JP2011226621A - Insulated tube and superconductive cable - Google Patents
Insulated tube and superconductive cable Download PDFInfo
- Publication number
- JP2011226621A JP2011226621A JP2010099275A JP2010099275A JP2011226621A JP 2011226621 A JP2011226621 A JP 2011226621A JP 2010099275 A JP2010099275 A JP 2010099275A JP 2010099275 A JP2010099275 A JP 2010099275A JP 2011226621 A JP2011226621 A JP 2011226621A
- Authority
- JP
- Japan
- Prior art keywords
- spacer
- tube
- heat insulating
- heat
- pipe
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 125000006850 spacer group Chemical group 0.000 claims abstract description 126
- 239000011810 insulating material Substances 0.000 claims abstract description 28
- 238000009413 insulation Methods 0.000 claims description 29
- 239000004020 conductor Substances 0.000 claims description 10
- 230000001154 acute effect Effects 0.000 claims description 3
- 230000005855 radiation Effects 0.000 abstract description 6
- 239000010410 layer Substances 0.000 description 25
- 239000000470 constituent Substances 0.000 description 11
- 239000012530 fluid Substances 0.000 description 10
- 239000003507 refrigerant Substances 0.000 description 10
- 239000000463 material Substances 0.000 description 8
- 230000000052 comparative effect Effects 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 230000035515 penetration Effects 0.000 description 4
- 238000013459 approach Methods 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 3
- 239000002655 kraft paper Substances 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 239000011241 protective layer Substances 0.000 description 3
- 239000002887 superconductor Substances 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 238000005452 bending Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 2
- 239000004810 polytetrafluoroethylene Substances 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 238000004804 winding Methods 0.000 description 2
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- 102100040287 GTP cyclohydrolase 1 feedback regulatory protein Human genes 0.000 description 1
- 101710185324 GTP cyclohydrolase 1 feedback regulatory protein Proteins 0.000 description 1
- 229910052688 Gadolinium Inorganic materials 0.000 description 1
- 229910052689 Holmium Inorganic materials 0.000 description 1
- 229910052779 Neodymium Inorganic materials 0.000 description 1
- -1 Polytetrafluoroethylene Polymers 0.000 description 1
- 229910052772 Samarium Inorganic materials 0.000 description 1
- 239000002826 coolant Substances 0.000 description 1
- 238000010292 electrical insulation Methods 0.000 description 1
- 239000010408 film Substances 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 239000012774 insulation material Substances 0.000 description 1
- 230000009545 invasion Effects 0.000 description 1
- 239000002648 laminated material Substances 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 239000003949 liquefied natural gas Substances 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 239000000123 paper Substances 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 229920006122 polyamide resin Polymers 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 229920002994 synthetic fiber Polymers 0.000 description 1
- 239000012209 synthetic fiber Substances 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E40/00—Technologies for an efficient electrical power generation, transmission or distribution
- Y02E40/60—Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment
Landscapes
- Thermal Insulation (AREA)
- Rigid Pipes And Flexible Pipes (AREA)
- Containers, Films, And Cooling For Superconductive Devices (AREA)
- Superconductors And Manufacturing Methods Therefor (AREA)
Abstract
【課題】断熱性能に優れる断熱管、及びこの断熱管を備える超電導ケーブルを提供する。
【解決手段】断熱管1は、内管21と外管22との間に断熱材4と線状体のスペーサ3とが内蔵され、このスペーサ3の横断面形状は、複数の辺32で囲まれる略多角形で、隣り合う辺32同士が接合されて外側に突出する複数の頂点31を有している。そして、隣り合う上記頂点31同士をつなぐ全ての辺32は、当該頂点31同士を結ぶ仮想直線33よりも内側に位置する。スペーサ3と断熱管1の他の構成部材との接触面積を低減することで、内管21の内側への熱侵入量又は内管21の内側からの熱放射量の増加を抑制することができ、断熱管1の断熱性能を向上することができる。
【選択図】図1A heat insulating tube having excellent heat insulating performance and a superconducting cable including the heat insulating tube are provided.
A heat insulating tube 1 includes a heat insulating material 4 and a linear spacer 3 between an inner tube 21 and an outer tube 22, and the cross-sectional shape of the spacer 3 is surrounded by a plurality of sides 32. It has a plurality of vertices 31 that are adjacent to each other and protrude outward. All the sides 32 connecting the adjacent vertices 31 are located inside a virtual straight line 33 connecting the vertices 31 to each other. By reducing the contact area between the spacer 3 and the other components of the heat insulating tube 1, it is possible to suppress an increase in the amount of heat entering the inner tube 21 or the amount of heat radiation from the inner tube 21. The heat insulating performance of the heat insulating tube 1 can be improved.
[Selection] Figure 1
Description
本発明は、断熱管及びこの断熱管を備える超電導ケーブルに関するものである。特に、断熱性能に優れる断熱管に関するものである。 The present invention relates to a heat insulating tube and a superconducting cable including the heat insulating tube. In particular, the present invention relates to a heat insulating tube having excellent heat insulating performance.
断熱管の代表的な構成として、内管と外管とからなる二重構造管で、その内管と外管との間に断熱材を内蔵し、両管の間を真空引きしたものが挙げられる。更に、両管の間にスペーサを内蔵し、内管と外管との間隔を保持している。具体的には、内管の外周に積層断熱材を配置し、その上にスペーサを設けて内管と外管との間隔を保持した構成が挙げられる。 A typical structure of a heat insulating tube is a double-structured tube consisting of an inner tube and an outer tube, with a built-in heat insulating material between the inner tube and the outer tube, and evacuating the two tubes. It is done. Further, a spacer is built in between both the tubes, and the distance between the inner tube and the outer tube is maintained. Specifically, the structure which arrange | positioned the laminated heat insulating material in the outer periphery of an inner pipe, provided the spacer on it, and hold | maintained the space | interval of an inner pipe and an outer pipe | tube is mentioned.
スペーサの形態として、複数の円筒体を所定間隔で平行に並べて帯状体で一体化したものが特許文献1に開示されている。また、別のスペーサの形態として、紐状のスペーサが特許文献2に開示されている。この例では、スペーサを断熱材の長手方向に沿って配置し、かつ周方向に複数設けており、このスペーサを位置決めするために、断熱材にスペーサの断面形状に応じた溝を形成している。
As a form of the spacer,
しかし、断熱管の屈曲や自重により内外管が非同心状に偏在した場合、内管と外管との間隔を保持しているスペーサの形状が変形することがある。特に、内管が外管側に偏って位置することで、内管と外管との間隔が狭くなり、スペーサが二重構造管の押圧によって変形することがある。 However, when the inner and outer pipes are unevenly distributed due to the bending or self-weight of the heat insulating pipe, the shape of the spacer that keeps the distance between the inner pipe and the outer pipe may be deformed. In particular, the inner tube is biased toward the outer tube so that the distance between the inner tube and the outer tube is narrowed, and the spacer may be deformed by pressing the double structure tube.
特許文献1のスペーサの形態では、スペーサの円筒体の横断面形状が円状なので、通常、スペーサと外管、及びスペーサと断熱材の接触箇所では、断熱管の長手方向に沿って線接触している。しかし、スペーサが二重構造管に押圧されると、その押圧箇所が平坦な広い面積になり易く、スペーサと外管、及びスペーサと断熱材の接触箇所では、断熱管の長手方向に沿って幅広な面接触となる。各接触箇所において、両者の接触面積が広いと、内管の内側への熱侵入量又は内管の内側からの熱放射量が増加する。
In the form of the spacer of
一方、特許文献2のスペーサの形態では、スペーサと外管の接触面積をできるだけ小さくするように、スペーサの横断面形状は、菱形やしずく形など角を設け、その角で外管と接触するようにしている。しかし、この場合、スペーサの角で外管と接触するようにスペーサを設置する必要があり、スペーサが二重構造管に押圧されて、スペーサの長手方向の中心軸に対してその所定の設置位置から少しでも回転してずれてしまうと、スペーサと外管の接触箇所では、その長手方向に沿って幅広な面接触となる。また、特許文献2では、スペーサの位置決めのために、断熱材にスペーサの断面形状に応じた溝を形成しているが、スペーサと断熱材の接触面積の低減化については考慮していない。
On the other hand, in the form of the spacer of
本発明は、上記の事情に鑑みてなされたもので、その目的の一つは、断熱性能に優れる断熱管を提供することにある。 This invention is made | formed in view of said situation, and one of the objectives is to provide the heat insulation pipe | tube excellent in heat insulation performance.
また、本発明の別の目的は、上記断熱管を備える超電導ケーブルを提供することにある。 Another object of the present invention is to provide a superconducting cable including the above-described heat insulating tube.
本発明は、スペーサの断面形状に工夫を施し、スペーサと他の構成部材(内外管や断熱材等)との接触面積を低減することで上記目的を達成する。 The present invention achieves the above-mentioned object by devising the cross-sectional shape of the spacer and reducing the contact area between the spacer and other components (inner and outer tubes, heat insulating materials, etc.).
本発明の断熱管は、内管と外管との間に断熱材と線状体のスペーサとが内蔵され、このスペーサの横断面形状は、複数の辺で囲まれる略多角形で、隣り合う辺同士が接合されて外側に突出する複数の頂点を有している。そして、隣り合う上記頂点同士をつなぐ全ての辺は、当該頂点同士を結ぶ仮想直線よりも内側に位置する。 In the heat insulating tube of the present invention, a heat insulating material and a linear spacer are incorporated between the inner tube and the outer tube, and the cross-sectional shape of this spacer is a substantially polygon surrounded by a plurality of sides and is adjacent to each other. The sides are joined to each other and have a plurality of vertices protruding outward. And all the sides which connect the said adjacent vertex are located inside the virtual straight line which connects the said vertex.
上記構成によれば、スペーサと断熱管の他の構成部材との接触箇所を、スペーサの頂点とすることで、両者の接触を断熱管の長手方向に沿って実質的に線接触とすることができる。そして、スペーサが二重構造管に押圧されて、その押圧箇所が平坦な面接触になったとしても、本発明の断熱管に備えるスペーサは、隣り合う頂点同士をつなぐ辺がその頂点同士を結ぶ仮想直線よりも内側に位置するので、二重構造管の押圧による接触面積の増加を出来るだけ小さくすることができる。また、スペーサが、その長手方向の中心軸に対して回転してずれても、スペーサと上記他の構成部材とが、頂点以外で接触するのを防ぐことができる。つまり、頂点同士をつなぐ面が上記他の構成部材と幅広な面接触することを防げる。よって、本発明の断熱管は、スペーサと上記他の構成部材との接触面積の増加を抑制することができるので、内管の内側への熱侵入量又は内管の内側からの熱放射量の増加を抑制することができ、断熱管の断熱性能を向上することができる。 According to the said structure, the contact location of a spacer and the other structural member of a heat insulation pipe | tube is made into the vertex of a spacer, and both contact can be made into a line contact substantially along the longitudinal direction of a heat insulation pipe | tube. it can. And even if the spacer is pressed by the double-structured tube and the pressed part becomes flat surface contact, the spacer provided in the heat insulating tube of the present invention connects the vertices with the side connecting adjacent vertices. Since it is located inside the virtual straight line, the increase in the contact area due to the pressing of the double structure tube can be minimized. Further, even when the spacer is rotated and displaced with respect to the central axis in the longitudinal direction, it is possible to prevent the spacer and the other constituent members from coming into contact with each other except at the apex. That is, the surface connecting the vertices can be prevented from making wide surface contact with the other constituent members. Therefore, since the heat insulation pipe | tube of this invention can suppress the increase in the contact area of a spacer and said other structural member, the amount of heat penetration | invasion to the inner side of an inner pipe or the amount of thermal radiation from the inner side of an inner pipe | tube is reduced. An increase can be suppressed and the heat insulation performance of a heat insulation pipe | tube can be improved.
本発明の一形態として、上記頂点の個数が3〜5個である形態が挙げられる。 As one form of this invention, the form whose number of the said vertex is 3-5 is mentioned.
内外管の間におけるスペーサの配置方向(回転方向)に関わらず、スペーサと内外管又は断熱材との接触をスペーサの頂点で行うために、頂点の個数は3個以上とする。一方、頂点の個数は少ない程、スペーサと断熱管の他の構成部材との接触箇所を少なくできるので、内管の内側への熱侵入量又は内管の内側からの熱放射量の増加を抑制することができる。他方、頂点の個数が多くなると、スペーサの横断面形状が円状に近づくことになり、スペーサが二重構造管に押圧されると、スペーサと上記他の構成部材との接触は、断熱管の長手方向に沿って幅広な面接触となり易くなる。よって、頂点の個数は5個以下であることが好ましい。 Regardless of the arrangement direction (rotation direction) of the spacer between the inner and outer tubes, the number of apexes is three or more in order to make contact between the spacer and the inner and outer tubes or the heat insulating material at the apex of the spacer. On the other hand, the smaller the number of vertices, the smaller the number of contact points between the spacer and other components of the heat insulation pipe, so the amount of heat penetration into the inner pipe or the amount of heat radiation from the inside of the inner pipe is suppressed. can do. On the other hand, when the number of vertices increases, the cross-sectional shape of the spacer approaches a circular shape, and when the spacer is pressed against the double-structured tube, the contact between the spacer and the other constituent member is as follows. It becomes easy to make wide surface contact along the longitudinal direction. Therefore, the number of vertices is preferably 5 or less.
本発明の一形態として、上記頂点における内角が鋭角である形態が挙げられる。 As one form of this invention, the form whose interior angle in the said vertex is an acute angle is mentioned.
頂点における内角は大きくなると、スペーサの横断面形状が円状に近づくことになり、スペーサが二重構造管に押圧されると、スペーサと断熱管の他の構成部材との接触は、断熱管の長手方向に沿って幅広な面接触となり易くなる。よって、頂点における内角が鋭角であることで、スペーサが二重構造管に押圧されても、その押圧による接触面積の増加を出来るだけ小さくすることができる。頂点における内角は小さすぎると、スペーサが内外管の間で押圧された際、頂点近傍で屈曲して上記他の構成部材との接触面積が増加する上、内管と外管との間隔を保持することが難しくなるので、この内角は20°〜80°であることが好ましい。更に好ましくは、30°〜40°である。 When the inner angle at the apex increases, the cross-sectional shape of the spacer approaches a circle, and when the spacer is pressed against the double-structured tube, the contact between the spacer and the other components of the heat insulating tube It becomes easy to make wide surface contact along the longitudinal direction. Therefore, since the inner angle at the apex is an acute angle, even if the spacer is pressed against the double-structured tube, the increase in the contact area due to the pressing can be minimized. If the inner angle at the apex is too small, when the spacer is pressed between the inner and outer tubes, it bends in the vicinity of the apex, increasing the contact area with the other components, and maintaining the distance between the inner tube and the outer tube This inner angle is preferably 20 ° to 80 °. More preferably, it is 30 ° to 40 °.
上記内角の定義として、頂点を挟んだ二辺が直線か曲線かによって以下とする。
(1)二辺が直線である場合、頂点における内角はその両辺のなす角度とする。
(2)二辺が曲線である場合、頂点における内角は各曲線の次に述べる接線同士のなす角度とする。曲線に対する接線のうち、その接点における法線が、スペーサの重心と頂点とを結ぶ線分の中点を通る接線である。
(3)一方が直線、もう一方が曲線の場合、頂点における内角は直線と、曲線の上記接線のなす角度とする。
The internal angle is defined as follows depending on whether the two sides sandwiching the vertex are straight or curved.
(1) When two sides are straight lines, the inner angle at the apex is the angle between the two sides.
(2) If the two sides are curved, the interior angle at the vertex is the angle formed by the tangents described next to each curve. Of the tangent lines to the curve, the normal line at the contact point is the tangent line passing through the midpoint of the line segment connecting the center of gravity and the apex of the spacer.
(3) When one is a straight line and the other is a curved line, the interior angle at the vertex is the angle formed by the straight line and the tangent line of the curved line.
本発明の一形態として、上記横断面形状は、長手方向の中心軸に対して回転対称である形態が挙げられる。 As one form of this invention, the said cross-sectional shape has a form which is rotationally symmetric with respect to the central axis of a longitudinal direction.
スペーサの横断面形状が回転対称であると、スペーサの回転方向を規定して配置する必要がなく、スペーサの配置が行い易い。 When the cross-sectional shape of the spacer is rotationally symmetric, it is not necessary to define the arrangement direction of the spacer and the arrangement of the spacer is easy.
上記本発明の断熱管は、超電導ケーブルの構成部材に好適に利用することができる。即ち、本発明の超電導ケーブルとして、上記本発明の断熱管と、超電導導体を有し、上記断熱管の内部に収納されるケーブルコアとを備えるものが挙げられる。 The heat insulating tube of the present invention can be suitably used as a constituent member of a superconducting cable. That is, as the superconducting cable of the present invention, a cable provided with the heat insulating tube of the present invention and a cable core having a superconducting conductor and housed inside the heat insulating tube can be mentioned.
上記本発明の断熱管を超電導ケーブルに利用すると、本発明の断熱管は高い断熱性能を有することができるので、内管の内側に流す冷媒の温度維持に必要なエネルギーの省力化が期待できる。 When the heat insulating tube of the present invention is used for a superconducting cable, the heat insulating tube of the present invention can have high heat insulating performance, and therefore, energy saving required for maintaining the temperature of the refrigerant flowing inside the inner tube can be expected.
本発明の断熱管は、スペーサの断面形状に工夫を施し、スペーサと断熱管の他の構成部材との接触面積を低減することで、内管の内側への熱侵入量又は内管の内側からの熱放射量の増加を抑制することができ、断熱管の断熱性能を向上することができる。 The heat insulation pipe of the present invention is devised in the cross-sectional shape of the spacer, and by reducing the contact area between the spacer and other components of the heat insulation pipe, the amount of heat intrusion into the inner pipe or from the inner side of the inner pipe An increase in the amount of heat radiation can be suppressed, and the heat insulation performance of the heat insulation tube can be improved.
また、本発明の断熱管を備える超電導ケーブルは、断熱管の断熱性能が向上され、冷媒の温度維持に必要なエネルギーの省力化が期待できる。 Moreover, the superconducting cable provided with the heat insulation pipe | tube of this invention can anticipate the labor saving of the energy required for the heat insulation performance of a heat insulation pipe | tube to be improved, and the temperature maintenance of a refrigerant | coolant.
以下、本発明についての実施形態を図面に基づいて説明する。図面において同一符号は同一部材を示す。 Embodiments of the present invention will be described below with reference to the drawings. In the drawings, the same reference numerals denote the same members.
<実施形態1>
本発明の断熱管1について、図1に基づいて説明する。この断熱管1は、内管21と外管22とからなる二重構造管2と、内管21の外周に巻回配置させた断熱材4と、内管21と外管22との間隔を保持するためのスペーサ3と、その両管21、22との間に形成される真空層5とを備える。以下、断熱管1の各構成をより詳細に説明する。
<
The
[断熱管]
(二重構造管)
二重構造管2は、内管21と外管22とからなり、屈曲しやすいように長手方向に蛇腹又はらせん形状をしたステンレス製のコルゲート管である。内管21内には、通常流体が流れる。この流体の温度は、流体の種類や使用用途によって異なり、極低温から高温まで幅広い温度が用いられる。流体は、例えば、液体窒素、液体酸素、液化天然ガス、蒸気、湯等が挙げられる。
[Insulated pipe]
(Double structure pipe)
The double-
二重構造管2の材質は、ステンレス以外にも、可撓性のあるアルミニウム等の金属が利用できる。
As the material of the
二重構造管2の形状は、コルゲート管以外にも、屈曲の必要がない場合や断熱管の使用距離が短い場合、直線区間用に表面に凹凸がないストレート管が利用できる。
In addition to the corrugated pipe, the double-
二重構造管2を構成する内外管21、22の各々の厚さは、内管21の内側に流体が流れることで二重構造管2がその周方向に膨張しようとする圧力と、二重構造管2を屈曲することでその長手方向にかかる張力に耐えることができる厚さとする。
The thickness of each of the inner and
(断熱材)
内管21の外周でスペーサ3の内側には、断熱性能をより高めるために断熱材4を巻回配置する。断熱材4を配置することで、内管21内の流体温度が断熱管1の外気温よりも低い場合は外部からの輻射熱の侵入を防ぎ、流体温度が断熱管1の外気温よりも高い場合は流体からの輻射熱の放散を防ぐことができる。断熱材4として、帯状の樹脂フィルムの一面又は両面にアルミニウムを蒸着した帯状材と合成繊維からなるメッシュ構造材とを積層した積層材、代表的にはスーパーインシュレーション(商品名)が挙げられる。この断熱材4は、内管21の外側を全周にわたって巻回することで、内管21の内側への輻射熱の侵入又は内管21の内側からの輻射熱の放散を防ぐ。断熱材4の配置する位置は、内管21と外管22との間であればどこでもよい。内管21の外周に断熱材4を配置して、その上に後述するスペーサ3を配置してもよいし、逆に内管21の外周にスペーサ3を配置して、その上に断熱材4を配置してもよい。断熱材4の設置方法として、らせん状に巻回する以外にも、内管21の外周面の全面を覆うように縦添えしてもよい。
(Insulation material)
A
(スペーサ)
上記内管21と外管22との間隔を保持するためにスペーサ3を設置する。このスペーサ3は、その横断面形状が略多角形の線状体である。この横断面形状は、図1(C)に示すように、複数の辺32で囲まれる略多角形で、隣り合う辺32同士が接合されて外側に突出する複数の頂点31を有している。そして、隣り合う頂点31同士をつなぐ全ての辺32は、当該頂点31同士を結ぶ仮想直線33よりも内側に位置する。
(Spacer)
In order to maintain the distance between the
図1(C)に示すスペーサ3の横断面形状は、3個の頂点31を有し、隣り合う頂点31同士をつなぐ辺32は、上記仮想直線33よりも内側に凹んだ曲線である。この曲線(辺32)は、三辺全て同じ曲率半径3.0mmで同じ長さ2.69mmの円弧状の曲線である。仮想直線33と辺32との最大距離は0.30mmである。そして、この頂点31における内角θは、36°である。頂点31を挟んだ二辺32は曲線であるので、上記内角θは各曲線の次に述べる接線同士のなす角度としている。曲線に対する接線のうち、その接点における法線が、スペーサ3の重心と頂点31とを結ぶ線分の中点を通る接線である。
The cross-sectional shape of the
この3個の頂点31において、スペーサ3と外管22、スペーサ3と断熱材4との接触を行い、内管21と外管22との間隔を保持している。頂点31の個数が3個であることで、スペーサ3と断熱管1の他の構成部材との接触箇所を極小化でき、スペーサ3が二重構造管2に押圧されても、両管21、22の間隔を保持することができる。そして、横断面形状が簡易なので、スペーサ3の加工が行い易く、構成材料の削減もできる。また、辺32が全て同じ曲率半径で同じ長さなので、スペーサ3の回転方向を規定して配置する必要がなく、スペーサ3の配置が行い易い。
At the three
上記頂点31の個数は、内外管21、22の間におけるスペーサ3の配置方向(回転方向)に関わらず、スペーサ3と外管22、スペーサ3と断熱材4との接触をスペーサ3の頂点31で行うために、3個以上とする。一方、頂点31の個数は少ない程、スペーサ3と上記他の構成部材との接触箇所を少なくできるので好ましい。他方、頂点31の個数が多くなると、スペーサ3の横断面形状が円状に近づくことになり、スペーサ3が二重構造管2に押圧されると、スペーサ3と上記他の構成部材との接触は、断熱管1の長手方向に沿って幅広な面接触となり易くなる。よって、頂点31の個数は5個以下であることが好ましい。
The number of the
隣り合う上記頂点31同士をつなぐ全ての辺32は、当該頂点31同士を結ぶ仮想直線33よりも内側にあれば、曲線でも直線でも構わない。また、複数の直線や曲線を組み合わせて頂点31同士をつないだ辺としても構わない。例えば、隣り合う頂点31同士をつなぐ辺32が3つの直線からなる〔型の3辺からなってもよい。スペーサ3が二重構造管2に押圧されることによって、スペーサ3が変形したり、その長手方向の中心軸に対して回転したとしても、スペーサ3の頂点31近傍以外の箇所において、スペーサ3と上記他の構成部材とが接触しないだけ十分に仮想直線33よりも内側に凹む形状が好ましい。仮想直線33と辺32との最大距離は、好ましくは、0.20mm〜0.40mmである。
All the
頂点31における内角θは、小さすぎると、スペーサ3が内外管21、22の間で押圧された際、頂点31近傍で屈曲して上記他の構成部材との接触面積が増加する上、内管21と外管22との間隔を保持することが難しくなるので、この内角θは好ましくは20°〜80°、更に好ましくは30°〜40°である。
If the inner angle θ at the apex 31 is too small, when the
スペーサ3の変形例として、図2に示すような横断面形状のものが挙げられる。例えば、図2(A)に示すスペーサ3は略四角形状の横断面形状を有する。頂点31が4個あり、隣り合う頂点31同士をつなぐ辺32は、全て円弧状の曲線であり、かつ当該頂点31同士を結ぶ仮想直線33よりも内側に位置している。また、図2(B)に示すスペーサ3は星形の横断面形状を有する。頂点31が5個あり、隣り合う頂点31同士をつなぐ辺32は全て直線でV型に配される2辺からなり、これら2辺は当該頂点31同士を結ぶ仮想直線33よりも内側に位置している。
As a modification of the
これらの異なる横断面形状のスペーサ3は、押し出し加工すれば、ダイス孔形状を変えるだけで任意のものが作製できる。また、図1、図2に示すスペーサ3の横断面形状はいずれも、スペーサ3の長手方向の中心軸に対して回転対称であることで、スペーサ3の回転方向を規定して配置する必要がなく、スペーサ3の配置が行い易い。
If the
スペーサ3の材質は、低熱伝導性のものがよく、ポリアミド系樹脂、フッ素樹脂、ガラス繊維、GFRP等が利用できる。
The material of the
上記スペーサ3は、内管21と外管22との間隔を保持できればよく、その設置方法は、例えば、断熱管1の長手方向に沿って配置し、かつ周方向に複数設けてもよいし、1本もしくは複数本のスペーサ3をらせん状に巻回してもよい。
The
(真空層)
上記スペーサ3で保たれた内管21と外管22との間を真空引きし、真空層5を形成する。この真空層5の真空度は、高ければ高い程断熱性能がより高くなる。なお、図1に示す二重構造管2は、左端部を開放させた状態で図示しているが、実際には、真空引き後密閉される。
(Vacuum layer)
A
[作用効果]
本発明の断熱管1によれば、スペーサ3と内外管21、22又は断熱材4との接触箇所を、スペーサ3の頂点31とすることで、両者の接触箇所を断熱管1の長手方向に沿って実質的に線接触とすることができる。そして、スペーサ3が二重構造管2に押圧されて、その押圧箇所が平坦な面接触になったとしても、本発明の断熱管1は、隣り合う頂点31同士をつなぐ辺32がその頂点31同士を結ぶ仮想直線33よりも内側に位置するので、その押圧による接触面積の増加を出来るだけ小さくすることができる。また、スペーサ3が、その長手方向の中心軸に対して回転してずれても、スペーサ3と断熱管1の他の構成部材とが、頂点31以外で接触するのを防ぐことができる。つまり、頂点31同士をつなぐ辺32で上記他の構成部材と幅広に面接触することを防げる。よって、スペーサ3と上記他の構成部材との接触面積の増加を抑制することができるので、内管21の内側への熱侵入量又は内管21の内側からの熱放射量の増加を抑制することができ、断熱管1の断熱性能を向上することができる。
[Function and effect]
According to the
<実施形態2>
次に、本発明断熱管1を備える超電導ケーブル10の概略構成を図3に基づいて説明する。この超電導ケーブル10は、三心のケーブルコア11を図1の断熱管1の内部に収納した構成である。以下、超電導ケーブル10の各構成を詳細に説明する。
<
Next, a schematic configuration of the
[超電導ケーブル]
(ケーブルコア)
ケーブルコア11は、代表的には、中心から順にフォーマ12、超電導導体層13、電気絶縁層14、外部超電導層15、保護層16を備える。これらの各層のうち、超電導導体層13と外部超電導層15に超電導体が用いられる。
[Superconducting cable]
(Cable core)
The
フォーマ12は、金属線を撚り合わせた中実のものや、金属パイプを用いた中空のものが利用される。中空のフォーマ12を用いた場合、その内部を冷媒の流路にすることができる。超電導導体層13は、酸化物超電導体を備えるテープ状線材、例えば、Bi2223系超電導テープ線(Ag-Mnシース線)を単層又は多層に螺旋状に巻回した構成が挙げられる。その他、RE123系薄膜線材(RE:希土類元素、例えばY、Ho、Nd、Sm、Gd等)も超電導導体層13に利用できる。電気絶縁層14は、クラフト紙等の絶縁紙テープや、クラフト紙とプラスチックとを複合した半合成絶縁テープ、例えば、住友電気工業株式会社製PPLP(登録商標)といったテープ状の絶縁性材料を巻回した構成が挙げられる。外部超電導層15は、超電導導体層13と同じ超電導線材をらせん状に巻回した構成である。外部超電導層15は、例えば、交流送電の場合は磁気遮蔽層、直流送電の場合は帰路導体に利用される。保護層16は、クラフト紙等を巻回した構成が挙げられる。そして、外管22の上には、ポリ塩化ビニル等による防食層18が形成されている。
As the former 12, a solid one obtained by twisting metal wires or a hollow one using a metal pipe is used. When the hollow former 12 is used, the inside thereof can be used as a refrigerant flow path. The
(冷媒流路)
断熱管1の内部と各ケーブルコア11との間には、冷媒流路17が形成される。この冷媒流路17に、超電導体を冷却する冷媒(例えば、液体窒素)が流れる。
(Refrigerant flow path)
A
上記冷媒は、外部からの侵入熱等によって温度上昇し、超電導導体層13や外部超電導層15の超電導状態に影響を及ぼす。しかし、本発明断熱管1を用いることにより、スペーサと外管や断熱材等の他の構成部材との接触面積を低減することができ、内管の内側への外部からの熱侵入量の増加を抑制することができる。
The refrigerant rises in temperature due to intrusion heat or the like from the outside and affects the superconducting state of the
[作用効果]
本発明の断熱管1を備える超電導ケーブル10は、断熱管1の断熱性能が向上され、冷媒の温度維持に必要なエネルギーの省力化が期待できる。
[Function and effect]
The
<試算例>
外接円の直径が同じで、横断面形状が異なるスペーサを用いて、スペーサと外管との接触箇所での接触面積を演算した。具体的試算条件を以下に示す。
<Example of trial calculation>
The contact area at the contact portion between the spacer and the outer tube was calculated using spacers having the same circumscribed circle diameter and different cross-sectional shapes. Specific calculation conditions are shown below.
[試算例1]
二重構造管
材質:ステンレス
形状:コルゲート管
寸法:内管外径123mm、内径113mm
外管外径137mm、内径127mm
長さ1000mm
スペーサ
材質:PTFE(ポリテトラフルオロエチレン)
形状:横断面形状が略三角形状の線状体(図1(b),(c)参照)
頂点3点:R0.5mmで丸める
頂点同士をつなぐ辺:曲率半径3.0mmの曲線
頂点における内角:36°
断面積:1.44mm2
寸法:外接円直径3mm、長さ8000mm
配置:内管の外周にらせん状に巻回
[比較例]
スペーサの横断面形状が円状である点を除き、試算例1と同様の形態とする。このスペーサの横断面形状は直径が3mm、断面積7.0686mm2の円状である。
[Example 1]
Double structure tube Material: Stainless steel Shape: Corrugated tube Dimensions: Inner tube outer diameter 123mm, inner diameter 113mm
Outer tube outer diameter 137mm, inner diameter 127mm
1000mm length
Spacer Material: PTFE (Polytetrafluoroethylene)
Shape: Linear body with a substantially cross-sectional shape (see Fig. 1 (b) and (c))
3 vertices: round at R0.5mm
Edge connecting vertices: Curve with a curvature radius of 3.0mm
Interior angle at the apex: 36 °
Cross section: 1.44mm 2
Dimensions: circumscribed circle diameter 3mm, length 8000mm
Arrangement: spiral wound around the outer circumference of the inner pipe [Comparative example]
The configuration is the same as in the trial calculation example 1 except that the spacer has a circular cross-sectional shape. The spacer has a circular cross-sectional shape with a diameter of 3 mm and a cross-sectional area of 7.0686 mm 2 .
[結果]
スペーサが二重構造管の自重により押圧されたとき、スペーサと外管との接触箇所において、二重構造管の周方向の接触長さを計算すると、試算例1では0.5mm、比較例では3.4mmであった。また、そのときのスペーサの断面積を計算すると、試算例1では1.4445mm2、比較例では7.0875mm2であった。
[result]
When the spacer is pressed by the self-weight of the double structure pipe, the contact length in the circumferential direction of the double structure pipe is calculated at the contact point between the spacer and the outer pipe. mm. Further, when the cross-sectional area of the spacer at that time was calculated, it was 1.4445 mm 2 in the trial calculation example 1, and 7.0875 mm 2 in the comparative example.
試算例1は比較例に比べて上記接触長さが短いのは、本発明の断熱管は、隣り合う頂点同士をつなぐ辺がその頂点同士を結ぶ仮想直線よりも内側に位置するので、スペーサが二重構造管の自重によって押圧されても、その押圧箇所が幅広い平坦な面積にはなっていないからであると考えられる。 Trial calculation example 1 has a shorter contact length than the comparative example because the heat insulating tube of the present invention is located on the inner side of the imaginary straight line connecting the vertices, so that the spacer is It is considered that even if the double structure pipe is pressed by its own weight, the pressed portion does not have a wide flat area.
本発明の断熱管を用いた試算例1は比較例に比べて、スペーサと外管との周方向の接触長さが約1/7となるため、外部からの熱侵入量の増加を抑制することができる。また、試算例1は比較例に比べて、スペーサの断面積が約1/5となるため、スペーサの構成材料を削減でき、かつ伝熱による侵入熱の増加を抑制することが期待できる。 Trial calculation example 1 using the heat insulating tube of the present invention has a contact length in the circumferential direction of the spacer and the outer tube of about 1/7 compared to the comparative example, and thus suppresses an increase in the amount of heat penetration from the outside. be able to. Moreover, since the cross-sectional area of the spacer is about 1/5 as compared with the comparative example, the trial calculation example 1 can be expected to reduce the constituent material of the spacer and suppress the increase of intrusion heat due to heat transfer.
上述した実施形態は、本発明の要旨を逸脱することなく、適宜変更することが可能であり、本発明の範囲は上述した構成に限定されるものではない。 The above-described embodiments can be appropriately changed without departing from the gist of the present invention, and the scope of the present invention is not limited to the above-described configuration.
本発明断熱管は、断熱管内に流通される流体の温度に幅広く対応できる流体輸送管等として利用することができる。本発明断熱管を備える超電導ケーブルは、送電線路の構成部材として好適に利用することができる。 The heat insulation pipe of the present invention can be used as a fluid transport pipe or the like that can cope with a wide range of temperatures of fluid flowing in the heat insulation pipe. A superconducting cable provided with the heat insulating tube of the present invention can be suitably used as a component of a power transmission line.
1 断熱管
2 二重構造管
21 内管 22 外管
3 スペーサ
31 頂点 32 辺 33 仮想線
4 断熱材
5 真空層
10 超電導ケーブル
11 ケーブルコア 12 フォーマ
13 超電導導体層 14 電気絶縁層 15 外部超電導層 16 保護層
17 冷媒流路 18 防食層
1 Insulated pipe
2 Double structure pipe
21
3 Spacer
31
4 Insulation
5 Vacuum layer
10 Superconducting cable
11
13
17
Claims (5)
前記スペーサの横断面形状は、複数の辺で囲まれる略多角形で、隣り合う辺同士が接合されて外側に突出する複数の頂点を有し、
隣り合う前記頂点同士をつなぐ全ての辺は、当該頂点同士を結ぶ仮想直線よりも内側に位置することを特徴とする断熱管。 A heat insulating pipe in which a heat insulating material and a linear spacer are incorporated between the inner pipe and the outer pipe,
The cross-sectional shape of the spacer is a substantially polygonal shape surrounded by a plurality of sides, and has a plurality of vertices that are adjacent to each other and that protrude outward.
All the sides which connect the said adjacent vertexes are located inside the virtual straight line which connects the said vertexes, The heat insulation pipe | tube characterized by the above-mentioned.
超電導導体を有し、前記断熱管の内部に収納されるケーブルコアとを備えることを特徴とする超電導ケーブル。 The heat insulation pipe according to any one of claims 1 to 4,
A superconducting cable comprising a cable core having a superconducting conductor and housed in the heat insulating tube.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010099275A JP5505865B2 (en) | 2010-04-22 | 2010-04-22 | Insulated tube and superconducting cable |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010099275A JP5505865B2 (en) | 2010-04-22 | 2010-04-22 | Insulated tube and superconducting cable |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2011226621A true JP2011226621A (en) | 2011-11-10 |
JP5505865B2 JP5505865B2 (en) | 2014-05-28 |
Family
ID=45042185
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010099275A Expired - Fee Related JP5505865B2 (en) | 2010-04-22 | 2010-04-22 | Insulated tube and superconducting cable |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5505865B2 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2539595A (en) * | 2015-09-30 | 2016-12-21 | Powertherm Contract Services Ltd | Insulation apparatus |
CN113393971A (en) * | 2021-06-24 | 2021-09-14 | 国网上海市电力公司 | High-vacuum multi-layer flexible heat-insulating pipe for high-temperature superconducting cable and manufacturing method thereof |
JP2021168243A (en) * | 2020-04-09 | 2021-10-21 | 日鉄エンジニアリング株式会社 | Heat-insulating multiple-pipe for superconductive power transmission, method for constructing heat-insulating multiple-pipe for superconductive power transmission, and method for constructing superconductive cable |
JP7098037B1 (en) | 2021-11-17 | 2022-07-08 | 日鉄エンジニアリング株式会社 | Insulated multiple pipes for superconducting power transmission, heat insulating multiple pipe laying equipment for superconducting power transmission, construction method of heat insulating multiple pipes for superconducting power transmission, and construction method of superconducting cables |
CN115325287A (en) * | 2022-09-13 | 2022-11-11 | 西南石油大学 | A method for analyzing the transmission characteristics of composite energy pipelines |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5239819A (en) * | 1975-09-19 | 1977-03-28 | Kabel Metallwerke Ghh | Low temperature electric cable or structure of pipe for conveying low temperature cooling liquid or gas |
JPS63257627A (en) * | 1987-04-16 | 1988-10-25 | Kubota Ltd | Manufacture of heat insulating double tube |
JPH09184594A (en) * | 1995-12-28 | 1997-07-15 | Sumitomo Electric Ind Ltd | Cryogenic insulation pipe |
JPH10288293A (en) * | 1997-04-11 | 1998-10-27 | Sumitomo Electric Ind Ltd | Insulated pipe |
JP2010065734A (en) * | 2008-09-09 | 2010-03-25 | Sekisui Chem Co Ltd | Heat insulator and thermal insulation tube |
-
2010
- 2010-04-22 JP JP2010099275A patent/JP5505865B2/en not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5239819A (en) * | 1975-09-19 | 1977-03-28 | Kabel Metallwerke Ghh | Low temperature electric cable or structure of pipe for conveying low temperature cooling liquid or gas |
JPS63257627A (en) * | 1987-04-16 | 1988-10-25 | Kubota Ltd | Manufacture of heat insulating double tube |
JPH09184594A (en) * | 1995-12-28 | 1997-07-15 | Sumitomo Electric Ind Ltd | Cryogenic insulation pipe |
JPH10288293A (en) * | 1997-04-11 | 1998-10-27 | Sumitomo Electric Ind Ltd | Insulated pipe |
JP2010065734A (en) * | 2008-09-09 | 2010-03-25 | Sekisui Chem Co Ltd | Heat insulator and thermal insulation tube |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2539595A (en) * | 2015-09-30 | 2016-12-21 | Powertherm Contract Services Ltd | Insulation apparatus |
GB2539595B (en) * | 2015-09-30 | 2018-06-27 | Powertherm Contract Services Ltd | Insulation apparatus forming a void between insulation material and a shell |
JP2021168243A (en) * | 2020-04-09 | 2021-10-21 | 日鉄エンジニアリング株式会社 | Heat-insulating multiple-pipe for superconductive power transmission, method for constructing heat-insulating multiple-pipe for superconductive power transmission, and method for constructing superconductive cable |
CN113393971A (en) * | 2021-06-24 | 2021-09-14 | 国网上海市电力公司 | High-vacuum multi-layer flexible heat-insulating pipe for high-temperature superconducting cable and manufacturing method thereof |
JP7098037B1 (en) | 2021-11-17 | 2022-07-08 | 日鉄エンジニアリング株式会社 | Insulated multiple pipes for superconducting power transmission, heat insulating multiple pipe laying equipment for superconducting power transmission, construction method of heat insulating multiple pipes for superconducting power transmission, and construction method of superconducting cables |
JP2023074344A (en) * | 2021-11-17 | 2023-05-29 | 日鉄エンジニアリング株式会社 | Heat insulation multiple pipe for super conductivity power transmission, heat insulation multiple pipe laying device for super conductivity power transmission, heat insulation multiple pipe construction method for super conductivity power transmission, and superconductive cable construction method |
CN115325287A (en) * | 2022-09-13 | 2022-11-11 | 西南石油大学 | A method for analyzing the transmission characteristics of composite energy pipelines |
Also Published As
Publication number | Publication date |
---|---|
JP5505865B2 (en) | 2014-05-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5505865B2 (en) | Insulated tube and superconducting cable | |
JP2007087925A (en) | Superconductive cable | |
KR102241808B1 (en) | Superconducting cable | |
US6343624B2 (en) | Superinsulation support system | |
KR101198503B1 (en) | Superconducting cable | |
CN101069247B (en) | superconducting cable | |
JP6356914B2 (en) | Superconducting cable | |
JP3622185B2 (en) | Cryogenic insulation tube and superconducting cable | |
JP6751826B1 (en) | Construction method of heat-insulated multiple pipes for superconducting power transmission, heat-insulated multiple pipes for superconducting power transmission, and construction method of superconducting cables | |
JP5505866B2 (en) | Insulated tube and superconducting cable | |
JP2008287896A (en) | Superconducting cable | |
US6883548B2 (en) | Spacer for a long substrate | |
JP2011220506A (en) | Heat insulating pipe and superconductive cable | |
JP2017062982A (en) | Superconductive cable heat insulation tube and superconductive cable | |
JP5557008B2 (en) | Vacuum insulation tube and superconducting cable | |
KR102608511B1 (en) | Vacuum Insulation Part Dividing Device And Superconducting Cable Having The Same | |
KR102340760B1 (en) | Decompression type cooling system for Superconducting cable | |
JP2001004076A (en) | Insulated pipe | |
JP3672650B2 (en) | Insulated tube and superconducting cable | |
JPH10288293A (en) | Insulated pipe | |
KR20160092467A (en) | Superconducting cable | |
JP5400512B2 (en) | Insulation pipe | |
JP4517879B2 (en) | Superconducting cable | |
GB2026648A (en) | Spacing Spiral for Coaxial Tube Systems | |
JP4615207B2 (en) | Heat insulation pipe for superconducting cable |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20130326 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20140213 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20140224 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5505865 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20140309 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |