[go: up one dir, main page]

JP2011228648A - 撮像素子 - Google Patents

撮像素子 Download PDF

Info

Publication number
JP2011228648A
JP2011228648A JP2011050651A JP2011050651A JP2011228648A JP 2011228648 A JP2011228648 A JP 2011228648A JP 2011050651 A JP2011050651 A JP 2011050651A JP 2011050651 A JP2011050651 A JP 2011050651A JP 2011228648 A JP2011228648 A JP 2011228648A
Authority
JP
Japan
Prior art keywords
film
electrode
layer
sealing film
pixel electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011050651A
Other languages
English (en)
Inventor
Toshihiro Nakatani
俊博 中谷
yuki Imada
有紀 今田
Takashi Goto
崇 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2011050651A priority Critical patent/JP2011228648A/ja
Priority to US13/074,757 priority patent/US20110241151A1/en
Publication of JP2011228648A publication Critical patent/JP2011228648A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K39/00Integrated devices, or assemblies of multiple devices, comprising at least one organic radiation-sensitive element covered by group H10K30/00
    • H10K39/30Devices controlled by radiation
    • H10K39/32Organic image sensors

Landscapes

  • Solid State Image Pick-Up Elements (AREA)
  • Light Receiving Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

【課題】白傷欠陥の発生を確実に抑制することができる撮像素子を提供する。
【解決手段】基板上方に二次元状に配列された複数の下部電極と、複数の下部電極の上方に、各下部電極と対向して配置された上部電極と、複数の下部電極と上部電極との間に配置された有機光電変換層と、上部電極の上方に配置され、該上部電極を覆う封止膜と、を備え、下部電極の端部側面と、該下部電極を支持する下方の層の表面とのなす角度が45度以上であり、且つ、封止膜が複数の層で構成され、該封止膜全体の膜応力が−200MPa〜250MPaである。
【選択図】図2

Description

本発明は、撮像素子に関する。
テジタルスチルカメラ、デジタルビデオカメラ、携帯電話用カメラ、内視鏡用カメラ等に利用されているイメージセンサとして、CCD型やCMOS型の撮像素子が知られている。
CCD型やCMOS型の撮像素子は、一般に、半導体基板上の各画素に、フォトダイオード等の光電変換部だけでなく、信号読出し回路とそれに付随する配線が形成されている。画素微細化が進むと、一画素に占める読出し回路/配線領域が相対的に広く光電変換部の受光面積が狭くなって、開口率が低下し、撮像素子の感度が低下する。
現在、読出し回路や配線を形成した半導体基板の上方に光電変換層を形成し開口率を向上させた積層型の撮像素子が提案されている。積層型の撮像素子は、一例として、基板の上方に形成された画素電極(下部電極)と、該画素電極の上方に形成された対向電極(上部電極)と、これら電極間に設けられた光電変換層や電荷ブロッキング層を含む構成である。光電変換層及び電荷ブロッキング層は、有機材料を用いて形成することが可能であり、有機材料を用いた光電変換層を備えた積層型の撮像素子としては、特許文献1に記載されたものがある。
一般に、有機材料は、酸素や水の浸入によって劣化する。このため、有機材料を用いた積層型の撮像素子は、酸素や水が浸入することを遮る封止膜が必要である。ところで、封止膜はその内部応力が大きいため、対向電極や光電変換層やブロッキング層にダメージが加わることによって白傷欠陥が生じてしまう。このため、封止膜の内部応力を小さくすることが、素子性能を劣化させないために必要である。
有機膜と電極とを有する素子としては、撮像素子だけでなく、基板上に、互いに対向する一対の電極間に有機発光材料を配置した有機EL素子が知られている(特許文献2参照)。特許文献2に記載された有機EL素子は、有機発光材料の表面に封止膜に相当する保護層を有し、保護層が内部に発生する応力の異なる層を積層して構成され、この構成により保護層の内部応力を緩和している。
特開2008−252004号公報 特開2001−284042号公報
しかし、積層型の撮像素子においては、封止膜の内部応力が画素電極の端部の段差近傍に集中し、この段差近傍の応力が、該段差上方の有機材料を含む層にかかることによって、有機材料がダメージを受けるが、封止膜の内部応力をどの程度まで緩和すれば、画素電極の端部の段差に起因する、有機材料でのダメージを抑えられるかという点については、知見がなかった。
本発明は、白傷欠陥の発生を確実に抑制することができる撮像素子を提供する。
本発明の撮像素子は、基板上方に二次元状に配列された複数の下部電極と、
前記複数の下部電極の上方に、各下部電極と対向して配置された上部電極と、
前記複数の下部電極と前記上部電極との間に配置された有機光電変換層と、
前記上部電極の上方に配置され、該上部電極を覆う封止膜と、を備え、
前記下部電極の端部側面と、該下部電極を支持する下方の層の表面とのなす角度が45度以上であり、且つ、
前記封止膜が複数の層で構成され、該封止膜全体の膜応力が−200MPa〜250MPaである。
この撮像素子によれば、下部電極の端部側面と、該下部電極を支持する下方の層の表面とのなす角度が45度以上であれば、封止膜全体の膜応力を−200MPa〜250MPa程度まで緩和すれば、封止膜の応力が光電変換層の有機材料にダメージを与えることを抑えることができ、白傷欠陥の発生を確実に抑えることができる。
本発明によれば、白傷欠陥の発生を確実に抑制することができる撮像素子を提供できる。
撮像素子の構成を示す断面模式図である。 撮像素子の一例における、有機層、上部電極、封止膜の構成を示す模式的な断面図である。 撮像素子の他の例における、有機層、上部電極、封止膜の構成を示す模式的な断面図である。 図1の撮像素子における、絶縁層、画素電極の構成を示す断面図である。 封止膜の膜応力と白傷欠陥との関係を示すグラフである。
先ず、撮像素子の構成例を説明する。
図1は、積層型の撮像素子の構成を示す断面模式図である。
図1に示す撮像素子100は、基板101と、絶縁層102と、接続電極103と、画素電極104と、接続部105と、接続部106と、有機膜107と、対向電極108と、封止膜110と、カラーフィルタ111と、隔壁112と、遮光層113と、保護層114と、対向電極電圧供給部115と、読出し回路116とを備える。
基板101は、ガラス基板又はSi等の半導体基板である。基板101上には絶縁層102が形成されている。絶縁層102には、表面を垂直視した状態で二次元状に配列された複数の画素電極104が形成されている。また、絶縁層102には接続電極103が形成されている。接続電極103及び複数の画素電極104はそれぞれ、絶縁層102の表面上に位置し、接続電極103の下面及び各画素電極104の下面は、絶縁層102の表面と略同一平面をなす。画素電極104は、後述する有機膜107の有機光電変換層(以下、単に光電変換層ともいう。)で発生した電荷を捕集するための電荷捕集用の電極である。
また、基板101には、複数の画素電極104のそれぞれに接続された読出し回路116と、接続電極103に接続された対向電極電圧供給部115とが形成されている。
有機膜107は、絶縁層102及び各画素電極104上に形成される。有機膜107は、光電変換層を含む。光電変換層は、入射した光を光電変換することで電荷を発生する層である。有機膜107は、複数の画素電極104の上にこれらを覆って設けられている。有機膜107は、画素電極104の上では一定の膜厚となっているが、画素部以外(有効画素領域外)では膜厚が変化していてもよい。有機膜107の詳細については後述する。なお、有機膜107は、有機材料のみからなる層で構成されたものだけでなく、無機材料の層を含んでいてもよい。
対向電極108は、複数の画素電極104のそれぞれと対向する単一の電極である。対向電極108は、有機膜107上に設けられている。対向電極108は、有機膜107に光を入射させるため、入射光に対して透明な導電性材料で構成されている。
また、対向電極108は、有機膜107上に設けられ、更に、絶縁層102上において該有機膜107の外周縁よりも外側に配置された接続電極103の上に至るように形成され、該接続電極103と電気的に接続されている。
接続部105,106は、絶縁層102に埋設されている。接続部105は、画素電極104と読出し回路116とを電気的に接続する。接続部106は、接続電極103と対向電極電圧供給部115とを電気的に接続する。接続部105,106は、導電性材料からなる柱状の部材であって、例えばビアプラグである。
対向電極電圧供給部115は、基板101に形成され、接続部106及び接続電極103を介して対向電極108に所定の電圧を印加する。対向電極108に印加すべき電圧が撮像素子100の電源電圧よりも高い場合は、図示しないチャージポンプ等の昇圧回路によって電源電圧を昇圧して上記所定の電圧を供給する。
読出し回路116は、複数の画素電極104の各々に対応するように基板101に設けられている。読出し回路116は、画素電極104で捕集された電荷に応じた信号を読出す。読出し回路116は、CMOS回路で構成されている。読出し回路116は、絶縁層102に設けられた図示しない遮光層によって遮光されている。一般的なイメージセンサ用途ではCCD又はCMOS回路を採用することが好ましい。また、高速性の観点からは、CMOS回路を採用することが好ましい。なお、読出し回路116は、CCD回路、又はTFT回路等で構成されていてもよい。
対向電極108上には封止膜110が形成されている。封止膜110は、酸素や水を遮蔽することによって酸素や水が有機膜107に浸入することを抑える。封止膜110は、複数の層で構成される。また、封止膜110全体の膜応力が所定の範囲である。
封止膜110上には二次元状に配列された複数のカラーフィルタ111が形成されている。複数のカラーフィルタ111はそれぞれ、各画素電極104の上方に形成されている。
隔壁112は、格子状に形成され、隣り合うカラーフィルタ111同士を隔離し、入射した光が他の画素部のカラーフィルタに進入してしまうことを抑えることができ、各画素部の光透過効率を向上させる。
遮光層113は、封止膜110上のカラーフィルタ111及び隔壁112を設けた領域以外に形成されている。こうして、遮光層113は、有機膜107において複数の画素電極104が配列した領域以外の領域を覆う部位に光が入射することを防止する。
保護層114は、カラーフィルタ111、隔壁112、及び遮光層113を覆うように形成され、撮像素子における光入射側の面を保護する。
封止膜110、カラーフィルタ111、隔壁112、遮光層113の詳細については後述する。
なお、接続電極103、接続部106、及び対向電極電圧供給部115がそれぞれ複数設けられていてもよく、1つずつ設けられていてもよい。対向電極電圧供給部115を複数設ける場合、対向電極108の中央に対して対照となるように設けられ、各対向電極電圧供給部115からから対向電極108に電圧を供給することで、対向電極108における電圧降下を抑えられる。
また、撮像素子100においては、1つの画素電極104と、有機膜107と、該画素電極104と対向する対向電極108とを少なくとも含む領域を1つの画素部と定義することができる。そして、撮像素子100は、複数の画素部がアレイ状に複数配列されたものである。また、1つの画素電極104と、該画素電極104上方の対向電極108とが一対をなし、この一対の電極間に配された有機膜107とが光電変換素子として機能する。画素部はそれぞれ、この光電変換素子を含む。
次に、固体撮像素子における封止膜について説明する。
図2は、図1の撮像素子における、有機膜、対向電極、封止膜の構成を示す模式的な断面図である。
封止膜110は、第1の層110A、第2の層110B、第3の層110Cをこの順で対向電極108上に積層させた構成である。第1の層110A及び第3の層110Cは、封止膜110全体の膜応力を緩和する応力緩和機能を主とする層である。第2の層110Bは、酸素や水を遮蔽する封止機能を主として有する層である。
ここで、封止膜110を、酸窒化ケイ素(以下、SiONとも表記する。)を含む第1の層110A、酸化アルミニウム(以下、AlOとも表記する。)を含む第2の層110B、SiONを含む第3の層110Cをこの順に積層した構成とする場合の封止膜110全体の膜応力について説明する。SiONからなる第1の層110A及び第3の層110Cには、封止膜110の厚み方向に対して垂直な方向(すなわち、図中の左右方向)に圧縮する応力がかかる。一方で、AlOからなる第3の層110Bには、封止膜110の厚み方向に対して垂直な方向に引っ張る応力がかかる。このため、第1の層110Aと第2の層110Bとの間、及び、第2の層110Bと第3の層110Cとの間のそれぞれの界面において、互いの膜応力が相殺される。こうして、封止膜110全体の膜応力を所定の範囲にとどめることができ、有機膜107及び光電変換層に加わる物理的ダメージを抑えることができる。第1の層110A及び第3の層110Cは、酸窒化ケイ素膜に限定されず、酸窒化ケイ素膜、酸化アルミニウム膜、酸化シリコン(以下、SiOとも表記する。)膜のうちいずれか1つとすればよい。
図3は、図2に示す封止膜110の構成の他の構成例を示している。この構成例に示すように、封止膜110は、2つの層で構成することができる。この構成例では、封止膜110は、酸窒化ケイ素を含む第1の層110A、酸化アルミニウムを含む第2の層110Bをこの順に対向電極108上に積層した構成である。第1の層110Aと第2の層110Bとの間の界面において、互いの膜応力が相殺される。こうして、封止膜110全体の膜応力を所定の範囲にとどめることができ、有機膜107及び有機光電変換層に加わる物理的ダメージを抑えることができる。
なお、上述した封止膜110の構成は一例であり、封止膜110は、複数の層のうち重なり合う層間で互いの膜応力を相殺することによって封止膜110全体の内部応力を所定の範囲にとどめることができる範囲で、その構成が適宜変更できる。封止膜110は、4層以上の層で構成されていてもよく、この構成の場合では、SiO膜と、SiON膜と、SiN膜とのうちいずれか1つと、AlO膜と、を対向電極108上に交互に積層させればよい。
なお、対向電極108は、その厚みが通常10nm程度と、封止膜110の厚みに比べて十分に薄いため、該対向電極108自体の内部応力が有機膜107に与える影響については無視することができる。
次に、有機膜107、画素電極104、対向電極108、カラーフィルタ111の詳細について説明する。
(有機膜)
有機膜107は、光電変換層の他に電荷ブロッキング層を含んでいてもよい。
電荷ブロッキング層は、暗電流を抑制する機能を有する。電荷ブロッキング層は複数の層から構成されていてもよく、例えば、第1ブロッキング層と第2ブロッキング層とから構成されていてもよい。このように、電荷ブロッキング層を複数層にすることにより、第1ブロッキング層と第2ブロッキング層との間に界面が形成され、各層に存在する中間準位に不連続性が生じることで、中間準位を介して電荷担体が移動しにくくなり、暗電流を抑制することができる。なお、電荷ブロッキング層は単層としてもよい。
光電変換層は、p型有機半導体とn型有機半導体とを含む。p型有機半導体とn型有機半導体を接合させてドナ‐アクセプタ界面を形成することにより励起子解離効率を増加させることができる。このために、p型有機半導体とn型有機半導体を接合させた構成の光電変換層は高い光電変換効率を発現する。特に、p型有機半導体とn型有機半導体を混合した光電変換層は、接合界面が増大して光電変換効率が向上するので好ましい。
p型有機半導体(化合物)は、ドナ性有機半導体であり、主に正孔輸送性有機化合物に代表され、電子を供与しやすい性質がある有機化合物をいう。さらに詳しくは2つの有機材料を接触させて用いたときにイオン化ポテンシャルの小さい方の有機化合物をいう。したがって、ドナ性有機化合物は、電子供与性のある有機化合物であればいずれの有機化合物も使用可能である。例えば、トリアリールアミン化合物、ベンジジン化合物、ピラゾリン化合物、スチリルアミン化合物、ヒドラゾン化合物、トリフェニルメタン化合物、カルバゾール化合物、ポリシラン化合物、チオフェン化合物、フタロシアニン化合物、シアニン化合物、メロシアニン化合物、オキソノール化合物、ポリアミン化合物、インドール化合物、ピロール化合物、ピラゾール化合物、ポリアリーレン化合物、縮合芳香族炭素環化合物(ナフタレン誘導体、アントラセン誘導体、フェナントレン誘導体、テトラセン誘導体、ピレン誘導体、ペリレン誘導体、フルオランテン誘導体)、含窒素ヘテロ環化合物を配位子として有する金属錯体等を用いることができる。なお、これに限らず、上記したように、n型(アクセプタ性)化合物として用いた有機化合物よりもイオン化ポテンシャルの小さい有機化合物であればドナ性有機半導体として用いてよい。
n型有機半導体(化合物)は、アクセプタ性有機半導体であり、主に電子輸送性有機化合物に代表され、電子を受容しやすい性質がある有機化合物をいう。さらに詳しくは、n型有機半導体とは、2つの有機化合物を接触させて用いたときに電子親和力の大きい方の有機化合物をいう。したがって、アクセプタ性有機化合物は、電子受容性のある有機化合物であればいずれの有機化合物も使用可能である。例えば、縮合芳香族炭素環化合物(ナフタレン誘導体、アントラセン誘導体、フェナントレン誘導体、テトラセン誘導体、ピレン誘導体、ペリレン誘導体、フルオランテン誘導体)、窒素原子、酸素原子、硫黄原子を含有する5〜7員のヘテロ環化合物(例えばピリジン、ピラジン、ピリミジン、ピリダジン、トリアジン、キノリン、キノキサリン、キナゾリン、フタラジン、シンノリン、イソキノリン、プテリジン、アクリジン、フェナジン、フェナントロリン、テトラゾール、ピラゾール、イミダゾール、チアゾール、オキサゾール、インダゾール、ベンズイミダゾール、ベンゾトリアゾール、ベンゾオキサゾール、ベンゾチアゾール、カルバゾール、プリン、トリアゾロピリダジン、トリアゾロピリミジン、テトラザインデン、オキサジアゾール、イミダゾピリジン、ピラリジン、ピロロピリジン、チアジアゾロピリジン、ジベンズアゼピン、トリベンズアゼピン等)、ポリアリーレン化合物、フルオレン化合物、シクロペンタジエン化合物、シリル化合物、含窒素ヘテロ環化合物を配位子として有する金属錯体などが挙げられる。なお、これに限らず、上記したように、p型(ドナ性)化合物として用いた有機化合物よりも電子親和力の大きな有機化合物であればアクセプタ性有機半導体として用いてよい。
p型有機半導体、又はn型有機半導体としては、いかなる有機色素を用いても良いが、好ましくは、シアニン色素、スチリル色素、ヘミシアニン色素、メロシアニン色素(ゼロメチンメロシアニン(シンプルメロシアニン)を含む)、3核メロシアニン色素、4核メロシアニン色素、ロダシアニン色素、コンプレックスシアニン色素、コンプレックスメロシアニン色素、アロポーラー色素、オキソノール色素、ヘミオキソノール色素、スクアリウム色素、クロコニウム色素、アゾメチン色素、クマリン色素、アリーリデン色素、アントラキノン色素、トリフェニルメタン色素、アゾ色素、アゾメチン色素、スピロ化合物、メタロセン色素、フルオレノン色素、フルギド色素、ペリレン色素、ペリノン色素、フェナジン色素、フェノチアジン色素、キノン色素、ジフェニルメタン色素、ポリエン色素、アクリジン色素、アクリジノン色素、ジフェニルアミン色素、キナクリドン色素、キノフタロン色素、フェノキサジン色素、フタロペリレン色素、ジケトピロロピロール色素、ジオキサン色素、ポルフィリン色素、クロロフィル色素、フタロシアニン色素、金属錯体色素、縮合芳香族炭素環系色素(ナフタレン誘導体、アントラセン誘導体、フェナントレン誘導体、テトラセン誘導体、ピレン誘導体、ペリレン誘導体、フルオランテン誘導体)が挙げられる。
n型有機半導体として、電子輸送性に優れた、フラーレン又はフラーレン誘導体を用いることが特に好ましい。フラーレンとは、フラーレンC60、フラーレンC70、フラーレンC76、フラーレンC78、フラーレンC80、フラーレンC82、フラーレンC84、フラーレンC90、フラーレンC96、フラーレンC240、フラーレン540、ミックスドフラーレン、フラーレンナノチューブを表し、フラーレン誘導体とはこれらに置換基が付加された化合物のことを表す。
フラーレン誘導体の置換基として好ましくは、アルキル基、アリール基、又は複素環基である。アルキル基として更に好ましくは、炭素数1〜12までのアルキル基であり、アリール基、及び複素環基として好ましくは、ベンゼン環、ナフタレン環、アントラセン環、フェナントレン環、フルオレン環、トリフェニレン環、ナフタセン環、ビフェニル環、ピロール環、フラン環、チオフェン環、イミダゾール環、オキサゾール環、チアゾール環、ピリジン環、ピラジン環、ピリミジン環、ピリダジン環、インドリジン環、インドール環、ベンゾフラン環、ベンゾチオフェン環、イソベンゾフラン環、ベンズイミダゾール環、イミダゾピリジン環、キノリジン環、キノリン環、フタラジン環、ナフチリジン環、キノキサリン環、キノキサゾリン環、イソキノリン環、カルバゾール環、フェナントリジン環、アクリジン環、フェナントロリン環、チアントレン環、クロメン環、キサンテン環、フェノキサチイン環、フェノチアジン環、またはフェナジン環であり、さらに好ましくは、ベンゼン環、ナフタレン環、アントラセン環、フェナントレン環、ピリジン環、イミダゾール環、オキサゾール環、またはチアゾール環であり、特に好ましくはベンゼン環、ナフタレン環、またはピリジン環である。これらはさらに置換基を有していてもよく、その置換基は可能な限り結合して環を形成してもよい。なお、複数の置換基を有しても良く、それらは同一であっても異なっていても良い。また、複数の置換基は可能な限り結合して環を形成してもよい。
光電変換層がフラーレン又はフラーレン誘導体を含むことで、フラーレン分子またはフラーレン誘導体分子を経由して、光電変換により発生した電子を画素電極104又は対向電極108まで早く輸送できる。フラーレン分子またはフラーレン誘導体分子が連なった状態になって電子の経路が形成されていると、電子輸送性が向上して光電変換素子の高速応答性が実現可能となる。このためにはフラーレン又はフラーレン誘導体が光電変換層に40%以上含まれていることが好ましい。もっとも、フラーレン又はフラーレン誘導体が多すぎるとp型有機半導体が少なくなって接合界面が小さくなり励起子解離効率が低下してしまう。
光電変換層において、フラーレン又はフラーレン誘導体と共に混合されるp型有機半導体として、特許第4213832号公報等に記載されたトリアリールアミン化合物を用いると光電変換素子の高SN比が発現可能になり、特に好ましい。光電変換層内のフラーレン又はフラーレン誘導体の比率が大きすぎると該トリアリールアミン化合物が少なくなって入射光の吸収量が低下する。これにより光電変換効率が減少するので、光電変換層に含まれるフラーレン又はフラーレン誘導体は85%以下の組成であることが好ましい。
第1ブロッキング層及び第2ブロッキング層には、電子供与性有機材料を用いることができる。具体的には、低分子材料では、N,N’−ビス(3−メチルフェニル)−(1,1’−ビフェニル)−4,4’−ジアミン(TPD)や4,4’−ビス[N−(ナフチル)−N−フェニル−アミノ]ビフェニル(α−NPD)等の芳香族ジアミン化合物、オキサゾール、オキサジアゾール、トリアゾール、イミダゾール、イミダゾロン、スチルベン誘導体、ピラゾリン誘導体、テトラヒドロイミダゾール、ポリアリールアルカン、ブタジエン、4,4’,4”−トリス(N−(3−メチルフェニル)N−フェニルアミノ)トリフェニルアミン(m−MTDATA)、ポルフィン、テトラフェニルポルフィン銅、フタロシアニン、銅フタロシアニン、チタニウムフタロシアニンオキサイド等のポリフィリン化合物、トリアゾール誘導体、オキサジザゾール誘導体、イミダゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体、ピラゾロン誘導体、フェニレンジアミン誘導体、アニールアミン誘導体、アミノ置換カルコン誘導体、オキサゾール誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、シラザン誘導体などを用いることができ、高分子材料では、フェニレンビニレン、フルオレン、カルバゾール、インドール、ピレン、ピロール、ピコリン、チオフェン、アセチレン、ジアセチレン等の重合体や、その誘導体を用いることができる。電子供与性化合物でなくとも、充分な正孔輸送性を有する化合物であれば用いることは可能である。
電荷ブロッキング層としては無機材料を用いることもできる。一般的に、無機材料は有機材料よりも誘電率が大きいため、電荷ブロッキング層に用いた場合に、光電変換層に電圧が多くかかるようになり、光電変換効率を高くすることができる。電荷ブロッキング層となりうる材料としては、酸化カルシウム、酸化クロム、酸化クロム銅、酸化マンガン、酸化コバルト、酸化ニッケル、酸化銅、酸化ガリウム銅、酸化ストロンチウム銅、酸化ニオブ、酸化モリブデン、酸化インジウム銅、酸化インジウム銀、酸化イリジウム等がある。
複数層からなる電荷ブロッキング層において、複数層のうち光電変換層と隣接する層が該光電変換層に含まれるp型有機半導体と同じ材料からなる層であることが好ましい。こうすれば、電荷ブロッキング層にも同じp型有機半導体を用いることで、光電変換層と隣接する層の界面に中間準位が形成されるのを抑制し、暗電流を更に抑制することができる。
電荷ブロッキング層が単層の場合にはその層を無機材料からなる層とすることができ、または、複数層の場合には1つ又は2以上の層を無機材料からなる層とすることができる。
(画素電極)
画素電極104は、画素電極104上の光電変換層を含む有機膜107で発生した電子または正孔の電荷を捕集する。各画素電極104で捕集された電荷が、対応する各画素の読出し回路116で信号となり、複数の画素から取得した信号から画像が合成される。
図4は、図1の撮像素子における、絶縁層、画素電極の構成を示す断面図である。
図4において、角度θは、絶縁層102の表面102aに対する画素電極104の端部側面104aの傾斜角である。ここで、角度θは、端部側面104aにおける絶縁層102近傍部での接線と絶縁層102の表面102aとの角度に相当する。画素電極の端部側面の角度θが急峻である場合には、封止膜110の内部応力の影響を受けやすくなるため、白傷欠陥が発生しやすい。特に、角度θが90°のときには封止膜110の内部応力の影響が最も大きくなる。画素電極の端部側面の角度θが平坦に近い場合、つまり、角度θが0に近い場合には、封止膜110の内部応力の影響を受けにくく、白傷欠陥が発生しにくい。角度θを45度以上とすると、封止膜全体の膜応力を−200MPa〜250MPa程度まで緩和すれば、封止膜の応力が光電変換層の有機材料にダメージを与えることを十分に抑えることができ、白傷欠陥の発生を確実に抑えることができる。
画素電極の端部側面の角度θが0の近傍であるときの端部側面における内部応力を基準としたとき、角度θが約30°より大きくなると内部応力がしだいに大きくなり、角度θを45°以上にすると、画素電極の端部側面における応力集中により内部応力が急激に増大する。このため、画素電極の端部側面が角度θを45°以上と急峻な場合に、封止膜全体の膜応力を所定の範囲に抑えることにより白キズの発生を抑えられれば十分である。
また、製造工程において、画素電極を容易に形成する観点では、画素電極の端部側面の角度θが60°以上であることが好ましく、より好ましくは、80°以上である。封止膜全体の膜応力を−200MPa〜250MPa程度まで緩和すれば、白キズも発生しないうえ、電極形成プロセスを容易にするため画素電極の端部側面の角度θを急峻にする設計も可能となる。
画素電極104の端部において画素電極104の表面に顕著な凹凸が存在したり、画素電極104上に微小な塵埃が付着したりすると、画素電極104上の有機膜107が所望の膜厚より薄くなったり亀裂が生じたりする。そのような状態で有機膜107上に対向電極108を形成すると、欠陥部分における画素電極104と対向電極108の接触や電界集中により、暗電流の増大や短絡などの画素不良が発生する。
上記の欠陥を防止して撮像素子の信頼性を向上させるため、画素電極104の表面粗さRaが0.6nm以下であることが好ましい。画素電極104の表面粗さRaが小さいほど、表面の凹凸が小さいことを意味し、表面平坦性が良好である。又、画素電極104上のパーティクルを除去するため、有機膜107を形成する前に、半導体製造工程で利用されている一般的な洗浄技術により、基板を洗浄することが特に好ましい。
(対向電極)
対向電極108は、光電変換層を含む有機膜107を、画素電極104と共に挟込むことで有機膜107に電界を掛け、又、光電変換層で発生した電荷のうち、画素電極104で捕集する信号電荷と逆の極性を持つ電荷を捕集する。この逆極性電荷の捕集は各画素間で分割する必要がないため、対向電極108は複数の画素で共通にすることができる。そのために共通電極(コモン電極)と呼ばれることもある。
対向電極108は、光電変換層を含む有機膜107に光を入射させるため、透明導電膜で構成されることが好ましく、例えば、金属、金属酸化物、金属窒化物、金属硼化物、有機導電性化合物、これらの混合物等が挙げられる。具体例としては、酸化錫、酸化亜鉛、酸化インジウム、酸化インジウム錫(ITO)、酸化インジウム亜鉛(IZO)、酸化インジウムタングステン(IWO)、酸化チタン等の導電性金属酸化物、TiN等の金属窒化物、金(Au)、白金(Pt)、銀(Ag)、クロム(Cr)、ニッケル(Ni)、アルミニウム(Al)等の金属、更にこれらの金属と導電性金属酸化物との混合物または積層物、ポリアニリン、ポリチオフェン、ポリピロール等の有機導電性化合物、これらとITOとの積層物、などが挙げられる。透明導電膜の材料として特に好ましいのは、ITO、IZO、酸化錫、アンチモンドープ酸化錫(ATO)、弗素ドープ酸化錫(FTO)、酸化亜鉛、アンチモンドープ酸化亜鉛(AZO)、ガリウムドープ酸化亜鉛(GZO)のいずれかの材料である。
対向電極108の面抵抗は、読出し回路116がCMOS型の場合は10kΩ/□以下が好ましく、より好ましくは、1kΩ/□以下である。読出し回路116がCCD型の場合には1kΩ/□以下が好ましく、より好ましくは、0.1kΩ/□以下である。
(カラーフィルタ)
複数の画素部にはそれぞれカラーフィルタ111が設けられている。また複数の画素部のうち隣り合うカラーフィルタ111の間に設けられた隔壁112は、画素部に入射した光を該画素部の光電変換層へ集光させるための集光手段として機能する。第1色から第3色(例えば赤,緑,青の3色)のカラーパターンを有するカラーフィルタを製造する場合には、遮光層形成工程、第1色カラーフィルタ形成工程、第2色カラーフィルタ形成工程、第3色カラーフィルタ形成工程、隔壁形成工程を順次に行う。遮光層113として、第1〜3色カラーフィルタのいずれかを有効画素領域外に形成してもよく、遮光層113のみを形成する工程を省略でき製造コストを抑えられる。隔壁形成工程は、遮光層形成工程後、第1色カラーフィルタ形成工程後、第2色カラーフィルタ形成工程後、第3色カラーフィルタ形成工程後のいずれかで実施でき、利用する製造技術、製造方法の組合せにより適宜選択できる。
(封止膜)
封止膜110は、原子層堆積(ALD)法によって形成される。原子層堆積法は、CVD法の一種で、薄膜材料となる有機金属化合物分子、金属ハロゲン化物分子、金属水素化物分子の基板表面への吸着/反応と、それらに含まれる未反応基の分解を、交互に繰返して薄膜を形成する技術である。基板表面へ薄膜材料が到達する際は上記低分子の状態なので、低分子が入り込めるごくわずかな空間さえあれば薄膜が成長可能である。そのために、従来の薄膜形成法では困難であった凹凸部分を完全に被覆し(凹凸部分に成長した薄膜の厚さが平坦部分に成長した薄膜の厚さと同じ)、すなわち被覆性が非常に優れる。そのため、基板表面の構造物、基板表面の微小欠陥、基板表面に付着したパーティクルなどによる凹凸部分を完全に被覆できるので、そのような凹凸部分が光電変換材料の劣化因子の浸入経路にならない。封止膜110の形成を原子層堆積法で行なった場合は従来技術よりも効果的に必要な封止膜110の膜厚を薄くすることが可能になる。
原子層堆積法で封止膜110を形成する場合は、先述した封止膜110に好ましいセラミクスに対応した材料を適宜選択でき、有機材料が劣化しないような、比較的に低温で薄膜成長が可能な材料に制限される。アルキルアルミニウムやハロゲン化アルミニウムを材料とした原子層堆積法によると、有機材料が劣化しない200℃未満で緻密な酸化アルミニウム薄膜を形成することができる。特にトリメチルアルミニウムを使用した場合は100℃程度でも酸化アルミニウム薄膜を形成でき好ましい。酸化珪素や酸化チタンも材料を適切に選択することで酸化アルミニウムと同様に200℃未満で緻密な薄膜を形成することができ好ましい。
(実施例)
以下の実施例及び比較例の撮像素子をそれぞれ試料として用いて、画素電極の端部の段差を規定し、封止膜を設けたことによる効果を実証する。
試料となる撮像素子は、以下の手順によって作成されたものを使用した。各例の撮像素子はそれぞれ、封止膜の構成、画素電極の端部の高さ、角度のいずれかが他と異なっている以外は、同じ構成である。
先ず、基板101上に、読出し回路116、接続部105を含む配線層、絶縁層102及び画素電極104を標準CMOSイメージセンサプロセスにより製作した。画素電極サイズは3umとした。実施例及び比較例の角度と、段差の高さ(画素電極の厚み)は、後述する。その後、有機蒸着室において、室内を1×10―4Pa以下に減圧した。基板を保持するホルダを回転させながら、画素電極上に、抵抗加熱蒸着法により電子ブロッキング層を蒸着速度10〜12nm/sで厚み100nmとなるように蒸着した。次に、化学式1で示す材料(フラーレン60)と化学式2で示す材料を、それぞれ蒸着速度16〜18nm/s、25〜28nm/sで、化学式1と化学式2の体積比が1:3になるように共蒸着して光電変換層を形成した。厚みは400nmとした。その後、スパッタ室に搬送し、光電変換層上に、RFマグネトロンスパッタによって、対向電極であるITO膜を厚み10nmとなるように形成した。
Figure 2011228648
Figure 2011228648
次に、ALD成膜室へ搬送し、対向電極であるITO膜上に、封止膜を構成する。実施例及び比較例それぞれの封止膜の構成は、後述する。
封止膜を構成する複数の層のうちSiONは、RFマグネトロンスパッタ法を用いて、SiOをターゲットとして、Ar,Nガスを導入することで成膜された。封止膜を構成する複数の層のうちSiOは、抵抗加熱蒸着法を用いて、SiOを蒸着源として成膜された。SiNは、RFマグネトロンスパッタにより、Siをターゲットとして、Ar,Nガスを導入することで成膜された。
AlOは、原子堆積法によって、トリメチルアルミニウムと水を用いて成膜した。
以上のように撮像素子を製作し、DC光源から光を照射した状態で光電変換層に対して外部電界を与えた場合の、DC出力画像、暗時出力画像を取得した。DC光源撮像時の撮像レンズは単焦点レンズ、絞りF=5.6とし、この撮像レンズにIRカットフィルタと50%透過NDフィルタを装着したものを使用した。
膜応力の測定は、KLA-Tencor社製 FLX-2320を用いて、薄膜ストレス測定、すなわち薄膜堆積前後の基板の曲率半径の変化をレーザースキャンにより測定する方法を用いて、大気中室温下にて測定した。
封止膜の膜応力は、有機膜及び画素電極の表面に対して平行な方向に引っ張る応力を正の向きとし、有機膜及び画素電極の表面に対して平行な方向に圧縮する応力を負の向きとした。
それぞれの試料の封止膜の構成、膜応力(MPa)、画素電極の端部側面の角度(°)、画素電極の段差の高さをの厚さ、白傷欠陥の割合は、次の表1のとおりである。なお、白傷欠陥の割合は、発生している画素部の数を100で割った値である。暗時出力が4mV以上の場合にその画素部で白傷欠陥が発生しているものとした。
Figure 2011228648
実施例1は、対向電極上に、順に、膜厚100nmでAlOを成膜し、膜厚100nmでSiONを成膜することで封止膜を構成した。封止膜全体の膜応力は、−20MPaであった。画素電極の端部側面の角度は、90度であり、画素電極の端部側面の段差の高さは40nmであった。なお、角度と段差の高さは、断面TEM像により測定した(図4参照)。
実施例2は、対向電極上に、順に、膜厚100nmでSiONを成膜し、膜厚200nmでAlOを成膜し、膜厚100nmでSiONを成膜することで封止膜を構成した。封止膜全体の膜応力は、−100MPaであった。画素電極の端部側面の角度は、90度であり、画素電極の端部側面の段差の高さは40nmであった。
実施例3は、対向電極上に、順に、膜厚100nmでSiONを成膜し、膜厚175nmでAlOを成膜し、膜厚100nmでSiONを成膜することで封止膜を構成した。封止膜全体の膜応力は、−200MPaであった。画素電極の端部側面の角度は、90度であり、画素電極の端部側面の段差の高さは40nmであった。
実施例4は、対向電極上に、順に、膜厚100nmでSiONを成膜し、膜厚200nmでAlOを成膜し、膜厚100nmでSiNを成膜することで封止膜を構成した。封止膜全体の膜応力は、100MPaであった。画素電極の端部側面の角度は、90度であり、画素電極の端部側面の段差の高さは40nmであった。
実施例5は、対向電極上に、順に、膜厚50nmでSiONを成膜し、膜厚200nmでAlOを成膜し、膜厚100nmでSiONを成膜することで封止膜を構成した。封止膜全体の膜応力は、125MPaであった。画素電極の端部側面の角度は、90度であり、画素電極の端部側面の段差の高さは40nmであった。
実施例6は、対向電極上に、順に、膜厚100nmでSiONを成膜し、膜厚200nmでAlOを成膜することで封止膜を構成した。封止膜全体の膜応力は、175MPaであった。画素電極の端部側面の角度は、90度であり、画素電極の端部側面の段差の高さは40nmであった。
実施例7は、対向電極上に、順に、膜厚100nmでSiOを成膜し、膜厚200nmでAlOを成膜し、膜厚100nmでSiONを成膜することで封止膜を構成した。封止膜全体の膜応力は、200MPaであった。画素電極の端部側面の角度は、90度であり、画素電極の端部側面の段差の高さは40nmであった。
実施例8は、対向電極上に、順に、膜厚100nmでSiONを成膜し、膜厚300nmでAlOを成膜することで封止膜を構成した。封止膜全体の膜応力は、250MPaであった。画素電極の端部側面の角度は、90度であり、画素電極の端部側面の段差の高さは40nmであった。
比較例1は、対向電極上に、順に、膜厚50nmでAlOを成膜し、膜厚100nmでSiONを成膜することで封止膜を構成した。封止膜全体の膜応力は、−250MPaであった。画素電極の端部側面の角度は、90度であり、画素電極の端部側面の段差の高さは40nmであった。
比較例2は、対向電極上に、順に、膜厚50nmでSiONを成膜し、膜厚200nmでAlOを成膜することで封止膜を構成した。封止膜全体の膜応力は、288MPaであった。画素電極の端部側面の角度は、90度であり、画素電極の端部側面の段差の高さは40nmであった。
比較例3は、対向電極上に、順に、膜厚200nmでAlOを成膜することで封止膜を構成した。封止膜全体の膜応力は、400MPaであった。画素電極の端部側面の角度は、90度であり、画素電極の端部側面の段差の高さは40nmであった。
参考例1は、対向電極上に、順に、膜厚200nmでAlOを成膜することで封止膜を構成した。封止膜全体の膜応力は、400MPaであった。画素電極は、絶縁層内に形成され、画素電極の下面が絶縁層の上面と同一平面となるように形成された。このとき、画素電極の端部側面の角度は、0度であり、画素電極の端部側面の段差の高さは0nmであった。
参考例2は、対向電極上に、順に、膜厚200nmでAlOを成膜することで封止膜を構成した。封止膜全体の膜応力は、400MPaであった。画素電極の端部側面の角度は、15度であり、画素電極の端部側面の段差の高さは70nmであった。
図5は、封止膜の膜応力に対する(白傷欠陥が生じた画素部の数)/100の値をプロットしたグラフである。このグラフにおいて、横軸は、封止膜の膜応力(MPa)を示し、縦軸は、(白傷欠陥が生じた画素部の数)/100の値を示している。
撮像素子は、封止膜の膜応力が−200MPaから250MPaであって、画素電極の端部側面の角度が45度以上であると、白傷欠陥が生じた画素数を十分に少なくできることがわかった。
本明細書は、以下の事項を開示するものである。
(1)基板上方に二次元状に配列された複数の下部電極と、
前記複数の下部電極の上方に、各下部電極と対向して配置された上部電極と、
前記複数の下部電極と前記上部電極との間に配置された有機光電変換層と、
前記上部電極の上方に配置され、該上部電極を覆う封止膜と、を備え、
前記下部電極の端部側面と、該下部電極を支持する下方の層の表面とのなす角度が45度以上であり、且つ、
前記封止膜が複数の層で構成され、該封止膜全体の膜応力が−200MPa〜250MPaである撮像素子。
(2)(1)に記載の撮像素子であって、
前記複数の層が、SiO膜と、SiON膜と、SiN膜とのうち1つと、AlO膜とを含む撮像素子。
(3)
(1)又は(2)に記載の撮像素子であって、SiO膜と、SiON膜と、SiN膜とのうちいずれか1つを第1膜とした場合に、前記複数の層が、AlO膜と、第1膜と、を順に積層させてなる撮像素子。
(4)
(1)又は(2)に記載の撮像素子であって、
前記複数の層が、SiO膜と、SiON膜と、SiN膜とのうちいずれか1つと、AlO膜と、を順に積層させてなる撮像素子。
(5)
(1)又は(2)に記載の撮像素子であって、
SiO膜と、SiON膜と、SiN膜とのうちいずれか1つを第1膜とし、SiO膜と、SiON膜と、SiN膜とのうちいずれか1つを第2膜とした場合に、前記複数の層が、第1膜と、AlO膜と、第2膜とを順に積層させてなる撮像素子。
(6)(1)から(5)のいずれか1つに記載の撮像素子であって、
前記封止膜全体の膜応力が、−100MPa〜200MPaである撮像素子。
(7)(1)〜(6)のいずれか1つに記載の撮像素子であって、前記下部電極の端部側面と、該下部電極を支持する下方の層の表面とのなす角度が60度以上である撮像素子。
(8)(1)〜(7)のいずれか1つに記載の撮像素子であって、前記下部電極の端部側面と、該下部電極を支持する下方の層の表面とのなす角度が80度以上である撮像素子。
100 撮像素子
101 基板
104 画素電極
107 有機膜
108 対向電極
110 封止膜

Claims (8)

  1. 基板上方に二次元状に配列された複数の下部電極と、
    前記複数の下部電極の上方に、各下部電極と対向して配置された上部電極と、
    前記複数の下部電極と前記上部電極との間に配置された有機光電変換層と、
    前記上部電極の上方に配置され、該上部電極を覆う封止膜と、を備え、
    前記下部電極の端部側面と、該下部電極を支持する下方の層の表面とのなす角度が45度以上であり、且つ、
    前記封止膜が複数の層で構成され、該封止膜全体の膜応力が−200MPa〜250MPaである撮像素子。
  2. 請求項1に記載の撮像素子であって、
    前記複数の層が、SiO膜と、SiON膜と、SiN膜とのうち1つと、AlO膜とを含む撮像素子。
  3. 請求項1又は2に記載の撮像素子であって、
    SiO膜と、SiON膜と、SiN膜とのうちいずれか1つを第1膜とした場合に、前記複数の層が、AlO膜と、第1膜と、を順に積層させてなる撮像素子。
  4. 請求項1又は2に記載の撮像素子であって、
    前記複数の層が、SiO膜と、SiON膜と、SiN膜とのうちいずれか1つと、AlO膜と、を順に積層させてなる撮像素子。
  5. 請求項1又は2に記載の撮像素子であって、
    SiO膜と、SiON膜と、SiN膜とのうちいずれか1つを第1膜とし、SiO膜と、SiON膜と、SiN膜とのうちいずれか1つを第2膜とした場合に、前記複数の層が、第1膜と、AlO膜と、第2膜とを順に積層させてなる撮像素子。
  6. 請求項1から5のいずれか1項に記載の撮像素子であって、
    前記封止膜全体の膜応力が、−100MPa〜200MPaである撮像素子。
  7. 請求項1〜6のいずれか1項に記載の撮像素子であって、前記下部電極の端部側面と、該下部電極を支持する下方の層の表面とのなす角度が60度以上である撮像素子。
  8. 請求項1〜7のいずれか1項に記載の撮像素子であって、前記下部電極の端部側面と、該下部電極を支持する下方の層の表面とのなす角度が80度以上である撮像素子。
JP2011050651A 2010-03-31 2011-03-08 撮像素子 Pending JP2011228648A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011050651A JP2011228648A (ja) 2010-03-31 2011-03-08 撮像素子
US13/074,757 US20110241151A1 (en) 2010-03-31 2011-03-29 Imaging device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010084410 2010-03-31
JP2010084410 2010-03-31
JP2011050651A JP2011228648A (ja) 2010-03-31 2011-03-08 撮像素子

Publications (1)

Publication Number Publication Date
JP2011228648A true JP2011228648A (ja) 2011-11-10

Family

ID=44708661

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011050651A Pending JP2011228648A (ja) 2010-03-31 2011-03-08 撮像素子

Country Status (2)

Country Link
US (1) US20110241151A1 (ja)
JP (1) JP2011228648A (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014007132A1 (ja) * 2012-07-05 2014-01-09 ソニー株式会社 固体撮像装置およびその製造方法、並びに電子機器
JP2014067948A (ja) * 2012-09-27 2014-04-17 Fujifilm Corp 固体撮像素子および撮像装置
WO2014192274A1 (ja) * 2013-05-27 2014-12-04 富士フイルム株式会社 有機光電変換素子および撮像素子
JP2015056554A (ja) * 2013-09-12 2015-03-23 ソニー株式会社 固体撮像素子および製造方法、並びに電子機器
US10734421B2 (en) 2018-02-08 2020-08-04 Panasonic Intellectual Property Management Co., Ltd. Imaging device and camera system, and driving method of imaging device
US10893222B2 (en) 2018-03-29 2021-01-12 Panasonic Intellectual Property Management Co., Ltd. Imaging device and camera system, and driving method of imaging device
US11031568B2 (en) 2018-02-26 2021-06-08 Panasonic Intellectual Property Management Co., Ltd. Photoelectric conversion element including first electrode, second electrodes, photoelectric conversion film, and conductive layer and method for manufacturing the same
US11387278B2 (en) 2016-12-23 2022-07-12 Samsung Electronics Co., Ltd. Electronic devices and methods of manufacturing the same
US11696051B2 (en) 2019-08-01 2023-07-04 Panasonic Intellectual Property Management Co., Ltd. Imaging device
US11825223B2 (en) 2019-08-01 2023-11-21 Panasonic Intellectual Property Management Co., Ltd. Imaging device and driving method thereof

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8816462B2 (en) * 2012-10-25 2014-08-26 Omnivision Technologies, Inc. Negatively charged layer to reduce image memory effect
TW201444069A (zh) * 2013-03-25 2014-11-16 Sony Corp 固體攝像裝置及其製造方法、以及電子機器
JP2015012239A (ja) * 2013-07-01 2015-01-19 ソニー株式会社 撮像素子および電子機器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08250698A (ja) * 1995-03-14 1996-09-27 Toshiba Corp 固体撮像装置
JP2001284042A (ja) * 2000-03-31 2001-10-12 Denso Corp 有機el素子
WO2005099311A1 (ja) * 2004-04-05 2005-10-20 Idemitsu Kosan Co., Ltd. 有機エレクトロルミネッセンス表示装置
JP2008252004A (ja) * 2007-03-30 2008-10-16 Fujifilm Corp 固体撮像素子、固体撮像素子の製造方法
JP2009259978A (ja) * 2008-04-15 2009-11-05 Konica Minolta Holdings Inc 光電変換デバイスおよび放射線画像検出装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3903699A1 (de) * 1988-02-08 1989-08-17 Ricoh Kk Bildsensor
JP4802286B2 (ja) * 2009-08-28 2011-10-26 富士フイルム株式会社 光電変換素子及び撮像素子
JP5637751B2 (ja) * 2009-08-28 2014-12-10 富士フイルム株式会社 固体撮像装置,固体撮像装置の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08250698A (ja) * 1995-03-14 1996-09-27 Toshiba Corp 固体撮像装置
JP2001284042A (ja) * 2000-03-31 2001-10-12 Denso Corp 有機el素子
WO2005099311A1 (ja) * 2004-04-05 2005-10-20 Idemitsu Kosan Co., Ltd. 有機エレクトロルミネッセンス表示装置
JP2008252004A (ja) * 2007-03-30 2008-10-16 Fujifilm Corp 固体撮像素子、固体撮像素子の製造方法
JP2009259978A (ja) * 2008-04-15 2009-11-05 Konica Minolta Holdings Inc 光電変換デバイスおよび放射線画像検出装置

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10177200B2 (en) 2012-07-05 2019-01-08 Sony Semiconductor Solutions Corporation Solid-state image pickup device and manufacturing method thereof, and electronic apparatus
CN104396018A (zh) * 2012-07-05 2015-03-04 索尼公司 固态图像拾取装置及其制造方法以及电子设备
WO2014007132A1 (ja) * 2012-07-05 2014-01-09 ソニー株式会社 固体撮像装置およびその製造方法、並びに電子機器
US9318534B2 (en) 2012-07-05 2016-04-19 Sony Corporation Solid-state image pickup device and manufacturing method thereof, and electronic apparatus
US9634065B2 (en) 2012-07-05 2017-04-25 Sony Corporation Solid-state image pickup device and manufacturing method thereof, and electronic apparatus
US10608051B2 (en) 2012-07-05 2020-03-31 Sony Semiconductor Solutions Corporation Solid-state image pickup device and manufacturing method thereof, and electronic apparatus
JP2014067948A (ja) * 2012-09-27 2014-04-17 Fujifilm Corp 固体撮像素子および撮像装置
WO2014192274A1 (ja) * 2013-05-27 2014-12-04 富士フイルム株式会社 有機光電変換素子および撮像素子
JP2014229854A (ja) * 2013-05-27 2014-12-08 富士フイルム株式会社 有機光電変換素子および撮像素子
JP2015056554A (ja) * 2013-09-12 2015-03-23 ソニー株式会社 固体撮像素子および製造方法、並びに電子機器
US9666643B2 (en) 2013-09-12 2017-05-30 Sony Semiconductor Solutions Corporation Solid state image sensor, production method thereof and electronic device
US12035549B2 (en) 2013-09-12 2024-07-09 Sony Semiconductor Solutions Corporation Solid state image sensor, production method thereof and electronic device
US11387278B2 (en) 2016-12-23 2022-07-12 Samsung Electronics Co., Ltd. Electronic devices and methods of manufacturing the same
US10734421B2 (en) 2018-02-08 2020-08-04 Panasonic Intellectual Property Management Co., Ltd. Imaging device and camera system, and driving method of imaging device
US12021109B2 (en) 2018-02-08 2024-06-25 Panasonic Intellectual Property Management Co., Ltd. Imaging device and camera system, and driving method of imaging device
US10957725B2 (en) 2018-02-08 2021-03-23 Panasonic Intellectual Property Management Co., Ltd. Imaging device and camera system, and driving method of imaging device
US12364034B2 (en) 2018-02-08 2025-07-15 Panasonic Intellectual Property Management Co., Ltd. Imaging device and camera system including photoelectric conversion layer between two electrodes, and driving method of imaging device
US11670653B2 (en) 2018-02-08 2023-06-06 Panasonic Intellectual Property Management Co., Ltd. Imaging device and camera system, and driving method of imaging device
US11031568B2 (en) 2018-02-26 2021-06-08 Panasonic Intellectual Property Management Co., Ltd. Photoelectric conversion element including first electrode, second electrodes, photoelectric conversion film, and conductive layer and method for manufacturing the same
US11711932B2 (en) 2018-02-26 2023-07-25 Panasonic Intellectual Property Management Co., Ltd. Photoelectric conversion element including first electrode, second electrodes, photoelectric conversion film, and conductive layer and method for manufacturing the same
US10893222B2 (en) 2018-03-29 2021-01-12 Panasonic Intellectual Property Management Co., Ltd. Imaging device and camera system, and driving method of imaging device
US11991462B2 (en) 2018-03-29 2024-05-21 Panasonic Intellectual Property Management Co., Ltd. Imaging device and camera system, and driving method of imaging device
US11323642B2 (en) 2018-03-29 2022-05-03 Panasonic Intellectual Property Management Co., Ltd. Imaging device and camera system, and driving method of imaging device
US11825223B2 (en) 2019-08-01 2023-11-21 Panasonic Intellectual Property Management Co., Ltd. Imaging device and driving method thereof
US11696051B2 (en) 2019-08-01 2023-07-04 Panasonic Intellectual Property Management Co., Ltd. Imaging device
US12302015B2 (en) 2019-08-01 2025-05-13 Panasonic Intellectual Property Management Co., Ltd. Imaging device and driving method thereof

Also Published As

Publication number Publication date
US20110241151A1 (en) 2011-10-06

Similar Documents

Publication Publication Date Title
JP2011228648A (ja) 撮像素子
JP4802286B2 (ja) 光電変換素子及び撮像素子
JP5087304B2 (ja) 固体撮像素子の製造方法
JP5819799B2 (ja) 光電変換素子及び撮像素子
JP5288640B2 (ja) 撮像素子及びその製造方法
JP5677890B2 (ja) 光電変換素子、光電変換素子の製造方法、及び撮像素子
US9258463B2 (en) Photoelectric conversion element and imaging device
JP6025243B2 (ja) 光電変換素子及びそれを用いた撮像素子
US8927321B2 (en) Method for producing solid-state imaging device
JP6128593B2 (ja) 有機光電変換素子および撮像素子
JP5694840B2 (ja) 有機撮像素子および有機撮像素子の製造方法
JP5683245B2 (ja) 撮像素子及び撮像素子の製造方法
JP2010258438A (ja) 光電変換素子及び撮像素子
JP5520647B2 (ja) 有機光電変換素子の製造方法
JP5800682B2 (ja) 光電変換素子の製造方法、および撮像素子の製造方法
JP5525894B2 (ja) 固体撮像素子の製造方法
JP5651507B2 (ja) 有機光電変換素子の製造方法、有機光電変換素子、撮像素子、撮像装置
JP5876265B2 (ja) 有機撮像素子
JP2013093353A (ja) 有機撮像素子

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20111216

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20121005

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130617

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140305

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140311

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140425

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20141125