[go: up one dir, main page]

JP2011223505A - Delay time measurement method - Google Patents

Delay time measurement method Download PDF

Info

Publication number
JP2011223505A
JP2011223505A JP2010093086A JP2010093086A JP2011223505A JP 2011223505 A JP2011223505 A JP 2011223505A JP 2010093086 A JP2010093086 A JP 2010093086A JP 2010093086 A JP2010093086 A JP 2010093086A JP 2011223505 A JP2011223505 A JP 2011223505A
Authority
JP
Japan
Prior art keywords
optical fiber
coaxial cable
signal
delay
lcx
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010093086A
Other languages
Japanese (ja)
Inventor
Mamoru Yamazaki
守 山崎
Haruyasu Senda
晴康 千田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2010093086A priority Critical patent/JP2011223505A/en
Publication of JP2011223505A publication Critical patent/JP2011223505A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Near-Field Transmission Systems (AREA)
  • Optical Communication System (AREA)

Abstract

PROBLEM TO BE SOLVED: To solve the problem that a communication system including a relay station 8 relaying communication between a mobile station and a base station 1 through a leakage coaxial cable (LCX) and an optical fiber, the communication system having a problem of a difference in delay time between communication via the optical fiber 9 and communication via the LCX 300-1, and a momentary break of communication between the mobile station and base station.SOLUTION: A base station 1 transmits a delay adjustment signal through the LCX 300-1 and optical fiber 9, and a relay station 8 receives the delay adjustment signal arriving through the LCX 300-1 and optical fiber 9, and generates a beat signal from the delay adjustment signal. A beat frequency f1 is known from the beat signal, so that the delay time difference is further calculated using modulation repetition cycles T and a modulation width β.

Description

この発明は、漏洩同軸ケーブル(LCX: Leakage CoaXial cable 以下、LCXと称す)および光ファイバを介して移動局と基地局の通信を中継する、列車無線システムに適用される移動体通信用の光中継システムにおいて実施される遅延時間の測定方法に関する。   The present invention relates to an optical repeater for mobile communication applied to a train radio system that relays communication between a mobile station and a base station via a leaky coaxial cable (LCX: Leakage CoaXial cable, hereinafter referred to as LCX) and an optical fiber. The present invention relates to a delay time measurement method implemented in a system.

LCX及び光ファイバ伝送路を介して移動局と基地局の通信を中継する従来の無線通信システムとしては、例えば特許文献1に開示されるものがある。このシステムでは、前段の中継局と接続するLCXの終端と後段の中継局に接続するLCXの送信端との切れ目(以下、LCX渡り区間と称す)にて基地局からの伝送経路長が異なる。これにより、光ファイバを介した通信とLCXを介した通信の間における遅延時間の相違を生じ、移動局と基地局の通信が瞬断する可能性がある。そこで、特許文献1の無線中継システムでは、基地局の遅延補正装置内に実装された光ファイバ長を調整することで、各LCX渡り区間における信号の位相を合わせている。光ファイバ長の調整量は、基地局から光ファイバ伝送路及び中継局を介してLCXの終端まで伝搬した信号と、基地局から光ファイバ伝送路及び前記中継局の後段の中継局を介してLCXの送信端まで伝搬した信号の相対遅延時間差を測定し、前記相対遅延時間差を光ファイバ長に換算することで算出している。   As a conventional wireless communication system that relays communication between a mobile station and a base station via an LCX and an optical fiber transmission line, there is one disclosed in Patent Document 1, for example. In this system, the transmission path length from the base station differs at the break (hereinafter referred to as the LCX transition section) between the LCX terminal connected to the preceding relay station and the LCX transmitting end connected to the succeeding relay station. This may cause a difference in delay time between communication via optical fiber and communication via LCX, and communication between the mobile station and the base station may be interrupted. Therefore, in the wireless relay system of Patent Document 1, the phase of the signal in each LCX crossing section is adjusted by adjusting the length of the optical fiber mounted in the delay correction device of the base station. The adjustment amount of the optical fiber length is determined by the signal propagated from the base station to the end of the LCX through the optical fiber transmission line and the relay station, and the LCX from the base station through the optical fiber transmission line and the relay station downstream of the relay station. The relative delay time difference of the signal propagated to the transmission end is measured, and the relative delay time difference is converted into the optical fiber length.

信号の相対遅延時間差を測定する方法の一例を説明する。まず基地局から「00 00 11 00 00 …」といった1シンボル中のデータが同値であるデータ系列のπ/4シフトQPSK(Quadrature Phase Shift Keying)変調信号を送信し、光ファイバ伝送路及び中継局並びにLCXを介した前記中継局の後段の中継局の信号入力端と、光ファイバ伝送路を介した前記後段の中継局の送信端に接続された受信機によって前記信号を受信する。次に前記受信機にオシロスコープを接続し、前記信号のRSSI(Received Signal Strength Indicator)波形を観測する。前記RSSI波形は、前記信号の「11」のデータ系列を受信したときに落ち込みが見られることを利用し、両経路から受信した前記信号それぞれのRSSI波形が落ち込む点にカーソル位置を設定することで、その到達時間差を測定する。なお、中継局からLCXの間のアプローチケーブルによる伝搬遅延は別途測定を行い、前記到達時間差に反映することで、LCX渡り区間までの相対遅延時間差を算出する。   An example of a method for measuring a relative delay time difference between signals will be described. First, a base station transmits a π / 4 shift QPSK (Quadrature Phase Shift Keying) modulation signal of a data sequence in which data in one symbol such as “00 00 11 00 00... The signal is received by a receiver connected to the signal input terminal of the relay station downstream of the relay station via LCX and the transmitter terminal of the relay station downstream of the relay station via an optical fiber transmission line. Next, an oscilloscope is connected to the receiver, and an RSSI (Received Signal Strength Indicator) waveform of the signal is observed. By using the fact that the RSSI waveform is depressed when the “11” data series of the signal is received, the cursor position is set at the point where the RSSI waveform of each of the signals received from both paths falls. , Measure the arrival time difference. Note that the propagation delay between the relay station and the LCX by the approach cable is separately measured and reflected in the arrival time difference to calculate the relative delay time difference to the LCX crossing section.

特開2004―236165号公報JP 2004-236165 A

上記のように信号の相対遅延時間差を測定する場合、測定対象がRSSIであることからオシロスコープを使用して観測を行っている。しかし、上記測定方法では測定器に表示される受信波形の測定点が明確でないため、測定時のカーソル位置の設定は測定者の感覚によるものとなる。よって測定者によって測定結果にばらつきが出るほか、システムが10Mbps以上のような高いデータレートであった場合に要求される測定精度を満足できない可能性があるといった課題があった。また、RSSIでの測定は無線回り込みの影響により、LCX渡り区間においてLCXから漏洩する無線電波で観測することは難しいため、中継局からLCXの間のアプローチケーブルによる伝搬遅延は別途測定を要するほか、測定誤差を拡大する要因となってしまうといった課題があった。この発明は、上記のような課題を解決するためになされたもので、相対遅延時間差の測定精度を向上させることを目的とする。   When measuring the relative delay time difference between signals as described above, observation is performed using an oscilloscope because the measurement target is RSSI. However, since the measurement point of the received waveform displayed on the measuring instrument is not clear in the above measurement method, the setting of the cursor position at the time of measurement depends on the sense of the measurer. Therefore, there are problems that the measurement results vary depending on the measurer and that the measurement accuracy required when the system has a high data rate of 10 Mbps or more may not be satisfied. In addition, because the measurement with RSSI is difficult to observe with radio waves leaking from LCX in the LCX transition section due to the influence of wireless wraparound, the propagation delay due to the approach cable from the relay station to LCX requires separate measurement, There has been a problem that the measurement error is increased. The present invention has been made to solve the above-described problems, and an object thereof is to improve the measurement accuracy of the relative delay time difference.

本発明に係る遅延時間測定方法は、漏洩同軸ケーブル(LCX: Leakage CoaXial cable)および光ファイバを介して移動局と基地局の通信を中継する中継局を備えた通信システムにおいて、漏洩同軸ケーブルと光ファイバによるデータ伝送時に発生する遅延時間を測定する遅延時間測定方法において、三角波でFM変調を施した、変調繰り返し周期Tおよび変調幅βが既知である信号を作成するとともに、信号を遅延調整用信号として漏洩同軸ケーブル及び光ファイバを介して送信する遅延調整用信号送信処理と、漏洩同軸ケーブル及び光ファイバを介して送信された遅延調整用信号を受信する受信処理と、漏洩同軸ケーブルより受信した遅延調整用信号と、光ファイバより受信した遅延調整用信号よりビート信号を生成する処理と、変調繰り返し周期T、変調幅β及びビート信号のビート周波数を用いて遅延時間を算出する遅延時間測定処理とを含むものである。   A delay time measurement method according to the present invention includes a leaky coaxial cable and an optical fiber in a communication system including a leaky coaxial cable (LCX) and a relay station that relays communication between a mobile station and a base station via an optical fiber. In a delay time measuring method for measuring a delay time generated during data transmission by a fiber, a signal having a modulation repetition period T and a modulation width β, which is FM-modulated with a triangular wave, is created, and the signal is used as a delay adjustment signal. As a delay adjustment signal transmission process transmitted via a leaky coaxial cable and an optical fiber, a reception process of receiving a delay adjustment signal transmitted via the leaky coaxial cable and an optical fiber, and a delay received from the leaky coaxial cable A process for generating a beat signal from the adjustment signal, a delay adjustment signal received from the optical fiber, and a modulation repetition period T And delay time measurement processing for calculating a delay time using the modulation width β and the beat frequency of the beat signal.

本発明に係る遅延時間測定方法は、漏洩同軸ケーブル(LCX: Leakage CoaXial cable)および光ファイバを介して移動局と基地局の通信を中継する中継局を備えた通信システムにおいて、漏洩同軸ケーブルと光ファイバによるデータ伝送時に発生する遅延時間を測定する遅延時間測定方法において、三角波でFM変調を施した、変調繰り返し周期Tおよび変調幅βが既知である信号を作成するとともに、基地局と中継局を接続する第一の漏洩同軸ケーブル及び光ファイバを介して信号を遅延調整用信号として送信する遅延調整用信号送信処理と、第一の漏洩同軸ケーブル及び光ファイバを介して送信された遅延調整用信号を受信する受信処理と、光ファイバを介して受信した遅延調整用信号を第二の漏洩同軸ケーブルに送信する送信処理と、第一の漏洩同軸ケーブルより受信した遅延調整用信号と、第二の漏洩同軸ケーブルより受信した遅延調整用信号よりビート信号を生成する処理と、変調繰り返し周期T、変調幅β及びビート信号のビート周波数を用いて遅延時間を算出する遅延時間測定処理とを含むものである。   A delay time measurement method according to the present invention includes a leaky coaxial cable and an optical fiber in a communication system including a leaky coaxial cable (LCX) and a relay station that relays communication between a mobile station and a base station via an optical fiber. In a delay time measuring method for measuring a delay time generated during data transmission by a fiber, a signal having a modulation repetition period T and a modulation width β, which is FM-modulated with a triangular wave, is created, and a base station and a relay station are Delay adjustment signal transmission processing for transmitting a signal as a delay adjustment signal via the first leaky coaxial cable and optical fiber to be connected, and a delay adjustment signal transmitted via the first leaky coaxial cable and the optical fiber Receiving processing, transmitting processing for transmitting the delay adjustment signal received via the optical fiber to the second leaky coaxial cable, and first leakage Using the delay adjustment signal received from the coaxial cable, the process of generating a beat signal from the delay adjustment signal received from the second leaky coaxial cable, the modulation repetition period T, the modulation width β, and the beat frequency of the beat signal And a delay time measurement process for calculating the delay time.

本発明に係る遅延時間測定方法は、漏洩同軸ケーブル(LCX: Leakage CoaXial cable)および光ファイバを介して移動局と基地局の通信を中継する中継局を備えた通信システムにおいて、漏洩同軸ケーブルと光ファイバによるデータ伝送時に発生する遅延時間を測定する遅延時間測定方法において、三角波でFM変調を施した、変調繰り返し周期Tおよび変調幅βが既知である信号を作成するとともに、信号を遅延調整用信号として漏洩同軸ケーブル及び光ファイバを介して送信する遅延調整用信号送信処理と、漏洩同軸ケーブル及び光ファイバを介して送信された遅延調整用信号を受信する受信処理と、漏洩同軸ケーブルより受信した遅延調整用信号と、光ファイバより受信した遅延調整用信号よりビート信号を生成する処理と、変調繰り返し周期T、変調幅β及びビート信号のビート周波数を用いて遅延時間を算出する遅延時間測定処理とを含むので、列車無線システムに適用される移動体通信用の光中継システムのLCX渡り区間における、光ファイバを介した通信とLCXを介した通信の間における相対遅延時間の測定精度を向上させるという効果がある。   A delay time measurement method according to the present invention includes a leaky coaxial cable and an optical fiber in a communication system including a leaky coaxial cable (LCX) and a relay station that relays communication between a mobile station and a base station via an optical fiber. In a delay time measuring method for measuring a delay time generated during data transmission by a fiber, a signal having a modulation repetition period T and a modulation width β, which is FM-modulated with a triangular wave, is created, and the signal is used as a delay adjustment signal. As a delay adjustment signal transmission process transmitted via a leaky coaxial cable and an optical fiber, a reception process of receiving a delay adjustment signal transmitted via the leaky coaxial cable and an optical fiber, and a delay received from the leaky coaxial cable A process for generating a beat signal from the adjustment signal, a delay adjustment signal received from the optical fiber, and a modulation repetition period T , A delay time measurement process for calculating a delay time by using the modulation width β and the beat frequency of the beat signal, so that the optical fiber in the LCX cross section of the optical relay system for mobile communication applied to the train radio system There is an effect of improving the measurement accuracy of the relative delay time between the communication via the LCX and the communication via the LCX.

本発明に係る遅延時間測定方法は、漏洩同軸ケーブル(LCX: Leakage CoaXial cable)および光ファイバを介して移動局と基地局の通信を中継する中継局を備えた通信システムにおいて、漏洩同軸ケーブルと光ファイバによるデータ伝送時に発生する遅延時間を測定する遅延時間測定方法において、三角波でFM変調を施した、変調繰り返し周期Tおよび変調幅βが既知である信号を作成するとともに、基地局と中継局を接続する第一の漏洩同軸ケーブル及び光ファイバを介して信号を遅延調整用信号として送信する遅延調整用信号送信処理と、第一の漏洩同軸ケーブル及び光ファイバを介して送信された遅延調整用信号を受信する受信処理と、光ファイバを介して受信した遅延調整用信号を第二の漏洩同軸ケーブルに送信する送信処理と、第一の漏洩同軸ケーブルより受信した遅延調整用信号と、第二の漏洩同軸ケーブルより受信した遅延調整用信号よりビート信号を生成する処理と、変調繰り返し周期T、変調幅β及びビート信号のビート周波数を用いて遅延時間を算出する遅延時間測定処理とを含むので、列車無線システムに適用される移動体通信用の光中継システムのLCX渡り区間における、光ファイバを介した通信とLCXを介した通信の間における相対遅延時間の測定精度を向上させるという効果がある。   A delay time measurement method according to the present invention includes a leaky coaxial cable and an optical fiber in a communication system including a leaky coaxial cable (LCX) and a relay station that relays communication between a mobile station and a base station via an optical fiber. In a delay time measuring method for measuring a delay time generated during data transmission by a fiber, a signal having a modulation repetition period T and a modulation width β, which is FM-modulated with a triangular wave, is created, and a base station and a relay station are Delay adjustment signal transmission processing for transmitting a signal as a delay adjustment signal via the first leaky coaxial cable and optical fiber to be connected, and a delay adjustment signal transmitted via the first leaky coaxial cable and the optical fiber Receiving processing, transmitting processing for transmitting the delay adjustment signal received via the optical fiber to the second leaky coaxial cable, and first leakage Using the delay adjustment signal received from the coaxial cable, the process of generating a beat signal from the delay adjustment signal received from the second leaky coaxial cable, the modulation repetition period T, the modulation width β, and the beat frequency of the beat signal Delay time measurement processing for calculating the delay time, so that between the communication via the optical fiber and the communication via the LCX in the LCX cross section of the optical relay system for mobile communication applied to the train radio system There is an effect of improving the measurement accuracy of the relative delay time.

LCX及び光ファイバ伝送路を介して移動局と基地局の通信を中継する従来の無線通信システムにおいて発生する伝送遅延時間を測定する試験系の一例を説明する説明図である。It is explanatory drawing explaining an example of the test system which measures the transmission delay time which generate | occur | produces in the conventional radio | wireless communications system which relays communication of a mobile station and a base station via LCX and an optical fiber transmission line. LCX経路から到達した遅延調整用信号および光ファイバ経路から到達した遅延調整用信号それぞれの周波数の時間変化例と、ミキサ出力信号のビート周波数f1の時間変化例を示したものである。The example shows the time change example of the frequency of each of the delay adjustment signal arrived from the LCX path and the time of the delay adjustment signal arrived from the optical fiber path and the time change example of the beat frequency f1 of the mixer output signal. 本発明の実施の形態2に係る伝送遅延時間を測定する試験系の一例を説明する説明図である。It is explanatory drawing explaining an example of the test system which measures the transmission delay time concerning Embodiment 2 of this invention. 本発明の伝送遅延時間を測定する処理を示すフローチャートである。It is a flowchart which shows the process which measures the transmission delay time of this invention.

実施の形態1.
図1は、LCX及び光ファイバ伝送路を介して移動局と基地局の通信を中継する従来の無線通信システムにおいて発生する伝送遅延時間を測定する試験系の一例を説明する説明図である。図1に示す試験系は、光中継システムのLCX渡り区間での、LCXを介した通信と光ファイバを介した通信の間で発生する伝送遅延時間の相違を補正するための遅延補正作業における、相対遅延時間測定するために使用される。図1において、基地局1に対し、中継局2がアプローチケーブル4及び線路近傍エリア3のLCX300―1並びアプローチケーブル5を介して接続され、さらに光ファイバ伝送路9を介して基地局1と接続させている。また、図4は、本発明の伝送遅延時間を測定する処理を示すフローチャートである。
Embodiment 1 FIG.
FIG. 1 is an explanatory diagram for explaining an example of a test system for measuring a transmission delay time generated in a conventional wireless communication system that relays communication between a mobile station and a base station via an LCX and an optical fiber transmission line. The test system shown in FIG. 1 is a delay correction operation for correcting a difference in transmission delay time generated between communication via LCX and communication via optical fiber in the LCX cross section of the optical relay system. Used to measure relative delay time. In FIG. 1, a relay station 2 is connected to a base station 1 via an approach cable 4 and an LCX 300-1 array approach cable 5 in the line vicinity area 3, and further connected to the base station 1 via an optical fiber transmission line 9. I am letting. FIG. 4 is a flowchart showing a process for measuring the transmission delay time according to the present invention.

LCX渡り区間301における前記相対遅延時間測定の具体的な方法を説明する。まず、基地局1に設置した遅延調整用シグナルジェネレータ(SG)102によって生成した「遅延調整用信号」を送信する。この遅延調整用信号は、三角波でFM変調を施した、変調繰り返し周期Tおよび変調幅βが既知である信号である。遅延調整用シグナルジェネレータ(SG)102から送信された遅延調整用信号は、アプローチケーブル4及びLCX300―1並びにアプローチケーブル5を介して、中継局2のLCX信号入力部6に到達する。以降、説明の便宜上、アプローチケーブル4及びLCX300―1並びにアプローチケーブル5を介して、中継局2に到達する経路を「LCX経路」と称する。   A specific method of the relative delay time measurement in the LCX transition section 301 will be described. First, the “delay adjustment signal” generated by the delay adjustment signal generator (SG) 102 installed in the base station 1 is transmitted. This delay adjustment signal is a signal having a known modulation repetition period T and modulation width β, which has been subjected to FM modulation with a triangular wave. The delay adjustment signal transmitted from the delay adjustment signal generator (SG) 102 reaches the LCX signal input unit 6 of the relay station 2 via the approach cable 4, the LCX 300-1, and the approach cable 5. Hereinafter, for convenience of explanation, a route that reaches the relay station 2 via the approach cable 4, the LCX 300-1, and the approach cable 5 is referred to as an “LCX route”.

また、遅延調整用シグナルジェネレータ(SG)102から出力された遅延調整用信号は、基地局1の内部において分配され、電気―光信号変換部(E/O)100で光信号に変換された後、遅延調整部101及び光ファイバ伝送路9を介して、中継局2の光―電気信号変換部(O/E)200に到達する。以降、説明の便宜上、光ファイバ伝送路9を介して中継局2に到達する経路を「光ファイバ経路」と称する。以上のLCX経路と光ファイバ経路で遅延調整用信号を送信する処理は図4のステップ1に相当する。   The delay adjustment signal output from the delay adjustment signal generator (SG) 102 is distributed inside the base station 1 and converted into an optical signal by the electro-optical signal converter (E / O) 100. The signal reaches the optical-electrical signal converter (O / E) 200 of the relay station 2 via the delay adjuster 101 and the optical fiber transmission line 9. Hereinafter, for convenience of explanation, a route that reaches the relay station 2 via the optical fiber transmission line 9 is referred to as an “optical fiber route”. The process of transmitting the delay adjustment signal through the LCX path and the optical fiber path corresponds to step 1 in FIG.

LCX経路で中継局2が受信した遅延調整用信号は、中継局2に設けられたLCX信号入力部6から遅延測定系8のミキサ800へ入力される。また、光ファイバ経路で中継局2が受信した遅延調整用信号は、中継局2に設けられた光―電気信号変換部(O/E)200で光信号から電気信号に変換される。この電気信号は、信号増幅部201によって増幅され、カプラ202およびアプローチケーブル7を介して、LCX300−2に送信されるとともに、カプラ202により分配され、ミキサ800へと入力される。以上の中継局2による遅延調整用信号の受信処理は図4のステップ2に相当する。   The delay adjustment signal received by the relay station 2 through the LCX path is input from the LCX signal input unit 6 provided in the relay station 2 to the mixer 800 of the delay measurement system 8. The delay adjustment signal received by the relay station 2 through the optical fiber path is converted from an optical signal to an electric signal by an optical-electrical signal converter (O / E) 200 provided in the relay station 2. This electric signal is amplified by the signal amplifying unit 201, transmitted to the LCX 300-2 via the coupler 202 and the approach cable 7, distributed by the coupler 202, and input to the mixer 800. The above reception processing of the delay adjustment signal by the relay station 2 corresponds to Step 2 in FIG.

図4のステップ3において、中継局2のミキサ800は、LCX経路から到達した遅延調整用信号と、光ファイバ経路から到達した遅延調整用信号を混合し、ビート周波数f1のビート信号を出力する。図2は、LCX経路から到達した遅延調整用信号および光ファイバ経路から到達した遅延調整用信号それぞれの周波数の時間変化例と、ミキサ800の出力信号のビート周波数f1の時間変化例を示したものである。図2におけるf0は遅延調整用信号の中心周波数、Tは変調繰返周期、βはFM変調幅であり、LCX経路および光ファイバ経路それぞれからの信号が、相対遅延時間τの到達時間差を持っていることを表している。前記相対遅延時間τに応じて、図1のミキサ800は周波数f1のビート信号を出力する。図4のステップ4において、相対遅延時間τが算出される。すなわち、f1は下記の式で表されることから、相対遅延時間差τを求めることができる。
△τ=f1・T/2β
In Step 3 of FIG. 4, the mixer 800 of the relay station 2 mixes the delay adjustment signal that has arrived from the LCX path and the delay adjustment signal that has arrived from the optical fiber path, and outputs a beat signal having the beat frequency f1. FIG. 2 shows an example of the time change of the frequency of the delay adjustment signal arriving from the LCX path and the time of the delay adjustment signal arriving from the optical fiber path, and an example of the time change of the beat frequency f1 of the output signal of the mixer 800. It is. In FIG. 2, f0 is the center frequency of the delay adjustment signal, T is the modulation repetition period, β is the FM modulation width, and the signals from the LCX path and the optical fiber path have a difference in arrival time of the relative delay time τ. It represents that. In accordance with the relative delay time τ, the mixer 800 of FIG. 1 outputs a beat signal having a frequency f1. In step 4 of FIG. 4, the relative delay time τ is calculated. That is, since f1 is expressed by the following equation, the relative delay time difference τ can be obtained.
Δτ = f1 · T / 2β

なお、ミキサ800の出力信号はビート信号以外にも多数の高周波を含むことから、ローパスフィルタ(LPF)801によって高周波を取り除き、周波数カウンタ802にてビート周波数f1を測定する。また、アプローチケーブル5およびアプローチケーブル7による伝搬遅延時間は別途測定するか、ケーブル長から机上計算によって算出し、前記相対遅延時間に反映することで、LCX渡り区間301における相対遅延時間を求めることができる。   Since the output signal of the mixer 800 includes many high frequencies in addition to the beat signal, the high frequency is removed by a low-pass filter (LPF) 801 and the beat frequency f1 is measured by the frequency counter 802. Further, the propagation delay time by the approach cable 5 and the approach cable 7 is measured separately or calculated from the cable length by desktop calculation and reflected in the relative delay time, thereby obtaining the relative delay time in the LCX transition section 301. it can.

列車無線システムに適用される移動体通信用の光中継システムのLCX渡り区間における、光ファイバを介した通信とLCXを介した通信の間における相対遅延時間の測定精度を向上させるという効果がある。   There is an effect of improving the measurement accuracy of the relative delay time between the communication via the optical fiber and the communication via the LCX in the LCX cross section of the optical relay system for mobile communication applied to the train radio system.

実施の形態2.
前記実施の形態1では、中継局2内部において、LCX経路および光ファイバ経路から入力された遅延調整用信号を遅延測定系8に接続することによって、ビート信号の周波数測定を行った。これに対して、実施の形態2では、線路近傍エリア3のLCX渡り区間にて、LCXから漏洩する無線電波を利用してビート信号の周波数測定を行う。図3は、本発明の実施の形態2に係る伝送遅延時間を測定する試験系の一例を説明する説明図である。なお、図3において図1と同一の符号は同一又はこれに相当する部分を示すので説明は省略する。実施の形態2では、遅延測定系8の設置箇所が線路近傍エリア3であり、LCX信号受信アンテナ10を用いる。LCX経路および光ファイバ経路による遅延調整用信号の流れは実施の形態1と同様である。
Embodiment 2. FIG.
In the first embodiment, the frequency of the beat signal is measured by connecting the delay adjustment signal input from the LCX path and the optical fiber path to the delay measurement system 8 in the relay station 2. On the other hand, in the second embodiment, the frequency measurement of the beat signal is performed using the radio wave leaking from the LCX in the LCX crossing section in the line vicinity area 3. FIG. 3 is an explanatory diagram for explaining an example of a test system for measuring the transmission delay time according to Embodiment 2 of the present invention. In FIG. 3, the same reference numerals as those in FIG. 1 denote the same or corresponding parts, and a description thereof will be omitted. In the second embodiment, the installation location of the delay measurement system 8 is the line vicinity area 3, and the LCX signal receiving antenna 10 is used. The flow of the delay adjustment signal through the LCX path and the optical fiber path is the same as in the first embodiment.

LCX信号受信アンテナ10は、線路近傍エリア3のLCX渡り区間にて、LCX300−1に流れる遅延調整用信号と、光ファイバ経路より入力されたLCX300−2に流れる遅延調整用信号を受信する。受信された信号は遅延測定系8のミキサ800に入力され、ミキサ800はビート信号を出力、以降の流れは実施の形態1と同様である。   The LCX signal receiving antenna 10 receives the delay adjustment signal flowing in the LCX 300-1 and the delay adjustment signal flowing in the LCX 300-2 input from the optical fiber path in the LCX cross section in the line vicinity area 3. The received signal is input to the mixer 800 of the delay measurement system 8, and the mixer 800 outputs a beat signal. The subsequent flow is the same as in the first embodiment.

実施の形態2によれば、アプローチケーブル5およびアプローチケーブル7による伝搬遅延は測定結果に反映されることから、別途測定する必要がなくなるほか、測定誤差を小さくすることができる。   According to the second embodiment, since the propagation delay caused by the approach cable 5 and the approach cable 7 is reflected in the measurement result, it is not necessary to separately measure and the measurement error can be reduced.

1 基地局、100 電気―光信号変換部、101 遅延調整部、
102 遅延調整用シグナルジェネレータ(SG)、2 中継局、
200 光―電気信号変換部、201 信号増幅部、202 カプラ、
3 線路近傍エリア、300−1〜300−2 LCX、301 LCX渡り区間、
4〜5、7 アプローチケーブル、8 遅延測定系、800 ミキサ、
801 ローパスフィルタ(LPF)、802 周波数カウンタ、
9 光ファイバ、10 LCX信号受信アンテナ
1 base station, 100 electrical-optical signal converter, 101 delay adjuster,
102 signal generator (SG) for delay adjustment, 2 relay station,
200 optical-electrical signal conversion unit, 201 signal amplification unit, 202 coupler,
3 Line vicinity area, 300-1 to 300-2 LCX, 301 LCX crossing section,
4-5, 7 approach cable, 8 delay measurement system, 800 mixer,
801 Low-pass filter (LPF), 802 frequency counter,
9 Optical fiber, 10 LCX signal receiving antenna

Claims (2)

漏洩同軸ケーブル(LCX: Leakage CoaXial cable)および光ファイバを介して移動局と基地局の通信を中継する中継局を備えた通信システムにおいて、前記漏洩同軸ケーブルと前記光ファイバによるデータ伝送時に発生する遅延時間を測定する遅延時間測定方法において、
三角波でFM変調を施した、変調繰り返し周期Tおよび変調幅βが既知である信号を作成するとともに、前記信号を遅延調整用信号として前記漏洩同軸ケーブル及び前記光ファイバを介して送信する遅延調整用信号送信処理と、
前記漏洩同軸ケーブル及び前記光ファイバを介して送信された前記遅延調整用信号を受信する受信処理と、
前記漏洩同軸ケーブルより受信した遅延調整用信号と、前記光ファイバより受信した遅延調整用信号よりビート信号を生成する処理と、
前記変調繰り返し周期T、前記変調幅β及び前記ビート信号のビート周波数を用いて遅延時間を算出する遅延時間測定処理とを含むことを特徴とする遅延時間測定方法。
In a communication system having a leaky coaxial cable (LCX: Leakage CoaXial cable) and a relay station that relays communication between a mobile station and a base station via an optical fiber, a delay caused during data transmission by the leaky coaxial cable and the optical fiber In the delay time measuring method for measuring time,
A signal having a modulation repetition period T and a modulation width β, which is FM-modulated with a triangular wave, is generated, and the signal is transmitted as a delay adjustment signal through the leaky coaxial cable and the optical fiber. Signal transmission processing,
A reception process for receiving the delay adjustment signal transmitted via the leaky coaxial cable and the optical fiber;
Processing for generating a beat signal from the delay adjustment signal received from the leaky coaxial cable and the delay adjustment signal received from the optical fiber;
A delay time measuring method comprising: a delay time measuring process for calculating a delay time using the modulation repetition period T, the modulation width β, and a beat frequency of the beat signal.
漏洩同軸ケーブル(LCX: Leakage CoaXial cable)および光ファイバを介して移動局と基地局の通信を中継する中継局を備えた通信システムにおいて、前記漏洩同軸ケーブルと前記光ファイバによるデータ伝送時に発生する遅延時間を測定する遅延時間測定方法において、
三角波でFM変調を施した、変調繰り返し周期Tおよび変調幅βが既知である信号を作成するとともに、前記基地局と前記中継局を接続する第一の漏洩同軸ケーブル及び前記光ファイバを介して前記信号を遅延調整用信号として送信する遅延調整用信号送信処理と、
前記第一の漏洩同軸ケーブル及び前記光ファイバを介して送信された前記遅延調整用信号を受信する受信処理と、
前記光ファイバを介して受信した遅延調整用信号を第二の漏洩同軸ケーブルに送信する送信処理と、
前記第一の漏洩同軸ケーブルより受信した遅延調整用信号と、前記第二の漏洩同軸ケーブルより受信した遅延調整用信号よりビート信号を生成する処理と、
前記変調繰り返し周期T、前記変調幅β及び前記ビート信号のビート周波数を用いて遅延時間を算出する遅延時間測定処理とを含むことを特徴とする遅延時間測定方法。
In a communication system having a leaky coaxial cable (LCX: Leakage CoaXial cable) and a relay station that relays communication between a mobile station and a base station via an optical fiber, a delay caused during data transmission by the leaky coaxial cable and the optical fiber In the delay time measuring method for measuring time,
A signal having a modulation repetition period T and a modulation width β, which is FM-modulated with a triangular wave, is created, and the first leaky coaxial cable connecting the base station and the relay station and the optical fiber Delay adjustment signal transmission processing for transmitting a signal as a delay adjustment signal;
Receiving processing for receiving the delay adjustment signal transmitted via the first leaky coaxial cable and the optical fiber;
A transmission process for transmitting the delay adjustment signal received via the optical fiber to the second leaky coaxial cable;
A process for generating a beat signal from a delay adjustment signal received from the first leaky coaxial cable and a delay adjustment signal received from the second leaky coaxial cable;
A delay time measuring method comprising: a delay time measuring process for calculating a delay time using the modulation repetition period T, the modulation width β, and a beat frequency of the beat signal.
JP2010093086A 2010-04-14 2010-04-14 Delay time measurement method Pending JP2011223505A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010093086A JP2011223505A (en) 2010-04-14 2010-04-14 Delay time measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010093086A JP2011223505A (en) 2010-04-14 2010-04-14 Delay time measurement method

Publications (1)

Publication Number Publication Date
JP2011223505A true JP2011223505A (en) 2011-11-04

Family

ID=45039831

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010093086A Pending JP2011223505A (en) 2010-04-14 2010-04-14 Delay time measurement method

Country Status (1)

Country Link
JP (1) JP2011223505A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190072874A (en) * 2017-12-18 2019-06-26 엘에스전선 주식회사 Leakage Coaxial Cable And Feeding System Thereof
JP7638120B2 (en) 2021-03-16 2025-03-03 三菱電機株式会社 Wireless communication system and delay correction method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6486084A (en) * 1987-09-29 1989-03-30 Matsushita Electric Ind Co Ltd Radar sensor for short distance
JPH0712929A (en) * 1993-06-24 1995-01-17 Alpine Electron Inc Fm-cw radar
JP2008193404A (en) * 2007-02-05 2008-08-21 Mitsubishi Electric Corp Optical relay system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6486084A (en) * 1987-09-29 1989-03-30 Matsushita Electric Ind Co Ltd Radar sensor for short distance
JPH0712929A (en) * 1993-06-24 1995-01-17 Alpine Electron Inc Fm-cw radar
JP2008193404A (en) * 2007-02-05 2008-08-21 Mitsubishi Electric Corp Optical relay system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190072874A (en) * 2017-12-18 2019-06-26 엘에스전선 주식회사 Leakage Coaxial Cable And Feeding System Thereof
KR102480195B1 (en) 2017-12-18 2022-12-21 엘에스전선 주식회사 Leakage Coaxial Cable And Feeding System Thereof
JP7638120B2 (en) 2021-03-16 2025-03-03 三菱電機株式会社 Wireless communication system and delay correction method

Similar Documents

Publication Publication Date Title
US10567095B2 (en) Systems and methods for delay management in distributed antenna system with direct digital interface to base station
EP2902799B1 (en) Doppler radar test system
US10270546B2 (en) Method for measuring passive intermodulation and measuring device
CN105510766A (en) Radio frequency cable fault positioning detection device and method
JP2011223505A (en) Delay time measurement method
US10263697B2 (en) Method and apparatus for monitoring chromatic dispersion in optical communications network
KR101179247B1 (en) Passive Inter-Modulation analyzer for measuring of faulty point
CN115112219B (en) A long-distance optical fiber distributed vibration sensing device and working method
US9560541B2 (en) Wireless transmission device, VSWR determination device, and VSWR determination method
KR101176370B1 (en) Delayed Time Compensating Apparatus for LTE Mobile Telecommunications System Using CDMA Mobile TeleCommunications Network
KR101905434B1 (en) Apparatus for measuring passive intermodulation distortion signal and method for using the same
KR100836191B1 (en) Loopback device installed between ground support equipment and satellites to support accurate measurements
US20120302159A1 (en) Measuring instrument and a measuring method for stationary testing of mobile-radio relay stations
JP4680121B2 (en) Signal transmission system
JPH02280083A (en) Measuring instrument for water vapor content and rainfall quantity
JP2006053054A (en) Moving speed measuring method and moving speed measuring system
RU2474964C1 (en) Hf-vhf radio stations test bench
JP2014115225A (en) Inter-distance measuring device using radio signal of relatively narrow band
CN100512265C (en) Gain measurement device for on-line calibration and method thereof
JP6088391B2 (en) Signal processing apparatus, signal analysis system, signal generation system, signal analysis method, and signal generation method
KR100523995B1 (en) Apparatus for measuring performance of high frequence signal relay using high frequence switch matrix
CN113126036B (en) Fast scanning microwave detector and detection method
JP2013038772A (en) Nonlinear characteristic analyzer and transmitter
GB2458289A (en) A communications transmission system that may be operated close to scanning detection systems, such as radars.
JP4980602B2 (en) Transmitter and receiver for measuring propagation delay time difference

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140128

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20140326

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140617