギン酸、ペクチン酸、カルボキシメチルセルロース、寒天、カードラン及びプルラン等の多糖類;ポリアクリル酸、ポリアスパラギン酸、ポリグルタミン酸、ポリリシン、ポリリンゴ酸、ポリアミド酸、ポリアミド酸アンモニウム塩、ポリアミド酸ナトリウム塩及びポリグリオキシル酸等のポリカルボン酸及びその塩;ポリビニルアルコール、ポリビニルピロリドン及びポリアクロレイン等のビニル系ポリマー等が挙げられる。
これら水溶性高分子の重量平均分子量は、500以上が好ましい。また、これらの配合量は、研磨剤100質量%に対して、0.01〜5質量%の範囲が好ましい。
Examples of the water-soluble polymer include polysaccharides such as alginic acid, pectic acid, carboxymethylcellulose, agar, curdlan and pullulan; polyacrylic acid, polyaspartic acid, polyglutamic acid, polylysine, polymalic acid, polyamic acid, ammonium polyamic acid Examples thereof include salts, polycarboxylic acids such as sodium polyamic acid and polyglyoxylic acid and salts thereof; vinyl polymers such as polyvinyl alcohol, polyvinyl pyrrolidone and polyacrolein.
These water-soluble polymers preferably have a weight average molecular weight of 500 or more. Moreover, these compounding quantities have the preferable range of 0.01-5 mass% with respect to 100 mass% of abrasive | polishing agents.
研磨剤は、酸化セリウム粒子、分散剤、及び水からなる酸化セリウムスラリと、水溶性高分子、N−置換ポリオキシアルキレン化合物を含む添加液とに分けた二液式の研磨剤として保存しても、また予め、水溶性高分子及びN−置換ポリオキシアルキレン化合物が含まれた一液式の研磨剤として保存しても、安定した特性が得られる。
酸化セリウムスラリと添加液とを分けた二液式研磨剤として保存する場合、これら二液の配合を任意に変えられることにより平坦化特性と研磨速度の調整が可能となる。
二液式研磨剤で研磨する場合、添加液は、酸化セリウムスラリと別の配管で送液し、これらの配管を合流させて供給配管出口の直前で混合して研磨定盤上に供給する方法か、研磨直前に酸化セリウムスラリと混合する方法を用いることができる。
The abrasive is stored as a two-component abrasive that is divided into a cerium oxide slurry comprising cerium oxide particles, a dispersant, and water, and an additive liquid containing a water-soluble polymer and an N-substituted polyoxyalkylene compound. In addition, stable characteristics can be obtained even when stored in advance as a one-pack type abrasive containing a water-soluble polymer and an N-substituted polyoxyalkylene compound.
When the cerium oxide slurry and the additive solution are stored as a two-component abrasive, the planarization characteristics and the polishing rate can be adjusted by arbitrarily changing the composition of these two components.
When polishing with a two-component abrasive, the additive solution is sent through a separate pipe from the cerium oxide slurry, and these pipes are merged and mixed immediately before the outlet of the supply pipe and supplied onto the polishing platen Alternatively, a method of mixing with cerium oxide slurry immediately before polishing can be used.
研磨剤は、所望のpHに調整して研磨に供することができる。pH調整剤に制限はないが、半導体研磨に使用される場合には、アルカリ金属化合物類よりも、アンモニア水、酸成分が好適に使用される。pH調整は、予めアンモニアで部分的に中和された水溶性高分子のアンモニウム塩を使用することができる。
研磨剤のpHは、3〜10が好ましく、pHが低すぎても高すぎても研磨剤の保存安定性を低下させる傾向があり、傷発生の原因となる恐れがある。
The abrasive can be adjusted to a desired pH and used for polishing. Although there is no restriction | limiting in a pH adjuster, When using for semiconductor polishing, ammonia water and an acid component are used suitably rather than alkali metal compounds. For the pH adjustment, an ammonium salt of a water-soluble polymer that has been partially neutralized with ammonia in advance can be used.
The pH of the abrasive is preferably from 3 to 10, and if the pH is too low or too high, the storage stability of the abrasive tends to be reduced, which may cause scratches.
研磨剤のpHは、pHメータ(例えば、横河電機株式会社製のModel PH81(商品名))で測定することができる。測定は、標準緩衝液(フタル酸塩pH緩衝液pH:4.21(25℃)、中性りん酸塩pH緩衝液pH:6.86(25℃))を用いて、2点校正した後、電極を研磨剤に入れて、2分以上経過して安定した後の値を測定する。 The pH of the abrasive can be measured with a pH meter (for example, Model PH81 (trade name) manufactured by Yokogawa Electric Corporation). The measurement was performed after two-point calibration using a standard buffer solution (phthalate pH buffer solution pH: 4.21 (25 ° C.), neutral phosphate pH buffer solution pH: 6.86 (25 ° C.)). The value after the electrode is put into an abrasive and stabilized after 2 minutes or more is measured.
本発明にて述べる研磨方法は、被研磨膜を形成した基板を研磨定盤の研磨布に押し当て加圧し、前記研磨剤を被研磨膜と研磨布との間に供給しながら、基板と研磨定盤とを相対的に動かして被研磨膜を研磨する。 In the polishing method described in the present invention, a substrate on which a film to be polished is formed is pressed against a polishing cloth of a polishing platen and pressed, and the substrate is polished while supplying the abrasive between the film to be polished and the polishing cloth. The film to be polished is polished by moving the surface plate relatively.
基板としては、半導体素子製造に係る基板、例えば回路素子と配線パターンが形成された段階の半導体基板、回路素子が形成された段階の半導体基板等の半導体基板上に無機絶縁層が形成された基板が挙げられる。そして、被研磨膜としては、前記無機絶縁層、例えば、酸化珪素膜層あるいは窒化珪素膜層及び酸化珪素膜層等が挙げられる。
このような半導体基板上に形成された酸化珪素膜層あるいは窒化珪素膜層を、前記研磨剤で研磨することによって、酸化珪素膜層表面の凹凸を解消し、半導体基板全面にわたって平滑な面とすることができる。
また、研磨剤は、シャロートレンチ分離にも使用できる。シャロートレンチ分離に使用するためには、酸化珪素膜研磨速度と窒化珪素膜研磨速度の比、酸化珪素膜研磨速度/窒化珪素膜研磨速度が、10以上であることが好ましい。この比が10未満では、酸化珪素膜研磨速度と窒化珪素膜研磨速度の差が小さく、シャロートレンチ分離をする際、所定の位置で研磨を停止しにくくなるためである。この比が10以上の場合は、研磨の停止が容易になり、シャロートレンチ分離により好適である。また、シャロートレンチ分離に使用するためには、研磨時に傷の発生が少ないことが好ましい。
As a substrate, a substrate related to semiconductor element manufacture, for example, a semiconductor substrate at a stage where a circuit element and a wiring pattern are formed, a substrate having an inorganic insulating layer formed on a semiconductor substrate such as a semiconductor substrate at a stage where a circuit element is formed Is mentioned. Examples of the film to be polished include the inorganic insulating layers such as a silicon oxide film layer, a silicon nitride film layer, and a silicon oxide film layer.
By polishing the silicon oxide film layer or silicon nitride film layer formed on such a semiconductor substrate with the above-mentioned polishing agent, unevenness on the surface of the silicon oxide film layer is eliminated, and the entire surface of the semiconductor substrate is made smooth. be able to.
Abrasives can also be used for shallow trench isolation. In order to use for shallow trench isolation, the ratio of the silicon oxide film polishing rate to the silicon nitride film polishing rate, the silicon oxide film polishing rate / the silicon nitride film polishing rate, is preferably 10 or more. When this ratio is less than 10, the difference between the silicon oxide film polishing rate and the silicon nitride film polishing rate is small, and it becomes difficult to stop polishing at a predetermined position when performing shallow trench isolation. When this ratio is 10 or more, polishing can be easily stopped, and it is more preferable for shallow trench isolation. In addition, for use in shallow trench isolation, it is preferable that scratches are less likely to occur during polishing.
以下、無機絶縁層が形成された半導体基板の場合を例に挙げて、研磨方法を説明する。 Hereinafter, the polishing method will be described by taking the case of a semiconductor substrate on which an inorganic insulating layer is formed as an example.
研磨する装置としては、半導体基板等の被研磨膜を有する基板を保持するホルダーと、研磨布(パッド)を貼り付け可能で、回転数が変更可能なモータ等を取り付けてある研磨定盤と、を有する一般的な研磨装置が使用でき、例えば、株式会社荏原製作所製研磨装置:型番EPO−111等が使用できる。
研磨布としては、一般的な不織布、発泡ポリウレタン、多孔質フッ素樹脂等が使用でき、特に制限がない。また、研磨布には、研磨剤が溜まるような溝加工を施すことが好ましい。
研磨条件に制限はないが、定盤の回転速度は、半導体基板が飛び出さないように200回転/分以下の低回転が好ましく、半導体基板にかける圧力(加工荷重)は、研磨後に傷が発生しないように100kPa以下が好ましい。
研磨している間は、研磨布に研磨剤をポンプ等で連続的に供給する。この供給量に制限はないが、研磨布の表面が常に研磨剤で覆われていることが好ましい。
As an apparatus for polishing, a holder for holding a substrate having a film to be polished such as a semiconductor substrate, a polishing surface plate to which a polishing cloth (pad) can be attached, a motor that can change the number of rotations, and the like are attached, For example, a polishing apparatus manufactured by Ebara Manufacturing Co., Ltd .: model number EPO-111 or the like can be used.
As an abrasive cloth, a general nonwoven fabric, a polyurethane foam, a porous fluororesin, etc. can be used, and there is no restriction | limiting in particular. In addition, it is preferable that the polishing cloth is subjected to groove processing so that the abrasive is collected.
The polishing conditions are not limited, but the rotation speed of the surface plate is preferably low rotation of 200 rotations / minute or less so that the semiconductor substrate does not pop out, and the pressure (working load) applied to the semiconductor substrate is scratched after polishing. 100 kPa or less is preferable.
During polishing, an abrasive is continuously supplied to the polishing cloth with a pump or the like. Although there is no restriction | limiting in this supply amount, it is preferable that the surface of polishing cloth is always covered with the abrasive | polishing agent.
研磨終了後の半導体基板は、流水中で良く洗浄後、スピンドライヤ等を用いて半導体基板上に付着した水滴を払い落として、乾燥させることが好ましい。
このように被研磨膜である無機絶縁層を、研磨剤で研磨することによって、表面の凹凸を解消し、半導体基板全面にわたって平滑な面が得られる。平坦化されたシャロートレンチを形成した後は、酸化珪素絶縁膜層の上に、アルミニウム配線を形成し、その配線間及び配線上に再度酸化珪素絶縁膜を形成後、研磨剤を用いて再度研磨して平滑な面とする。この工程を所定数繰り返すことにより、所望の層数を有する半導体基板を製造することができる。
The semiconductor substrate after polishing is preferably washed in running water, and then dried by removing water droplets adhering to the semiconductor substrate using a spin dryer or the like.
By polishing the inorganic insulating layer, which is the film to be polished, with the polishing agent in this way, surface irregularities can be eliminated and a smooth surface can be obtained over the entire surface of the semiconductor substrate. After the planarized shallow trench is formed, an aluminum wiring is formed on the silicon oxide insulating film layer, a silicon oxide insulating film is formed again between and on the wiring, and then polished again using an abrasive. And make it a smooth surface. By repeating this step a predetermined number of times, a semiconductor substrate having a desired number of layers can be manufactured.
N−置換ポリオキシアルキレン化合物を研磨剤に添加することで、被研磨膜(酸化珪素膜)の研磨後の研磨傷を低減することができる。尚、N−置換ポリオキシアルキレン化合物を添加しても、添加しない研磨剤と研磨速度については変化がない。 By adding the N-substituted polyoxyalkylene compound to the abrasive, polishing scratches after polishing of the film to be polished (silicon oxide film) can be reduced. Even when the N-substituted polyoxyalkylene compound is added, there is no change in the polishing agent not added and the polishing rate.
研磨剤が使用される無機絶縁膜の作製方法としては、低圧CVD法、プラズマCVD法等が挙げられる。低圧CVD法による酸化珪素膜形成は、Si源としてモノシラン:SiH4、酸素源として酸素:O2を用いる。このSiH4−O2系酸化反応を、400℃以下の低温で行わせることにより無機絶縁膜が得られる。場合によっては、CVD後1000℃又はそれ以下の温度で熱処理される。
高温リフローによる表面平坦化を図るために、リン:Pをドープするときには、SiH4−O2−PH3系反応ガスを用いることが好ましい。
プラズマCVD法は、通常の熱平衡下では高温を必要とする化学反応が低温でできる利点を有する。
プラズマ発生法には、容量結合型と誘導結合型の2つが挙げられる。
反応ガスとしては、Si源としてSiH4、酸素源としてN2Oを用いたSiH4−N2O系ガスとテトラエトキシシラン(TEOS)をSi源に用いたTEOS−O2系ガス(TEOS−プラズマCVD法)が挙げられる。基板温度は、250〜400℃、反応圧力は、67〜400Paの範囲が好ましい。
酸化珪素膜は、リン、ホウ素等の元素がドープされていても良い。
同様に、低圧CVD法による窒化珪素膜形成は、Si源としてジクロルシラン:SiH2Cl2、窒素源としてアンモニア:NH3を用いる。このSiH2Cl2−NH3系酸化反応を、900℃の高温で行わせることにより得られる。
プラズマCVD法は、反応ガスとしては、Si源としてSiH4、窒素源としてNH3を用いたSiH4−NH3系ガスが挙げられる。基板温度は、300℃〜400℃が好ましい。
Examples of a method for manufacturing an inorganic insulating film in which an abrasive is used include a low pressure CVD method and a plasma CVD method. The silicon oxide film formation by the low pressure CVD method uses monosilane: SiH 4 as the Si source and oxygen: O 2 as the oxygen source. An inorganic insulating film can be obtained by performing this SiH 4 —O 2 -based oxidation reaction at a low temperature of 400 ° C. or lower. In some cases, heat treatment is performed at a temperature of 1000 ° C. or lower after CVD.
In order to achieve surface flattening by high-temperature reflow, when doping with phosphorus: P, it is preferable to use a SiH 4 —O 2 —PH 3 -based reactive gas.
The plasma CVD method has an advantage that a chemical reaction requiring a high temperature can be performed at a low temperature under normal thermal equilibrium.
There are two plasma generation methods, capacitive coupling type and inductive coupling type.
The reaction as a gas, SiH 4 as an Si source, an oxygen source as N 2 O was used was SiH 4 -N 2 O-based gas and TEOS-O 2 based gas using tetraethoxysilane (TEOS) in an Si source (TEOS- Plasma CVD method). The substrate temperature is preferably 250 to 400 ° C., and the reaction pressure is preferably 67 to 400 Pa.
The silicon oxide film may be doped with an element such as phosphorus or boron.
Similarly, silicon nitride film formation by low pressure CVD uses dichlorosilane: SiH 2 Cl 2 as a Si source and ammonia: NH 3 as a nitrogen source. This SiH 2 Cl 2 —NH 3 -based oxidation reaction can be obtained by carrying out at a high temperature of 900 ° C.
In the plasma CVD method, examples of the reactive gas include SiH 4 —NH 3 -based gas using SiH 4 as the Si source and NH 3 as the nitrogen source. The substrate temperature is preferably 300 ° C to 400 ° C.
本発明の研磨方法は、半導体基板に形成された酸化珪素膜だけでなく、各種半導体装置の製造プロセス等にも適用することができる。
例えば、所定の配線を有する配線板に形成された酸化珪素膜、ガラス、窒化珪素等の無機絶縁膜、ポリシリコン、Al、Cu、Ti、TiN、W、Ta、TaN等を主として含有する膜、フォトマスク・レンズ・プリズム等の光学ガラス、ITO等の無機導電膜、ガラス及び結晶質材料で構成される光集積回路・光スイッチング素子・光導波路、光ファイバーの端面、シンチレータ等の光学用単結晶、固体レーザ単結晶、青色レーザLED用サファイヤ基板、SiC、GaP、GaAs等の半導体単結晶、磁気ディスク用ガラス基板、磁気ヘッド等を研磨することができる。
The polishing method of the present invention can be applied not only to a silicon oxide film formed on a semiconductor substrate but also to manufacturing processes of various semiconductor devices.
For example, a silicon oxide film formed on a wiring board having a predetermined wiring, an inorganic insulating film such as glass and silicon nitride, a film mainly containing polysilicon, Al, Cu, Ti, TiN, W, Ta, TaN, etc. Optical glass such as photomasks, lenses and prisms, inorganic conductive films such as ITO, optical integrated circuits composed of glass and crystalline materials, optical switching elements, optical waveguides, optical fiber end faces, optical single crystals such as scintillators, Solid laser single crystals, blue laser LED sapphire substrates, semiconductor single crystals such as SiC, GaP, and GaAs, glass substrates for magnetic disks, magnetic heads, and the like can be polished.
次に、実施例により本発明を説明するが、本発明はこれに限定されるものではない。 Next, the present invention will be described with reference to examples, but the present invention is not limited thereto.
(実施例1)
〔酸化セリウムスラリ1の作成〕
酸化セリウム粉末:200.0gと、脱イオン水:795.0gとを混合し、ポリアクリル酸アンモニウム水溶液(重量平均分子量:8000、40質量%):5gを添加して、攪拌しながら超音波分散を行なった。超音波周波数は、400kHzで、分散時間20分で行なった。
その後、1リットル容器に1kgの酸化セリウム分散液を入れて静置し、沈降分級を行なった。
分級時間:4時間後、容器底からの高さ10mm以上の上澄みをポンプでくみ上げた。得られた上澄みの酸化セリウム分散液を、次いで固形分濃度が5質量%になるように、脱イオン水で希釈して酸化セリウムスラリ1を得た。
酸化セリウムスラリ中の平均粒径を測定するため適当な濃度に希釈し、レーザ回折式粒度分布計Master Sizer Microplus(Malvern社製、商品名)を用い、屈折率:1.93、吸収:0として、測定したところ、D50の値は、280nmであった。
〔酸化セリウムスラリ2の作成〕
沈降分級で、分級時間を15時間にする事以外は、研磨液1の作成と同様に研磨液を作成し、酸化セリウムスラリ2を得た。
また、研磨剤中の粒子の平均粒径を、レーザ回折式粒度分布計で測定するために、適当な濃度に希釈して測定した結果、D50の値は200nmであった。
Example 1
[Creation of cerium oxide slurry 1]
Cerium oxide powder: 200.0 g and deionized water: 795.0 g are mixed, an aqueous solution of ammonium polyacrylate (weight average molecular weight: 8000, 40% by mass): 5 g is added, and ultrasonic dispersion is performed with stirring. Was done. The ultrasonic frequency was 400 kHz and the dispersion time was 20 minutes.
Thereafter, 1 kg of a cerium oxide dispersion was placed in a 1 liter container and allowed to stand to perform sedimentation classification.
Classification time: After 4 hours, a supernatant of 10 mm or more from the bottom of the container was pumped up. The obtained supernatant cerium oxide dispersion was then diluted with deionized water to obtain a cerium oxide slurry 1 so that the solid content concentration was 5% by mass.
In order to measure the average particle size in the cerium oxide slurry, it was diluted to an appropriate concentration, and a refractive index of 1.93 and an absorption of 0 were obtained using a laser diffraction particle size distribution meter, Master Sizer Microplus (trade name, manufactured by Malvern). When measured, the value of D50 was 280 nm.
[Creation of cerium oxide slurry 2]
A polishing liquid was prepared in the same manner as the preparation of the polishing liquid 1 except that the classification time was set to 15 hours by sedimentation classification, and a cerium oxide slurry 2 was obtained.
Moreover, in order to measure the average particle diameter of the particle | grains in an abrasive | polishing agent with a laser diffraction type particle size distribution analyzer, as a result of measuring diluted to a suitable density | concentration, the value of D50 was 200 nm.
水溶性高分子としてポリアクリル酸アンモニウム水溶液(重量平均分子量:8000、40質量%):23gと、添加剤として、N−置換ポリオキシアルキレン化合物であるアミラジンD(ジポリオキシエチレンアルキルアミン、第一工業製薬株式会社製、商品名):0.3g、脱イオン水:2677gを混合し、アンモニア水(25質量%)にてpH4.8に調整した。
更に前記の酸化セリウムスラリ1及び2(固形分:5質量%):300gを添加して、第1研磨工程用研磨剤および第2研磨工程用研磨剤(固形分:0.5質量%)を作製した。この研磨剤pHはそれぞれ5であった。
また、研磨剤中の粒子の平均粒径を、レーザ回折式粒度分布計で測定するために、適当な濃度に希釈して測定した結果、D50の値は、第1研磨工程用研磨剤は280nm、第2研磨工程用研磨剤は200nmであった。
Ammonium polyacrylate aqueous solution (weight average molecular weight: 8000, 40% by mass): 23 g as a water-soluble polymer, and amirazine D (dipolyoxyethylene alkylamine, first compound) as an N-substituted polyoxyalkylene compound as an additive Kogyo Seiyaku Co., Ltd., trade name): 0.3 g, deionized water: 2677 g were mixed and adjusted to pH 4.8 with ammonia water (25 mass%).
Furthermore, the above-mentioned cerium oxide slurries 1 and 2 (solid content: 5% by mass): 300 g were added, and the first polishing process abrasive and the second polishing process abrasive (solid content: 0.5% by mass) were added. Produced. The abrasive pH was 5 respectively.
Moreover, in order to measure the average particle diameter of the particles in the abrasive with a laser diffraction particle size distribution analyzer, the value of D50 was 280 nm for the abrasive for the first polishing process as a result of being diluted to an appropriate concentration and measured. The polishing agent for the second polishing step was 200 nm.
(絶縁膜層の研磨)
研磨試験ウエハとして、P−TEOS(プラズマ−テトラエトキシシラン)によるSiO2膜形成ウエハ(直径:200mm)を用いた(SiO2膜厚:1000nm)。
研磨装置(株式会社荏原製作所製研磨装置:型番EPO−111)の、保持する基板取り付け用の吸着パッドを貼り付けたホルダーに前記研磨試験ウエハをセットし、研磨装置の直径600mmの研磨定盤に、多孔質ウレタン樹脂製の研磨布(溝形状=パーフォレートタイプ:Rohm and Haas社製、型番IC1000)を貼り付けた。更に前記ホルダーを、被研磨膜である絶縁膜(酸化珪素被膜)面を下にして載せ、加工荷重を350gf/cm2(34.3kPa)に設定した。
定盤上に前述した第1研磨工程用研磨剤を200ミリリットル/分の速度で滴下しながら、定盤とウエハとをそれぞれ50回転/分で作動させて、30秒間研磨試験ウエハを研磨した。その後、第1研磨工程用研磨剤と同様に第2研磨工程用研磨剤を滴下しながら、30秒間研磨試験ウエハを研磨した。
研磨後のウエハは、純水で良く洗浄後、乾燥した。
その後、レーザ散乱式表面欠陥検査装置(アプライドマテリアル株式会社製、商品名:Complus3T)を用いて、ウエハ表面の欠陥位置を測定し、その欠陥を電子顕微鏡式欠陥検査装置(アプライドマテリアル株式会社製、商品名:SEMVisionG3)を用いて観察し、0.2μm以上の研磨傷数を測定した。
また、研磨前と研磨後のSiO2膜厚を、光学式膜厚測定器(ナノメトリクス株式会社製、商品名:ナノスペックAFT5100)で測定し、研磨前の膜厚から研磨後の膜厚を引いた値を研磨速度(単位:nm/分)とした。
表1に得られた結果(研磨後ウエハの研磨傷数:0個/ウエハ、研磨速度:403nm/分)を示す。
(Polishing the insulating film layer)
As a polishing test wafer, a SiO 2 film-formed wafer (diameter: 200 mm) using P-TEOS (plasma-tetraethoxysilane) was used (SiO 2 film thickness: 1000 nm).
The polishing test wafer is set in a holder of a polishing apparatus (polishing apparatus manufactured by Ebara Manufacturing Co., Ltd .: model number EPO-111) on which a suction pad for attaching a substrate to be held is attached, and the polishing apparatus is mounted on a polishing surface plate having a diameter of 600 mm A polishing cloth made of porous urethane resin (groove shape = perforate type: manufactured by Rohm and Haas, model number IC1000) was attached. Further, the holder was placed with the insulating film (silicon oxide film) surface, which is the film to be polished, facing down, and the processing load was set to 350 gf / cm 2 (34.3 kPa).
While the above polishing agent for the first polishing step was dropped on the surface plate at a rate of 200 ml / min, the surface plate and the wafer were each operated at 50 rpm, and the polishing test wafer was polished for 30 seconds. Then, the polishing test wafer was polished for 30 seconds while dropping the second polishing step abrasive in the same manner as the first polishing step abrasive.
The polished wafer was thoroughly washed with pure water and then dried.
Then, using a laser scattering surface defect inspection apparatus (Applied Material Co., Ltd., trade name: Complex 3T), the defect position on the wafer surface is measured, and the defect is observed with an electron microscope type defect inspection apparatus (Applied Material Co., Ltd., The product was observed using a trade name: SEMVision G3), and the number of polishing scratches of 0.2 μm or more was measured.
Further, the SiO 2 film thickness before and after polishing is measured with an optical film thickness measuring instrument (trade name: Nanospec AFT5100, manufactured by Nanometrics Co., Ltd.), and the film thickness after polishing is determined from the film thickness before polishing. The subtracted value was defined as the polishing rate (unit: nm / min).
Table 1 shows the results (number of polished scratches on polished wafer: 0 / wafer, polishing rate: 403 nm / min).
(実施例2)
水溶性高分子としてポリアクリル酸アンモニウム水溶液(重量平均分子量:8000、40質量%):23gと、脱イオン水:2377gを混合し、アンモニア水(25%)にてpH4.8に調整した。添加剤は加えなかった。
更に実施例1にて作製した酸化セリウムスラリ1および2(固形分:5質量%):300gを添加して、第1研磨工程用研磨剤および第2研磨工程用研磨剤(固形分:0.5質量%)を作製した。
研磨剤pHは5、また、研磨剤中の粒子の平均粒径を、レーザ回折式粒度分布計で測定するために、適当な濃度に希釈して測定した結果、D50の値は、第1研磨工程用研磨剤は280nm、第2研磨工程用研磨剤は200nmであった。
(Example 2)
As a water-soluble polymer, ammonium polyacrylate aqueous solution (weight average molecular weight: 8000, 40% by mass): 23 g and deionized water: 2377 g were mixed, and adjusted to pH 4.8 with aqueous ammonia (25%). No additive was added.
Furthermore, cerium oxide slurries 1 and 2 prepared in Example 1 (solid content: 5% by mass): 300 g were added, and the first polishing step abrasive and the second polishing step abrasive (solid content: 0.00%). 5 mass%) was produced.
The abrasive pH was 5, and the average particle size of the particles in the abrasive was measured by diluting to an appropriate concentration in order to measure with a laser diffraction particle size distribution meter. The polishing slurry for the process was 280 nm, and the polishing slurry for the second polishing process was 200 nm.
(絶縁膜層の研磨)
上記で作製した研磨剤を用いた以外は実施例1と同様に評価用の研磨試験ウエハの研磨を行い、表1に示す結果(研磨傷数:15個/ウエハ、研磨速度:407nm/分)を得た。
(Polishing the insulating film layer)
A polishing test wafer for evaluation was polished in the same manner as in Example 1 except that the abrasive prepared above was used, and the results shown in Table 1 (number of polishing flaws: 15 / wafer, polishing rate: 407 nm / min) Got.
(比較例1)
水溶性高分子としてポリアクリル酸アンモニウム水溶液(重量平均分子量:8000、40質量%):23gと、添加剤としてアミラジンD:0.3g、脱イオン水:2377gを混合し、アンモニア水(25%)にてpH4.8に調整した。
更に実施例1にて作製した酸化セリウムスラリ2(固形分:5質量%):300gを添加して、第1研磨工程用研磨剤および第2研磨工程用研磨剤(固形分:0.5質量%)を作製した。
研磨剤pHは5、また、研磨剤中の粒子の平均粒径を、レーザ回折式粒度分布計で測定するために、適当な濃度に希釈して測定した結果、D50の値は、第1研磨工程用研磨剤、第2研磨工程用研磨剤いずれも200nmであった。
(Comparative Example 1)
Ammonium polyacrylate aqueous solution (weight average molecular weight: 8000, 40% by mass): 23 g as a water-soluble polymer, and amyrazine D: 0.3 g, deionized water: 2377 g as an additive were mixed, and aqueous ammonia (25%) To adjust the pH to 4.8.
Further, cerium oxide slurry 2 prepared in Example 1 (solid content: 5% by mass): 300 g was added, and the first polishing process abrasive and the second polishing process abrasive (solid content: 0.5 mass). %).
The abrasive pH was 5, and the average particle size of the particles in the abrasive was measured by diluting to an appropriate concentration in order to measure with a laser diffraction particle size distribution meter. Both the process polishing agent and the second polishing process polishing agent were 200 nm.
(絶縁膜層の研磨)
上記で作製した研磨剤を用いた以外は実施例1と同様に評価用の研磨試験ウエハの研磨を行い、前記表1に示す結果(研磨傷数:1個/ウエハ、研磨速度:246nm/分)を得た。
第1研磨工程で、第2研磨工程と同じ小さい粒径の酸化セリウムを含有する研磨剤を用いると、研磨速度が低くなることが判った。
(Polishing the insulating film layer)
A polishing test wafer for evaluation was polished in the same manner as in Example 1 except that the abrasive prepared above was used, and the results shown in Table 1 above (number of polishing flaws / wafer, polishing rate: 246 nm / min) )
It was found that when the abrasive containing cerium oxide having the same small particle size as in the second polishing step was used in the first polishing step, the polishing rate was lowered.
(比較例2)
実施例1にて作製した酸化セリウムスラリ1を用いた以外は比較例1と同様に第1研磨工程用研磨剤および第2研磨工程用研磨剤(固形分:0.5質量%)を作製した。
研磨剤pHは5、また、研磨剤中の粒子の平均粒径を、レーザ回折式粒度分布計で測定するために、適当な濃度に希釈して測定した結果、D50の値は、第1研磨工程用研磨剤、第2研磨工程用研磨剤いずれも280nmであった。
(Comparative Example 2)
Except that the cerium oxide slurry 1 produced in Example 1 was used, the abrasive for the first polishing step and the abrasive for the second polishing step (solid content: 0.5% by mass) were produced in the same manner as in Comparative Example 1. .
The abrasive pH was 5, and the average particle size of the particles in the abrasive was measured by diluting to an appropriate concentration in order to measure with a laser diffraction particle size distribution meter. Both the process abrasive and the second polishing process abrasive were 280 nm.
(絶縁膜層の研磨)
上記で作製した研磨剤を用いた以外は実施例1と同様に評価用の研磨試験ウエハの研磨を行い、前記表1に示す結果(研磨傷数:25個/ウエハ、研磨速度:474nm/分)を得た。
第2研磨工程で大きい粒径の酸化セリウムを含有する研磨剤を用いると、研磨剤にアミラジンDを添加しても、研磨傷数が多くなることが判った。
(Polishing the insulating film layer)
A polishing test wafer for evaluation was polished in the same manner as in Example 1 except that the abrasive prepared above was used, and the results shown in Table 1 above (number of polishing flaws: 25 / wafer, polishing rate: 474 nm / min) )
It was found that when a polishing agent containing cerium oxide having a large particle size was used in the second polishing step, the number of polishing flaws was increased even when Amiradine D was added to the polishing agent.
(比較例3)
水溶性高分子としてポリアクリル酸アンモニウム水溶液(重量平均分子量:8000、40質量%):23gと、脱イオン水:2377gを混合し、アンモニア水(25%)にてpH4.8に調整した。添加剤は加えなかった。
更に実施例1にて作製した酸化セリウムスラリ1(固形分:5質量%):300gを添加して、第1研磨工程用研磨剤および第2研磨工程用研磨剤(固形分:0.5質量%)を作製した。
研磨剤pHは5、また、研磨剤中の粒子の平均粒径を、レーザ回折式粒度分布計で測定するために、適当な濃度に希釈して測定した結果、D50の値は、第1研磨工程用研磨剤、第2研磨工程用研磨剤いずれも280nmであった。
(Comparative Example 3)
As a water-soluble polymer, ammonium polyacrylate aqueous solution (weight average molecular weight: 8000, 40% by mass): 23 g and deionized water: 2377 g were mixed, and adjusted to pH 4.8 with aqueous ammonia (25%). No additive was added.
Furthermore, cerium oxide slurry 1 produced in Example 1 (solid content: 5% by mass): 300 g was added, and the first polishing process abrasive and the second polishing process abrasive (solid content: 0.5 mass). %).
The abrasive pH was 5, and the average particle size of the particles in the abrasive was measured by diluting to an appropriate concentration in order to measure with a laser diffraction particle size distribution meter. Both the process abrasive and the second polishing process abrasive were 280 nm.
(絶縁膜層の研磨)
上記で作製した研磨剤を用いた以外は実施例1と同様に評価用の研磨試験ウエハの研磨を行い、前記表1に示す結果(研磨傷数:40個/ウエハ、研磨速度:468nm/分)を得た。
第2研磨工程で大きい粒径の酸化セリウムを含有する研磨剤を用い、研磨剤にアミラジンDを添加しないと、研磨傷数が著しく多くなることが判った。
(Polishing the insulating film layer)
A polishing test wafer for evaluation was polished in the same manner as in Example 1 except that the abrasive prepared above was used, and the results shown in Table 1 above (number of polishing flaws: 40 wafers / polishing rate: 468 nm / min) )
It has been found that the number of polishing flaws is remarkably increased if an abrasive containing cerium oxide having a large particle size is used in the second polishing step, and no amylazine D is added to the abrasive.
Claims (2)
(1)酸化セリウム粒子を含有する研磨剤を用いて基板を研磨する工程(第1研磨工程)。
(2)工程(1)に用いた粒径よりも小さい粒径の酸化セリウム粒子を含有する研磨剤を用いて基板を研磨する工程(第2研磨工程)。 A substrate polishing method for polishing a substrate by the following steps.
(1) A step of polishing a substrate using an abrasive containing cerium oxide particles (first polishing step).
(2) A step of polishing the substrate using an abrasive containing cerium oxide particles having a particle size smaller than that used in step (1) (second polishing step).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010103416A JP2011233748A (en) | 2010-04-28 | 2010-04-28 | Substrate polishing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010103416A JP2011233748A (en) | 2010-04-28 | 2010-04-28 | Substrate polishing method |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2011233748A true JP2011233748A (en) | 2011-11-17 |
Family
ID=45322774
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010103416A Pending JP2011233748A (en) | 2010-04-28 | 2010-04-28 | Substrate polishing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2011233748A (en) |
-
2010
- 2010-04-28 JP JP2010103416A patent/JP2011233748A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4983603B2 (en) | Cerium oxide slurry, cerium oxide polishing liquid, and substrate polishing method using the same | |
JP5510575B2 (en) | Polishing liquid and substrate polishing method using the polishing liquid | |
JP5655879B2 (en) | CMP polishing agent and substrate polishing method | |
JP3649279B2 (en) | Substrate polishing method | |
JP2010028086A (en) | Cmp abrasive, and polishing method using the same | |
JP2012186339A (en) | Polishing liquid and polishing method of substrate using the same | |
JP2010095650A (en) | Abrasives composition and method for polishing substrates using the same | |
JP5186707B2 (en) | CMP abrasive, CMP abrasive additive, and substrate polishing method using the same | |
JP2010272733A (en) | Abrasive and polishing method of substrate using the abrasive | |
JP4491857B2 (en) | CMP polishing agent and substrate polishing method | |
JP4608925B2 (en) | Additive for CMP abrasives | |
JP4604727B2 (en) | Additive for CMP abrasives | |
JP2005286160A (en) | Cmp polishing agent and polishing method of substrate | |
JP4501694B2 (en) | Additive for CMP abrasives | |
JP2011233748A (en) | Substrate polishing method | |
JP2003347245A (en) | Cmp polishing agent for semiconductor insulating film and method of polishing substrate | |
JP6620590B2 (en) | Polishing liquid and polishing method | |
WO2018100686A1 (en) | Slurry, polishing liquid, method for producing said slurry, method for producing said polishing liquid, and method for polishing substrate | |
JP2006041034A (en) | Cmp abrasive and polishing method of substrate | |
JP2006041033A (en) | Cmp abrasive and polishing method of substrate | |
JP2006036963A (en) | Cmp abrasive and polishing process of substrate | |
JP2017152577A (en) | Polishing liquid and polishing method |