JP2011208170A - Method of producing manganese-containing low carbon steel - Google Patents
Method of producing manganese-containing low carbon steel Download PDFInfo
- Publication number
- JP2011208170A JP2011208170A JP2010074016A JP2010074016A JP2011208170A JP 2011208170 A JP2011208170 A JP 2011208170A JP 2010074016 A JP2010074016 A JP 2010074016A JP 2010074016 A JP2010074016 A JP 2010074016A JP 2011208170 A JP2011208170 A JP 2011208170A
- Authority
- JP
- Japan
- Prior art keywords
- manganese
- molten steel
- carbon
- steel
- decarburization refining
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Landscapes
- Treatment Of Steel In Its Molten State (AREA)
Abstract
【課題】 マンガン含有低炭素鋼を真空脱炭精錬によって溶製するにあたり、マンガンの酸化ロスを抑制した状態で、マンガン源として炭素を含有するマンガン系合金鉄を使用する。
【解決手段】 RH真空脱ガス装置1の真空槽5内の溶鋼3に酸素源を供給して減圧下での脱炭精錬を行い、次いで、前記酸素源の溶鋼への供給を停止した状態で未脱酸状態の溶鋼を真空槽と取鍋2とを環流させて減圧下での脱炭精錬を行い、この脱炭精錬終了後に、真空槽内の溶鋼にAlを添加して脱酸処理してマンガン含有低炭素鋼を溶製する方法であって、前記の、酸素源の供給を停止した状態で行う減圧下での脱炭精錬時に、炭素を含有するマンガン系合金鉄を真空槽内の溶鋼に添加し、該マンガン系合金鉄中の炭素を未脱酸状態の溶鋼中の溶存酸素で酸化・除去する。
【選択図】 図1PROBLEM TO BE SOLVED: To use manganese-based alloy iron containing carbon as a manganese source in a state in which manganese oxidation loss is suppressed in melting manganese-containing low carbon steel by vacuum decarburization refining.
An oxygen source is supplied to molten steel 3 in a vacuum tank 5 of an RH vacuum degassing apparatus 1 to perform decarburization refining under reduced pressure, and then the supply of the oxygen source to the molten steel is stopped. The undeoxidized molten steel is circulated through the vacuum tank and ladle 2 and decarburized under reduced pressure. After this decarburized refining, Al is added to the molten steel in the vacuum tank and deoxidized. The manganese-containing low carbon steel is smelted, and the manganese-based alloy iron containing carbon is contained in the vacuum tank during the decarburization refining under reduced pressure performed in a state where the supply of the oxygen source is stopped. It is added to molten steel, and carbon in the manganese-based alloy iron is oxidized and removed with dissolved oxygen in the undeoxidized molten steel.
[Selection] Figure 1
Description
本発明は、溶鋼にRH真空脱ガス装置における減圧下での脱炭精錬を施してマンガンを含有する低炭素鋼(以下、「マンガン含有低炭素鋼」と記す)を溶製する方法に関し、詳しくは、前記脱炭精錬期のうちの送酸脱炭精錬後の環流脱炭精錬時に、マンガン源として炭素を含有するマンガン系合金鉄を真空槽内の溶鋼に添加し、環流脱炭精錬期にマンガン系合金鉄中の炭素を溶鋼中溶存酸素により酸化・除去し、高価な金属マンガンの少ない使用量でマンガン含有低炭素鋼を溶製する方法に関する。 The present invention relates to a method for melting low-carbon steel containing manganese (hereinafter referred to as “manganese-containing low-carbon steel”) by subjecting molten steel to decarburization refining under reduced pressure in an RH vacuum degassing apparatus. In the decarburization and refining period, manganese-based alloy iron containing carbon as a manganese source is added to the molten steel in the vacuum tank at the time of recirculation decarburization and refining. The present invention relates to a method of oxidizing and removing carbon in manganese-based alloy iron with dissolved oxygen in molten steel, and melting manganese-containing low carbon steel with a small amount of expensive metallic manganese.
近年、鉄鋼材料は、その用途の多様化に伴い、より苛酷な環境下で使用されることが多くなり、材料特性の高性能化が従来にも増して求められている。このような状況下、構造物の軽量化を目的として、高い引張強さと高い加工性とを両立させた低炭素高マンガン鋼が開発され、ラインパイプ用鋼板或いは自動車用鋼板などとして使用されるようになっている。 In recent years, with the diversification of applications, steel materials are often used in a harsher environment, and higher performance of material properties is demanded more than ever. Under these circumstances, low carbon high manganese steel that has both high tensile strength and high workability has been developed for the purpose of reducing the weight of the structure, and it seems to be used as a steel plate for line pipes or steel plates for automobiles. It has become.
製鋼精錬工程において、溶鋼中のマンガン濃度を調整するために用いるマンガン源としては、マンガン鉱石、高炭素フェロマンガン(炭素含有量:7.5質量%以下)、中炭素フェロマンガン(炭素含有量:2.0質量%以下)、低炭素フェロマンガン(炭素含有量:1.0質量%以下)、シリコマンガン(炭素含有量:2.0質量%以下)、金属マンガン(炭素含有量:0.01質量%以下)などが一般的であり、マンガン鉱石を除き、炭素含有量が低くなるほど高価となる。従って、製造コスト低減を目的として、安価なマンガン源である、マンガン鉱石や高炭素フェロマンガンを使用してマンガン含有鋼を溶製する方法が提案されている。尚、本発明においては、高炭素フェロマンガン、中炭素フェロマンガン、低炭素フェロマンガン、シリコマンガンをまとめてマンガン系合金鉄と呼ぶ。 In the steelmaking refining process, manganese sources used to adjust the manganese concentration in the molten steel include manganese ore, high carbon ferromanganese (carbon content: 7.5% by mass or less), medium carbon ferromanganese (carbon content: 2.0% by mass or less), low carbon ferromanganese (carbon content: 1.0% by mass or less), silicomanganese (carbon content: 2.0% by mass or less), metal manganese (carbon content: 0.01) Mass% or less) is common, and it becomes more expensive as the carbon content is lower, except for manganese ore. Therefore, for the purpose of reducing the manufacturing cost, a method for melting manganese-containing steel using manganese ore or high carbon ferromanganese, which is an inexpensive manganese source, has been proposed. In the present invention, high carbon ferromanganese, medium carbon ferromanganese, low carbon ferromanganese, and silicomanganese are collectively referred to as manganese-based alloy iron.
例えば、特許文献1には、転炉から取鍋への溶鋼の出鋼時に高炭素フェロマンガンを投入して溶鋼中のマンガン成分を調整し、次いで、真空脱ガス槽内の溶鋼に酸素ガスを上吹きして溶鋼に対して脱炭精錬を行い、溶鋼中の炭素を酸化除去することによって高マンガン鋼を溶製する方法が提案されている。 For example, in Patent Document 1, high-carbon ferromanganese is introduced at the time of molten steel from the converter to the ladle to adjust the manganese component in the molten steel, and then oxygen gas is supplied to the molten steel in the vacuum degassing tank. A method has been proposed in which high manganese steel is produced by blowing up and decarburizing and refining the molten steel to oxidize and remove carbon in the molten steel.
特許文献2には、炭素濃度が0.0050質量%以下の鋼を脱ガス設備で溶製するに際し、真空脱炭精錬の20%が経過するまでの間に、炭素含有量が0.5〜9質量%のマンガン系合金鉄を添加し、マンガン系合金鉄中の炭素を酸化・除去することによって溶鋼中のマンガン成分を調整する低炭素鋼の溶製方法が提案されている。
In
また、特許文献3には、転炉精錬及び真空脱ガス精錬を経て極低炭素鋼を溶製する際に、真空脱ガス精錬の脱炭精錬期の初期にマンガン調整用としてフェロマンガンを投入する溶製方法が提案されている。この場合も、フェロマンガン中の炭素は真空脱ガス精錬の脱炭精錬時に酸化・除去される。
Further, in
低炭素高マンガン鋼などのマンガン含有低炭素鋼を溶製する場合も、転炉での溶銑の脱炭精錬時に転炉内にマンガン鉱石を投入してマンガン鉱石を還元したり、転炉からの出鋼時或いは真空脱ガス精錬時に高炭素フェロマンガンを溶鋼に添加したりすることによって、溶鋼中のマンガン濃度を所定値まで上昇させることは可能であるが、低炭素高マンガン鋼のようなマンガン含有量の高い溶鋼を真空脱炭精錬した場合には、酸素は溶鋼中の炭素と反応するのみならず、マンガンとも反応し、マンガンが酸化ロスしてマンガンの歩留まりが悪化するばかりでなく、溶鋼中のマンガン濃度の制御が非常に困難となる。尚、真空脱炭精錬とは、RH真空脱ガス装置などの真空脱ガス設備を用いて、減圧下で酸素ガスなどの酸素源を溶鋼に添加して脱炭する、或いは、未脱酸状態の溶鋼を高真空処理して脱炭する精錬方法である。 When melting low carbon steel containing manganese, such as low carbon high manganese steel, manganese ore is introduced into the converter during decarburization and refining of the hot metal in the converter, and manganese ore is reduced or converted from the converter. It is possible to increase the manganese concentration in the molten steel to a predetermined value by adding high carbon ferromanganese to the molten steel at the time of steel production or vacuum degassing refining. When molten steel with a high content is vacuum decarburized and refined, oxygen not only reacts with carbon in the molten steel, but also reacts with manganese, manganese loses oxidation and deteriorates the yield of manganese. It becomes very difficult to control the manganese concentration inside. In addition, vacuum decarburization refining means using a vacuum degassing facility such as an RH vacuum degassing apparatus to decarburize by adding an oxygen source such as oxygen gas to the molten steel under reduced pressure, or in an undeoxidized state. It is a refining method in which molten steel is decarburized by high vacuum treatment.
従って、この問題を避けるために、低炭素高マンガン鋼のようなマンガン含有低炭素鋼の溶製においては、マンガン源を真空脱炭精錬後の脱ガス処理中に添加する方法が行われており、この場合、低炭素高マンガン鋼では炭素濃度の許容範囲が低く且つ狭いこともあって、炭素含有量の少ない金属マンガンなどのマンガン源を使用せざるを得ず、これらのマンガン源は非常に高価であるため、低炭素高マンガン鋼のようなマンガン含有低炭素鋼の溶製コストの上昇を余儀無くされていた。 Therefore, in order to avoid this problem, in the melting of manganese-containing low carbon steel such as low carbon high manganese steel, a method of adding a manganese source during degassing after vacuum decarburization refining has been performed. In this case, the low carbon high manganese steel has a low and narrow carbon concentration tolerance, so it is necessary to use a manganese source such as metal manganese with a low carbon content. Since it is expensive, it has been forced to increase the melting cost of manganese-containing low carbon steel such as low carbon high manganese steel.
本発明は上記事情に鑑みてなされたもので、その目的とするところは、低炭素高マンガン鋼を含め、マンガン含有低炭素鋼を真空脱炭精錬によって溶製するにあたり、マンガンの酸化ロスを抑制した状態で、マンガン源として炭素を含有するマンガン系合金鉄を使用することのできる、マンガン含有低炭素鋼の溶製方法を提供することである。 The present invention has been made in view of the above circumstances, and its object is to suppress manganese oxidation loss when melting manganese-containing low carbon steel, including low carbon high manganese steel, by vacuum decarburization refining. An object of the present invention is to provide a method for melting manganese-containing low-carbon steel, in which manganese-based alloy iron containing carbon can be used as a manganese source.
上記課題を解決するための第1の発明に係るマンガン含有低炭素鋼の溶製方法は、RH真空脱ガス装置の真空槽内の溶鋼に酸素源を供給して減圧下での脱炭精錬を行い、次いで、前記酸素源の溶鋼への供給を停止し、酸素源の溶鋼への供給を停止した状態で未脱酸状態の溶鋼を真空槽と取鍋とを環流させて減圧下での脱炭精錬を行い、この脱炭精錬終了後に、真空槽内の溶鋼にAlを添加して溶鋼を脱酸処理してマンガン含有低炭素鋼を溶製する方法であって、前記の、酸素源の供給を停止した状態で行う減圧下での脱炭精錬時に、炭素を含有するマンガン系合金鉄を真空槽内の溶鋼に添加し、該マンガン系合金鉄中の炭素を未脱酸状態の溶鋼中の溶存酸素で酸化・除去することを特徴とする。 The method for melting manganese-containing low carbon steel according to the first invention for solving the above-mentioned problem is to supply oxygen source to the molten steel in the vacuum tank of the RH vacuum degassing apparatus to perform decarburization refining under reduced pressure. Next, the supply of the oxygen source to the molten steel is stopped, and the supply of the oxygen source to the molten steel is stopped, and the undeoxidized molten steel is circulated through the vacuum tank and the ladle to remove it under reduced pressure. After the decarburization and refining, a method of adding Al to the molten steel in the vacuum tank and deoxidizing the molten steel to melt the manganese-containing low carbon steel, the oxygen source At the time of decarburization and refining under reduced pressure performed in a state where supply is stopped, manganese-based alloy iron containing carbon is added to the molten steel in the vacuum tank, and the carbon in the manganese-based alloy iron is added to the undeoxidized molten steel. It is characterized by oxidation and removal with dissolved oxygen.
第2の発明に係るマンガン含有低炭素鋼の溶製方法は、第1の発明において、前記酸素源を供給して行う減圧下での脱炭精錬の終了時での溶鋼中溶存酸素濃度及び溶鋼中炭素濃度に応じて、前記マンガン系合金鉄の添加量を下記の(1)式の範囲内に調整することを特徴とする。
[%O]≧([%C]-[%C]f+(W×ηC×1/1000))×4/3 …(1)
但し、(1)式において、[%O]は、酸素源を供給して行う脱炭精錬終了時の溶鋼中溶存酸素濃度(質量%)、[%C]は、酸素源を供給して行う脱炭精錬終了時の溶鋼中炭素濃度(質量%)、[C]fは、減圧下での脱炭精錬終了時の目標溶鋼中炭素濃度(質量%)、Wは、炭素を含有するマンガン系合金鉄の溶鋼トンあたりの添加量(kg/t)、ηCは、炭素を含有するマンガン系合金鉄の炭素濃度(質量%)である。
The method for melting manganese-containing low-carbon steel according to the second invention is the dissolved oxygen concentration in molten steel and the molten steel at the end of decarburization refining under reduced pressure performed by supplying the oxygen source in the first invention. The addition amount of the manganese-based alloy iron is adjusted within the range of the following formula (1) according to the medium carbon concentration.
[% O] ≧ ([% C]-[% C] f + (W × η C × 1/1000)) × 4/3… (1)
However, in the formula (1), [% O] is an oxygen concentration (mass%) in molten steel at the end of decarburization refining performed by supplying an oxygen source, and [% C] is performed by supplying an oxygen source. Carbon concentration (mass%) in molten steel at the end of decarburization refining, [C] f is the target carbon concentration (mass%) in molten steel at the end of decarburization refining under reduced pressure, and W is a manganese-based carbon-containing carbon Addition amount (kg / t) per ton of molten steel of alloy iron, η C is the carbon concentration (mass%) of manganese-based alloy iron containing carbon.
本発明によれば、高炭素フェロマンガンなどの炭素を含有するマンガン系合金鉄をマンガン源として使用しても、真空脱炭精錬におけるマンガンの酸化ロスを抑制することができると同時に、マンガン系合金鉄中の炭素による溶鋼の炭素濃度ピックアップを抑制することができ、マンガン含有低炭素鋼を従来に比較して安価に溶製することが可能となる。 According to the present invention, even when manganese-based alloy iron containing carbon such as high carbon ferromanganese is used as a manganese source, oxidation loss of manganese in vacuum decarburization refining can be suppressed, and at the same time a manganese-based alloy Carbon concentration pickup of molten steel due to carbon in iron can be suppressed, and manganese-containing low carbon steel can be melted at a lower cost than in the past.
以下、本発明を具体的に説明する。先ず、本発明に至った経緯について説明する。本発明者らは、低炭素高マンガン鋼などのマンガン含有低炭素鋼を溶製するにあたり、マンガンの酸化ロスを抑制した状態で、マンガン源として炭素を含有するマンガン系合金鉄を使用することを検討・研究した。以下に、検討・研究結果を説明する。 Hereinafter, the present invention will be specifically described. First, the background to the present invention will be described. In melting the manganese-containing low-carbon steel such as low-carbon high-manganese steel, the present inventors use manganese-based alloy iron containing carbon as a manganese source in a state in which the oxidation loss of manganese is suppressed. I studied and studied. The results of the examination and research are explained below.
RH真空脱ガス装置の真空槽内の溶鋼に酸素源として酸素ガスを供給して溶鋼を真空脱炭精錬する場合、マンガンを含有しない溶鋼或いはマンガンの含有量が少ない溶鋼では、供給した酸素ガスは溶鋼中に溶解する以外は主に炭素と反応するだけであるため、酸素源の供給速度を高めることによって脱炭速度を高めることができる。しかしながら、マンガン含有量の多い鋼を溶製する場合には、供給した酸素ガスは炭素以外にマンガンとも反応するため、脱炭速度を高めて脱炭を効率的に行うためには、酸素とマンガンとの反応を抑制して、酸素と炭素との反応を促進しなければならない。 When supplying oxygen gas as an oxygen source to the molten steel in the vacuum tank of the RH vacuum degassing apparatus and vacuum decarburizing and refining the molten steel, in the molten steel not containing manganese or the molten steel having a low manganese content, the supplied oxygen gas is Since it only reacts with carbon except for dissolving in molten steel, the decarburization rate can be increased by increasing the supply rate of the oxygen source. However, when steel with a high manganese content is melted, the supplied oxygen gas reacts with manganese in addition to carbon. Therefore, in order to increase the decarburization rate and perform decarburization efficiently, oxygen and manganese Must be suppressed to promote the reaction between oxygen and carbon.
高炭素フェロマンガンなどの炭素を含有するマンガン系合金鉄を、RH真空脱ガス装置にて精錬中の溶鋼に添加する場合、マンガン系合金鉄の酸化を防止する観点から、従来、真空槽内の溶鋼表面に重力による落下により添加(「上置き添加」と称する)することが一般的である。添加されたマンガン系合金鉄は溶鋼に溶解し、溶鋼のマンガン濃度及び炭素濃度を上昇させる。 In the case of adding manganese-based alloy iron containing carbon such as high carbon ferromanganese to molten steel being refined by an RH vacuum degassing apparatus, from the viewpoint of preventing oxidation of manganese-based alloy iron, conventionally, It is common to add to the surface of molten steel by dropping due to gravity (referred to as “top addition”). The added manganese-based alloy iron dissolves in the molten steel, and increases the manganese concentration and carbon concentration of the molten steel.
本発明者らは、マンガン系合金鉄の上置き添加を伴う真空脱炭精錬時の炭素及びマンガンの挙動調査を重ねた結果、脱炭精錬の方法に応じて、脱炭反応及び脱マンガン反応の挙動が異なることを見出した。即ち、真空槽内の溶鋼に酸素ガスなどの酸素源を供給して行う真空脱炭精錬(「送酸脱炭精錬」と呼ぶ)においては、マンガン濃度が高い場合、脱炭反応と脱マンガン反応の双方の反応が進行するが、酸素ガスを含め酸素源を供給せずに未脱酸状態の溶鋼を真空槽と取鍋とを環流させ、真空槽内の高真空下での溶鋼中の溶存酸素による酸化反応で脱炭精錬を行う場合(「環流脱炭精錬」と呼ぶ)には、脱炭反応は進行するが、マンガン濃度が高い場合でも脱マンガン反応はほとんど進行しないことを見出した。これは、1600〜1650℃程度の脱ガス精錬時の溶鋼温度域では、炭素の方がマンガンよりも酸素との親和力が強く、溶存酸素のみが存在し、存在する酸素が潤沢ではない場合には、炭素との反応が優先して起こるからであると考えられる。ここで、溶存酸素とは、酸化物の形態を呈さずに溶鋼中に溶解している酸素のことである。 As a result of repeatedly investigating the behavior of carbon and manganese during vacuum decarburization and refining with the addition of manganese-based alloy iron, the present inventors determined that the decarburization reaction and demanganese reaction We found that the behavior is different. That is, in vacuum decarburization refining (referred to as “acid feed decarburization refining”) performed by supplying an oxygen source such as oxygen gas to the molten steel in the vacuum tank, when the manganese concentration is high, decarburization reaction and demanganese reaction Both of these reactions proceed, but the oxygen source including oxygen gas is not supplied and the undeoxidized molten steel is circulated between the vacuum chamber and ladle, and dissolved in the molten steel under high vacuum in the vacuum chamber. It was found that when decarburization refining is carried out by oxidation reaction with oxygen (referred to as “reflux decarburization refining”), the decarburization reaction proceeds, but even when the manganese concentration is high, the demanganese reaction hardly proceeds. This is because, in the molten steel temperature range of about 1600 to 1650 ° C., carbon has a stronger affinity for oxygen than manganese, and only dissolved oxygen exists and oxygen present is not abundant. This is presumably because the reaction with carbon occurs preferentially. Here, the dissolved oxygen is oxygen dissolved in the molten steel without exhibiting the form of oxide.
このことから、マンガン含有低炭素鋼を溶製する際に、最初に送酸脱炭精錬を行い、次いで、環流脱炭精錬を行い、この環流脱炭精錬時に高炭素フェロマンガンなどの炭素を含有するマンガン系合金鉄を真空槽内の溶鋼に上置き添加することで、マンガン系合金鉄に含有されるマンガンの酸化ロスを抑制することができると同時に、マンガン系合金鉄に含有される炭素の酸化除去を推進させることができ、マンガン歩留りの向上、並びにマンガン系合金鉄中の炭素による溶鋼の炭素濃度ピックアップを抑制できることが知見された。 Therefore, when melting manganese-containing low-carbon steel, it first performs acid decarburization refining, then recirculation decarburization refining, and carbon such as high carbon ferromanganese is contained during this recirculation decarburization refining. By adding the manganese-based alloy iron to the molten steel in the vacuum chamber, the oxidation loss of manganese contained in the manganese-based alloy iron can be suppressed, and at the same time, the carbon content of the manganese-based alloy iron It has been found that oxidation removal can be promoted, manganese yield can be improved, and pickup of carbon concentration of molten steel by carbon in manganese-based alloy iron can be suppressed.
本発明は、上記検討・研究結果に基づきなされたもので、RH真空脱ガス装置の真空槽内の溶鋼に酸素源を供給して減圧下での脱炭精錬を行い、次いで、前記酸素源の溶鋼への供給を停止し、酸素源の溶鋼への供給を停止した状態で未脱酸状態の溶鋼を真空槽と取鍋とを環流させて減圧下での脱炭精錬を行い、この脱炭精錬終了後に、真空槽内の溶鋼にAlを添加して溶鋼を脱酸処理してマンガン含有低炭素鋼を溶製するにあたり、前記の、酸素源の供給を停止した状態で行う減圧下での脱炭精錬時に、炭素を含有するマンガン系合金鉄を真空槽内の溶鋼に添加し、該マンガン系合金鉄中の炭素を未脱酸状態の溶鋼中の溶存酸素で酸化・除去することを特徴とする。 The present invention has been made on the basis of the above examination and research results. An oxygen source is supplied to the molten steel in the vacuum tank of the RH vacuum degassing apparatus to perform decarburization refining under reduced pressure. With the supply to the molten steel stopped and the supply of the oxygen source to the molten steel stopped, the decarburized refining is performed under reduced pressure by circulating the undeoxidized molten steel through the vacuum tank and ladle. After refining, when adding Al to the molten steel in the vacuum tank and deoxidizing the molten steel to melt the manganese-containing low carbon steel, the above-described reduced pressure performed in a state where the supply of oxygen source is stopped When decarburizing and refining, carbon-containing manganese-based alloy iron is added to the molten steel in the vacuum chamber, and the carbon in the manganese-based alloy iron is oxidized and removed with dissolved oxygen in the undeoxidized molten steel. And
この場合、前記マンガン系合金鉄によって溶鋼に持ち込まれる炭素量が多くなると、溶存酸素だけでは脱炭に必要とする酸素量が不足し、目標とする炭素濃度まで脱炭できなくなるので、酸素源を供給して行う脱炭精錬、つまり送酸脱炭精錬の終了時での溶鋼中溶存酸素濃度及び溶鋼中炭素濃度に応じて、マンガン系合金鉄の添加量を、下記の(1)式の範囲内に調整することが好ましい。 In this case, if the amount of carbon brought into the molten steel by the manganese-based alloy iron increases, the amount of oxygen necessary for decarburization is insufficient with only dissolved oxygen, and it becomes impossible to decarburize to the target carbon concentration. Depending on the dissolved oxygen concentration in the molten steel and the carbon concentration in the molten steel at the end of the decarburizing and refining, that is, the acid feeding decarburization refining, the addition amount of manganese-based alloy iron is within the range of the following formula (1) It is preferable to adjust within.
即ち、溶鋼の脱炭反応は「C+O→CO」の反応で進むことから、酸素源を供給して行う脱炭精錬の終了時での溶鋼中溶存酸素濃度が、それ以降に脱炭する予定の炭素量よりも化学当量的に多いか或いは同等となるように、炭素を含有するマンガン系合金鉄の添加量を調整することが好ましい。
[%O]≧([%C]-[%C]f+(W×ηC×1/1000))×4/3 …(1)
但し、(1)式において、[%O]は、酸素源を供給して行う脱炭精錬終了時の溶鋼中溶存酸素濃度(質量%)、[%C]は、酸素源を供給して行う脱炭精錬終了時の溶鋼中炭素濃度(質量%)、[C]fは、減圧下での脱炭精錬終了時の目標溶鋼中炭素濃度(質量%)、Wは、炭素を含有するマンガン系合金鉄の溶鋼トンあたりの添加量(kg/t)、ηCは、炭素を含有するマンガン系合金鉄の炭素濃度(質量%)である。
That is, since the decarburization reaction of molten steel proceeds by the reaction of “C + O → CO”, the dissolved oxygen concentration in the molten steel at the end of decarburization refining performed by supplying an oxygen source is scheduled to be decarburized thereafter. It is preferable to adjust the addition amount of manganese-based alloy iron containing carbon so that it is more or equivalent in chemical equivalent than the carbon amount.
[% O] ≧ ([% C]-[% C] f + (W × η C × 1/1000)) × 4/3… (1)
However, in the formula (1), [% O] is an oxygen concentration (mass%) in molten steel at the end of decarburization refining performed by supplying an oxygen source, and [% C] is performed by supplying an oxygen source. Carbon concentration (mass%) in molten steel at the end of decarburization refining, [C] f is the target carbon concentration (mass%) in molten steel at the end of decarburization refining under reduced pressure, and W is a manganese-based carbon-containing carbon Addition amount (kg / t) per ton of molten steel of alloy iron, η C is the carbon concentration (mass%) of manganese-based alloy iron containing carbon.
本発明においてマンガン系合金鉄と定義した合金鉄の炭素濃度は、JIS G 2301及びJIS G 2304によれば、高炭素フェロマンガンは7.5質量%以下、中炭素フェロマンガンは2.0質量%以下、低炭素フェロマンガンは1.0質量%以下、シリコマンガンは2.0質量%以下であり、従って、(1)式を算出する際には、ηCとして、各合金鉄の製造会社から送付される化学成分値を使用すればよいが、例えば、高炭素フェロマンガンの場合は7.0質量%、中炭素フェロマンガンは2.0質量%、低炭素フェロマンガンは1.0質量%、シリコマンガンは2.0質量%としても構わない。因みに、電解マンガンの場合には、ηCはゼロとして計算することができる。 According to JIS G 2301 and JIS G 2304, the carbon concentration of alloy iron defined as manganese-based alloy iron in the present invention is 7.5% by mass or less for high carbon ferromanganese and 2.0% by mass for medium carbon ferromanganese. Hereinafter, low carbon ferromanganese is 1.0 mass% or less, and silicomanganese is 2.0 mass% or less. Therefore, when calculating the formula (1), η C is used from each alloy iron manufacturer. The chemical component values sent may be used, for example, 7.0% by mass for high carbon ferromanganese, 2.0% by mass for medium carbon ferromanganese, 1.0% by mass for low carbon ferromanganese, Silicomanganese may be 2.0% by mass. Incidentally, in the case of electrolytic manganese, η C can be calculated as zero.
次に、本発明の実施の形態を説明する。 Next, an embodiment of the present invention will be described.
高炉から出銑された溶銑を溶銑鍋やトピードカーなどの溶銑搬送用容器で受銑し、次工程の脱炭精錬を行う転炉に搬送する。通常、この搬送途中で、溶銑に対して脱硫処理や脱燐処理などの溶銑予備処理が施されており、本発明においては、マンガン含有低炭素鋼の成分規格上からは溶銑予備処理が必要でない場合でも、安価なマンガン源としてマンガン鉱石を転炉内に添加し、転炉脱炭精錬におけるマンガン鉱石の歩留まりを上昇させるために、溶銑予備処理、特に脱燐処理を実施することが好ましい。 The hot metal discharged from the blast furnace is received in a hot metal transfer container such as a hot metal ladle or topped car, and transferred to a converter for decarburization and refining in the next process. Usually, hot metal pretreatment such as desulfurization treatment or dephosphorization treatment is applied to the hot metal during the conveyance, and in the present invention, no hot metal pretreatment is required in terms of the component specifications of the manganese-containing low carbon steel. Even in such a case, it is preferable to perform hot metal pretreatment, particularly dephosphorization treatment, in order to add manganese ore as an inexpensive manganese source into the converter and increase the yield of manganese ore in converter decarburization refining.
転炉精錬は、マンガン源としてマンガン鉱石を添加しつつ、必要に応じて少量の生石灰などを造滓剤として用い、酸素ガスを上吹きまたは底吹きして大気圧下で溶銑の脱炭精錬を行う。この場合に、脱炭精錬終了後、転炉から取鍋などの溶鋼搬送容器への出鋼時に高炭素フェロマンガンなどの安価なマンガン系合金鉄を溶鋼に添加しても構わない。尚、次工程は、RH真空脱ガス装置での真空脱炭精錬であるので、出鋼時、溶鋼にはAl及びSiを添加せず、つまり、Al及びSiによる脱酸を実施せずに溶鋼を未脱酸状態のままRH真空脱ガス装置に搬送する。 In converter refining, manganese ore is added as a manganese source, and a small amount of quicklime is used as a slagging agent as required, and oxygen gas is blown up or bottom to decarburize and refining hot metal at atmospheric pressure. Do. In this case, after completion of decarburization refining, inexpensive manganese-based alloy iron such as high carbon ferromanganese may be added to the molten steel when steel is discharged from the converter to a molten steel transfer container such as a ladle. In addition, since the next process is vacuum decarburization refining with an RH vacuum degassing apparatus, at the time of steel extraction, Al and Si are not added to the molten steel, that is, the molten steel is not subjected to deoxidation with Al and Si. Is transported to the RH vacuum degassing apparatus in an undeoxidized state.
マンガン鉱石や高炭素フェロマンガンなどの安価なマンガン源を使用することにより、出鋼後の溶鋼中の炭素濃度は必然的に高くなるが、それでも、出鋼時にマンガン系合金鉄を添加する場合も含め、出鋼後の溶鋼中の炭素濃度を0.2質量%以下に抑えることが好ましい。溶鋼の炭素濃度が0.2質量%を越えると、次工程のRH真空脱ガス装置における真空脱炭精錬に長時間を費やし、RH真空脱ガス装置の生産性の低下のみならず、真空脱炭精錬時間の延長による温度補償として出鋼時の溶鋼温度を高くする必要が生じ、これに起因する鉄歩留まりの低下や耐火物損耗量の増大などによって製造コストが上昇するので好ましくない。 By using an inexpensive manganese source such as manganese ore or high carbon ferromanganese, the carbon concentration in the molten steel after steel is inevitably increased, but even when manganese-based alloy iron is added during steel production, Including, it is preferable to suppress the carbon concentration in the molten steel after steel output to 0.2% by mass or less. When the carbon concentration of the molten steel exceeds 0.2% by mass, it takes a long time for vacuum decarburization refining in the RH vacuum degassing apparatus in the next process, not only lowering the productivity of the RH vacuum degassing apparatus, but also vacuum decarburization. As temperature compensation by extending the refining time, it is necessary to increase the molten steel temperature at the time of steel output, which is not preferable because the manufacturing cost increases due to a decrease in iron yield and an increase in refractory wear due to this.
次いで、この溶鋼に対してRH真空脱ガス装置において真空脱炭精錬を実施する。図1に、本発明を実施する際に用いたRH真空脱ガス装置の概略縦断面図を示す。図1において、1はRH真空脱ガス装置、2は取鍋、3は溶鋼、4はスラグ、5は真空槽、6は上部槽、7は下部槽、8は上昇側浸漬管、9は下降側浸漬管、10は環流用ガス吹き込み管、11はダクト、12は原料投入口、13は上吹きランスであり、真空槽5は上部槽6と下部槽7とから構成され、また、上吹きランス13は上下移動が可能となっており、この上吹きランス13から、酸素ガス及び酸素ガスとArガスなどの不活性ガスとの混合ガスが真空槽5の内部の溶鋼3の湯面に吹き付けられるようになっている。
Next, vacuum decarburization refining is performed on the molten steel in an RH vacuum degassing apparatus. FIG. 1 shows a schematic longitudinal sectional view of an RH vacuum degassing apparatus used when carrying out the present invention. In FIG. 1, 1 is a RH vacuum degassing device, 2 is a ladle, 3 is molten steel, 4 is a slag, 5 is a vacuum tank, 6 is an upper tank, 7 is a lower tank, 8 is a rising side dip tube, and 9 is a lowering Side dip pipe, 10 is a reflux gas blow pipe, 11 is a duct, 12 is a raw material inlet, 13 is an upper blow lance, and the
RH真空脱ガス装置1では、取鍋2を昇降装置(図示せず)にて上昇させ、上昇側浸漬管8及び下降側浸漬管9を取鍋内の溶鋼3に浸漬させる。そして、環流用ガス吹き込み管10から上昇側浸漬管8の内部に環流用Arガスを吹き込むとともに、真空槽5の内部をダクト11に連結される排気装置(図示せず)にて排気して真空槽5の内部を減圧する。真空槽5の内部が減圧されると、取鍋内の溶鋼3は、環流用ガス吹き込み管10から吹き込まれるArガスによるガスリフト効果によって、Arガスとともに上昇側浸漬管8を上昇して真空槽5の内部に流入し、その後、下降側浸漬管9を経由して取鍋2に戻る流れ、所謂、環流を形成してRH真空脱ガス精錬が施される。
In the RH vacuum degassing apparatus 1, the
溶鋼3の環流が形成されたなら、上吹きランス13から酸素ガス(工業用純酸素)或いは酸素ガスと不活性ガスとの混合ガスを真空槽内の溶鋼3に吹き付け、送酸脱炭精錬を開始する。溶鋼中の炭素と供給される酸素ガスとの反応(C+O→CO)が生じ、溶鋼中の炭素はCOガスとなって排ガスとともに真空槽5からダクト11を介して排出され、溶鋼3に対して送酸脱炭精錬が施される。この送酸脱炭精錬の経過に伴って溶鋼中の炭素濃度は低下する。この場合に供給される酸素ガスの一部は溶鋼3に溶解して溶存酸素濃度を上昇させる。本発明においては、溶鋼中の炭素濃度が鋼材の成分規格などから定まる目標炭素濃度[C]f(=環流脱炭精錬後の目標炭素濃度)よりも高い時点で、上吹きランス13からの酸素ガスの供給を停止して送酸脱炭精錬を終了し、続けて、環流脱炭精錬に移行する。
If the recirculation of the
上吹きランス13からの酸素ガスの供給が無くなることで、真空槽内の雰囲気圧力が低下して真空度が高くなり、溶鋼3は未脱酸状態であるので、高真空下の真空槽5の雰囲気に曝されることで、真空槽内において、溶鋼中の炭素と溶存酸素との反応(C+O→CO)が生じ、溶鋼中の炭素はCOガスとなって排ガスとともに真空槽5からダクト11を介して排出され、溶鋼3に対して環流脱炭精錬が施される。
Since the supply of oxygen gas from the
この環流脱炭精錬に移行したなら、直ちに、原料投入口12を介して高炭素フェロマンガンなどの炭素を含有するマンガン系合金鉄を真空槽内の溶鋼3に添加する。このマンガン系合金鉄の添加量は、送酸脱炭精錬終了時の溶鋼中の溶存酸素濃度、炭素濃度、及び環流脱炭精錬後の目標炭素濃度([C]f)に照らし合わせ、上記(1)式を満足する範囲内とすることが好ましい。マンガン系合金鉄の添加時期は、マンガン系合金鉄に含有される炭素の脱炭時間を確保する観点から、環流脱炭精錬のなるべく早い時点とすることが好ましい。尚、送酸脱炭精錬終了時の溶鋼中の溶存酸素濃度は、酸素濃淡電池を利用した酸素プローブで測定でき、送酸脱炭精錬終了時の溶鋼中の炭素濃度は、溶鋼からの採取試料の化学分析や、送酸脱炭精錬開始前の溶鋼中炭素濃度と酸素ガス供給量とから算出するなどして把握することができる。
Immediately after the transition to the reflux decarburization refining, manganese-based alloy iron containing carbon such as high carbon ferromanganese is added to the
使用するマンガン系合金鉄としては、高炭素フェロマンガン、中炭素フェロマンガン、低炭素フェロマンガン、シリコマンガンの何れであっても構わないが、高炭素フェロマンガンが最も安価であることから、溶鋼に持ち込む炭素量に余裕のある限り、高炭素フェロマンガンを使用することが好ましい。但し、(1)式を満足させるために、高炭素フェロマンガン以外を使用することも当然起こり得る。 The manganese-based alloy iron to be used may be any of high carbon ferromanganese, medium carbon ferromanganese, low carbon ferromanganese, and silicomanganese, but since high carbon ferromanganese is the cheapest, It is preferable to use high carbon ferromanganese as long as there is a margin in the amount of carbon to be brought in. However, in order to satisfy the formula (1), it is naturally possible to use other than high carbon ferromanganese.
溶鋼3の炭素濃度が目標炭素濃度([C]f)以下になるまで環流脱炭精錬を継続し、溶鋼3の炭素濃度が目標炭素濃度([C]f)以下の所定の値になったなら、原料投入口12から溶鋼3にAlなどの強脱酸剤を添加して溶鋼3を脱酸処理する。Alなどの強脱酸剤の添加により溶鋼3の溶存酸素濃度は急激に低下して、環流脱炭精錬が終了する。
The reflux decarburization refining was continued until the carbon concentration of the
環流脱炭精錬の終了後も更に数分間程度の環流を継続し、必要に応じて、Al、Si、Mn、Ni、Cr、Cu、Nb、Tiなどの成分調整剤を原料投入口12から溶鋼3に投入して溶鋼3の成分を調整する。その後、真空槽5の内部を大気圧に戻してRH真空脱ガス精錬を終了し、マンガン含有低炭素鋼を溶製する。
After recirculation decarburization and refining, the recirculation is continued for about several minutes, and if necessary, component modifiers such as Al, Si, Mn, Ni, Cr, Cu, Nb, and Ti are supplied from the
以上説明したように、本発明によれば、溶鋼に対してRH真空脱ガス装置での真空脱炭精錬を施してマンガン含有低炭素鋼を溶製するにあたり、高炭素フェロマンガンなどの炭素を含有するマンガン系合金鉄をマンガン源として使用しても、真空脱炭精錬におけるマンガンの酸化ロスを抑制することができると同時に、マンガン系合金鉄中の炭素による溶鋼の炭素濃度ピックアップを抑制することができ、マンガン含有低炭素鋼を従来に比較して安価に溶製することが可能となる。 As described above, according to the present invention, when molten steel is subjected to vacuum decarburization refining in an RH vacuum degassing apparatus to produce manganese-containing low carbon steel, carbon such as high carbon ferromanganese is contained. Even if manganese-based alloy iron is used as a manganese source, it is possible to suppress manganese oxidation loss in vacuum decarburization refining, and at the same time, to suppress carbon concentration pickup of molten steel due to carbon in manganese-based alloy iron. This makes it possible to produce manganese-containing low-carbon steel at a lower cost than in the past.
尚、上記説明では、送酸脱炭精錬における酸素源として酸素ガスを用いた例で説明したが、鉄鉱石やミルスケールなどの酸化鉄を酸素源として使用することも可能である。酸化鉄は原料投入口12から真空槽内の溶鋼3に投入すればよい。また、酸素源として酸素ガスと酸化鉄とを併用することも可能である。
In the above description, an example in which oxygen gas is used as an oxygen source in the acid-feed decarburization refining has been described, but iron oxide such as iron ore or mill scale can also be used as the oxygen source. What is necessary is just to throw iron oxide into the
高炉から出銑された溶銑に対して脱硫処理、脱燐処理の溶銑予備処理を施し、この溶銑を用いて転炉脱炭精錬して溶鋼を溶製し、次いで、得られた溶鋼をRH真空脱ガス装置で真空脱炭精錬してマンガン含有低炭素鋼を溶製する試験(試験番号1〜11)を実施した。試験番号1〜3、6、8〜11では、転炉においてマンガン源としてマンガン鉱石を添加してマンガン濃度を上昇させ、得られた350トンの溶鋼を未脱酸のまま取鍋に出鋼した。一方、試験番号4、5、7では、転炉においてマンガン鉱石を添加せず通常の脱炭精錬を行い、得られた350トンの溶鋼を未脱酸のまま取鍋に出鋼した。出鋼時の溶鋼成分は、炭素が0.03〜0.06質量%、珪素が0.05質量%以下、マンガンが0.1〜0.8質量%、燐が0.03質量%以下、硫黄が0.003質量%以下であった。この溶鋼をRH真空脱ガス装置に搬送し、真空脱炭精錬の条件を種々変更してマンガン含有低炭素鋼を溶製した。RH真空脱ガス装置への到着時の溶鋼中の溶存酸素濃度は0.03〜0.07質量%であった。
The hot metal discharged from the blast furnace is subjected to desulfurization treatment and dephosphorization pretreatment, and the molten steel is melted by decarburizing and refining the converter using this hot metal, and then the obtained molten steel is subjected to RH vacuum. Tests (test numbers 1 to 11) for melting manganese-containing low carbon steel by vacuum decarburization refining with a degasser were carried out. In test numbers 1 to 3, 6, and 8 to 11, manganese ore was added as a manganese source in the converter to increase the manganese concentration, and the obtained 350 tons of molten steel was put into a ladle with no deoxidation. . On the other hand, in
RH真空脱ガス装置では、環流用Arガス流量を1500NL/min、送酸脱炭精錬時の真空槽内の真空度を6.7〜40kPa、上吹きランスからの酸素ガス供給量を2000Nm3/h、送酸時の上吹きランスのランス高さ(真空槽内溶鋼湯面とランス先端との距離)は6mの一定とした。 In the RH vacuum degassing apparatus, the flow rate of Ar gas for reflux is 1500 NL / min, the degree of vacuum in the vacuum tank during acid feeding decarburization refining is 6.7 to 40 kPa, and the amount of oxygen gas supplied from the top blowing lance is 2000 Nm 3 / h, The lance height (distance between the molten steel surface in the vacuum chamber and the tip of the lance) of the top blowing lance at the time of acid feeding was fixed at 6 m.
真空脱炭精錬中に添加する、炭素を含有するマンガン系合金鉄としては、炭素含有量が約7質量%、マンガン含有量が約75質量%で、粒径が5〜10mmである高炭素フェロマンガンを使用した。そして、溶製方法として、(1)高炭素フェロマンガンを真空脱炭精錬初期の送酸脱炭精錬中に添加して溶製する方法(比較例)、(2)高炭素フェロマンガンを送酸脱炭終了後の環流脱炭精錬中に添加して溶製する方法(本発明例)、(3)高炭素フェロマンガンは添加せず、真空脱炭精錬後にAlで脱酸してから電解マンガンを添加して溶製する方法(従来例)、の3種類の方法で実施した。また、高炭素フェロマンガンの添加だけでは溶鋼のマンガン濃度を確保できない場合には、環流脱炭精錬後のAl脱酸後に、電解マンガンを添加した。高炭素フェロマンガンの添加速度は150〜250kg/minであり、高炭素フェロマンガンの添加量は1000kgの一定とした。 Carbon-containing manganese-based alloy iron added during vacuum decarburization refining has a carbon content of about 7% by mass, a manganese content of about 75% by mass, and a high carbon ferromagnet having a particle size of 5 to 10 mm. Manganese was used. And, as a melting method, (1) a method of adding high carbon ferromanganese during acid feeding decarburization and refining in the initial stage of vacuum decarburizing and refining (Comparative Example), (2) high carbon ferromanganese feeding acid Method of adding and melting during reflux decarburization after completion of decarburization (example of the present invention), (3) without adding high carbon ferromanganese, deoxidizing with Al after vacuum decarburization and refining electrolytic manganese It was carried out by three kinds of methods, ie, a method of adding and melting (conventional example). Moreover, when the manganese concentration of molten steel cannot be ensured only by adding high carbon ferromanganese, electrolytic manganese was added after Al deoxidation after reflux decarburization refining. The addition rate of high carbon ferromanganese was 150 to 250 kg / min, and the addition amount of high carbon ferromanganese was constant at 1000 kg.
各試験において、送酸脱炭時間を変化させ、送酸脱炭終了時の溶鋼中溶存酸素濃度を変化させた。また、環流脱炭終了時の目標炭素濃度([C]f)は0.002質量%とした。表1に、各試験操業における高炭素フェロマンガンの添加時期、溶鋼成分の推移、脱炭精錬時間、脱炭量、及びマンガン歩留りなどを示す。尚、表1に示す脱炭量は、RH真空脱ガス装置での精錬前の溶鋼成分値と精錬後の溶鋼成分値との差であり、添加した高炭素フェロマンガンによって溶鋼に持ち込まれた炭素は考慮していない。 In each test, the acid feeding decarburization time was changed, and the dissolved oxygen concentration in the molten steel at the end of the acid feeding decarburization was changed. The target carbon concentration ([C] f ) at the end of the reflux decarburization was 0.002% by mass. Table 1 shows the addition time of high carbon ferromanganese in each test operation, transition of molten steel components, decarburization refining time, decarburization amount, manganese yield, and the like. The decarburization amount shown in Table 1 is the difference between the molten steel component value before refining and the molten steel component value after refining in the RH vacuum degassing apparatus, and the carbon brought into the molten steel by the added high carbon ferromanganese. Is not considered.
表1において、試験No.1〜7は、環流脱炭精錬時に高炭素フェロマンガンを添加した試験(本発明例)であり、試験No.1〜5は、(1)式を満たす範囲で高炭素フェロマンガンを添加した例、試験No.6、7は、(1)式よりも多い量の高炭素フェロマンガンを添加した例であり、試験No.8、9は、送酸脱炭精錬時に高炭素フェロマンガンを添加した試験(比較例)、試験No.10、11は、真空脱炭精錬時は高炭素フェロマンガンを添加せず、真空脱炭精錬終了後のAl脱酸後に電解マンガンを添加した試験(従来例)である。 In Table 1, Test Nos. 1 to 7 are tests (examples of the present invention) in which high carbon ferromanganese was added during reflux decarburization refining, and Test Nos. 1 to 5 were high within the range satisfying the formula (1). Examples in which carbon ferromanganese was added, Test Nos. 6 and 7 were examples in which a higher amount of high carbon ferromanganese was added than in formula (1), and Tests Nos. 8 and 9 were conducted during acid feeding decarburization refining. Tests (Comparative Examples) and Nos. 10 and 11 in which high carbon ferromanganese was added were not added at the time of vacuum decarburization refining, and electrolytic manganese was added after Al deoxidation after vacuum decarburization refining. This is an added test (conventional example).
表1に示すように、試験No.1〜7の本発明例では、高炭素フェロマンガンのマンガン歩留りが84〜86%であり、試験No.10、11の従来例における電解マンガンの歩留りと同等であった。つまり、環流脱炭精錬時には、高炭素フェロマンガンのマンガンの酸化が起きていないことが確認できた。これに対して、試験No.8、9の比較例では、高炭素フェロマンガンのマンガン歩留りは68〜70%程度であり、本発明例に比べて約10%以上マンガン歩留りが低下した。これは、送酸中に高炭素フェロマンガンを添加したことによりマンガンが酸化したためである。 As shown in Table 1, in the present invention examples of Test Nos. 1 to 7, the manganese yield of high carbon ferromanganese is 84 to 86%, which is equivalent to the yield of electrolytic manganese in the conventional examples of Test Nos. 10 and 11. Met. In other words, it was confirmed that manganese oxidation of high carbon ferromanganese did not occur during reflux decarburization refining. On the other hand, in the comparative examples of Test Nos. 8 and 9, the manganese yield of the high carbon ferromanganese was about 68 to 70%, and the manganese yield decreased by about 10% or more compared to the inventive example. This is because manganese was oxidized by the addition of high carbon ferromanganese during acid delivery.
また、脱炭精錬時間に費やした時間を比較すると、図2に示すように、試験No.1〜7の本発明例では、試験No.10、11の従来例と同様に、脱炭精錬前の溶鋼中炭素濃度に比例して脱炭精錬時間が長くなる傾向であるが、試験No.8、9の比較例では脱炭精錬前の溶鋼中炭素濃度と関係無く、脱炭精錬時間が相対的に長くなる傾向であった。これは、試験No.8、9では、高炭素フェロマンガンによって炭素が持ち込まれ、脱炭すべき炭素量が増加したことによる。試験No.1〜7でも高炭素フェロマンガンによって炭素が溶鋼中に持ち込まれるが、試験No.1〜7の場合には、溶鋼中の溶存酸素濃度が高い状態で高炭素フェロマンガンを添加することから、一気に脱炭反応が進行し、脱炭精錬時間が延長しないと考えられる。尚、図2は、脱炭精錬前の溶鋼中炭素濃度と脱炭時間との関係を示す図であり、一般的には、脱炭精錬前の炭素濃度が高くなるほど脱炭時間は長くなる。 Further, comparing the time spent for the decarburization refining time, as shown in FIG. 2, in the present invention example of the test No. 1-7, as in the conventional examples of the test No. 10 and 11, before the decarburization refining. Although the decarburization and refining time tends to be longer in proportion to the carbon concentration in molten steel, the decarburization and refining time is relative in the comparative examples of tests No. 8 and 9, regardless of the carbon concentration in the molten steel before decarburization and refining. Tend to be longer. This is because in Test Nos. 8 and 9, carbon was brought in by high carbon ferromanganese and the amount of carbon to be decarburized increased. In Test No. 1-7, carbon is brought into the molten steel by high carbon ferromanganese, but in the case of Test No. 1-7, high carbon ferromanganese should be added in a state where the dissolved oxygen concentration in the molten steel is high. Therefore, it is considered that the decarburization reaction proceeds at a stretch and the decarburization refining time does not extend. In addition, FIG. 2 is a figure which shows the relationship between the carbon concentration in the molten steel before decarburization refining, and the decarburization time, and generally, the decarburization time becomes long, so that the carbon concentration before decarburization refining becomes high.
RH脱ガス精錬におけるマンガンの歩留りが高く且つ脱炭精錬時間が短いという点では、試験No.10、11の従来例と本発明例とは同等であるが、本発明例は、電解マンガンの使用量を大幅に削減でき、高価な電解マンガンのみを使用した従来例に比較して製造コストを大幅に削減することができるという経済的効果が発現する。 The conventional examples of Test Nos. 10 and 11 and the present invention example are equivalent in that the yield of manganese in RH degassing refining is high and the decarburization refining time is short, but the present invention example uses electrolytic manganese. The economic effect that the amount can be significantly reduced and the manufacturing cost can be greatly reduced as compared with the conventional example using only expensive electrolytic manganese is exhibited.
尚、試験No.6、7では、環流脱炭精錬前の溶鋼中溶存酸素濃度よりも脱炭すべき炭素量の方が化学量論的に多くなり、環流脱炭精錬終了時の溶鋼中炭素濃度は目標炭素濃度([C]f)の0.002質量%を達成できなかったが、今回の目標炭素濃度([C]f)は鋼材規格よりも低く設定しており、鋼材の製品規格は満足した。但し、環流脱炭精錬を効果的に行うためには、(1)式を満足する条件で操業することが好ましいことが確認できた。 In Test Nos. 6 and 7, the amount of carbon to be decarburized is stoichiometrically higher than the dissolved oxygen concentration in the molten steel before reflux decarburization refining, and the carbon in molten steel at the end of reflux decarburization refining. concentration was not able to achieve 0.002 wt% of the target carbon concentration ([C] f), the present target carbon concentration ([C] f) is set lower than steel standard steel product standards Was satisfied. However, it has been confirmed that it is preferable to operate under conditions that satisfy the formula (1) in order to effectively perform the reflux decarburization refining.
1 RH真空脱ガス装置
2 取鍋
3 溶鋼
4 スラグ
5 真空槽
6 上部槽
7 下部槽
8 上昇側浸漬管
9 下降側浸漬管
10 環流用ガス吹き込み管
11 ダクト
12 原料投入口
13 上吹きランス
DESCRIPTION OF SYMBOLS 1 RH
Claims (2)
[%O]≧([%C]-[%C]f+(W×ηC×1/1000))×4/3 …(1)
但し、(1)式において、[%O]は、酸素源を供給して行う脱炭精錬終了時の溶鋼中溶存酸素濃度(質量%)、[%C]は、酸素源を供給して行う脱炭精錬終了時の溶鋼中炭素濃度(質量%)、[C]fは、減圧下での脱炭精錬終了時の目標溶鋼中炭素濃度(質量%)、Wは、炭素を含有するマンガン系合金鉄の溶鋼トンあたりの添加量(kg/t)、ηCは、炭素を含有するマンガン系合金鉄の炭素濃度(質量%)である。 Depending on the dissolved oxygen concentration in the molten steel and the carbon concentration in the molten steel at the end of decarburization refining under reduced pressure by supplying the oxygen source, the amount of manganese-based alloy iron added is expressed by the following formula (1): The method for melting manganese-containing low carbon steel according to claim 1, wherein the method is adjusted within a range.
[% O] ≧ ([% C]-[% C] f + (W × η C × 1/1000)) × 4/3… (1)
However, in the formula (1), [% O] is an oxygen concentration (mass%) in molten steel at the end of decarburization refining performed by supplying an oxygen source, and [% C] is performed by supplying an oxygen source. Carbon concentration (mass%) in molten steel at the end of decarburization refining, [C] f is the target carbon concentration (mass%) in molten steel at the end of decarburization refining under reduced pressure, and W is a manganese-based carbon-containing carbon Addition amount (kg / t) per ton of molten steel of alloy iron, η C is the carbon concentration (mass%) of manganese-based alloy iron containing carbon.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010074016A JP2011208170A (en) | 2010-03-29 | 2010-03-29 | Method of producing manganese-containing low carbon steel |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010074016A JP2011208170A (en) | 2010-03-29 | 2010-03-29 | Method of producing manganese-containing low carbon steel |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2011208170A true JP2011208170A (en) | 2011-10-20 |
Family
ID=44939530
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010074016A Withdrawn JP2011208170A (en) | 2010-03-29 | 2010-03-29 | Method of producing manganese-containing low carbon steel |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2011208170A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014168270A1 (en) * | 2013-04-11 | 2014-10-16 | 주식회사 포스코 | Manganese-containing molten steel production method, temperature-holding furnace and manganese-containing molten steel production equipment using temperature-holding furnace |
CN105452504A (en) * | 2013-04-11 | 2016-03-30 | 株式会社Posco | Manganese-containing molten steel production method, temperature-holding furnace and manganese-containing molten steel production equipment using temperature-holding furnace |
JP2016188401A (en) * | 2015-03-30 | 2016-11-04 | Jfeスチール株式会社 | Method for melting high manganese steel |
KR20190076314A (en) * | 2017-12-22 | 2019-07-02 | 주식회사 포스코 | Method for Refining Low Carbon Steel |
CN110684883A (en) * | 2019-11-18 | 2020-01-14 | 马鞍山钢铁股份有限公司 | Steelmaking method for reducing tapping temperature of vacuum decarburization steel converter |
CN111020117A (en) * | 2019-12-20 | 2020-04-17 | 北京科技大学 | A method to promote RH decarburization |
CN113832285A (en) * | 2021-09-15 | 2021-12-24 | 北京首钢股份有限公司 | Ultralow-carbon manganese-containing steel and low-cost production method thereof |
-
2010
- 2010-03-29 JP JP2010074016A patent/JP2011208170A/en not_active Withdrawn
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014168270A1 (en) * | 2013-04-11 | 2014-10-16 | 주식회사 포스코 | Manganese-containing molten steel production method, temperature-holding furnace and manganese-containing molten steel production equipment using temperature-holding furnace |
CN105452504A (en) * | 2013-04-11 | 2016-03-30 | 株式会社Posco | Manganese-containing molten steel production method, temperature-holding furnace and manganese-containing molten steel production equipment using temperature-holding furnace |
JP2016188401A (en) * | 2015-03-30 | 2016-11-04 | Jfeスチール株式会社 | Method for melting high manganese steel |
KR20190076314A (en) * | 2017-12-22 | 2019-07-02 | 주식회사 포스코 | Method for Refining Low Carbon Steel |
KR102168833B1 (en) * | 2017-12-22 | 2020-10-22 | 주식회사 포스코 | Method for Refining Low Carbon Steel |
CN110684883A (en) * | 2019-11-18 | 2020-01-14 | 马鞍山钢铁股份有限公司 | Steelmaking method for reducing tapping temperature of vacuum decarburization steel converter |
CN111020117A (en) * | 2019-12-20 | 2020-04-17 | 北京科技大学 | A method to promote RH decarburization |
CN113832285A (en) * | 2021-09-15 | 2021-12-24 | 北京首钢股份有限公司 | Ultralow-carbon manganese-containing steel and low-cost production method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5904237B2 (en) | Melting method of high nitrogen steel | |
JP2011208170A (en) | Method of producing manganese-containing low carbon steel | |
JPWO2017145877A1 (en) | Method for refining molten steel in vacuum degassing equipment | |
JP5386825B2 (en) | Method for melting Mn-containing ultra-low carbon steel | |
JP6551626B2 (en) | Method of melting high manganese steel | |
JP5601132B2 (en) | Melting method of low carbon aluminum killed steel with excellent cleanability | |
JP5509876B2 (en) | Melting method of low carbon high manganese steel | |
JP5614306B2 (en) | Method for melting manganese-containing low carbon steel | |
JP6269550B2 (en) | Method for melting high manganese steel | |
JP5831194B2 (en) | Method for melting manganese-containing low carbon steel | |
JP4742740B2 (en) | Method for melting low-sulfur steel | |
JP4844552B2 (en) | Melting method of low carbon high manganese steel | |
JP4687103B2 (en) | Melting method of low carbon aluminum killed steel | |
JP4085898B2 (en) | Melting method of low carbon high manganese steel | |
JP2018100427A (en) | Method for producing low sulfur steel | |
JP4534734B2 (en) | Melting method of low carbon high manganese steel | |
KR101045972B1 (en) | Refining method of highly clean ultra low carbon steel for soft two-piece can | |
JP4686917B2 (en) | Melting method of molten steel in vacuum degassing equipment | |
JP5131827B2 (en) | Method for heating molten steel and method for producing rolled steel | |
JP5621618B2 (en) | Method for melting manganese-containing low carbon steel | |
JP5315669B2 (en) | Method for refining molten steel with RH vacuum degassing equipment | |
JP6028750B2 (en) | Method for melting manganese-containing low carbon steel | |
JP5200501B2 (en) | Deoxidation method for molten steel | |
JP4020125B2 (en) | Method of melting high cleanliness steel | |
JP2023003384A (en) | Denitrification treatment method of molten steel |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20120321 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20120327 |
|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20130604 |