[go: up one dir, main page]

JP2011194342A - Honeycomb structure and honeycomb catalytic substance - Google Patents

Honeycomb structure and honeycomb catalytic substance Download PDF

Info

Publication number
JP2011194342A
JP2011194342A JP2010065125A JP2010065125A JP2011194342A JP 2011194342 A JP2011194342 A JP 2011194342A JP 2010065125 A JP2010065125 A JP 2010065125A JP 2010065125 A JP2010065125 A JP 2010065125A JP 2011194342 A JP2011194342 A JP 2011194342A
Authority
JP
Japan
Prior art keywords
honeycomb
catalyst
honeycomb structure
partition walls
catalyst body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010065125A
Other languages
Japanese (ja)
Inventor
Eriko Kodama
絵梨子 小玉
Shogo Hirose
正悟 廣瀬
Yukio Miyairi
由紀夫 宮入
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP2010065125A priority Critical patent/JP2011194342A/en
Publication of JP2011194342A publication Critical patent/JP2011194342A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Ceramic Products (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)
  • Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a honeycomb structure which can support a large amount of catalyst inside a pore of a bulkhead, and a honeycomb substance which supports a large amount of catalyst and also, includes a bulkhead with low pressure loss.SOLUTION: This honeycomb structure 1 includes a plurality of cells 5 serving as a flow path for fluid which are compartmentalized by the porous bulkhead 3. The bulkhead 3 has a porosity of 60 to 75%, an average pore diameter of 15 to 60 μm and a thickness of 0.05 to 0.51 μm. In addition, the density of the cell 5 is 15 to 31 (cell/cm). Also, the honeycomb catalytic substance 30 supports a catalyst 21b inside the pore 11 of the bulkhead 3 of the honeycomb structure 1.

Description

本発明は、内燃機関の排ガス浄化等のために使用されるハニカム構造体およびハニカム触媒体に関する。   The present invention relates to a honeycomb structure and a honeycomb catalyst body used for exhaust gas purification of an internal combustion engine.

自動車のエンジンなど内燃機関の排ガスには、微粒子状物質や、NO、CO、HCなどが含まれている。排ガス中の微粒子状物質を捕集するためには、多孔質の隔壁を有するハニカム構造体が用いられている。また、ハニカム構造体は、NO、CO、HCを酸化または還元してN、HO、COに生成する化学反応を進めるために、これら化学反応の触媒を隔壁に担持させることで、ハニカム触媒体としても使用されている(例えば、特許文献1)。 The exhaust gas from an internal combustion engine such as an automobile engine contains particulate matter, NO x , CO, HC and the like. In order to collect particulate matter in exhaust gas, a honeycomb structure having porous partition walls is used. In addition, the honeycomb structure has a catalyst for these chemical reactions supported on partition walls in order to advance a chemical reaction in which NO x , CO, and HC are oxidized or reduced to generate N 2 , H 2 O, and CO 2. It is also used as a honeycomb catalyst body (for example, Patent Document 1).

特開2003−33664号公報JP 2003-33664 A

しかしながら、従来のハニカム構造体では、実用に耐える機械的強度の隔壁とし、この隔壁に触媒を担持させてハニカム触媒体を作製した場合、ハニカム触媒体の圧力損失が大きくなる問題が依然として残されている。   However, when the conventional honeycomb structure has partition walls with mechanical strength that can withstand practical use, and the catalyst is supported on the partition walls, a problem remains that the pressure loss of the honeycomb catalyst body increases. Yes.

上記の問題に鑑みて、本発明の課題は、隔壁に多量の触媒を担持することが可能なハニカム構造体、および、多量の触媒を担持しかつ圧力損失が低い隔壁を有するハニカム触媒体を提供することにある。   In view of the above problems, an object of the present invention is to provide a honeycomb structure capable of supporting a large amount of catalyst on partition walls, and a honeycomb catalyst body having partition walls supporting a large amount of catalyst and low pressure loss. There is to do.

上記課題を解決するために完成するに至った、本発明は、以下に示すハニカム構造体およびハニカム触媒体である。   The present invention, which has been completed in order to solve the above problems, is the following honeycomb structure and honeycomb catalyst body.

[1] 多孔質の隔壁によって区画形成された流体の流路となる複数のセルを有し、前記隔壁が、気孔率60〜75%、平均細孔径15〜60μm、および厚さ0.05〜0.51mmであり、前記セルの密度が、15〜31(個/cm)であるハニカム構造体。 [1] A plurality of cells serving as fluid flow paths partitioned by porous partition walls, the partition walls having a porosity of 60 to 75%, an average pore diameter of 15 to 60 μm, and a thickness of 0.05 to A honeycomb structure having a cell density of 0.51 mm and a density of 15 to 31 cells / cm 2 .

[2] 前記[1]に記載のハニカム構造体において、前記隔壁の細孔内に触媒を担持させたハニカム触媒体。 [2] A honeycomb catalyst body according to [1], wherein a catalyst is supported in the pores of the partition walls.

[3] 前記触媒が、前記隔壁の前記細孔の内壁上を厚さ50〜200μmにて被覆している前記[2]に記載のハニカム触媒体。 [3] The honeycomb catalyst body according to [2], wherein the catalyst covers the inner walls of the pores of the partition walls with a thickness of 50 to 200 μm.

[4] 前記セルが、前記セルの延びる方向に対して垂直な断面において三角形、四角形、六角形、円のうちのいずれかの形状を有する前記[2]または[3]に記載のハニカム触媒体。 [4] The honeycomb catalyst body according to [2] or [3], wherein the cell has a shape of any one of a triangle, a quadrangle, a hexagon, and a circle in a cross section perpendicular to the extending direction of the cell. .

[5] 前記隔壁が、コージェライト化原料、アルミナ、ムライト及びリチウムアルミノシリケート(LAS)、チタン酸アルミニウム、ジルコニア、炭化珪素、窒化珪素、活性炭、ゼオライトからなる群から選択される1種以上を主成分として形成されている前記[2]〜[4]のいずれかに記載のハニカム触媒体。 [5] The partition mainly includes at least one selected from the group consisting of a cordierite forming raw material, alumina, mullite, and lithium aluminosilicate (LAS), aluminum titanate, zirconia, silicon carbide, silicon nitride, activated carbon, and zeolite. The honeycomb catalyst body according to any one of [2] to [4], which is formed as a component.

本発明のハニカム構造体は、隔壁に多量の触媒を担持することが可能である。本発明のハニカム触媒体は、多量の触媒を担持しかつ圧力損失が低い隔壁を有する。   The honeycomb structure of the present invention can carry a large amount of catalyst on the partition walls. The honeycomb catalyst body of the present invention has partition walls that support a large amount of catalyst and have low pressure loss.

本発明のハニカム構造体の一実施形態の斜視図である。1 is a perspective view of an embodiment of a honeycomb structure of the present invention. 図1中のA−A’断面の模式図である。It is a schematic diagram of the A-A 'cross section in FIG. 図2中の枠B内を拡大した模式図である。It is the schematic diagram which expanded the inside of the frame B in FIG. 図3に示す隔壁に触媒を担持させた様子を表す模式図である。It is a schematic diagram showing a mode that the catalyst was carry | supported by the partition shown in FIG.

以下、図面を参照しつつ本発明の実施の形態について説明する。本発明は、以下の実施形態に限定されるものではなく、本発明の範囲を逸脱しない限りにおいて、変更、修正、改良を加え得るものである。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. The present invention is not limited to the following embodiments, and changes, modifications, and improvements can be added without departing from the scope of the present invention.

1.ハニカム構造体:
1−1.本発明のハニカム構造体の概要:
図1は、本発明のハニカム構造体の一実施形態の斜視図である。図2は、図1中のA−A’断面の模式図である。図1,2を参照し述べると、本発明のハニカム構造体1は、多孔質の隔壁3によって区画形成された流体の流路となる複数のセル5を有する。そして、本発明のハニカム構造体1は、隔壁3が、気孔率60〜75%、平均細孔径15〜60μm、および厚さ0.05〜0.51mmであり、セル5の密度が、15〜31(個/cm)であることを特徴とする。
1. Honeycomb structure:
1-1. Outline of the honeycomb structure of the present invention:
FIG. 1 is a perspective view of an embodiment of a honeycomb structure of the present invention. FIG. 2 is a schematic diagram of the AA ′ cross section in FIG. 1. Referring to FIGS. 1 and 2, the honeycomb structure 1 of the present invention has a plurality of cells 5 which are fluid flow paths partitioned by porous partition walls 3. In the honeycomb structure 1 of the present invention, the partition walls 3 have a porosity of 60 to 75%, an average pore diameter of 15 to 60 μm, and a thickness of 0.05 to 0.51 mm, and the density of the cells 5 is 15 to 15 mm. 31 (pieces / cm 2 ).

図1を参照し述べると、セル5の密度は、セル5が延びる方向Xに対して垂直な断面における、1平方センチメートル当たりのセル数である。   Referring to FIG. 1, the density of the cells 5 is the number of cells per square centimeter in a cross section perpendicular to the direction X in which the cells 5 extend.

図3は、図2中の枠B内を拡大した模式図であり、図4は、図3に示す隔壁に触媒を担持させた様子を表す模式図である。これらの図を参照し述べると、本発明のハニカム構造体1は、隔壁3が気孔率60〜75%かつ平均細孔径15〜60μmであることにより、隔壁3に触媒21を担持させた場合に、触媒21が隔壁3の細孔11内に多く入り込むができる。そのため、本発明のハニカム構造体1と隔壁の気孔率60%未満のハニカム構造体とを比較すると、両者の間で同量の触媒21を担持した場合、本発明のハニカム構造体1では、触媒21が、隔壁3の細孔11内に入り込める分だけ、隔壁3の外表面15上には薄く重なる。よって、本発明のハニカム構造体1では、隔壁3に触媒21を担持した場合に、隔壁3の厚さと隔壁3の外表面15上に重なる触媒21の厚さとの合計である、実質的な隔壁の厚さを薄くすることができるため、流体が隔壁3を通過する際の圧力損失を低く抑えることができる(図4中の流体Gin参照)。 3 is an enlarged schematic view of the inside of the frame B in FIG. 2, and FIG. 4 is a schematic view showing a state in which the catalyst is supported on the partition walls shown in FIG. Referring to these drawings, the honeycomb structure 1 according to the present invention is obtained when the partition wall 3 has a porosity of 60 to 75% and an average pore diameter of 15 to 60 μm, so that the catalyst 21 is supported on the partition wall 3. A large amount of the catalyst 21 can enter the pores 11 of the partition walls 3. Therefore, when the honeycomb structure 1 of the present invention is compared with the honeycomb structure having a partition wall porosity of less than 60%, when the same amount of the catalyst 21 is supported between the two, the honeycomb structure 1 of the present invention As much as 21 can enter the pores 11 of the partition wall 3, it is thinly overlapped on the outer surface 15 of the partition wall 3. Therefore, in the honeycomb structure 1 of the present invention, when the catalyst 21 is supported on the partition wall 3, the substantial partition wall is the sum of the thickness of the partition wall 3 and the thickness of the catalyst 21 overlapping the outer surface 15 of the partition wall 3. Therefore, it is possible to reduce the pressure loss when the fluid passes through the partition wall 3 (see the fluid Gin in FIG. 4).

また、本発明のハニカム構造体1は、セル5の密度が15〜31(個/cm)であることにより、上記のような気孔率の高い隔壁を有しても、ハニカム構造体の機械的強度を高く維持できる。 Further, since the density of the cells 5 is 15 to 31 (cells / cm 2 ), the honeycomb structure 1 of the present invention has a partition wall with a high porosity as described above. High strength can be maintained.

本発明のハニカム構造体1は、隔壁3の厚さが0.05mm以上であるため、機械的強度が高く維持されるとともに、隔壁3が厚い分だけ、細孔11内に十分な量の触媒21を担持させることも可能になる。本発明のハニカム構造体1は、隔壁3の厚さが0.51mm以下であることにより、隔壁3を通過する流体の圧力損失を低く抑えることができる(図4中の流体Gin参照)。 In the honeycomb structure 1 of the present invention, since the partition wall 3 has a thickness of 0.05 mm or more, the mechanical strength is maintained high, and a sufficient amount of catalyst is provided in the pores 11 as the partition wall 3 is thick. 21 can be carried. In the honeycomb structure 1 of the present invention, when the partition wall 3 has a thickness of 0.51 mm or less, the pressure loss of the fluid passing through the partition wall 3 can be suppressed to a low level (see fluid G in in FIG. 4).

1−2.ハニカム構造体の製造方法:
本発明のハニカム構造体1は、隔壁3がセラミックスを主成分とする材質からなる実施形態を適用できる。この実施形態のハニカム構造体1は、セラミックス原料に、グラファイト、澱粉、吸水性樹脂等の造孔材を含有させた成形原料を作製し、この成形原料を押出成形等によって成形することにより製造することができる。吸着性樹脂の造孔材には、でんぷん系、ポリアクリル酸系、ポリビニルアルコール系、セルロース系、合成ポリマー系等の吸水性樹脂を用いることができる。特に、ポリアクリル酸系の吸水性樹脂は、吸水速度が速いため、水を短時間で吸収でき、混合、混練後の坏土性状の経時変化を起こしにくいため、造孔材として用いることが好ましい。更に、これらの吸水性樹脂の吸水倍率は、通常、10〜20倍であり、12〜20倍が好ましく、15〜20倍が更に好ましい。
1-2. Manufacturing method of honeycomb structure:
The honeycomb structure 1 of the present invention can be applied with an embodiment in which the partition walls 3 are made of a material mainly composed of ceramics. The honeycomb structure 1 of this embodiment is manufactured by producing a forming raw material in which a pore forming material such as graphite, starch, and a water-absorbing resin is contained in a ceramic raw material, and forming the forming raw material by extrusion molding or the like. be able to. As the pore-forming material of the adsorptive resin, water-absorbing resins such as starch, polyacrylic acid, polyvinyl alcohol, cellulose, and synthetic polymer can be used. In particular, the polyacrylic acid-based water-absorbing resin is preferably used as a pore-forming material because it has a high water absorption rate and can absorb water in a short period of time, and is less likely to change over time in the soil properties after mixing and kneading. . Furthermore, the water absorption capacity of these water absorbent resins is usually 10 to 20 times, preferably 12 to 20 times, and more preferably 15 to 20 times.

上記の製造方法の場合、造孔材の含有量は、セラミック原料100質量部に対して、10〜20質量部であることが好ましい。造孔材の平均粒子径は、5〜90μmであることが好ましく、10〜80μmであることが更に好ましい。このように造孔材を含有させた成形原料を用いることによって、気孔率60〜75%かつ平均細孔径15〜60μmの隔壁を有するハニカム構造体を製造できる。   In the case of the above production method, the pore former content is preferably 10 to 20 parts by mass with respect to 100 parts by mass of the ceramic raw material. The average particle diameter of the pore former is preferably 5 to 90 μm, and more preferably 10 to 80 μm. By using the forming raw material containing the pore former as described above, a honeycomb structure having partition walls having a porosity of 60 to 75% and an average pore diameter of 15 to 60 μm can be manufactured.

上記の成形原料には、成形原料の押出性を向上させるために、エチレングリコール、脂肪酸石鹸などの界面活性剤を含有させることができる。この場合、界面活性剤の含有量は、セラミック原料100質量部に対して、3〜20質量部であることが好ましい。   In order to improve the extrudability of the forming raw material, the above-mentioned forming raw material can contain a surfactant such as ethylene glycol and fatty acid soap. In this case, it is preferable that content of surfactant is 3-20 mass parts with respect to 100 mass parts of ceramic raw materials.

なお、成形原料を作製するにあたり、上記の造孔材および界面活性剤以外の材料や、セラミックス原料の種類、成形原料の組成、および各種原料の混合方法などについては、セラミックス原料を所望の形に成形して得られるセラミックス成形体の作製に関する従来の技術を適宜採用することができる。   In preparing the forming raw materials, the materials other than the pore former and the surfactant, the types of ceramic raw materials, the composition of the forming raw materials, and the mixing method of the various raw materials are made into the desired shape. Conventional techniques relating to the production of a ceramic molded body obtained by molding can be appropriately employed.

例えば、隔壁3がセラミックスを主成分とする材質からなる実施形態に関し、コージェライト質の隔壁を有するハニカム構造体を得るには、次に述べる製造方法を適用できる。   For example, regarding the embodiment in which the partition walls 3 are made of a material mainly composed of ceramics, the following manufacturing method can be applied to obtain a honeycomb structure having cordierite partition walls.

最初に、セラミックハニカム状の成形体(以下、「セラミックハニカム成形体」)を成形するための成形原料を調製する。成形原料の主原料としては、耐熱性及び低熱膨張性に優れるコージェライト化原料として、平均粒径5〜30μmのカオリン(Al・2SiO・2HO)0〜20質量%、平均粒径15〜30μmのタルク(3MgO・4SiO・HO)37〜40質量%、平均粒径1〜30μmの水酸化アルミニウム15〜45質量%、平均粒径1〜30μmの酸化アルミニウム0〜15質量%、平均粒径3〜100μmの溶融シリカまたは石英10〜20質量%の組成物を主原料とすることが、好ましい。 First, a forming raw material for forming a ceramic honeycomb-shaped formed body (hereinafter referred to as “ceramic honeycomb formed body”) is prepared. As a main raw material of the molding raw material, as a cordierite forming raw material excellent in heat resistance and low thermal expansion, kaolin (Al 2 O 3 2SiO 2 · 2H 2 O) 0 to 20% by mass with an average particle diameter of 5 to 30 μm, average Talc (3MgO · 4SiO 2 · H 2 O) with a particle size of 15 to 30 μm 37 to 40% by mass, aluminum hydroxide with an average particle size of 1 to 30 μm 15 to 45% by mass, aluminum oxide with an average particle size of 1 to 30 μm 0 to 0% It is preferable to use a composition of 15% by mass of fused silica or quartz having an average particle size of 3 to 100 μm or quartz of 10 to 20% by mass as a main raw material.

上述した成形原料の主原料となるコージェライト化原料に、必要に応じて所望の添加剤を添加してもよい。添加剤としては、バインダ、媒液への分散を促進するための分散剤、気孔を形成するための造孔材等を挙げることが出来る。   A desired additive may be added to the cordierite forming raw material which is the main raw material of the above-described forming raw material, if necessary. Examples of the additive include a binder, a dispersant for promoting dispersion in a liquid medium, and a pore former for forming pores.

バインダとしては、例えば、ヒドロキシプロピルメチルセルロース、メチルセルロース、ヒドロキシエチルセルロース、カルボキシルメチルセルロース、ポリビニルアルコール、ポリエチレンテレフタレート等が、挙げられる。分散剤としては、例えば、エチレングリコール、デキストリン、脂肪酸石鹸、ポリアルコール等が、挙げられる。造孔材としては、例えば、グラファイト、コークス、小麦粉、澱粉、中空あるいは中実樹脂、フライアッシュバルーン、シリカゲル、有機質繊維、無機質繊維、中空繊維等が、挙げられる。バインダは、目的に応じて、1種単独又は2種以上組み合せて、用いることが出来る。   Examples of the binder include hydroxypropyl methylcellulose, methylcellulose, hydroxyethylcellulose, carboxymethylcellulose, polyvinyl alcohol, polyethylene terephthalate and the like. Examples of the dispersant include ethylene glycol, dextrin, fatty acid soap, polyalcohol and the like. Examples of the pore former include graphite, coke, wheat flour, starch, hollow or solid resin, fly ash balloon, silica gel, organic fiber, inorganic fiber, hollow fiber and the like. A binder can be used individually by 1 type or in combination of 2 or more types according to the objective.

セラミックハニカム成形体を成形するための成形原料は、通常、上述した主原料及び必要に応じて添加される添加物の混合原料粉末100質量部に対して、10〜40質量部程度の水を投入後、混練し、可塑性混合物とする。   The forming raw material for forming the ceramic honeycomb formed body is usually charged with about 10 to 40 parts by weight of water with respect to 100 parts by weight of the mixed raw material powder of the main raw material and the additive added as necessary. Thereafter, the mixture is kneaded to obtain a plastic mixture.

そして、この可塑性混合物を成形してセラミックハニカム成形体を得る。成形方法としては、押出成形を挙げることが出来る。この押出成形は、真空土練機、ラム式押出し成形機、2軸スクリュー式連続押出成形機等を用いて行うことが可能である。押出成形では、セルの延びる方向に対して垂直な断面でのセルの形状を三角形、四角形、六角形、円とする場合には、これら形状に対応したスリットが設けられた口金を使用するとよい。   And this plastic mixture is shape | molded and a ceramic honeycomb molded object is obtained. Examples of the molding method include extrusion molding. This extrusion molding can be performed using a vacuum kneader, a ram type extrusion molding machine, a twin screw type continuous extrusion molding machine, or the like. In extrusion molding, when the shape of a cell in a cross section perpendicular to the cell extending direction is a triangle, a quadrangle, a hexagon, or a circle, a die provided with a slit corresponding to these shapes may be used.

次いで、得られたセラミックハニカム成形体を乾燥する。セラミックハニカム成形体を乾燥する方法としては、各種方法で行うことが可能であるが、例えば、熱風乾燥、マイクロ波乾燥、誘電乾燥、減圧乾燥、真空乾燥、凍結乾燥、遠赤外線乾燥等を挙げることが出来る。特に、マイクロ波乾燥と熱風乾燥、又は、誘電乾燥と熱風乾燥を組み合わせた方法で乾燥することが好ましい。乾燥条件としては、30〜150℃で1分〜2時間乾燥することが好ましい。その後、このように乾燥したセラミックハニカム成形体の両端面を所定の長さに切断加工する。   Next, the obtained ceramic honeycomb formed body is dried. As a method for drying the ceramic honeycomb formed body, various methods can be used. Examples thereof include hot air drying, microwave drying, dielectric drying, vacuum drying, vacuum drying, freeze drying, and far infrared drying. I can do it. In particular, it is preferable to dry by a method in which microwave drying and hot air drying or dielectric drying and hot air drying are combined. As drying conditions, it is preferable to dry at 30 to 150 ° C. for 1 minute to 2 hours. Thereafter, both end faces of the ceramic honeycomb molded body thus dried are cut into a predetermined length.

このセラミックハニカム成形体を焼成して、本実施形態のセラミックハニカム構造体を製造する。セラミックハニカム成形体を焼成する方法としては、例えば、大気雰囲気中、1350〜1450℃まで昇温して焼成する方法が挙げられる。以上により、コージェライト質の隔壁を有するハニカム構造体を得ることができる。   The ceramic honeycomb formed body is fired to manufacture the ceramic honeycomb structure of the present embodiment. Examples of the method for firing the ceramic honeycomb formed body include a method in which the ceramic honeycomb formed body is fired by raising the temperature to 1350 to 1450 ° C. in an air atmosphere. As described above, a honeycomb structure having cordierite partition walls can be obtained.

2.ハニカム触媒体:
本発明のハニカム触媒体は、上記のハニカム構造体の隔壁の細孔内に触媒を担持させたことを特徴とする。図4を参照し述べると、本発明のハニカム触媒体30は、多孔質の隔壁3によって区画形成された流体Gの流路となる複数のセル5を有し、隔壁3が、気孔率60〜75%、平均細孔径15〜60μm、および厚さ0.05〜0.51mmであり、セル5の密度が15〜31(セル/cm)であって、隔壁3の細孔11内に触媒21bが担持されていることを特徴とする。なお、隔壁3の細孔11内に触媒21bが担持されていれば、隔壁3の外表面に触媒21aが担持されている場合であっても、本発明の技術的範囲に属する。触媒21には、排ガス浄化に用いられるような、NO、CO、HC等を反応物とする酸化反応または還元反応を触媒する物質[例えば、白金、NOX選択還元用SCR触媒(金属置換ゼオライト、バナジウム、チタニア、酸化タングステン、銀、及びアルミナ)など]を挙げることができる。
2. Honeycomb catalyst body:
The honeycomb catalyst body of the present invention is characterized in that the catalyst is supported in the pores of the partition walls of the honeycomb structure. Referring to FIG. 4, the honeycomb catalyst body 30 of the present invention has a plurality of cells 5 that become the flow paths of the fluid G partitioned by the porous partition walls 3, and the partition walls 3 have a porosity of 60 to 60. 75%, average pore diameter of 15-60 μm, thickness of 0.05-0.51 mm, cell 5 density of 15-31 (cells / cm 2 ), catalyst in pores 11 of partition walls 3 21b is carried. If the catalyst 21b is supported in the pores 11 of the partition walls 3, even if the catalyst 21a is supported on the outer surface of the partition walls 3, it belongs to the technical scope of the present invention. The catalyst 21 includes a substance that catalyzes an oxidation reaction or a reduction reaction using NO x , CO, HC or the like as a reactant, such as used in exhaust gas purification [for example, platinum, NOX selective reduction SCR catalyst (metal-substituted zeolite, Vanadium, titania, tungsten oxide, silver, and alumina).

本発明のハニカム触媒体30は、先に述べたように、多量の触媒21を細孔11内に担持させも、細孔11が触媒21によって塞がれないため、流体に隔壁3を通過させる際の圧力損失が少なくなる(図4中の白抜き矢印Ginを参照)。また、本発明のハニカム触媒体30は、流体が隔壁3を通過する間でも、細孔11内に担持された触媒21の作用によって、流体に含まれる成分を化学反応させることができる。 As described above, the honeycomb catalyst body 30 of the present invention allows a fluid to pass through the partition walls 3 because the pores 11 are not blocked by the catalyst 21 even when a large amount of the catalyst 21 is supported in the pores 11. (See the white arrow Gin in FIG. 4). In addition, the honeycomb catalyst body 30 of the present invention can cause the components contained in the fluid to chemically react by the action of the catalyst 21 supported in the pores 11 even while the fluid passes through the partition walls 3.

さらに、本発明のハニカム触媒体30は、内燃機関の排ガスの浄化に用いた場合には、隔壁3によって排ガスに含まれる微粒子状物質を濾過すると同時に、微粒子状物質が除かれた排ガスが細孔11内を通過する間に、細孔11内に担持された触媒21によって、NO、CO、HC等を酸化または還元させることも可能になる。したがって、本発明のハニカム触媒体30を用いれば、微粒子状物質の濾過と、NO、CO、HC等の酸化反応または還元反応とを同じ場所で行える、コンパクトな排ガス浄化装置をつくることができる。 Further, when the honeycomb catalyst body 30 of the present invention is used for purifying exhaust gas of an internal combustion engine, the particulate matter contained in the exhaust gas is filtered by the partition walls 3 and at the same time, the exhaust gas from which the particulate matter has been removed becomes pores. while passing through the 11, the supported catalyst 21 in the pores 11, NO x, CO, it becomes possible to oxidize or reduce the HC and the like. Therefore, by using the honeycomb catalyst body 30 of the present invention, a compact exhaust gas purification device that can perform filtration of particulate matter and oxidation reaction or reduction reaction of NO x , CO, HC, etc. at the same place can be produced. .

本発明のハニカム触媒体は、上記の特徴を備えながら、以下に述べる実施形態を適用できる。   The honeycomb catalyst body of the present invention can be applied with the embodiments described below while having the above features.

図4を参照し述べると、本発明のハニカム触媒体30は、触媒21が、隔壁3の細孔11の内壁13上を厚さ50〜200μmにて被覆していることが好ましい。この実施形態では、隔壁3の機械的強度が、細孔11の内壁13上を被覆した触媒21bによって高められる。さらに、この実施形態では、触媒21bが細孔11の内壁13を被覆しているために、細孔11内を通過する流体Ginと触媒21bとの接触頻度が高まり、細孔11内を通過する流体Ginに含まれる成分を反応物とした触媒反応が高い効率で行われるようになる。 Referring to FIG. 4, in the honeycomb catalyst body 30 of the present invention, it is preferable that the catalyst 21 covers the inner wall 13 of the pore 11 of the partition wall 3 with a thickness of 50 to 200 μm. In this embodiment, the mechanical strength of the partition walls 3 is increased by the catalyst 21 b that covers the inner walls 13 of the pores 11. Further, in this embodiment, in order to catalyst 21b covers the inner wall 13 of the pores 11 increases the frequency of contact between the fluid G in the catalyst 21b passing through pores 11, passes through the pores 11 The catalytic reaction using the components contained in the fluid Gin as a reactant is performed with high efficiency.

また、本発明のハニカム触媒体30は、隔壁3の厚さと隔壁3の外表面15上に重なる触媒21の厚さとの合計である、実質的な隔壁の厚さを薄くすることができるため、流体がセル5内および隔壁3を通過する際の圧力損失を低く抑えることができる。したがって、本発明のハニカム触媒体30を自動車エンジンなどの内燃機関の排ガス浄化に用いる場合には、エンジン等の内燃機関の燃費を向上させることができる。   Further, the honeycomb catalyst body 30 of the present invention can reduce the substantial partition wall thickness, which is the sum of the thickness of the partition walls 3 and the thickness of the catalyst 21 overlapping the outer surface 15 of the partition walls 3, The pressure loss when the fluid passes through the cell 5 and the partition wall 3 can be kept low. Therefore, when the honeycomb catalyst body 30 of the present invention is used for exhaust gas purification of an internal combustion engine such as an automobile engine, the fuel efficiency of the internal combustion engine such as the engine can be improved.

図1を参照し述べると、本発明のハニカム触媒体30では、セル5が、セルの延びる方向Xに対して垂直な断面において、三角形、四角形、六角形、円のうちのいずれかの形状を有することが好ましく、中でも四角形または六角形であることがより好ましい(図1では四角形のセルを示す)。この実施形態では、隔壁3の外表面15上を均一な厚さで触媒21によってコートできるため、触媒21によって細孔11に目詰まりが生じにくくなる。   Referring to FIG. 1, in the honeycomb catalyst body 30 of the present invention, the cell 5 has a shape of any one of a triangle, a square, a hexagon, and a circle in a cross section perpendicular to the cell extending direction X. It is preferable to have a rectangular shape or a hexagonal shape (in particular, a rectangular cell is shown in FIG. 1). In this embodiment, since the outer surface 15 of the partition wall 3 can be coated with the catalyst 21 with a uniform thickness, the pores 11 are less likely to be clogged by the catalyst 21.

本発明のハニカム触媒体30では、隔壁3が、コージェライト化原料、アルミナ、ムライト及びリチウムアルミノシリケート(LAS)、チタン酸アルミニウム、ジルコニア、炭化珪素、窒化珪素、活性炭、ゼオライトからなる群から選択される1種以上を主成分とする原料を焼結した焼結体から形成されている。隔壁3が、コージェライト化原料を焼結して焼結体から形成されていることが好ましい。コージェライト質のセラミックスは、熱膨張係数が小さく、耐熱衝撃性や機械的強度に優れているためである。なお、ここでいう、上記材料を主成分する原料とは、焼結体の原料において、該当の成分が80質量%以上を占め、この成分が主結晶相となることを意味する。   In the honeycomb catalyst body 30 of the present invention, the partition walls 3 are selected from the group consisting of a cordierite forming raw material, alumina, mullite and lithium aluminosilicate (LAS), aluminum titanate, zirconia, silicon carbide, silicon nitride, activated carbon, and zeolite. It is formed from the sintered compact which sintered the raw material which has 1 or more types as a main component. It is preferable that the partition 3 is formed from a sintered body by sintering a cordierite forming raw material. This is because cordierite ceramics have a small thermal expansion coefficient and are excellent in thermal shock resistance and mechanical strength. In addition, the raw material which has the said material as a main component here means that the said component occupies 80 mass% or more in the raw material of a sintered compact, and this component turns into a main crystal phase.

以下、本発明を実施例に基づいてさらに詳細に説明するが、本発明はこれらの実施例に限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated further in detail based on an Example, this invention is not limited to these Examples.

(実施例1〜26、比較例1〜6)
(1)ハニカム構造体
実施例1〜26、比較例1〜6のハニカム構造体を、以下のように作製し、隔壁の平均細孔径および気孔率、アイソスタティック破壊強度を測定した。
(Examples 1 to 26, Comparative Examples 1 to 6)
(1) Honeycomb structure The honeycomb structures of Examples 1 to 26 and Comparative Examples 1 to 6 were produced as follows, and the average pore diameter, porosity, and isostatic fracture strength of the partition walls were measured.

(1−1)ハニカム構造体の作製
(実施例1〜26、比較例1〜6)
コージェライト化原料(Cd)として、タルク41質量%、カオリン19質量%、アルミニウム酸化物25質量%、及びシリカ15質量%となるように混合したものを使用した。コージェライト化原料100質量部に、分散媒として水62質量部(水比)、バインダとしてメチルセルロース4質量部を、それぞれ添加し、コージェライト化原料の合計質量100質量部に対して、所望の量の吸水性樹脂を添加し、混合、混練して坏土を調製した。吸水性樹脂としては、吸水倍率が10.5倍で、吸水後の平均粒子径(吸水後平均粒径)が32μmのものを用いた。混合、混練はシグマニーダで行い、さらに真空土練機による混練を行って円筒状(底面の直径300mm)に押し出された坏土を得た。
(1-1) Production of honeycomb structure (Examples 1 to 26, Comparative Examples 1 to 6)
As a cordierite forming raw material (Cd), a material mixed so as to be 41% by mass of talc, 19% by mass of kaolin, 25% by mass of aluminum oxide, and 15% by mass of silica was used. 62 parts by mass of water (water ratio) as a dispersion medium and 4 parts by mass of methylcellulose as a binder are added to 100 parts by mass of the cordierite forming raw material, respectively, and a desired amount with respect to 100 parts by mass of the total mass of the cordierite forming raw material. A water-absorbent resin was added, mixed and kneaded to prepare a clay. As the water-absorbing resin, one having a water absorption ratio of 10.5 times and an average particle diameter after water absorption (average particle diameter after water absorption) of 32 μm was used. Mixing and kneading were performed with a sigma kneader, and further kneading with a vacuum kneader was performed to obtain a clay extruded into a cylindrical shape (diameter of bottom surface 300 mm).

得られた坏土を、ラム式押し出し成形機を用いて押出成形し、全体の形状が円筒形のハニカム成形体を作製した。   The obtained kneaded material was extruded using a ram-type extrusion molding machine to produce a honeycomb molded body having a cylindrical shape as a whole.

次に、得られたハニカム成形体を誘電乾燥で乾燥させて、ハニカム乾燥体を得た。   Next, the obtained honeycomb formed body was dried by dielectric drying to obtain a dried honeycomb body.

次に、得られたハニカム乾燥体を焼成し(最高温度1350〜1440℃)、ハニカム構造体を得た。実施例1〜26、比較例1〜6のハニカム構造体に関し、セル密度、隔壁の厚さ、セルの貫通方向に垂直な断面でのセルの形状を表1に示す。   Next, the obtained honeycomb dried body was fired (maximum temperature 1350 to 1440 ° C.) to obtain a honeycomb structure. Regarding the honeycomb structures of Examples 1 to 26 and Comparative Examples 1 to 6, Table 1 shows cell density, partition wall thickness, and cell shape in a cross section perpendicular to the cell penetration direction.

Figure 2011194342
Figure 2011194342

(1−2)平均細孔径
実施例1〜26、比較例1〜6のハニカム構造体について、「JASO 自動車規格 自動車排気ガス浄化触媒セラミックモノリス担体の試験方法 M505−87の6.3」の記載に従い、水銀ポロシメータ(Micromeritics社製、商品名:AutoPoreIII 型式9405)を用いて測定した細孔径の値から、隔壁の平均細孔径を算出した。結果を表1に示す。
(1-2) Average pore diameter Description of “JASO Automotive Standard Automotive Exhaust Gas Purifying Catalyst Ceramic Monolith Carrier Test Method 6.3 of M505-87” for honeycomb structures of Examples 1 to 26 and Comparative Examples 1 to 6 The average pore diameter of the partition walls was calculated from the value of the pore diameter measured using a mercury porosimeter (trade name: AutoPore III Model 9405, manufactured by Micromeritics). The results are shown in Table 1.

(1−3)気孔率
実施例1〜26、比較例1〜6のハニカム構造体について、細孔径同様に水銀ポロシメータを用いて、隔壁の気孔率を測定した。結果を表1に示す。
(1-3) Porosity For the honeycomb structures of Examples 1 to 26 and Comparative Examples 1 to 6, the porosity of the partition walls was measured using a mercury porosimeter in the same manner as the pore diameter. The results are shown in Table 1.

(1−4)アイソスタティック破壊強度
実施例1〜26、比較例1〜6のハニカム構造体について、社団法人自動車技術会発行の自動車規格(JASO規格)M505−87で規定されているアイソスタティック破壊強度試験に基づいて測定した。アイソスタティック破壊強度試験は、ゴムの筒状容器にセラミックハニカム構造体を入れてアルミ製板で蓋をし、水中で等方加圧圧縮を行う試験であり、コンバータの缶体にセラミックハニカム構造体が外周面把持される場合の圧縮負荷加重を模擬した試験である。アイソスタティック破壊強度は、セラミックハニカム構造体が破壊したときの加圧圧力値で示される。結果を表1に示す。
(1-4) Isostatic Fracture Strength About the honeycomb structures of Examples 1 to 26 and Comparative Examples 1 to 6, the isostatic fracture defined by the automobile standard (JASO standard) M505-87 issued by the Japan Society for Automotive Engineers It was measured based on the strength test. The isostatic fracture strength test is a test in which a ceramic honeycomb structure is placed in a rubber cylindrical container, covered with an aluminum plate, and isotropically pressurized and compressed in water. This is a test simulating the compression load when the outer peripheral surface is gripped. The isostatic fracture strength is indicated by a pressurized pressure value when the ceramic honeycomb structure is broken. The results are shown in Table 1.

(2)ハニカム触媒体
上記の実施例1〜26、比較例1〜6のハニカム構造体について触媒を担持させてハニカム触媒体を作製し、触媒の厚み、隔壁の圧力損失、NO浄化率、アイソスタティック破壊強度を測定した。
(2) Honeycomb catalyst body A honeycomb catalyst body was prepared by supporting a catalyst on the honeycomb structures of Examples 1 to 26 and Comparative Examples 1 to 6, and the catalyst thickness, partition wall pressure loss, NO x purification rate, Isostatic fracture strength was measured.

(2−1)触媒の担持
まず、ハニカム構造体を底面の直径が2.54cm、中心軸方向長さが5.08cmの円筒状に切り出しアルミナゾルと、金属担時ゼオライトと水とを混合の後、湿式粉砕して触媒コート液を調製した。用意したハニカム構造体を、この触媒コート液に一度含浸させ、触媒液に浸しながら0.8MPaまで真空引きを2回行った。真空引きを行うことにより、先に触媒を細孔内に入り込ませることが可能となる。その後、触媒を数回含浸させ、エアーで吹き払い、乾燥することによりゼオライトを担持したハニカム構造体(ハニカム触媒体)を作製した。
(2-1) Catalyst loading First, after the honeycomb structure was cut into a cylindrical shape with a bottom diameter of 2.54 cm and a central axial length of 5.08 cm, alumina sol, metal-supported zeolite and water were mixed. The catalyst coating solution was prepared by wet pulverization. The prepared honeycomb structure was impregnated once with this catalyst coating solution, and was evacuated to 0.8 MPa twice while being immersed in the catalyst solution. By performing evacuation, it becomes possible to first allow the catalyst to enter the pores. Thereafter, the catalyst was impregnated several times, blown off with air, and dried to prepare a honeycomb structure carrying a zeolite (honeycomb catalyst body).

(2−2)触媒の厚さの測定
実施例1〜26、比較例1〜6のハニカム触媒体について、ハニカム触媒体の中心軸に直交する断面の顕微鏡写真より、隔壁の外表面上に重なった触媒の厚さが最も薄い箇所を選び、この箇所での隔壁の外表面上に重なる触媒の厚さを「触媒の厚さ」として測定した。実施例1〜26、比較例2〜6のハニカム触媒体の触媒の厚さについて、比較例1のハニカム触媒体の触媒の厚さに対する比として表2に示す。実施例1〜26、比較例1〜6のハニカム触媒体において、同じ量の触媒を担持させた場合には、気孔率の高いハニカム触媒体ほど、隔壁の細孔内に触媒が多く入り込むため、隔壁の外表面上に重なった触媒の厚さ(触媒の厚さ)が薄くなることが判明した。
(2-2) Measurement of catalyst thickness About the honeycomb catalyst bodies of Examples 1-26 and Comparative Examples 1-6, the micrographs of the cross section perpendicular to the central axis of the honeycomb catalyst bodies overlapped on the outer surface of the partition walls. The location where the thickness of the catalyst was the smallest was selected, and the thickness of the catalyst overlying the outer surface of the partition wall at this location was measured as the “catalyst thickness”. The catalyst thicknesses of the honeycomb catalyst bodies of Examples 1 to 26 and Comparative Examples 2 to 6 are shown in Table 2 as ratios to the catalyst thickness of the honeycomb catalyst bodies of Comparative Example 1. In the honeycomb catalyst bodies of Examples 1 to 26 and Comparative Examples 1 to 6, when the same amount of catalyst is supported, the honeycomb catalyst body having a higher porosity has more catalyst entering the pores of the partition walls. It was found that the thickness of the catalyst overlying the outer surface of the partition wall (catalyst thickness) was reduced.

Figure 2011194342
Figure 2011194342

(2−3)圧力損失
実施例1〜26、比較例1〜6のハニカム触媒体について、室温条件下、0.5m/minの流速でエアーを流通させ、圧力損失を測定した。結果を表2に示す。
(2-3) Pressure loss About the honeycomb catalyst body of Examples 1-26 and Comparative Examples 1-6, air was distribute | circulated by the flow rate of 0.5 m < 3 > / min on room temperature conditions, and the pressure loss was measured. The results are shown in Table 2.

(2−6)触媒目詰まりの測定
実施例1〜26、比較例1〜6のハニカム触媒担体に対し、一方の端面から光を当て、他方の端面まで光が通過しないセルを探知した。光が通過しないセルについては、一方の端面からセル内に針を入れ、他方の端面まで針を通すことができないセルの数をカウントした。一方の端面から他方の端面まで針を通すことのできないセルの数が、全セル数の0.5%以上であった場合には、触媒目詰まりが「有」と判定した。結果を表2に示す。
(2-6) Measurement of catalyst clogging The honeycomb catalyst carriers of Examples 1 to 26 and Comparative Examples 1 to 6 were irradiated with light from one end face, and a cell through which light did not pass to the other end face was detected. For cells through which light does not pass, a needle was inserted into the cell from one end face, and the number of cells that could not pass the needle to the other end face was counted. When the number of cells through which the needle could not pass from one end face to the other end face was 0.5% or more of the total number of cells, the catalyst clogging was judged as “present”. The results are shown in Table 2.

(2−5)NO浄化率
実施例1〜26、比較例1〜6のハニカム触媒体に試験用ガスを流し、ハニカム触媒体
から排出された排出ガスのNO量をガス分析計で分析した。ハニカム触媒体に流入させる試験用ガスの温度は200℃とした。試験に用いるハニカム触媒体は、底面の直径が2.54cm、中心軸方向長さが5.08cmの円筒状に切り出したものを用いた。ハニカム触媒体および試験用ガスは、ヒーターにより温度調整することができるようにした。ヒーターは、赤外線イメージ炉を用いた。試験用ガスには、窒素に、二酸化炭素5体積%、酸素14体積%、一酸化窒素350ppm(体積基準)、アンモニア350ppm(体積基準)及び水10体積%が混合されたガスを用いた。なお、試験用ガスは、水と、その他のガスを混合した混合ガスと、を別々に準備しておき、試験を行う際に、配管中で、これらを混合させて得た。ガス分析計は、「HORIBA社製、MEXA9100EGR」を用いた。また、試験用ガスがハニカム触媒体に流入するときの流束は、50000(時間−1)とした。表2には、実施例1〜26、比較例2〜6のハニカム触媒体のNO浄化率に関し、比較例1のNOの浄化率(NO浄化率)(%)に対する比として示す。NO浄化率は、ハニカム触媒体に流入させた試験用ガスのNO量から、ハニカム触媒体からの排出ガスのNO量を差し引いた値を、ハニカム触媒体に流入させた試験用ガスのNO量で除算し、100倍した値である(百分率比)。実施例1〜26のハニカム触媒体では、細孔内にも触媒が担持されており、ガスは、隔壁の外表面に加え、細孔内においても触媒と接触する。そのため、実施例1〜26のハニカム触媒体では、触媒とガスとの接触面積が増えていため、比較例1〜6のハニカム触媒体と比べ、NO浄化率が高くなった。
(2-5) NO x purification rate The test gas was allowed to flow through the honeycomb catalyst bodies of Examples 1 to 26 and Comparative Examples 1 to 6, and the NO x amount of the exhaust gas discharged from the honeycomb catalyst bodies was analyzed with a gas analyzer. did. The temperature of the test gas flowing into the honeycomb catalyst body was 200 ° C. The honeycomb catalyst body used in the test was cut into a cylindrical shape having a bottom diameter of 2.54 cm and a central axis direction length of 5.08 cm. The temperature of the honeycomb catalyst body and the test gas can be adjusted by a heater. An infrared image furnace was used as the heater. As a test gas, a gas in which 5% by volume of carbon dioxide, 14% by volume of oxygen, 350 ppm of nitrogen monoxide (volume basis), 350 ppm of ammonia (volume basis) and 10% by volume of water were mixed with nitrogen. The test gas was obtained by separately preparing water and a mixed gas obtained by mixing other gases, and mixing them in a pipe when performing the test. As the gas analyzer, “MEXA9100EGR manufactured by HORIBA” was used. The flux when the test gas flows into the honeycomb catalyst body was set to 50000 (time- 1 ). Table 2, Examples 1 to 26, relates to the NO x purification rate of the honeycomb catalyst body of Comparative Example 2-6 are shown as the ratio purification rate of the NO X Comparative Example 1 (NO X purification rate) (%). The NO x purification rate, the amount of NO x test gas was flowed into the honeycomb catalyst body, the value obtained by subtracting the amount of NO x emissions from the honeycomb catalyst body, the gas testing were introduced into the honeycomb catalyst body It is a value obtained by dividing by the amount of NO X and multiplying by 100 (percentage ratio). In the honeycomb catalyst bodies of Examples 1 to 26, the catalyst is also supported in the pores, and the gas contacts the catalyst also in the pores in addition to the outer surface of the partition walls. For this reason, in the honeycomb catalyst bodies of Examples 1 to 26, the contact area between the catalyst and the gas was increased, so that the NO x purification rate was higher than that of the honeycomb catalyst bodies of Comparative Examples 1 to 6.

(2−6)アイソスタティック破壊強度
実施例1〜26、比較例1〜6のハニカム触媒体に対して、上記(1−4)と同様な方法により、アイソスタティック破壊強度試験を行った。結果を表1に示す。実施例1〜26のハニカム触媒体は、触媒を担持させることによって、アイソスタティック破壊強度が高まることが判明した。例えば、実施例2と比較例4は、触媒を担持する前のハニカム構造体ではアイソスタティック破壊強度が同じあった(2.1MPa)。触媒担持後のアイソスタティック破壊強度では、実施例2のハニカム触媒体が3.3PMa、比較例4のハニカム触媒が2.7MPaであった。実施例2のハニカム触媒体では、隔壁の細孔の内壁を触媒でコートされているため、比較例4のハニカム触媒体と比べ、ハニカム触媒体の強度が高められたと考えられる。
(2-6) Isostatic Fracture Strength An isostatic fracture strength test was performed on the honeycomb catalyst bodies of Examples 1 to 26 and Comparative Examples 1 to 6 by the same method as (1-4) above. The results are shown in Table 1. It has been found that the honeycomb catalyst bodies of Examples 1 to 26 increase the isostatic fracture strength by supporting the catalyst. For example, Example 2 and Comparative Example 4 had the same isostatic fracture strength (2.1 MPa) in the honeycomb structure before supporting the catalyst. Regarding the isostatic fracture strength after catalyst loading, the honeycomb catalyst body of Example 2 was 3.3 PMa, and the honeycomb catalyst of Comparative Example 4 was 2.7 MPa. In the honeycomb catalyst body of Example 2, since the inner walls of the pores of the partition walls are coated with the catalyst, it is considered that the strength of the honeycomb catalyst body is increased as compared with the honeycomb catalyst body of Comparative Example 4.

本発明は、内燃機関の排ガス浄化等のために使用されるハニカム構造体およびハニカム触媒体として利用できる。   The present invention can be used as a honeycomb structure and a honeycomb catalyst body used for exhaust gas purification of an internal combustion engine.

1:ハニカム構造体、3:隔壁、5:セル、7:端面、11:細孔、13:内壁、15:外表面、21,21a,21b:触媒、30:ハニカム触媒体。 1: honeycomb structure, 3: partition wall, 5: cell, 7: end face, 11: pore, 13: inner wall, 15: outer surface, 21, 21a, 21b: catalyst, 30: honeycomb catalyst body.

Claims (5)

多孔質の隔壁によって区画形成された流体の流路となる複数のセルを有し、
前記隔壁が、気孔率60〜75%、平均細孔径15〜60μm、および厚さ0.05〜0.51mmであり、
前記セルの密度が、15〜31(個/cm)であるハニカム構造体。
Having a plurality of cells serving as fluid flow paths partitioned by a porous partition;
The partition wall has a porosity of 60 to 75%, an average pore diameter of 15 to 60 μm, and a thickness of 0.05 to 0.51 mm.
A honeycomb structure having a cell density of 15 to 31 (cells / cm 2 ).
請求項1に記載のハニカム構造体において、
前記隔壁の細孔内に触媒を担持させたハニカム触媒体。
In the honeycomb structure according to claim 1,
A honeycomb catalyst body in which a catalyst is supported in the pores of the partition walls.
前記触媒が、前記隔壁の前記細孔の内壁上を厚さ50〜200μmにて被覆している請求項2に記載のハニカム触媒体。   The honeycomb catalyst body according to claim 2, wherein the catalyst covers the inner walls of the pores of the partition walls with a thickness of 50 to 200 µm. 前記セルが、前記セルの延びる方向に対して垂直な断面において三角形、四角形、六角形、円のうちのいずれかの形状を有する請求項2または3に記載のハニカム触媒体。   The honeycomb catalyst body according to claim 2 or 3, wherein the cell has a shape of any one of a triangle, a quadrangle, a hexagon, and a circle in a cross section perpendicular to a direction in which the cell extends. 前記隔壁が、コージェライト化原料、アルミナ、ムライト及びリチウムアルミノシリケート(LAS)、チタン酸アルミニウム、ジルコニア、炭化珪素、窒化珪素、活性炭、ゼオライトからなる群から選択される1種以上を主成分として形成されている請求項2〜4のいずれか一項に記載のハニカム触媒体。   The partition is composed mainly of at least one selected from the group consisting of a cordierite forming raw material, alumina, mullite and lithium aluminosilicate (LAS), aluminum titanate, zirconia, silicon carbide, silicon nitride, activated carbon and zeolite. The honeycomb catalyst body according to any one of claims 2 to 4, wherein
JP2010065125A 2010-03-19 2010-03-19 Honeycomb structure and honeycomb catalytic substance Pending JP2011194342A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010065125A JP2011194342A (en) 2010-03-19 2010-03-19 Honeycomb structure and honeycomb catalytic substance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010065125A JP2011194342A (en) 2010-03-19 2010-03-19 Honeycomb structure and honeycomb catalytic substance

Publications (1)

Publication Number Publication Date
JP2011194342A true JP2011194342A (en) 2011-10-06

Family

ID=44873217

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010065125A Pending JP2011194342A (en) 2010-03-19 2010-03-19 Honeycomb structure and honeycomb catalytic substance

Country Status (1)

Country Link
JP (1) JP2011194342A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013223857A (en) * 2012-03-19 2013-10-31 Ngk Insulators Ltd Honeycomb structure and honeycomb catalyst body using the same, and method of manufacturing honeycomb structure
JP2014154236A (en) * 2013-02-05 2014-08-25 Seiko Epson Corp Method for manufacturing electrode composite body
DE102015003434A1 (en) 2014-03-27 2015-10-01 Ngk Insulators, Ltd. honeycomb structure
JP2017149593A (en) * 2016-02-22 2017-08-31 セイコーエプソン株式会社 Ceramic parts and three-dimensional manufacturing method of ceramic parts
WO2017163984A1 (en) * 2016-03-24 2017-09-28 株式会社キャタラー Exhaust gas purification device
DE102022200193A1 (en) 2021-03-30 2022-10-06 Ngk Insulators, Ltd. HONEYCOMB STRUCTURE

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001199777A (en) * 2000-01-17 2001-07-24 Ngk Insulators Ltd Honeycomb structure and manufacturing method thereof
JP2004000901A (en) * 2002-03-29 2004-01-08 Ngk Insulators Ltd Porous honeycomb structure
JP2004315346A (en) * 2003-03-28 2004-11-11 Ngk Insulators Ltd Honeycomb structure
JP2005522318A (en) * 2002-04-12 2005-07-28 コーニング インコーポレイテッド Monolithic catalyst support coated with in situ theta alumina
JP2007285295A (en) * 2006-03-24 2007-11-01 Ngk Insulators Ltd Exhaust emission control system
JP2009131780A (en) * 2007-11-30 2009-06-18 Ngk Insulators Ltd Honeycomb catalyst body

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001199777A (en) * 2000-01-17 2001-07-24 Ngk Insulators Ltd Honeycomb structure and manufacturing method thereof
JP2004000901A (en) * 2002-03-29 2004-01-08 Ngk Insulators Ltd Porous honeycomb structure
JP2005522318A (en) * 2002-04-12 2005-07-28 コーニング インコーポレイテッド Monolithic catalyst support coated with in situ theta alumina
JP2004315346A (en) * 2003-03-28 2004-11-11 Ngk Insulators Ltd Honeycomb structure
JP2007285295A (en) * 2006-03-24 2007-11-01 Ngk Insulators Ltd Exhaust emission control system
JP2009131780A (en) * 2007-11-30 2009-06-18 Ngk Insulators Ltd Honeycomb catalyst body

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013223857A (en) * 2012-03-19 2013-10-31 Ngk Insulators Ltd Honeycomb structure and honeycomb catalyst body using the same, and method of manufacturing honeycomb structure
JP2014154236A (en) * 2013-02-05 2014-08-25 Seiko Epson Corp Method for manufacturing electrode composite body
DE102015003434A1 (en) 2014-03-27 2015-10-01 Ngk Insulators, Ltd. honeycomb structure
US9463407B2 (en) 2014-03-27 2016-10-11 Ngk Insulators, Ltd. Honeycomb structure
JP2017149593A (en) * 2016-02-22 2017-08-31 セイコーエプソン株式会社 Ceramic parts and three-dimensional manufacturing method of ceramic parts
WO2017163984A1 (en) * 2016-03-24 2017-09-28 株式会社キャタラー Exhaust gas purification device
JPWO2017163984A1 (en) * 2016-03-24 2018-05-24 株式会社キャタラー Exhaust gas purification device
US10022671B2 (en) 2016-03-24 2018-07-17 Cataler Corporation Exhaust gas purification device
DE102022200193A1 (en) 2021-03-30 2022-10-06 Ngk Insulators, Ltd. HONEYCOMB STRUCTURE
US11534745B2 (en) 2021-03-30 2022-12-27 Ngk Insulators, Ltd. Honeycomb structure

Similar Documents

Publication Publication Date Title
JP4550434B2 (en) Cell structure and manufacturing method thereof
US11033885B2 (en) Ceramic honeycomb structure and its production method
JP5191657B2 (en) Ceramic honeycomb structure
JP5313658B2 (en) Ceramic structure and manufacturing method thereof
CN101006024B (en) honeycomb structure
JP6081951B2 (en) Manufacturing method of honeycomb structure
US10603658B1 (en) Honeycomb structured body
US11433382B2 (en) Honeycomb filter and method for manufacturing honeycomb filters
JP2011194342A (en) Honeycomb structure and honeycomb catalytic substance
JP2014108405A (en) Honeycomb catalyst body
JP5000873B2 (en) Method for producing porous body
CN111107932A (en) Honeycomb catalyst
JP5508453B2 (en) Honeycomb structure and honeycomb catalyst body
JP6824770B2 (en) Honeycomb structure
JP5649836B2 (en) Honeycomb catalyst body
WO2005068396A1 (en) Honeycomb structure and method for producing the same
JP2012197186A (en) Method for manufacturing honeycomb structure
KR100883946B1 (en) Ceramic honeycomb structure
CN113332810A (en) Method for manufacturing honeycomb filter
KR100779893B1 (en) Honeycomb Structures, Honeycomb Structure Aggregates, and Honeycomb Catalysts
JP2021037488A (en) Method of producing honeycomb filter
JP2021037484A (en) Honeycomb structure body
JP2021038122A (en) Method for producing honeycomb structure body
JP2019155277A (en) Honeycomb filter
JP2021137682A (en) Honeycomb filter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130408

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140114

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140317

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140617