[go: up one dir, main page]

JP2011188888A - Deodorant material, method of manufacturing the same, and deodorization device using the deodorant material - Google Patents

Deodorant material, method of manufacturing the same, and deodorization device using the deodorant material Download PDF

Info

Publication number
JP2011188888A
JP2011188888A JP2010055057A JP2010055057A JP2011188888A JP 2011188888 A JP2011188888 A JP 2011188888A JP 2010055057 A JP2010055057 A JP 2010055057A JP 2010055057 A JP2010055057 A JP 2010055057A JP 2011188888 A JP2011188888 A JP 2011188888A
Authority
JP
Japan
Prior art keywords
clay
powder
deodorizing
metal oxide
binder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010055057A
Other languages
Japanese (ja)
Inventor
Hitoshi Nishida
斉 西田
Hiroshi Kawai
博司 河合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikko Co Ltd
Nikko KK
Original Assignee
Nikko Co Ltd
Nikko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikko Co Ltd, Nikko KK filed Critical Nikko Co Ltd
Priority to JP2010055057A priority Critical patent/JP2011188888A/en
Publication of JP2011188888A publication Critical patent/JP2011188888A/en
Pending legal-status Critical Current

Links

Landscapes

  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing a water-resistant deodorant material having two adsorbing effects of physical and chemical adsorption at the same time. <P>SOLUTION: Powder of an inorganic porous body having the physical adsorbing effect and metal oxide powder having the chemical adsorbing effect, are used as deodorant base materials, and clay containing kaolinite and halloysite among kaolin minerals is used as a binder. Water is added to these materials and the materials are kneaded and molded. The molded product is baked and solidified at such a temperature as not to lose the activity of the metal oxide. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、生活環境で発生する臭気について、これを除去し、快適な生活を送るための脱臭材及びその脱臭材の製造方法、並びにその脱臭材を用いた脱臭装置に関する。   The present invention relates to a deodorizing material for removing odor generated in a living environment and leading a comfortable life, a method for producing the deodorizing material, and a deodorizing apparatus using the deodorizing material.

一般的に生活環境で発生する臭気には、塩基性類(アンモニア、トリメチルアミン等)、酸性・脂肪酸類(イソ吉草酸、酢酸、酪酸等)、硫黄化合物(硫化水素、カプタン類(メチルメルカプタン、エチルメルカプタン)等)、アルデヒド類(ホルムアルデヒド、アセトアルデヒド等)に分類されるさまざまな不快な種類の臭気が存在する。そして、臭気の種類は悪臭防止法により特定悪臭物質22物質が政令で指定されている。
一方、これらの臭気を除去する脱臭材(脱臭装置)は、室温で空気を循環させるだけでさまざまな臭気を除去できるものが求められている。
また、梅雨期や浴室等の高湿度の環境下や、トイレや台所のような水周りの場所等、水に濡れるようなところでも使用可能で、酸・アルカリ性物質を使わない安全なものであることが肝要である。
Odors generally generated in the living environment include basics (ammonia, trimethylamine, etc.), acidic / fatty acids (isovaleric acid, acetic acid, butyric acid, etc.), sulfur compounds (hydrogen sulfide, captans (methyl mercaptan, ethyl) There are various unpleasant types of odors classified as mercaptans) and aldehydes (formaldehyde, acetaldehyde, etc.). And 22 types of specific malodorous substances are designated by government ordinance by the Malodor Control Law.
On the other hand, a deodorizing material (deodorizing apparatus) that removes these odors is required to be able to remove various odors only by circulating air at room temperature.
It can also be used in places with high humidity such as the rainy season or bathroom, or in places where it gets wet, such as places around the water such as toilets and kitchens, and it is safe to use without acid or alkaline substances. It is important.

室温下で、これら臭気を除去する方法としては、活性炭に代表される細孔による物理吸着と、金属・活性な金属酸化物或いはオゾンの触媒作用による化学吸着の二種類がある。そして、臭気の種類によっては、塩基性臭気のように物理吸着で脱臭効果が得られるもの、硫黄化合物のように化学吸着で脱臭効果が得られるものに分類できる。従って、物理吸着と化学吸着の二つの機能を併せ持つことが理想的である。   There are two methods for removing these odors at room temperature: physical adsorption by pores represented by activated carbon, and chemical adsorption by catalytic action of metal / active metal oxide or ozone. And depending on the kind of odor, it can be classified into those that can obtain a deodorizing effect by physical adsorption, such as a basic odor, and those that can obtain a deodorizing effect by chemical adsorption, such as a sulfur compound. Therefore, it is ideal to have both functions of physical adsorption and chemical adsorption.

そのためには、それぞれの吸着役割を持つ粉末を混合して用いればよいのであるが、そのような粉末のままでは臭気が通過しなく、粉末は飛散してしまい、利用する為には容器に入れて放置するだけの非常に狭い空間での脱臭に限定されるものであった。尚、オゾンによる脱臭では、オゾンがその発生装置を腐食・劣化させると共に、オゾン臭も伴う等の問題がある。
従って、効率よく広域に利用する為に、臭気を強制循環し脱臭する方法がいろいろと考えられてきた。例えば、脱臭材を何らかの形状に付ける、例えば、脱臭材粉末を繊維状フィルターや多孔質体に坦持(付着)する方法、或いは脱臭材そのものをある大きさの粒状、ペレット状、ハニカム状の固体にする方法等が考案されている。
例えば、アンモニア、硫化水素等の悪臭を取り除く脱臭材として、ハニカム基材の表面に、二酸化マンガン、銅酸化物、鉄酸化物等の金属酸化物をバインダー(結合材)によって坦持させたものが知られている(例えば、特許文献1参照)。
For that purpose, it is only necessary to mix and use powders having respective adsorption roles. However, if such powders are left as they are, odors will not pass through and the powders will be scattered and put into containers for use. It was limited to deodorizing in a very narrow space that could be left alone. In the case of deodorization with ozone, there are problems such as ozone corroding and deteriorating the generating device and accompanied by ozone odor.
Accordingly, various methods have been considered for forcibly circulating odors and deodorizing them in order to efficiently use them over a wide area. For example, a deodorizing material is attached to some shape, for example, a method of carrying (attaching) a deodorizing material powder to a fibrous filter or a porous body, or a deodorizing material itself having a certain granular, pellet-like, or honeycomb-like solid The method of making it is devised.
For example, as a deodorizing material for removing bad odors such as ammonia and hydrogen sulfide, a material in which a metal oxide such as manganese dioxide, copper oxide, iron oxide or the like is carried on the surface of the honeycomb base material by a binder (binding material). It is known (see, for example, Patent Document 1).

しかしながら、これらの方法はバインダーを必ず用いなければならず、必然的に性能の低下が避けられなく、バインダーの選択とその添加量が脱臭性能を大きく左右する重要な要因であった。なぜなら、バインダーで坦持する場合、少なからずそのバインダーが多孔質セラミックの細孔を塞いで吸着を妨害したり、活性な酸化金属の表面を覆ってしまい臭気との接触を妨げたりする傾向があるためである。前記バインダーの量が少ないと強度がなく破損し、手で触れると汚れ、粉末が離脱・飛散する等取り扱いが悪くなる。逆にバインダーの量が多いと、前記した理由でより一層性能が低下してしまい、十分に脱臭材の性能を発揮することが難しいという問題があった。   However, these methods must always use a binder, inevitably a decrease in performance is unavoidable, and the selection of the binder and the amount added are important factors that greatly affect the deodorizing performance. This is because when supported by a binder, the binder tends to block the pores of the porous ceramic and prevent adsorption, or cover the surface of the active metal oxide and prevent contact with odors. Because. If the amount of the binder is small, it will not be strong and will be damaged. On the other hand, when the amount of the binder is large, the performance is further deteriorated for the reason described above, and there is a problem that it is difficult to sufficiently exhibit the performance of the deodorizing material.

さらに、脱臭材そのものを固体にする方法では、有機バインダーを用いて固化したものでは、やはり多孔質セラミックの細孔を塞いで吸着を妨害したり、活性な酸化金属の表面を覆ってしまい臭気との接触を妨げたりする。また、これを焼成すると、有機バインダーが燃焼でCO2として失われ地球温暖化にとってもよくないと共に、焼成後の強度が著しく低下し、粉体が手に付き、飛散したりして取り扱いが悪くなると共に、耐水性も期待できないものになってしまう。また、無機バインダーを用いた場合、有機バインダーを用いた場合と傾向は同様であるが、CO2の発生がないこと、焼成・固化した場合でも強度は確保される有利な点がある。但し、焼成すると、酸化反応により金属酸化物の活性が大部分失われてしまう傾向があった。そのような酸化反応を抑制するため、原料に還元剤を混入する方法、窒素や水素を焼成炉に充填して還元雰囲気で焼成する方法等が試みられている。
また、無機バインダーの中でも、比較的低温で焼成・固化することができる水ガラスやコロイダルシリカを用いて、低温焼成で金属酸化物の酸化反応を抑制する方法もある。しかしながら、これらバインダーも、少なからず多孔質セラミックの細孔を塞ぎ、添加量によっては金属酸化物の表面を大部分覆ってしまい、物理吸着および化学吸着両作用を併せて発揮できるようなものではなかった。
古来よりセラミック製品には、成形性向上に可塑性を持たせるために、或いは他の材料との結合材の役割として、一般的に粘土が用いられてきた。これら粘土の内、カオリン鉱物系のカオリン、ハロイサイトが低温450℃前後の脱水で復水しなくなる特性を持つことや、板状(鱗片状)の不規則な積層不整構造であることによる多孔質体の細孔を塞がない特性をもつことは学術的にも広く知られている。しかしながら、このような特性を利用して、脱臭における物理吸着および化学吸着の両作用を併せ持つ脱臭材の製造は試みられることはなかった。
Furthermore, in the method of solidifying the deodorizing material itself, if it is solidified using an organic binder, the pores of the porous ceramic are also blocked to prevent adsorption, or the surface of the active metal oxide is covered and odor is generated. Disturb the contact. In addition, when this is fired, the organic binder is lost as CO 2 by combustion, which is not good for global warming, and the strength after firing is remarkably reduced, and the powder is attached to the hand and scattered, resulting in poor handling. At the same time, water resistance cannot be expected. In addition, when an inorganic binder is used, the tendency is the same as that when an organic binder is used, but there is an advantage that the strength is ensured even when CO 2 is not generated and when fired and solidified. However, when baked, there was a tendency that the activity of the metal oxide was largely lost due to the oxidation reaction. In order to suppress such an oxidation reaction, a method of mixing a reducing agent into the raw material, a method of filling a firing furnace with nitrogen or hydrogen and firing in a reducing atmosphere have been attempted.
In addition, among inorganic binders, there is a method of suppressing the oxidation reaction of a metal oxide by low-temperature firing using water glass or colloidal silica that can be fired and solidified at a relatively low temperature. However, these binders are not limited to blocking the pores of the porous ceramic and covering the surface of the metal oxide mostly depending on the amount added, so that both physical adsorption and chemical adsorption can be exhibited together. It was.
Since ancient times, clay has generally been used for ceramic products in order to give plasticity to improve moldability or as a role of a binder with other materials. Among these clays, the kaolin mineral kaolin and halloysite have the property that they do not condense upon dehydration at a low temperature of around 450 ° C, and are porous due to the irregular laminar irregular structure in the form of a plate (scale). It is well known academically that it does not block the pores. However, no attempt has been made to produce a deodorizing material having both physical adsorption and chemical adsorption effects in deodorization using such characteristics.

特開平10−314283号公報JP-A-10-314283

本発明は上記従来の技術が有する問題点に鑑みてなされたもので、物理吸着と化学吸着の二つの吸着作用を同時に併せ持ち、且つ耐水性を備えた脱臭材及びその製造方法、並びにその脱臭材を用いた脱臭装置を提供することを目的とする。   The present invention has been made in view of the above-described problems of the prior art, and has two adsorption actions of physical adsorption and chemical adsorption at the same time and has water resistance, a method for producing the same, and the deodorizing material. An object of the present invention is to provide a deodorizing apparatus using the above.

上記目的を達成する為に本発明は、結合材(バインダー)として粘土を用いることにより、粘土の特性の内、板状(鱗片状)で多孔質体の細孔を塞がない性質と、低温焼成にて固化し、復水しないこと、金属酸化物の酸化反応が極力抑制されることに着目し、脱臭の物理吸着作用及び化学吸着作用の二つの吸着作用を同時に発揮できるように鋭意工夫したものである。
本発明の脱臭材の製造方法は、脱臭基材として物理吸着作用を持つ無機多孔質体の粉末と、化学吸着作用を持つ活性な金属酸化物の粉末を用い、結合材としてカオリン鉱物系のうち、カオリナイト及びハロイサイトを含有する粘土を用い、これに水を加えて練り混ぜ成形し、該成形体を、前記金属酸化物の活性が失われない温度で焼成固化することを特徴とする。
前記物理吸着作用を持つ無機多孔質体としては、活性炭、シリカゲル、活性白土、ゼオライト、アルミナ、珪藻土、珪質頁岩等が挙げられる。
また、前記化学吸着作用を持つ金属酸化物としては、マンガン(Mn)、コバルト(Co)、銅(Cu)、鉄(Fe)、亜鉛(Zn)、アルミニウム(Al)、チタン(Ti)の各酸化物、白金(Pt)、バナジウム(V)、プラセオジム(Pr)、クロム(Cr)の金属イオン等が挙げられる。また、本発明で使用する金属酸化物の粒径は、0.5μm〜3μmである。
In order to achieve the above object, the present invention uses a clay as a binder (binder), so that the properties of the clay do not block the pores of the porous body in the form of a plate (scale-like), and the low temperature. Focusing on solidifying by firing, not condensing, and suppressing the oxidation reaction of metal oxide as much as possible, devised to be able to exert both adsorption and desorption physical adsorption and chemical adsorption simultaneously Is.
The method for producing a deodorizing material of the present invention uses a powder of an inorganic porous material having a physical adsorption action as a deodorizing base material and a powder of an active metal oxide having a chemical adsorption action. The clay containing kaolinite and halloysite is mixed with water and kneaded and molded, and the molded body is fired and solidified at a temperature at which the activity of the metal oxide is not lost.
Examples of the inorganic porous material having a physical adsorption action include activated carbon, silica gel, activated clay, zeolite, alumina, diatomaceous earth, and siliceous shale.
In addition, as the metal oxide having the chemical adsorption action, each of manganese (Mn), cobalt (Co), copper (Cu), iron (Fe), zinc (Zn), aluminum (Al), titanium (Ti) Examples thereof include metal ions of oxide, platinum (Pt), vanadium (V), praseodymium (Pr), and chromium (Cr). The particle size of the metal oxide used in the present invention is 0.5 μm to 3 μm.

また、前記結合材として用いるカオリン鉱物系のうち、カオリナイト及びハロイサイトを含有する粘土としては、例えば、蛙目粘土、木節粘土等が挙げられる。そして、この粘土は、前記蛙目粘土、木節粘土等を用いる他に、前記カオリナイト及びハロイサイトを含有する粘土を含有する多孔質体(例えば、珪質頁岩粉)を用いてもよい。即ち、脱臭基材として物理吸着作用を持つ無機多孔質粉末に、カオリナイト及びハロイサイトを含有する粘土を含有する珪質頁岩粉を用い、含有する前記粘土分が十分な量である場合は、別途結合材として蛙目粘土、木節粘土等を混合する必要はなく、前記珪質頁岩粉が含有する粘土分の量が不足する場合は、その不足分を補う量だけ結合材を使用する。勿論、物理吸着作用を持つ多孔質体の粉末がカオリナイト及びハロイサイトを含有する粘土を含有していない場合は、結合材として前記粘土を使用する。この結合材は、全粉体(無機多孔質体粉末、金属酸化物粉末、粘土粉末)に対して10〜30重量%の範囲で混合する、また、本発明で使用する前記粘土の粒径は0.125〜2μmである。
尚、前記結合材として、無機バインダー(水ガラス、コロイダルシリカ、セメント及び石膏)、有機バインダー(ポリエチレングリコール、ポリビニルアルコール、メチルセルロース、グリセロール、グリセリン)は使用しない。
Among the kaolin minerals used as the binder, examples of the clay containing kaolinite and halloysite include cocoon clay and kibushi clay. And this clay may use the porous body (For example, siliceous shale powder) containing the clay containing the said kaolinite and halloysite other than using the above-mentioned clay, Kibushi clay, etc. That is, when the siliceous shale powder containing clay containing kaolinite and halloysite is used as the inorganic porous powder having a physical adsorption action as the deodorizing base material, and the clay content is sufficient, It is not necessary to mix glazed clay, Kibushi clay, etc. as the binder, and when the amount of clay contained in the siliceous shale powder is insufficient, the binder is used in an amount that compensates for the shortage. Of course, when the porous powder having a physical adsorption action does not contain clay containing kaolinite and halloysite, the clay is used as a binder. This binder is mixed in the range of 10 to 30% by weight with respect to the total powder (inorganic porous body powder, metal oxide powder, clay powder), and the particle size of the clay used in the present invention is 0.125 to 2 μm.
As the binder, an inorganic binder (water glass, colloidal silica, cement and gypsum) and an organic binder (polyethylene glycol, polyvinyl alcohol, methyl cellulose, glycerol, glycerin) are not used.

前記無機多孔質体の粉末と、活性な金属酸化物の粉末と、カオリナイト及びハロイサイトを含有する粘土を、水を加えて練り混ぜ成形する成形体の形態は、例えばφ5mmの球体が好適であるが、形状は問わない。   The form of the molded body in which the inorganic porous body powder, the active metal oxide powder, and the clay containing kaolinite and halloysite are kneaded by adding water is preferably a sphere of φ5 mm, for example. However, the shape does not matter.

また、前記成形体を焼成する温度は、各成分の特性を極力失わない400℃〜500℃とし、焼成時間は1時間〜3時間が好適である。   Moreover, the temperature which bakes the said molded object shall be 400 to 500 degreeC which does not lose the characteristic of each component as much as possible, and 1 to 3 hours are suitable for baking time.

また、前記脱臭材はそのまま通気可能な容器(通気可能な袋、箱等)に収容して使用するのが好ましい。例えば、前記脱臭材を、通気が可能な開口を有する容器に収容し、且つ、前記容器にファンを備えて、臭気を循環させて強制的に脱臭する脱臭装置とする。   Moreover, it is preferable that the deodorizing material is used as it is in a container (such as a bag or a box that can be vented) that can be vented. For example, a deodorizing apparatus is provided in which the deodorizing material is housed in a container having an opening that allows ventilation, and the container is provided with a fan to forcibly deodorize by circulating odors.

上記手段によれば、無機多孔質体の粉末と、活性な金属酸化物の粉末を、カオリナイト及びハロイサイトを含有する粘土に水を加えて練り混ぜ成形した成形体を、金属酸化物の活性が失われない温度(400℃〜500℃)で焼成することで、粘土成分の吸着水(粘土鉱物に含まれている水のうち、粒子表面に吸着されている水)、層間水(粘土鉱物の層間に水分子の形で含まれている水)、構造水(粘土鉱物の構造中にOHの形で含まれている水)、結合水(八面体シートの端に存在する水)を脱水固化でき、水中や湿った空気中に置いても復水(鉱物の層間水、構造水および結合水を除いた後、湿った空気中に置いた場合に水が戻る)しない耐水性を有する脱臭材を製造することができる。
これは、粘土の特に、カオリン鉱物系のうち、カオリナイト及びハロイサイトの粘土が、低温(400℃〜500℃)の脱水・復水不可逆になる性質を利用し、多孔質体の細孔の溶融による閉塞と、金属酸化物の酸化を抑えることにより、物理吸着及び化学吸着の両特性を併せ持つ脱臭材が得られる。
According to the above-mentioned means, the active body of the metal oxide is obtained by forming a molded body obtained by kneading and mixing the inorganic porous body powder and the active metal oxide powder with clay containing kaolinite and halloysite. By firing at a temperature that is not lost (400 ° C to 500 ° C), the adsorbed water of the clay component (water adsorbed on the particle surface out of the water contained in the clay mineral), interlayer water (of the clay mineral Water contained in the form of water molecules between layers), structural water (water contained in the form of OH in the clay mineral structure), and bound water (water present at the end of the octahedral sheet) are dehydrated and solidified. Deodorant with water resistance that does not condensate even when placed in water or moist air (excluding mineral interlaminar water, structural water, and bound water, and then returns to water when placed in moist air) Can be manufactured.
This is due to the fact that among kaolin minerals, kaolinite and halloysite clays can be dehydrated and irreversible at low temperatures (400 ° C to 500 ° C). A deodorizing material having both physical adsorption and chemical adsorption characteristics can be obtained by suppressing clogging due to oxidization and oxidation of the metal oxide.

本発明の脱臭材の製造方法は、脱臭基材として用いた物理吸着作用を持つ多孔質体と、化学吸着作用を持つ金属酸化物の、それぞれの吸着特性を失うことなく併せ持ち、且つ耐水性を有した脱臭材を容易に製造することができる。
また、その脱臭材は物理吸着及び化学吸着の両特性を併せ持ち、且つ耐水性を有する為、高湿度の環境下や、トイレや台所のような水周りの場所でも安心して使用することができる。
更に、脱臭装置は、物理吸着及び化学吸着の両特性を併せ持つ脱臭材を、通気可能な開口を有する容器にそのまま収容し、且つファンを備えたことにより、臭気を循環させて物理吸着及び化学吸着の両作用によって効率よく脱臭することができる。
The method for producing a deodorizing material of the present invention has both a porous body having a physical adsorption action used as a deodorizing substrate and a metal oxide having a chemical adsorption action without losing the respective adsorption characteristics, and has water resistance. The deodorizing material which it has can be manufactured easily.
Moreover, since the deodorizing material has both physical adsorption and chemical adsorption properties and water resistance, the deodorizing material can be used in a high humidity environment or in places around water such as a toilet or kitchen.
Furthermore, the deodorization apparatus accommodates the deodorizing material having both physical adsorption and chemical adsorption properties in a container having a ventable opening as it is, and is equipped with a fan so that the odor is circulated and physical adsorption and chemical adsorption. It is possible to efficiently deodorize by both actions.

脱臭装置の実施の形態の一例を示す一部切欠断面図。The partially notched sectional view which shows an example of embodiment of a deodorizing apparatus. 脱臭材の物理吸着及び化学吸着のしくみを示す模式図。The schematic diagram which shows the mechanism of physical adsorption and chemical adsorption of a deodorizing material.

本発明に係る脱臭材の製造方法は、物理吸着の役割成分と化学吸着の役割成分を同時に成形焼成するもので、粘土、特にカオリン鉱物系のうちのカオリナイト、ハロイサイトを含有する粘土が、低温450℃前後で焼成された時、脱水・復水不可逆になる性質を利用し、該粘土を結合材(バインダー)として使用する。
前記粘土としては、板状(鱗片状)で多孔質体粉末の細孔を塞がない性質と低温焼成にて固化するもの、例えば、蛙目粘土(ガエロメ)、木節粘土(キブシ)等が挙げられるが、これら以外に天然の珪酸質多孔体(例えば、珪藻土、珪質頁岩、沸石(ゼオライト)等)にも含まれている。従って、結合材としての粘土は、その目的の為に粘土を別途用意してもよいが、物理吸着の役割成分として前記多孔質体を用いる場合は、それに含有されている粘土を結合材として用いることができる。尚、物理吸着の役割成分として用いる多孔質体に含有されている粘土成分のみでは結合材として必要な量に満たない場合は、別途、前記粘土を加えるようにする。
前記粘土は全粉末に対して10〜30重量%の範囲で加え、可塑性を付与して成形性を向上させる。また、前記粘土の粒径は0.125〜2μmとし、物理吸着作用を担う多孔質体の細孔より大きくして、多孔質体の細孔を閉塞しないようにしてある。尚、前記粘土の添加量が10重量%未満の場合は結合材としての働きが期待できず、所望の形状に成形することができない。また、添加量が31重量%以上の場合は脱臭基材の量が少なくなり、脱臭性能(物理吸着、化学吸着)が低下する。
The method for producing a deodorizing material according to the present invention is a method in which a role component of physical adsorption and a role component of chemical adsorption are simultaneously molded and fired, and clay, particularly kaolinite of kaolin minerals, clay containing halloysite is low temperature. The clay is used as a binder (binder) by utilizing the property that it becomes irreversible when it is baked at around 450 ° C.
Examples of the clay include a plate-like (scale-like) property that does not block the pores of the porous body powder, and those that are solidified by low-temperature firing, such as galamite clay and kibushi clay. In addition to these, natural silicate porous bodies (for example, diatomaceous earth, siliceous shale, zeolite (zeolite), etc.) are also included. Therefore, the clay as a binder may be prepared separately for that purpose, but when the porous body is used as a component for physical adsorption, the clay contained therein is used as the binder. be able to. In addition, when only the clay component contained in the porous material used as a component for physical adsorption is less than the amount necessary for the binder, the clay is added separately.
The clay is added in the range of 10 to 30% by weight based on the total powder, and imparts plasticity to improve moldability. The clay has a particle size of 0.125 to 2 μm and is made larger than the pores of the porous body responsible for the physical adsorption action so as not to block the pores of the porous body. In addition, when the addition amount of the clay is less than 10% by weight, it cannot be expected to function as a binder and cannot be formed into a desired shape. Moreover, when the addition amount is 31% by weight or more, the amount of the deodorizing base material is decreased, and the deodorizing performance (physical adsorption, chemical adsorption) is lowered.

そして、脱臭基材には、物理吸着作用を持つ多孔質体の粉末と、化学吸着作用を持つ活性な金属酸化物の粉末を用い、これら脱臭基材に前記粘土と水を加えて練り混ぜ、所望の形状、例えばφ5mmの球形に成形し、これを粘土の構造水を除去し、且つ酸化により金属酸化物の活性が失われない温度400℃〜500℃で、1時間〜3時間焼成固化する。   And, as a deodorizing base material, using a powder of a porous body having a physical adsorption action and an active metal oxide powder having a chemical adsorption action, the clay and water are added to the deodorization base material and kneaded, It is molded into a desired shape, for example, a sphere having a diameter of 5 mm, and this is solidified by baking for 1 to 3 hours at a temperature of 400 ° C. to 500 ° C. at which the structure water of clay is removed and the activity of the metal oxide is not lost by oxidation .

前記物理吸着作用を持つ多孔質体としては、珪質頁岩、珪藻土、沸石(ゼオライト)、活性炭、シリカゲル、活性白土、アルミナ等が挙げられる。また、多孔質体の細孔は、例えば、ゼオライトは2.2〜7.5オングストローム、珪藻土・珪質頁岩は20〜100オングストローム、活性炭は10〜200オングストロームで、結合材として使用する前記粘土の粒径より小さい。   Examples of the porous body having a physical adsorption action include siliceous shale, diatomaceous earth, zeolite (zeolite), activated carbon, silica gel, activated clay, and alumina. The pores of the porous body are, for example, 2.2 to 7.5 angstroms for zeolite, 20 to 100 angstroms for diatomaceous earth and siliceous shale, and 10 to 200 angstroms for activated carbon. Smaller than particle size.

前記化学吸着作用を持つ金属酸化物としては、マンガン(Mn)、コバルト(Co)、銅(Cu)、鉄(Fe)、亜鉛(Zn)、アルミニウム(Al)、チタン(Ti)の各酸化物、白金(Pt)、バナジウム(V)、プラセオジム(Pr)、クロム(Cr)の金属イオン等が挙げられる。また、金属酸化物の粒径は0.5μm〜3μmとし、前記粘土と同様、多孔質体の細孔より大きくし、多孔質体の細孔を閉塞しないようにしてある。   Examples of the metal oxide having the chemical adsorption action include manganese (Mn), cobalt (Co), copper (Cu), iron (Fe), zinc (Zn), aluminum (Al), and titanium (Ti) oxides. , Platinum (Pt), vanadium (V), praseodymium (Pr), chromium (Cr) metal ions, and the like. Further, the particle size of the metal oxide is 0.5 μm to 3 μm and, like the clay, is larger than the pores of the porous body so as not to block the pores of the porous body.

次に、結合材(バインダー)の物理吸着に及ぼす影響について考察した内容を以下に示す。
[試料]
物理吸着作用の無機多孔質体として珪質頁岩の粉末(鈴木産業(株)製)を、化学吸着作用の金属酸化物として酸化鉄(Fe23)粉末(東北珪砂(株)製),活性化二酸化マンガン(MnO2)粉末(日本重化学工業(株)製)を、結合材として粘土(水簸蛙目粘土)(丸石窯業原料(株)製)或いは水ガラス(愛知珪曹工業(株)製のアイセットU−3号)を使用したもの、あるいは使用しないもの、それぞれに水を加え練混ぜ、大きさφ5mmの球体に成形した。その成形体を温度450℃、3時間で焼成・固化し試料とした。各部材の配合比は表1に示す通りである。
[試験方法]
主に物理吸着により除去される代表的臭気、濃度150ppmのNH3をそれぞれの試料10cc充填のカラムに連続で通気量6L/分の速度で通気した時の1分間のNH3の吸着量を測定した。
[結果]
NH3が無機多孔質体粉末に物理吸着作用でより多く吸着され、また、金属酸化物においても化学吸着されている。本結果では、無機多孔質体粉末および金属酸化物粉末を混合した試料は、単独で用いた試料に較べ配合量をそれぞれ約半分に減少させて用いているので、吸着量もそれに比例して減少している。その点を考慮すると、粘土ではほとんど吸着作用に影響を及ぼしてはいない。しかしながら、水ガラスが無機多孔質体および金属酸化物に対して性能を大きく低下させている。これは、水ガラス粒子が無機多孔質体の細孔を塞ぎ、さらに金属酸化物の表面を覆っているため物理吸着作用のみならず化学吸着作用にも大きく影響していると考えられる。
Next, the contents considered about the influence on the physical adsorption of the binder (binder) are shown below.
[sample]
Silica shale powder (manufactured by Suzuki Sangyo Co., Ltd.) as an inorganic porous body for physical adsorption, iron oxide (Fe 2 O 3 ) powder (manufactured by Tohoku Silica Sand Co., Ltd.) as a metal oxide for chemical adsorption, Activated manganese dioxide (MnO 2 ) powder (manufactured by Nippon Heavy Chemical Industry Co., Ltd.), clay (Mizuname clay) (manufactured by Maruishi Ceramic Industry Co., Ltd.) or water glass (Aichi Silica Industrial Co., Ltd.) as a binder ) Made with or without eyeset U-3), water was added to each of them and kneaded to form a sphere having a size of φ5 mm. The molded body was fired and solidified at a temperature of 450 ° C. for 3 hours to prepare a sample. The mixing ratio of each member is as shown in Table 1.
[Test method]
Measurement of the amount of NH 3 adsorbed for 1 minute when a typical odor mainly removed by physical adsorption and NH 3 with a concentration of 150 ppm is continuously aerated through a column filled with 10 cc of each sample at a flow rate of 6 L / min. did.
[result]
More NH 3 is adsorbed on the inorganic porous material powder by physical adsorption, and is also chemisorbed on the metal oxide. In this result, the sample mixed with the inorganic porous material powder and the metal oxide powder is used by reducing the blending amount by about half compared to the sample used alone, so the adsorption amount is also reduced proportionally. is doing. Considering this point, clay hardly affects the adsorption action. However, the performance of water glass is greatly reduced with respect to inorganic porous materials and metal oxides. This is probably because water glass particles block the pores of the inorganic porous body and further cover the surface of the metal oxide, so that not only the physical adsorption action but also the chemical adsorption action is greatly affected.

次に、粘土(結合材)が物理吸着に及ぼす影響について考察した内容を以下に示す。
[試料]
物理吸着作用の無機多孔質体として珪質頁岩粉末を、結合材として粘土(蛙目粘土)を用い、全粉末(珪質頁岩粉末、粘土)に対する粘土重量比をそれぞれ0%、10%、20%、30%、40%と変化させ、それぞれに水を40重量%加え練混ぜ、それぞれを大きさφ5mmの球体に成形した。その成形体を温度450℃で、3時間、焼成・固化し試料とした。各部材の配合比は表2に示す通りである。
[試験方法]
主に物理吸着により除去される代表的臭気、濃度150ppmのNH3をそれぞれの試料10cc充填のカラムに、通気量6L/分の速度で連続して通気した時の3時間経過した時のNH3の吸着量を測定し、1時間当りで表した。
Next, the content of the study on the effect of clay (binding material) on physical adsorption is shown below.
[sample]
Siliceous shale powder is used as the inorganic porous body for physical adsorption, clay (Sasame clay) is used as the binder, and the clay weight ratio to the total powder (siliceous shale powder, clay) is 0%, 10%, and 20 respectively. %, 30%, and 40%, 40% by weight of water was added to each, kneaded, and each was formed into a sphere having a size of φ5 mm. The molded body was fired and solidified at a temperature of 450 ° C. for 3 hours to prepare a sample. The mixing ratio of each member is as shown in Table 2.
[Test method]
Representative odor is removed mainly by physical adsorption, the NH 3 concentration 150ppm in the column for each sample 10cc filling, NH 3 when after three hours when aerated continuously with aeration 6L / min Was measured and expressed per hour.

[結果]
表3に示すように、粘土を加えることにより、試料中の無機多孔質体粉末の割合が少なくなり、それに比例して吸着量が減少する傾向(例えば、粘土添加量30%、無機多孔質体粉末30%減⇒吸着量30%減)にあるが、その点を考慮すると、粘土添加量30%までは、物理吸着作用に及ぼす影響はないと考えられる。また、成形性には、可塑性が向上する粘土はより多く添加したほうが、物理吸着作用にとっては粘土が少ないほうがそれぞれ好ましいのであるが、これらを勘案すると粘土の添加量は10%〜30%の範囲が望ましいと考えられる。
[result]
As shown in Table 3, by adding clay, the proportion of the inorganic porous material powder in the sample decreases, and the amount of adsorption tends to decrease proportionally (for example, the amount of added clay is 30%, the inorganic porous material is Considering this point, it is considered that there is no effect on the physical adsorption action up to 30% addition of clay. In addition, it is more preferable to add more clay for improving plasticity and less clay for the physical adsorption action, but considering these, the amount of clay added is in the range of 10% to 30%. Is considered desirable.

次に、焼成温度が物理吸着及び化学吸着に及ぼす影響について考察した内容を以下に示す。
先ず、原料の熱的特性について考察する。
脱臭材の原料である無機多孔質体粉末(珪質頁岩粉末)、粘土(蛙目粘土)、金属酸化物粉末(二酸化マンガン)それぞれについて、示差熱分析(DTA)を行い、昇温に伴う重量変化を調べた。示差熱分析は株式会社リガク社製の差動型示差熱天秤 TG−DTAスマートローダ TG−8120を用い、昇温速度10℃/minで測定した。各原料の測定結果は表4〜表6に示す通りである。
Next, the contents of studying the influence of the firing temperature on physical adsorption and chemical adsorption are shown below.
First, the thermal characteristics of the raw material will be considered.
Differential thermal analysis (DTA) is performed on each of the inorganic porous material powder (siliceous shale powder), clay (Sasame clay), and metal oxide powder (manganese dioxide), which are the raw materials of the deodorizing material, and the weight accompanying the temperature rise We examined changes. The differential thermal analysis was measured using a differential type differential thermal balance TG-DTA smart loader TG-8120 manufactured by Rigaku Corporation at a heating rate of 10 ° C./min. The measurement results of each raw material are as shown in Tables 4 to 6.

昇温に伴い水分が定量的に減少することが分かる。 It can be seen that moisture decreases quantitatively as the temperature rises.

昇温に伴い水分が減少している。450℃までは定量的に減少し(吸着水、層間水の脱
水)、450℃〜550℃において急激な減少があり(構造水、結合水の脱水)、600℃以上で脱水は完了している。
Moisture decreases with increasing temperature. Decreases quantitatively up to 450 ° C (desorption of adsorbed water and interlayer water), abrupt decrease from 450 ° C to 550 ° C (dehydration of structural water and bound water), and dehydration is completed at 600 ° C or higher. .

昇温に伴う重量の減少は、二酸化マンガンが酸化され化学吸着の性能を持たない酸化
マンガンになっていると考えられる。3MnO2+O2 →MnO2+2MnO+2O2
昇温に伴い、500℃までは定量的に減少する。500℃〜600℃急激に減少し、6
00℃以上では減少量が15%になり安定する。
It is considered that the decrease in weight accompanying the temperature increase is a manganese oxide that is oxidized by manganese dioxide and has no chemisorption performance. 3MnO 2 + O 2 → MnO 2 + 2MnO + 2O 2
As the temperature rises, it decreases quantitatively up to 500 ° C. It decreases rapidly from 500 ℃ to 600 ℃, 6
Above 00 ° C, the amount of decrease is 15% and is stable.

[試料]
物理吸着作用の無機多孔質体として珪質頁岩粉末を45重量%、化学吸着作用の金属酸化物として酸化鉄(Fe23)粉末を2重量%および二酸化マンガン(MnO2)粉末を8重量%、結合材として粘土(蛙目粘土)を5重量%(全粉末に対して10重量%)添加し、水を35重量%加え練混ぜ、大きさφ5mmの球体に成形した。その成形体を未焼成、250℃、350℃、450℃、550℃、650℃で、それぞれ3時間で焼成・固化し試料とした。
[試験方法]
主に物理吸着作用により除去される代表的臭気、NH3をそれぞれの試料10cc充填のカラムに通気量6L/分の速度で連続通気し、3時間経過した時のNH3の吸着量を測定し、1時間当たりで表した。また、化学吸着作用により除去される代表的臭気、濃度200ppmのH2Sをそれぞれの試料10g入れた容量10Lのテドラーバックに注入し静置し(静置試験)、1時間後のH2Sの除去率を求め、試料の吸着性能の目安とした。試験の結果は表7に示す通りである。
[sample]
45% by weight of siliceous shale powder as an inorganic porous material for physical adsorption, 2% by weight of iron oxide (Fe 2 O 3 ) powder and 8% of manganese dioxide (MnO 2 ) powder as metal oxides for chemical adsorption %, 5% by weight of clay (Sasame clay) was added as a binder (10% by weight with respect to the total powder), 35% by weight of water was added and kneaded to form a sphere having a size of 5 mm. The green body was fired and solidified for 3 hours at unfired, 250 ° C., 350 ° C., 450 ° C., 550 ° C., and 650 ° C., respectively.
[Test method]
A typical odor mainly removed by physical adsorption action, NH 3 was continuously aerated at a flow rate of 6 L / min through a column filled with 10 cc of each sample, and the amount of NH 3 adsorbed after 3 hours was measured. Expressed per hour. Moreover, typical odor to be removed by chemical adsorption, and allowed to stand and poured into Tedler bag concentration 200ppm of H 2 S capacity 10L were placed each sample 10g (standing test) after 1 hour of H 2 S The removal rate was obtained and used as a standard for the adsorption performance of the sample. The results of the test are as shown in Table 7.

[試料]
物理吸着作用の無機多孔質体として珪質頁岩粉末を、結合材として粘土(蛙目粘土)を用いて、珪質頁岩粉を54重量%、粘土を6重量%(全粉末に対して10重量%)とし、それに水を40重量%加え練混ぜ、大きさφ5mmの球体に成形した。その成形体を未焼成、250℃、350℃、450℃、600℃、700℃、800℃、900℃、それぞれの温度で3時間焼成・固化し試料とした。
[試験方法]
主に物理吸着作用により除去される代表的臭気、NH3をそれぞれの試料10cc充填のカラムに通気量6L/分の速度で連続通気し、3時間経過した時のNH3の吸着量を測定し、単位時間当たりで表した。結果は表8に示す通りである。
[sample]
Using siliceous shale powder as the inorganic porous material for physical adsorption, clay (Sasame clay) as the binder, 54% by weight of siliceous shale powder and 6% by weight of clay (10% by weight of the total powder) %), And 40% by weight of water was added thereto and kneaded to form a sphere having a size of φ5 mm. The green body was fired and solidified for 3 hours at non-fired, 250 ° C., 350 ° C., 450 ° C., 600 ° C., 700 ° C., 800 ° C., and 900 ° C. temperatures.
[Test method]
A typical odor mainly removed by physical adsorption action, NH 3 was continuously aerated at a flow rate of 6 L / min through a column filled with 10 cc of each sample, and the amount of NH 3 adsorbed after 3 hours was measured. Expressed per unit time. The results are as shown in Table 8.

表7及び表8に示す結果から、焼成温度が高くなるにつれ、物理吸着作用および化学吸着作用による吸着が低下することが解る。但し、未焼成品は粘土中に含まれる水の影響により物理吸着が若干低くなっている。表7では、焼成温度450℃までは、表6に示した金属酸化物の酸化が進行し活性な金属酸化物が減少することによる化学吸着作用の低下の影響はみられないと考えられるが、焼成温度が550℃を過ぎると化学吸着作用の低下が見られる。これは、表6での金属酸化物の急激な重量の減少傾向と呼応している。また、表8で焼成温度600℃以上では物理吸着作用の低下も顕著に起こってくる。これは、表4及び表5に示すように無機多孔質体粉末及び粘土に含まれている水分が脱水するのと対応している。従って、水がなくなり600℃以上では無機多孔質体の細孔が溶融等何らかの原因で塞がれ、物理吸着作用が低下するものと考えられる。このことから、焼成温度は出来るだけ低温であることが望ましく、物理吸着及び化学吸着それぞれの作用をともに効果的に発揮すると考えられる焼成温度は500℃以下であると考えられる。   From the results shown in Tables 7 and 8, it is understood that the adsorption due to the physical adsorption action and the chemical adsorption action decreases as the firing temperature increases. However, the physical adsorption of the unfired product is slightly lower due to the influence of water contained in the clay. In Table 7, up to a firing temperature of 450 ° C., it is considered that the influence of the decrease in the chemisorption effect due to the progress of the oxidation of the metal oxide shown in Table 6 and the reduction of the active metal oxide is not observed. When the calcination temperature exceeds 550 ° C., the chemical adsorption action is reduced. This corresponds to the rapid weight reduction trend of the metal oxide in Table 6. Further, in Table 8, when the firing temperature is 600 ° C. or more, the physical adsorption action is significantly reduced. This corresponds to the dehydration of the moisture contained in the inorganic porous material powder and clay as shown in Tables 4 and 5. Therefore, it is considered that when the water runs out and the temperature is 600 ° C. or higher, the pores of the inorganic porous body are blocked for some reason such as melting, and the physical adsorption action is lowered. From this, it is desirable that the firing temperature be as low as possible, and it is considered that the firing temperature considered to exhibit both the physical adsorption and the chemical adsorption effectively is 500 ° C. or less.

次に、焼成温度による耐水性に及ぼす影響について考察した内容を以下に示す。
[試料]
物理吸着作用の無機多孔質体として珪質頁岩粉末を45重量%、化学吸着作用の金属酸化物として酸化鉄(Fe23)粉末を2重量%および二酸化マンガン(MnO2)粉末を8重量%、結合材として粘土(蛙目粘土)を5重量%(全粉末に対して10重量%)添加し、水を35重量%加え練混ぜ、大きさφ5mmの球体に成形した。その成形体を温度250℃、350℃、450℃、550℃、650℃で、それぞれ3時間で焼成・固化し試料とした。
[試験方法]
試料を水に浸漬する前にそれぞれ10個の強度を測定した。次に、各試料を水に24時間浸漬し、各試料の破損数およびその状態を観察した。その結果を表9に示す。
Next, the contents of the examination on the influence of the firing temperature on the water resistance are shown below.
[sample]
45% by weight of siliceous shale powder as an inorganic porous material for physical adsorption, 2% by weight of iron oxide (Fe 2 O 3 ) powder and 8% of manganese dioxide (MnO 2 ) powder as metal oxides for chemical adsorption %, 5% by weight of clay (Sasame clay) was added as a binder (10% by weight with respect to the total powder), 35% by weight of water was added and kneaded to form a sphere having a size of 5 mm. The molded body was fired and solidified at temperatures of 250 ° C., 350 ° C., 450 ° C., 550 ° C., and 650 ° C. for 3 hours, respectively, and used as samples.
[Test method]
Ten strengths were measured before each sample was immersed in water. Next, each sample was immersed in water for 24 hours, and the number of breakage and the state of each sample were observed. The results are shown in Table 9.

表9に示す結果から、焼成温度が高くなるに伴い浸漬前の強度は高くなる。しかしながら、浸漬後は温度350℃以下では水中で崩壊し、または手に粉が附着し、簡単に手で潰れ耐水性に劣る。温度450℃以上では固化体に歪みによるクラックが少数に生じるものの耐水性には問題ない。これは温度450℃以上の焼成で粘土成分中のカオリナイト及びハロイサイト中の水分(吸着水、層間水、構造水、結合水)が脱水され復水しないためと考えられる。これは、表5の粘土の昇温に伴う重量の減少傾向と呼応している。   From the results shown in Table 9, the strength before immersion increases as the firing temperature increases. However, after immersion, at a temperature of 350 ° C. or lower, it disintegrates in water, or powder adheres to the hand, and it is easily crushed by hand and inferior in water resistance. If the temperature is 450 ° C. or higher, a few cracks are generated in the solidified body due to strain, but there is no problem with water resistance. This is presumably because the kaolinite in the clay component and the water in the halloysite (adsorbed water, interlayer water, structural water, and bound water) are dehydrated and not condensed by baking at a temperature of 450 ° C. or higher. This corresponds to the tendency of the weight to decrease as the clay temperature rises in Table 5.

以下、本発明の実施例について説明する。
脱臭基材として、物理吸着作用の無機多孔質体として珪質頁岩の粉末を45重量%、化学吸着作用の金属酸化物として酸化鉄(Fe23)粉末を2重量%及び二酸化マンガン(MnO2)粉末を8重量%、結合材としてカオリナイト、ハロイサイトを含有する粘土(蛙目粘土)の粉末を5重量%(全粉末に対して10%)、水を35重量%加えて練り混ぜ、これをφ5mmの球体に成形し、温度450℃で3時間焼成し、脱水固化して脱臭材を完成した。
Examples of the present invention will be described below.
As a deodorizing substrate, 45% by weight of siliceous shale powder as an inorganic porous body for physical adsorption action, 2% by weight of iron oxide (Fe 2 O 3 ) powder as a metal oxide for chemical adsorption action, and manganese dioxide (MnO 2 ) Add 8% by weight of powder, 5% by weight of kaolinite as a binder, 5% by weight of clay (Kamme clay) containing halloysite, and 35% by weight of water. This was formed into a sphere of φ5 mm, fired at a temperature of 450 ° C. for 3 hours, dehydrated and solidified to complete a deodorizing material.

上記方法により完成された脱臭材の性能を比較する為に、物理吸着作用だけの特性を持つ比較例を作製した。その比較例の脱臭材は、無機多孔質体として珪質頁岩粉末を、バインダーとして粘土(蛙目粘土)を用い、珪質頁岩粉末を54重量%、粘土を6重量%(全粉末に対して10重量%)とし、それに水を40重量%加え練混ぜ、大きさφ5mmの球体に成形した。その成形体を450℃で3時間焼成・固化し試料とした。   In order to compare the performance of the deodorizing material completed by the above method, a comparative example having properties only for physical adsorption was prepared. The deodorizing material of the comparative example uses siliceous shale powder as the inorganic porous material, clay (Sasame clay) as the binder, 54% by weight of siliceous shale powder, 6% by weight of clay (based on the total powder) 10% by weight), and 40% by weight of water was added thereto and kneaded to form a sphere having a size of 5 mm. The molded body was fired and solidified at 450 ° C. for 3 hours to prepare a sample.

[試験方法]
生活環境で発生する代表的な臭気6種類、濃度200ppmのアンモニア(NH3)、濃度200ppmの硫化水素(H2S)、濃度200ppmのトリメチルアミン((CH3)3N)、濃度240ppmのエチルメルカプタン(CH3CH2SH)、濃度50ppmのイソ吉草酸(CH3(CH2)3COOH)、濃度500ppmのホルムアルデヒド(HCHO)を、それぞれの試料1gを入れた容量10Lのテドラーバックにそれぞれ注入し、静置し(静置試験)、3時間後のそれぞれの臭気除去率(%)を求め、試料の吸着性能の目安とした。その結果を表11に示す。
[臭気の測定方法]
株式会社ガステック社製の気体採取器と短時間検知管を用いて、初期濃度と各時間経過後の濃度を所定の手順にて測定する。尚、測定した臭気とそれぞれの検知管の品番は表10に示す通りである。
[Test method]
Six typical odors generated in the living environment, ammonia (NH 3 ) with a concentration of 200 ppm, hydrogen sulfide (H 2 S) with a concentration of 200 ppm, trimethylamine ((CH 3 ) 3N) with a concentration of 200 ppm, ethyl mercaptan with a concentration of 240 ppm ( CH 3 CH 2 SH), isovaleric acid (CH 3 (CH 2 ) 3 COOH) with a concentration of 50 ppm, and formaldehyde (HCHO) with a concentration of 500 ppm were each injected into a 10 L Tedlar bag containing 1 g of each sample and allowed to stand. (Standing test) Each odor removal rate (%) after 3 hours was determined and used as a standard for the adsorption performance of the sample. The results are shown in Table 11.
[Odor measurement method]
Using a gas sampling device and a short-time detector tube manufactured by Gastec Co., Ltd., the initial concentration and the concentration after each lapse of time are measured by a predetermined procedure. The measured odors and the product numbers of the respective detector tubes are as shown in Table 10.

表11に示す結果から、臭気別の吸着除去として、塩基性類(アンモニア、トリメチルアミン)およびアルデヒド類(ホルムアルデヒド)は無機多孔体および金属酸化物の物理・化学両吸着作用(物理吸着作用による除去が大きい)で、硫黄化合物は金属酸化物の化学吸着作用で、脂肪酸類(イソ吉草酸)は物理吸着作用でそれぞれ除去していることが分る。このように、粘土を用い、低温で焼成することにより、生活環境で発生するさまざまな臭気を除去することが可能になる。尚、未焼成試料が焼成試料より除去率が低いのは、粘土に含まれる水の影響によるものと考えられる。
そして、物理吸着及び化学吸着の両特性を持つ実施例の脱臭材は、物理吸着作用だけの特性を持つ比較例の脱臭材の特性に加え、硫化水素やエチルメルカプタンのような臭気も除去できることが分かる。また、実施例の脱臭材は比較例の脱臭材と比べて無機多孔質体粉の量が少ないが、その分を金属酸化物の化学吸着作用により補っている傾向が見られる。これより、本発明に係る脱臭材がより優れたものであることが分かる。
From the results shown in Table 11, basic adsorption (ammonia, trimethylamine) and aldehydes (formaldehyde) are removed by adsorption according to odors. It can be seen that sulfur compounds are removed by metal oxide chemisorption and fatty acids (isovaleric acid) are removed by physical adsorption. Thus, by using clay and baking at a low temperature, it is possible to remove various odors generated in the living environment. In addition, it is considered that the removal rate of the unfired sample is lower than that of the fired sample due to the influence of water contained in the clay.
In addition, the deodorizing material of the example having both physical adsorption and chemical adsorption characteristics can remove odors such as hydrogen sulfide and ethyl mercaptan in addition to the characteristics of the deodorizing material of the comparative example having only the physical adsorption function. I understand. Moreover, although the amount of inorganic porous body powder is small compared with the deodorizing material of a comparative example, the deodorizing material of an Example has the tendency which supplements the part by the chemical adsorption action of a metal oxide. This shows that the deodorizing material according to the present invention is more excellent.

次に、本発明に係る脱臭材Aを用いた脱臭装置Bの実施の形態の一例を図1に基づいて説明する。
脱臭装置Bは、臭気吸込み口2及びフレッシュエアー放出口3を設けた容器1の内部に、臭気を強制循環させるモータ4で駆動するファン5と、脱臭材Aを収容して構成されている。
Next, an example of an embodiment of a deodorizing apparatus B using the deodorizing material A according to the present invention will be described with reference to FIG.
The deodorizing apparatus B is configured to house a fan 5 driven by a motor 4 for forcibly circulating odor and a deodorizing material A inside a container 1 provided with an odor suction port 2 and a fresh air discharge port 3.

前記容器1は、陶器で構成した下容器1aと、その下容器1aの上に載置する筒状の上容器1bと、前記上容器1bの上面開口部に被着する蓋体1cとで構成されている。
前記下容器1aは内部に支持枠6を介してモータ4とファン5が配置され、周壁には前記モータ4で駆動回転されるファン5の作用で臭気を容器1内に吸い込む臭気吸込み口2が適宜数開設されている。
前記上容器1bは、前記下容器1aの上端に接続載置し得る筒状に形成され、その接続側に脱臭材Aを収容保持でき、且つ下容器1aに吸い込んだ臭気を上容器1bに送り込む通気孔を備えた底板7が設けられている。
前記底板7は上容器1bと一体に形成されていても、或いは別体に形成され、上容器1bに対して着脱自在としてもよい。尚、底板7に形成する通気孔の大きさは前記脱臭材A(例えば、φ5mmの球体)よりも小さくし、脱臭材Aが下容器1aに落下しなければよい。
前記蓋体1cは前記上容器1bの上側開口部に被着するもので、フレッシュエアー放出口3が形成されている。
The container 1 is composed of a lower container 1a made of earthenware, a cylindrical upper container 1b placed on the lower container 1a, and a lid 1c attached to the upper surface opening of the upper container 1b. Has been.
A motor 4 and a fan 5 are disposed inside the lower container 1a via a support frame 6, and an odor suction port 2 for sucking odor into the container 1 by the action of the fan 5 driven and rotated by the motor 4 is provided on the peripheral wall. An appropriate number has been established.
The upper container 1b is formed in a cylindrical shape that can be connected and placed on the upper end of the lower container 1a. The deodorizing material A can be accommodated and held on the connection side, and the odor sucked into the lower container 1a is sent to the upper container 1b. A bottom plate 7 having a vent is provided.
The bottom plate 7 may be formed integrally with the upper container 1b or may be formed separately and detachable from the upper container 1b. The size of the air holes formed in the bottom plate 7 should be smaller than that of the deodorizing material A (for example, a sphere having a diameter of 5 mm) so that the deodorizing material A does not fall into the lower container 1a.
The lid 1c is attached to the upper opening of the upper container 1b, and has a fresh air discharge port 3 formed therein.

図2は前記脱臭材Aによる脱臭(物理吸着及び化学吸着)のしくみを示す模式図で、脱臭材Aは脱臭基材の無機多孔質体A1、金属酸化物(A2、金属酸化物A3が粘土(結合材)で球体に成形されている。そして、臭気として例えば、アンモニア(塩基性類)、硫化水素(硫黄化合物類)、ホルムアルデヒド(アルデヒド類)が存在した場合、脱臭材A内の無機多孔質体A1にはアンモニアが物理吸着され、金属酸化物A2による化学吸着(分解)によって硫化水素はイオウと無臭の硫化物に変化し、金属酸化物A3による化学吸着(分解)によってホルムアルデヒドは二酸化素と水素に変化される。
それにより、脱臭材Aは物理吸着及び化学吸着の両特性を併せ持つ脱臭材である。
FIG. 2 is a schematic diagram showing a mechanism of deodorization (physical adsorption and chemical adsorption) by the deodorizing material A. The deodorizing material A is an inorganic porous body A1 of a deodorizing substrate, and a metal oxide (A2 and metal oxide A3 are clays). (Binding material) is formed into a sphere, and when there are odors such as ammonia (basic compounds), hydrogen sulfide (sulfur compounds), and formaldehyde (aldehydes), the inorganic porous material in the deodorizing material A Ammonia is physically adsorbed on the material A1, hydrogen sulfide is changed to sulfur and odorless sulfide by chemical adsorption (decomposition) by the metal oxide A2, and formaldehyde is oxidized by chemical adsorption (decomposition) by the metal oxide A3. And changed to hydrogen.
Thereby, the deodorizing material A is a deodorizing material having both physical adsorption and chemical adsorption characteristics.

本発明の脱臭材、及び脱臭材を用いた脱臭装置は図示した実施の形態に限定されず、本発明の要旨を変更しない範囲で適宜変更可能である。
(1)実施の形態では、容器が下容器、上容器、蓋体の三部材からなる例を示したがこれに限らず、例えば、二部材、或いは四部材で構成されていてもよい。
(2)実施の形態では、容器が陶器製である例を示したがこれに限らず、合成樹脂製、ガラス製等でもよい。
The deodorizing material of the present invention and the deodorizing apparatus using the deodorizing material are not limited to the illustrated embodiment, and can be appropriately changed without departing from the gist of the present invention.
(1) In the embodiment, an example in which the container is composed of three members, that is, a lower container, an upper container, and a lid, is shown, but the present invention is not limited to this. For example, the container may be composed of two members or four members.
(2) In the embodiment, the example in which the container is made of earthenware has been shown, but the present invention is not limited to this, and the container may be made of synthetic resin or glass.

A…脱臭材 A1…無機多孔質体
A2…金属酸化物 A3…金属酸化物
B…脱臭装置 1…容器
2…臭気吸込み口 5…ファン
DESCRIPTION OF SYMBOLS A ... Deodorizing material A1 ... Inorganic porous body A2 ... Metal oxide A3 ... Metal oxide B ... Deodorizing apparatus 1 ... Container 2 ... Odor inlet 5 ... Fan

Claims (5)

脱臭基材として物理吸着作用を持つ無機多孔質体の粉末と、化学吸着作用を持つ活性な金属酸化物粉末を用い、結合材としてカオリン鉱物系のうち、カオリナイト及びハロイサイトを含有する粘土を用い、これに水を加えて練り混ぜ成形し、該成形物を、前記金属酸化物の活性が失われない温度で焼成固化することを特徴とする耐水性及び物理吸着、化学吸着の二つの機能を併せ持つ脱臭材の製造方法。   Using inorganic porous material powder with physical adsorption action and active metal oxide powder with chemical adsorption action as deodorizing base material, and using kaolin mineral-based clay containing kaolinite and halloysite as binder. Water is added to this, kneaded and molded, and the molded product is fired and solidified at a temperature at which the activity of the metal oxide is not lost, and has two functions of water resistance, physical adsorption and chemical adsorption. A method for producing a deodorizing material. 前記結合材は、全粉末に対して10〜30重量%の範囲で混合することを特徴とする請求項1記載の脱臭材の製造方法。   The method for producing a deodorizing material according to claim 1, wherein the binder is mixed in a range of 10 to 30% by weight with respect to the total powder. 前記焼成固化は、温度400℃〜500℃の範囲で焼成することを特徴とする請求項1または2記載の脱臭材の製造方法。   The method for producing a deodorizing material according to claim 1 or 2, wherein the calcination solidification is performed at a temperature of 400 ° C to 500 ° C. 物理吸着作用を持つ無機多孔質体の粉末と、化学吸着作用を持つ活性な金属酸化物粉末を、カオリン鉱物系のうち、カオリナイト及びハロイサイトを含有する粘土を結合材として用いて成形し、焼成固化してなる脱臭材。   An inorganic porous material powder with a physical adsorption action and an active metal oxide powder with a chemical adsorption action are molded using a kaolin mineral-based clay containing kaolinite and halloysite as a binder, and fired A deodorizing material that is solidified. 物理吸着作用を持つ無機多孔質体の粉末と、化学吸着作用を持つ活性な金属酸化物粉末を、カオリン鉱物系のうち、カオリナイト及びハロイサイトを含有する粘土を結合材として用いて成形し、焼成固化した脱臭材を、通気が可能な開口を有する容器に収容し、且つ、前記容器にファンを備えたことを特徴とする脱臭装置。   An inorganic porous material powder with a physical adsorption action and an active metal oxide powder with a chemical adsorption action are molded using a kaolin mineral-based clay containing kaolinite and halloysite as a binder, and fired A deodorizing apparatus characterized in that the solidified deodorizing material is accommodated in a container having an opening that allows ventilation, and the container is provided with a fan.
JP2010055057A 2010-03-11 2010-03-11 Deodorant material, method of manufacturing the same, and deodorization device using the deodorant material Pending JP2011188888A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010055057A JP2011188888A (en) 2010-03-11 2010-03-11 Deodorant material, method of manufacturing the same, and deodorization device using the deodorant material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010055057A JP2011188888A (en) 2010-03-11 2010-03-11 Deodorant material, method of manufacturing the same, and deodorization device using the deodorant material

Publications (1)

Publication Number Publication Date
JP2011188888A true JP2011188888A (en) 2011-09-29

Family

ID=44794466

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010055057A Pending JP2011188888A (en) 2010-03-11 2010-03-11 Deodorant material, method of manufacturing the same, and deodorization device using the deodorant material

Country Status (1)

Country Link
JP (1) JP2011188888A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021159882A (en) * 2020-04-01 2021-10-11 水澤化学工業株式会社 Adsorbent for purine body
JP2023022933A (en) * 2021-08-04 2023-02-16 株式会社マーナ Deodorant pot and deodorant method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03258344A (en) * 1990-03-09 1991-11-18 Mitsubishi Heavy Ind Ltd Adsorbent and its production
JP2004242848A (en) * 2003-02-13 2004-09-02 National Institute Of Advanced Industrial & Technology Humidity control deodorant and method for producing the same
JP2008221125A (en) * 2007-03-13 2008-09-25 Hokkaido Univ Humidity conditioning and gas adsorbing material and manufacturing method thereof
JP2008540094A (en) * 2005-05-11 2008-11-20 ウーデ・ゲーエムベーハー Method for reducing nitrogen oxide concentration in gas

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03258344A (en) * 1990-03-09 1991-11-18 Mitsubishi Heavy Ind Ltd Adsorbent and its production
JP2004242848A (en) * 2003-02-13 2004-09-02 National Institute Of Advanced Industrial & Technology Humidity control deodorant and method for producing the same
JP2008540094A (en) * 2005-05-11 2008-11-20 ウーデ・ゲーエムベーハー Method for reducing nitrogen oxide concentration in gas
JP2008221125A (en) * 2007-03-13 2008-09-25 Hokkaido Univ Humidity conditioning and gas adsorbing material and manufacturing method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021159882A (en) * 2020-04-01 2021-10-11 水澤化学工業株式会社 Adsorbent for purine body
JP7430562B2 (en) 2020-04-01 2024-02-13 水澤化学工業株式会社 Adsorbent for purines
JP2023022933A (en) * 2021-08-04 2023-02-16 株式会社マーナ Deodorant pot and deodorant method
JP7266314B2 (en) 2021-08-04 2023-04-28 株式会社マーナ Deodorizing pot and deodorizing method

Similar Documents

Publication Publication Date Title
JP5486497B2 (en) Deodorizing catalyst, deodorizing method using the same, and regenerating method of the catalyst
KR100905004B1 (en) Porous composite deodorant for removing harmful gas and odor and its manufacturing method
JP2007283206A (en) Filter
WO1999051327A1 (en) Humidity-controlling functional material and process for the production thereof
JP2011188888A (en) Deodorant material, method of manufacturing the same, and deodorization device using the deodorant material
EP1578457A1 (en) Carbon nanoball for deodorization
JP3873081B2 (en) Humidity control deodorant and method for producing the same
TWI229000B (en) Deodorizer, process for producing the same, and method of deodorization
JP2009106835A (en) Deodorant and method of manufacturing deodorant product
JP2008043829A (en) Humidity-adjusting ceramic material containing photocatalyst coated with silicon oxide film
JP2004024330A (en) Deodorant
JP6341793B2 (en) Metal oxide catalyst and deodorizing material
WO2022071379A1 (en) Odor removal catalyst and use therefor
JP2008044850A (en) Antibacterial and deodorant spraying liquid comprising photocatalyst coated with silicon oxide film
JP2002200149A (en) Deodorant
JP2009279522A (en) Oxide catalyst and method for preparing oxide catalyst, as well as deodorant and deodorizing filter
JP3503262B2 (en) Deodorizing filter and method for producing deodorizing filter
JP6756543B2 (en) Deodorant
JP2016193414A (en) Chemical filter
JP3021301B2 (en) Antibacterial deodorant
JP4100735B2 (en) Deodorizing material
JP2011183352A (en) Method for producing composite particle of natural zeolite and titanium dioxide
WO2022118986A1 (en) Odor removal catalyst and use thereof
JP3168387B2 (en) Deodorizing material and method for producing the same
KR100964537B1 (en) Deodorization catalyst and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130311

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131022

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140304