[go: up one dir, main page]

JP2011183937A - Method and device for detecting failure of non-contact communication equipment - Google Patents

Method and device for detecting failure of non-contact communication equipment Download PDF

Info

Publication number
JP2011183937A
JP2011183937A JP2010051326A JP2010051326A JP2011183937A JP 2011183937 A JP2011183937 A JP 2011183937A JP 2010051326 A JP2010051326 A JP 2010051326A JP 2010051326 A JP2010051326 A JP 2010051326A JP 2011183937 A JP2011183937 A JP 2011183937A
Authority
JP
Japan
Prior art keywords
communication
communication device
contact communication
vehicle
failure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010051326A
Other languages
Japanese (ja)
Inventor
Tatsuya Sasaki
達也 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Railway Technical Research Institute
Original Assignee
Railway Technical Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Railway Technical Research Institute filed Critical Railway Technical Research Institute
Priority to JP2010051326A priority Critical patent/JP2011183937A/en
Publication of JP2011183937A publication Critical patent/JP2011183937A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles

Landscapes

  • Electric Propulsion And Braking For Vehicles (AREA)
  • Train Traffic Observation, Control, And Security (AREA)

Abstract

【課題】新たな設備を導入せずに、車上位置検知のための車載非接触通信機器の故障を検知することが可能な非接触通信機器の故障検知方法、及び故障検知装置を提供する。
【解決手段】先頭及び後尾のRFIDリーダ51,53にてタグ地上子81〜84からの情報を受信しているか相互に診断する。例えば、先頭のRFIDリーダ51における情報受信時期を基準として、アンテナ52,54の間の距離を走行したとき、後尾のRFIDリーダ53におけるタグ地上子81〜84との通信状況を判定する。また例えば、各RFIDリーダ51における通信履歴を記録しておき、後尾のRFIDリーダ51において情報を受信すると、アンテナ52,54の間の距離を走行するのに要する時間だけさかのぼった時点での先頭側RFIDリーダ51の通信履歴を照査し、先頭のRFIDリーダ53におけるタグ地上子との通信状況を判定する。
【選択図】図1
Disclosed is a non-contact communication device failure detection method and a failure detection device capable of detecting a failure of an in-vehicle non-contact communication device for on-vehicle position detection without introducing new equipment.
The first and rear RFID readers 51 and 53 mutually diagnose whether information from tag ground elements 81 to 84 is received. For example, when the distance between the antennas 52 and 54 is traveled based on the information reception time in the leading RFID reader 51, the communication status of the trailing RFID reader 53 with the tag ground elements 81 to 84 is determined. In addition, for example, when a communication history in each RFID reader 51 is recorded and information is received in the rear RFID reader 51, the head side at the time when the distance between the antennas 52 and 54 is traced back. The communication history of the RFID reader 51 is checked, and the communication status with the tag ground unit in the leading RFID reader 53 is determined.
[Selection] Figure 1

Description

本発明は、地上との非接触通信を利用して列車の走行位置情報を車上にて検知する位置検知システムにおける車載非接触通信機器の故障検知に関する。   The present invention relates to failure detection of an in-vehicle non-contact communication device in a position detection system that detects traveling position information of a train on a vehicle using non-contact communication with the ground.

従来、列車が在線する位置は、レールで構成した軌道回路を車軸によって短絡することにより、地上側で検知していた。
また近年、コンピュータ及び無線技術を基礎とした無線式列車制御システム(CARAT;Computer And Radio Train Control System)が研究開発されている。CARATでは、位置検知機能を車上に搭載することにより、従来の軌道回路をはじめとする地上設備を削減し、移動閉そくの間隔制御、駅構内制御等を実現している。これにより、多様な列車を効率よく、かつ低コストに運行させることが可能となっている。例えば、非特許文献1に示すように、CARATでは、無線ICタグを封入したタグ地上子を軌間中央に設置し、列車側にアンテナ及びICタグリーダ等の非接触通信機器を搭載して、タグ地上子のID情報を読み取ることにより車上で在線検知を行う。また、速度発電機を車両に搭載し、速度発電機が計測する速度パルスを用いて走行距離を算出し、列車の在線位置検知を行うことも考えられている。また、地上−車上間の情報伝送に汎用の無線LAN(Local Area Network)を利用する。このように鉄道専用の装置に代えて汎用製品を積極的に導入し、低コスト化を実現している。
Conventionally, the position where a train is present has been detected on the ground side by short-circuiting a track circuit composed of rails with an axle.
In recent years, a computer-based radio train control system (CATRAT) based on radio technology has been researched and developed. CARAT reduces the number of ground facilities such as conventional track circuits by installing a position detection function on the vehicle, and realizes movement block interval control, station premises control, and the like. This makes it possible to operate various trains efficiently and at low cost. For example, as shown in Non-Patent Document 1, in CARAT, a tag ground element enclosing a wireless IC tag is installed in the middle of the gauge, and a non-contact communication device such as an antenna and an IC tag reader is mounted on the train side. The presence line detection is performed on the vehicle by reading the child ID information. It is also considered that a speed generator is mounted on a vehicle, a travel distance is calculated using a speed pulse measured by the speed generator, and a train position detection is performed. A general-purpose wireless LAN (Local Area Network) is used for information transmission between the ground and the vehicle. In this way, general-purpose products have been actively introduced in place of railway-specific devices to achieve cost reduction.

ところで、上述の手法を用いて列車の位置検知を行なう場合、列車側に備えられる非接触通信機器が故障すると、列車の走行位置が特定できない。この場合には、地上装置は列車の走行位置を特定できないので列車の走行が危険側となる恐れがあり、フェールセーフ性を確保する必要があった。また、故障した通信機器からは故障したこと自体を通知できず、通信機器の故障そのものを把握することが難しかった。
そこで機器の故障等の異常を検知するため、従来は、列車の編成の先頭と後尾に設備した車上アンテナにそれぞれ故障検知用のループを設けるとともに、故障検知用に地上からなんらかの情報を送信する機器を設備し、上述の故障検知用ループで地上からの情報を受信可能か否かを判断することにより、位置検知のための機器に異常がないかを検出していた。
By the way, when the position of a train is detected using the above-described method, if a non-contact communication device provided on the train side fails, the traveling position of the train cannot be specified. In this case, since the ground device cannot specify the traveling position of the train, there is a risk that the traveling of the train may be on the danger side, and it is necessary to ensure fail-safety. In addition, the failed communication device cannot notify the failure itself, and it is difficult to grasp the failure of the communication device.
Therefore, in order to detect abnormalities such as equipment failures, conventionally, on-board antennas installed at the beginning and the end of train formation are each provided with a failure detection loop, and some information is transmitted from the ground for failure detection. Equipment is installed, and it is detected whether there is any abnormality in the equipment for position detection by determining whether or not information from the ground can be received in the above-described failure detection loop.

「汎用無線技術による低コストな無線式列車制御システム」(5−S22−4)平成20年電気学会全国大会 山本春生、関清隆他"Low-cost wireless train control system using general-purpose wireless technology" (5-S22-4) 2008 IEEJ National Conference Haruo Yamamoto, Kiyotaka Seki et al.

しかしながら、上述のような従来の故障検知の手法では、故障検知用のループや地上設備を別途設ける必要があるためコストが増大し、また設備の管理も容易ではなかった。   However, in the conventional failure detection methods as described above, since it is necessary to separately provide a failure detection loop and ground facilities, the cost is increased and the facility management is not easy.

本発明は、前述した問題点に鑑みてなされたもので、その目的は、新たな設備を導入せずに、位置検知のために車両に塔載される非接触通信機器の故障を検知することが可能な非接触通信機器の故障検知方法、及び故障検知装置を提供することである。   The present invention has been made in view of the above-described problems, and an object thereof is to detect a failure of a non-contact communication device mounted on a vehicle for position detection without introducing new equipment. It is to provide a failure detection method and failure detection device for a non-contact communication device capable of performing the above.

前述した目的を達成するために第1の発明は、車両の先頭及び後尾に搭載される非接触通信機器と、地上に設置され地点情報を保持する地上子との間で非接触通信を行なうことにより車上で車両の走行位置を検知する位置検知システムにおける前記非接触通信機器の故障検知方法であって、車両の先頭及び後尾のいずれか一方の非接触通信機器と前記地上子との通信を検知する通信検知ステップと、前記通信検知ステップにおける通信検知時を基準に、車両が先頭及び後尾の非接触通信機器のアンテナ間の距離だけ走行した時、または該アンテナ間の距離を走行するのに要する時間だけ前記基準からさかのぼった時における、他方の非接触通信機器の通信状況を確認する確認ステップと、前記確認ステップにより確認した他方の非接触通信機器の通信状況に基づき他方の非接触通信機器が故障であるか否かを判定する故障判定ステップと、を含むことを特徴とする非接触通信機器の故障検知方法である。   In order to achieve the above-described object, the first invention is to perform non-contact communication between a non-contact communication device mounted at the front and rear of a vehicle and a ground unit installed on the ground and holding point information. A failure detection method for the non-contact communication device in a position detection system for detecting a traveling position of a vehicle on a vehicle, wherein communication is performed between the non-contact communication device at one of the front and rear of the vehicle and the ground unit. When the vehicle travels only the distance between the antennas of the front and rear non-contact communication devices based on the communication detection step to detect and the communication detection time in the communication detection step, or to travel the distance between the antennas A confirmation step for confirming the communication status of the other non-contact communication device when the time is traced back from the reference, and the other non-contact communication device confirmed by the confirmation step Contactless communication device of the other based on the communication status of whether a failure judgment step of judging whether a failure of a non-contact communication equipment failure detection method, which comprises a.

第1の発明によれば、車両の先頭及び後尾のいずれか一方の非接触通信機器と地上子との通信を検知し、通信検知時を基準に、車両が先頭及び後尾の非接触通信機器のアンテナ間の距離だけ走行した時、または該アンテナ間の距離を走行するのに要する時間だけ前記基準からさかのぼった時における、他方の非接触通信機器の通信状況を確認し、他方の非接触通信機器の通信状況に基づき他方の非接触通信機器が故障であるか否かを判定する。
これにより、先頭及び後尾に設けられている非接触通信機器のうちいずれか一方でタグ地上子との通信が正常に行われていれば、車両の走行距離または走行距離に相当する走行時間から、他方の非接触通信機器の通信タイミングを特定でき、その通信タイミングでの後尾側の通信状況を確認することにより故障を診断できる。そのため、故障検知用のループ等の新たな設備を設ける必要がなく既存の設備で故障を検知でき、低コストで列車の運行の安全性を確保できる。
According to the first aspect of the present invention, the communication between the non-contact communication device at the head and the tail of the vehicle and the ground unit is detected, and the vehicle is connected to the non-contact communication device at the head and the tail on the basis of the communication detection time. The other non-contact communication device confirms the communication status of the other non-contact communication device when traveling by the distance between the antennas or when going back from the reference for the time required to travel the distance between the antennas. Whether or not the other non-contact communication device is faulty is determined based on the communication status.
Thereby, if the communication with the tag ground element is normally performed on either one of the non-contact communication devices provided at the head and the tail, from the travel time corresponding to the travel distance of the vehicle or the travel distance, The communication timing of the other non-contact communication device can be specified, and the failure can be diagnosed by confirming the communication state on the rear side at the communication timing. Therefore, it is not necessary to provide a new facility such as a failure detection loop, so that the failure can be detected with the existing facility, and the safety of the train operation can be secured at a low cost.

また、前記通信検知ステップにおいて、先頭の非接触通信機器と前記地上子との通信を検知した場合は、前記確認ステップにおいて、前記基準時から前記後尾の非接触通信装置における前記地上子との通信状況の監視を開始するとともに、車両の走行距離の監視を開始し、前記故障判定ステップにおいて、当該走行距離が前記アンテナ間の距離またはその許容誤差範囲となる時期に、後尾の非接触通信機器にて前記地上子との通信が行われたか否かを判定し、該当する時期に後尾の非接触通信機器において前記地上子との通信が行われない場合は、後尾の非接触通信機器が故障であると判定し、故障検知情報を出力することが望ましい。
これにより、先頭の非接触通信機器と前記地上子との通信を検知した場合に、後尾の非接触通信機器の故障を判定して、故障検知情報を出力できる。
In the communication detection step, when communication between the head non-contact communication device and the ground unit is detected, in the confirmation step, communication with the ground unit in the rear non-contact communication device from the reference time is performed. The monitoring of the situation is started, and the monitoring of the mileage of the vehicle is started, and at the time when the mileage falls within the distance between the antennas or the allowable error range in the failure determination step, If the communication with the ground unit is not performed at the corresponding non-contact communication device at the corresponding time, the rear non-contact communication device is faulty. It is desirable to determine that there is a fault and output failure detection information.
Thereby, when the communication between the leading non-contact communication device and the ground unit is detected, it is possible to determine the failure of the trailing non-contact communication device and output the failure detection information.

また、前記通信検知ステップにおいて、車両の先頭及び後尾のいずれか一方の非接触通信機器と前記地上子との通信を検知した際に、通信履歴を記録する通信履歴記録ステップを更に備え、前記通信検知ステップにおいて、後尾の非接触通信機器と前記地上子との通信を検知した場合は、前記確認ステップにおいて、先頭の非接触通信機器の通信履歴を照査し、前記故障判定ステップにおいて、当該車両が前記アンテナ間の距離を走行する時間だけ遡った時期またはその許容誤差範囲内に前記先頭の非接触通信装置における前記地上子との通信履歴が記録されているか否かを判定し、該当する通信履歴がない場合は、先頭の非接触通信機器が故障したと判定し、故障検知情報を出力することが望ましい。
これにより、後尾の非接触通信機器と前記地上子との通信を検知した場合に、先頭の非接触通信機器の故障を判定して、故障検知情報を出力できる。
The communication detection step further includes a communication history recording step of recording a communication history when detecting communication between any one of the front and rear non-contact communication devices of the vehicle and the ground unit. In the detection step, when communication between the rear non-contact communication device and the ground unit is detected, in the confirmation step, the communication history of the first non-contact communication device is checked, and in the failure determination step, the vehicle is It is determined whether or not a communication history with the ground unit in the leading non-contact communication device is recorded within a time period that travels the distance between the antennas or within an allowable error range thereof, and the corresponding communication history If there is no error, it is desirable to determine that the leading non-contact communication device has failed and output failure detection information.
As a result, when communication between the trailing non-contact communication device and the ground unit is detected, it is possible to determine a failure of the leading non-contact communication device and output failure detection information.

第2の発明は、車両の先頭及び後尾に搭載される非接触通信機器と、地上に設置され地点情報を保持する地上子との間で非接触通信を行なうことにより車上で車両の走行位置を検知する位置検知システムにおける前記非接触通信機器の故障検知装置であって、車両の走行距離を検出する走行距離検出手段と、車両の先頭及び後尾のいずれか一方の非接触通信機器と前記地上子との通信を検知する通信検知手段と、前記通信検知手段における通信検知時を基準に、車両が先頭及び後尾の非接触通信機器のアンテナ間の距離だけ走行した時、または該アンテナ間の距離を走行するのに要する時間だけ前記基準からさかのぼった時における、他方の非接触通信機器の通信状況を確認する確認手段と、前記確認手段により確認した他方の非接触通信機器の通信状況に基づき他方の非接触通信機器が故障であるか否かを判定する故障判定手段と、を備えることを特徴とする非接触通信機器の故障検知装置である。   According to a second aspect of the present invention, the position of the vehicle traveling on the vehicle by performing non-contact communication between the non-contact communication device mounted at the front and rear of the vehicle and the ground element installed on the ground and holding the point information. A non-contact communication device failure detection device in a position detection system for detecting vehicle travel distance detecting means for detecting a travel distance of a vehicle, a non-contact communication device at one of the front and rear of the vehicle, and the ground Communication detecting means for detecting communication with a child, and when the vehicle travels a distance between the antennas of the front and rear non-contact communication devices based on the time of communication detection in the communication detecting means, or the distance between the antennas A confirmation means for confirming the communication status of the other non-contact communication device when the vehicle goes back from the reference for the time required to travel the vehicle, and the other non-contact communication apparatus confirmed by the confirmation means And failure determining means determines the non-contact communication device of the other based on the communication status whether the failure is a failure detection device for non-contact communication device, characterized in that it comprises a.

第2の発明によれば、車両の先頭及び後尾のいずれか一方の非接触通信機器と地上子との通信を検知し、通信検知時を基準に、車両が先頭及び後尾の非接触通信機器のアンテナ間の距離だけ走行した時、または該アンテナ間の距離を走行するのに要する時間だけ前記基準からさかのぼった時における、他方の非接触通信機器の通信状況を確認し、他方の非接触通信機器の通信状況に基づき他方の非接触通信機器が故障であるか否かを判定する。
これにより、先頭及び後尾に設けられている非接触通信機器のうちいずれか一方でタグ地上子との通信が正常に行われていれば、車両の走行距離または走行距離に相当する走行時間から、他方の非接触通信機器の通信タイミングを特定でき、その通信タイミングでの後尾側の通信状況を確認することにより故障を診断できる。そのため、故障検知用のループ等の新たな設備を設ける必要がなく既存の設備で故障を検知でき、低コストで列車の運行の安全性を確保できる。
According to the second aspect of the present invention, the communication between the non-contact communication device at the head and the tail of the vehicle and the ground unit is detected, and the vehicle is connected to the non-contact communication device at the head and the tail on the basis of the time of communication detection. The other non-contact communication device confirms the communication status of the other non-contact communication device when traveling by the distance between the antennas or when going back from the reference for the time required to travel the distance between the antennas. Whether or not the other non-contact communication device is faulty is determined based on the communication status.
Thereby, if the communication with the tag ground element is normally performed on either one of the non-contact communication devices provided at the head and the tail, from the travel time corresponding to the travel distance of the vehicle or the travel distance, The communication timing of the other non-contact communication device can be specified, and the failure can be diagnosed by confirming the communication state on the rear side at the communication timing. Therefore, it is not necessary to provide a new facility such as a failure detection loop, so that the failure can be detected with the existing facility, and the safety of the train operation can be secured at a low cost.

また、前記通信検知手段が、先頭の非接触通信機器と前記地上子との通信を検知した場合は、前記確認手段は、前記基準時から前記後尾の非接触通信装置における前記地上子との通信状況の監視を開始するとともに、前記走行距離検出手段により計測される車両の走行距離の監視を開始し、前記故障判定手段は、当該走行距離が前記アンテナ間の距離またはその許容誤差範囲となる時期に、後尾の非接触通信機器にて前記地上子との通信が行われたか否かを判定し、該当する時期に後尾の非接触通信機器において前記地上子との通信が行われない場合は、後尾の非接触通信機器が故障であると判定し、故障検知情報を出力することが望ましい。
これにより、先頭の非接触通信機器と前記地上子との通信を検知した場合に、後尾の非接触通信機器の故障を判定して、故障検知情報を出力できる。
When the communication detection unit detects communication between the leading non-contact communication device and the ground unit, the confirmation unit communicates with the ground unit in the trailing non-contact communication device from the reference time. The monitoring of the situation is started, and the monitoring of the mileage of the vehicle measured by the mileage detection means is started, and the failure determination means determines when the mileage becomes the distance between the antennas or the allowable error range thereof. In addition, it is determined whether or not communication with the ground unit is performed in the rear non-contact communication device, and when communication with the ground unit is not performed in the rear non-contact communication device at the corresponding time, It is desirable to determine that the trailing non-contact communication device is in failure and output failure detection information.
Thereby, when the communication between the leading non-contact communication device and the ground unit is detected, it is possible to determine the failure of the trailing non-contact communication device and output the failure detection information.

また、前記通信検知手段が車両の先頭及び後尾のいずれか一方の非接触通信機器と前記地上子との通信を検知した際に、通信履歴を記録する通信履歴記録手段を更に備え、前記通信検知手段が、後尾の非接触通信機器と前記地上子との通信を検知した場合は、前記確認手段は、先頭の非接触通信機器の通信履歴を照査し、前記故障判定手段は、当該車両が前記アンテナ間の距離を走行する時間だけ遡った時期またはその許容誤差範囲内に前記先頭の非接触通信装置における前記地上子との通信履歴が記録されているか否かを判定し、該当する通信履歴がない場合は、先頭の非接触通信機器が故障したと判定し、故障検知情報を出力することが望ましい。
これにより、後尾の非接触通信機器と前記地上子との通信を検知した場合に、先頭の非接触通信機器の故障を判定して、故障検知情報を出力できる。
The communication detection means further comprises a communication history recording means for recording a communication history when the communication between the non-contact communication device at the head and the rear of the vehicle and the ground unit is detected, and the communication detection When the means detects the communication between the rear non-contact communication device and the ground unit, the confirmation unit checks the communication history of the first non-contact communication device, and the failure determination unit It is determined whether or not a communication history with the ground unit in the leading non-contact communication device is recorded within a time period that is traveled by the distance between the antennas or within an allowable error range, and the corresponding communication history is If not, it is desirable to determine that the leading non-contact communication device has failed and output failure detection information.
As a result, when communication between the trailing non-contact communication device and the ground unit is detected, it is possible to determine a failure of the leading non-contact communication device and output failure detection information.

本発明により、新たな設備を導入せずに、車上位置検知のための車載非接触通信機器の故障を検知することが可能な非接触通信機器の故障検知方法、及び故障検知装置を提供できる。   INDUSTRIAL APPLICABILITY According to the present invention, it is possible to provide a failure detection method and a failure detection apparatus for a non-contact communication device capable of detecting a failure of an in-vehicle non-contact communication device for detecting the position on the vehicle without introducing new equipment. .

位置検知システム1の装置構成及び後尾側故障診断の概略を示す図The figure which shows the outline of the apparatus structure of the position detection system 1, and a rear side failure diagnosis 位置検知システム1において車両に搭載される車上装置のハードウエア構成を示すブロック図The block diagram which shows the hardware constitutions of the on-board apparatus mounted in a vehicle in the position detection system 1 車載通信装置の故障診断機能を説明するブロック図Block diagram explaining failure diagnosis function of in-vehicle communication device 後尾側故障診断の流れを説明するフローチャートFlowchart explaining the flow of tail side failure diagnosis 位置検知システム1の装置構成及び先頭側故障診断の概略を示す図The figure which shows the outline of the apparatus structure of a position detection system 1, and a head side failure diagnosis 通信履歴情報7のデータ構成を示す図The figure which shows the data structure of the communication history information 7 先頭側故障診断の流れを説明するフローチャートFlow chart explaining the flow of head side failure diagnosis

以下、図面に基づいて本発明の好適な実施形態について詳細に説明する。
図1は本発明に係る故障検知方法を適用する位置検知システム1の装置構成及び後尾側故障診断の概略を示す図、図2は位置検知システム1において車両に搭載される車上装置50のハードウエア構成を示すブロック図、図3は車載通信装置の故障診断機能を説明するブロック図、図4は後尾側故障診断の流れを説明するフローチャート、図5は先頭側故障診断の概略を示す図、図6は通信履歴情報7のデータ構成を示す図、図7は先頭側故障診断の流れを説明するフローチャートである。
Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a diagram showing an apparatus configuration of a position detection system 1 to which a failure detection method according to the present invention is applied and an outline of a rear side failure diagnosis. FIG. FIG. 3 is a block diagram for explaining the failure diagnosis function of the in-vehicle communication device, FIG. 4 is a flowchart for explaining the flow of the rear side failure diagnosis, and FIG. 5 is a diagram for showing the outline of the head side failure diagnosis. FIG. 6 is a diagram showing the data structure of the communication history information 7, and FIG. 7 is a flowchart for explaining the flow of head side failure diagnosis.

図1に示すように、本発明に係る位置検知システム1は、地上に設置されたタグ地上子81,82,83,84,・・・と、車両に搭載された車上装置50とを備えて構成される。車上装置50には、タグ地上子81,82,83,84,・・・との非接触通信を行って地点情報を受信するための非接触通信機器(RFIDリーダ51、53及びアンテナ52、54)が含まれ、非接触通信機器は先頭及び後尾に設置されている。また、本発明に係る故障検知装置は、この位置検知システム1にて利用されるものである。例えば車両5の車上装置50が本発明の故障検知装置として機能する。   As shown in FIG. 1, a position detection system 1 according to the present invention includes tag ground elements 81, 82, 83, 84,... Installed on the ground and an on-board device 50 mounted on the vehicle. Configured. The on-vehicle device 50 includes a non-contact communication device (RFID readers 51 and 53 and an antenna 52, which performs non-contact communication with the tag ground pieces 81, 82, 83, 84,. 54), and non-contact communication devices are installed at the head and tail. The failure detection apparatus according to the present invention is used in the position detection system 1. For example, the on-board device 50 of the vehicle 5 functions as the failure detection device of the present invention.

タグ地上子81,82,83,84,・・・(以下、個々のタグ地上子を区別する必要がないときはタグ地上子8として説明する)は、個々の識別情報及び地点情報(例えば、起点からのキロ程、検知単位とするブロックの情報、その他車上装置50側で位置情報を作成するために使用するタグ固有の情報を含む)を保持したRFID(Radio Frequency IDentification)タグを耐候用ケースに封入したものであり、レール9に沿って複数箇所に設置される。上り・下り方向の列車において共用可能とするため、タグ地上子8は左右のレール9の中心の位置に設置されることが望ましい。この場合、車両の非接触通信機器のアンテナ52、54の設置位置も対応させることが望ましく、例えば、車両床下で左右のレール9の中心となる位置に設置されることが望ましい。上述のブロックは、従来の軌道回路単位に設けられるようにすることが望ましい。例えば、閉そく境界及び信号現示位置を境界としたとき、この境界に挟まれた区間を検知単位とし、このブロック境界の内方と外方にそれぞれ1つずつタグ地上子8を設ける。   The tag ground element 81, 82, 83, 84,... (Hereinafter, described as the tag ground element 8 when it is not necessary to distinguish the individual tag ground elements) includes individual identification information and point information (for example, RFID (Radio Frequency IDentification) tags that hold the kilometer from the starting point, block information as a detection unit, and other information specific to tags used to create position information on the on-board device 50 side are used for weather resistance. It is enclosed in a case and is installed at a plurality of locations along the rail 9. It is desirable that the tag ground element 8 be installed at the center position of the left and right rails 9 in order to be able to be shared in the up / down direction trains. In this case, it is desirable to correspond to the installation positions of the antennas 52 and 54 of the non-contact communication device of the vehicle. For example, it is desirable to install the antennas 52 and 54 at the center of the left and right rails 9 under the vehicle floor. It is desirable that the above-described blocks be provided in a conventional track circuit unit. For example, when a block boundary and a signal display position are defined as a boundary, a section sandwiched between the boundaries is used as a detection unit, and one tag ground element 8 is provided on each of the inner and outer sides of the block boundary.

車両5には、車上装置50が搭載される。
図2に示すように、車上装置50(故障検出装置)は、車上制御装置61、先頭側RFIDリーダ51及びアンテナ52、後尾側RFIDリーダ53及びアンテナ54、速度発電機65を有する。更に、車上装置50は、地上制御装置との通信を実現するための設備として、GPS受信機及びアンテナを含むGPS装置63、無線LAN装置(子機)64、車両DB(データベース)62、及び外部機器I/F67を備えてもよい。先頭側RFIDリーダ51及びアンテナ52、後尾側RFIDリーダ53及びアンテナ54、速度発電機65、GPS装置63、無線LAN装置(子機)64、車両DB(データベース)62、及び外部機器I/F67は、車上制御装置61と有線接続される。有線とするのは、通信の確実性を保ち、安全性を確保するためである。
On-vehicle device 50 is mounted on vehicle 5.
As shown in FIG. 2, the on-board device 50 (failure detection device) includes an on-board control device 61, a leading RFID reader 51 and an antenna 52, a trailing RFID reader 53 and an antenna 54, and a speed generator 65. Further, the on-board device 50 includes a GPS device 63 including a GPS receiver and an antenna, a wireless LAN device (slave device) 64, a vehicle DB (database) 62, and a facility for realizing communication with the ground control device. An external device I / F 67 may be provided. The leading RFID reader 51 and the antenna 52, the trailing RFID reader 53 and the antenna 54, the speed generator 65, the GPS device 63, the wireless LAN device (slave device) 64, the vehicle DB (database) 62, and the external device I / F 67 are The on-vehicle control device 61 is wired. The reason for being wired is to maintain the reliability of communication and ensure safety.

上述の車上装置50の構成のうち、車両の在線位置(走行位置)の検知には、先頭側RFIDリーダ51及びアンテナ52、後尾側RFIDリーダ53及びアンテナ54、速度発電機65、及び車上制御装置61が利用される。
車両が在線している位置は、タグ地上子8から受信した地点情報にて特定する。更に、速度発電機65の計測する速度パルス数を積算することで、走行距離に基づくより精密な走行位置検知を可能とする。
Of the above-described configuration of the on-board device 50, for detecting the on-line position (traveling position) of the vehicle, the leading RFID reader 51 and the antenna 52, the trailing RFID reader 53 and the antenna 54, the speed generator 65, and the onboard vehicle A control device 61 is used.
The position where the vehicle is present is specified by the point information received from the tag ground element 8. Further, by integrating the number of speed pulses measured by the speed generator 65, it is possible to detect the traveling position more precisely based on the traveling distance.

車上制御装置61は、CPU(Central Processing Unit)、ROM(Read Only Memory)、RAM(Random Access Memory)等により構成され、車上装置50内の各部を制御する。具体的には、車上制御装置61は、先頭側、後尾側のRFIDリーダ51,53及びアンテナ52、54とタグ地上子8とを用いた位置検知や、速度発電機65による車両の走行速度または走行距離の監視を行なう。また、本発明の車上制御装置61は、先頭側または後尾側のRFIDリーダ51,53及びアンテナ52,54の故障を検知する機能を有する。この故障診断機能については後述する。   The on-board control device 61 includes a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), and the like, and controls each part in the on-board device 50. Specifically, the on-board control device 61 detects the position using the RFID readers 51 and 53 on the front and rear sides, the antennas 52 and 54, and the tag ground element 8, and the traveling speed of the vehicle by the speed generator 65. Or monitor the mileage. The on-vehicle control device 61 of the present invention has a function of detecting a failure of the RFID readers 51 and 53 and the antennas 52 and 54 on the front side or the rear side. This failure diagnosis function will be described later.

更に、車上制御装置61は、GPS63を用いた車両絶対位置の計測、無線LAN64による地上側制御装置(不図示)との地上−車上間通信の制御、車両DB(データベース)62、GPS装置63、RFIDリーダ65、及び速度発電機65を用いた列車の制御(ブレーキパターンの設定等の処理)を行う。   Further, the on-board control device 61 measures the absolute position of the vehicle using the GPS 63, controls the communication between the ground and the vehicle with the ground side control device (not shown) by the wireless LAN 64, the vehicle DB (database) 62, the GPS device. 63, train control (processing such as setting of a brake pattern) using the RFID reader 65 and the speed generator 65 is performed.

RFIDリーダ51、53及びアンテナ52,54は、地上に設置されるタグ地上子8との間で非接触通信を行う非接触通信機器である。RFIDリーダ51、53及びアンテナ52,54は、RFIDリーダ51、53がそれぞれアンテナ52,54を介して各タグ地上子81,82,83,84から送信される情報を受信し、タグ地上子81,82,83,84に保持される情報(地点情報、固体識別情報等)を読み取る。   The RFID readers 51 and 53 and the antennas 52 and 54 are non-contact communication devices that perform non-contact communication with the tag ground unit 8 installed on the ground. The RFID readers 51 and 53 and the antennas 52 and 54 receive information transmitted from the tag ground elements 81, 82, 83, and 84 via the antennas 52 and 54, respectively. , 82, 83, 84 read information (point information, solid identification information, etc.).

速度発電機65は、車両55の車輪の回転数に応じた電圧またはパルスを発生させ、回転速度を計測し、計測した速度信号を車上制御装置61へ出力する。速度発電機65から出力される速度信号またはパルスを利用して、車上制御装置61は、車両の走行距離を計測できる。   The speed generator 65 generates a voltage or a pulse corresponding to the rotational speed of the wheel of the vehicle 55, measures the rotational speed, and outputs the measured speed signal to the on-board controller 61. Using the speed signal or pulse output from the speed generator 65, the on-board controller 61 can measure the travel distance of the vehicle.

以上のような装置構成で実現される位置検知システム1における位置検知は、例えば以下の手法で行われる。
<手法1>
手法1では、タグ地上子8及びRFIDリーダにより境界を判定する。まず、編成先頭の車上アンテナで、システム境界の外方に設置したプリセット用タグ地上子8の情報を受信して位置情報を特定する。編成先頭の車上アンテナ52によりブロック境界の外方及び内方にそれぞれ設けられたタグ地上子8からの情報受信順序に基づき進入方向を検出し、進入ブロックを確定する。ブロックからの進出を検出する際も同様に、編成後尾の車上アンテナ54によりブロック境界の外方及び内方にそれぞれ設けられたタグ地上子8からの情報受信順序に基づき進出方向を検出し、進出ブロックを確定する。或いは、編成先頭の在線位置及び車両長により後尾の位置情報を検出することでブロックの進出を検出する。すなわち、編成先頭の位置に編成長を加えた後尾の位置が、閉そく区間及び分岐区間を進出した位置となったときブロックからの進出を検出する。
The position detection in the position detection system 1 realized by the apparatus configuration as described above is performed by the following method, for example.
<Method 1>
In Method 1, the boundary is determined by the tag ground element 8 and the RFID reader. First, the information on the preset tag ground element 8 installed outside the system boundary is received and the position information is specified by the on-board antenna at the head of the formation. The approach direction is detected by the on-board antenna 52 at the top of the composition based on the information reception order from the tag ground element 8 provided outside and inside the block boundary, and the approach block is determined. Similarly, when detecting the advance from the block, the advance direction is detected based on the information receiving order from the tag ground element 8 provided respectively outside and inside the block boundary by the on-board antenna 54 at the rear of the formation, Confirm the advance block. Alternatively, the advance of the block is detected by detecting the position information of the tail from the track position at the head of the formation and the vehicle length. That is, the advance from the block is detected when the rear position obtained by adding the knitting growth to the knitting start position becomes the position where the closed section and the branch section are advanced.

<手法2>
手法2では、タグ地上子8及びRFIDリーダと速度発電機65の速度パルスとによる積算距離情報を用いて位置検知を行なう。
まず、<手法1>と同様に、編成先頭の車上アンテナ52で、システム境界の外方に設置したプリセット用タグ地上子8の情報を受信し、位置情報を特定する。次に、編成先頭の位置が信号現示位置・分岐区間に相当する位置の内方となったとき、その区間への進入を検出する。編成先頭の位置に編成長を加えた後尾の位置が、閉そく区間、及び分岐区間を進出した位置となったとき、その区間の進出を検出する。
<Method 2>
In Method 2, position detection is performed using integrated distance information based on the tag ground element 8 and the RFID reader and the speed pulse of the speed generator 65.
First, as in <Method 1>, the information on the preset tag ground element 8 installed outside the system boundary is received by the on-board antenna 52 at the top of the composition, and the position information is specified. Next, when the knitting start position is inward of the position corresponding to the signal display position / branch section, entry into the section is detected. When the tail position obtained by adding knitting growth to the knitting head position is the position where the block section and the branch section are advanced, the advance of the section is detected.

次に、上述の位置検知システム1における車載非接触通信機器(RFIDリーダ51,53及びアンテナ52,54)の故障を検知する機能について説明する。
なお、以下の機能は、車上制御装置61の制御部(CPU等)にて実行可能なプログラムの形態で記述され、ROM等の記憶部に格納されて実現される。または、以下の機能を備えた論理回路の形態で実現され、車上制御装置61に塔載されるものとしてもよい。
Next, a function of detecting a failure of the in-vehicle non-contact communication device (RFID readers 51 and 53 and antennas 52 and 54) in the position detection system 1 will be described.
The following functions are described in the form of a program that can be executed by the control unit (CPU or the like) of the on-board controller 61, and are realized by being stored in a storage unit such as a ROM. Alternatively, it may be realized in the form of a logic circuit having the following functions and mounted on the on-board controller 61.

車上制御装置61は、車両走行中に、当該車両50の先頭及び後尾に設けられたRFIDリーダ51,53及びアンテナ52,54から各タグ地上子81,82、83,84との通信情報を順次取得する。RFIDリーダ51,53は、タグ地上子8との通信を行った際に受信した情報を車上制御装置61に順次送信するが、タグ地上子8との通信が行われない限りは車上制御装置61に何も送信しない。そのため、タグ地上子8を通過する地点でいずれか一方の非接触通信機器(RFIDリーダ51,53及びアンテナ52,54)の異常等によりRFIDリーダ51,53がタグ地上子81,82、83,84の情報を受信しなければ、そのまま看過されてしまい、車上制御装置61は通信エラーが起きたこと自体も認識できない状況となる。   The on-board control device 61 receives communication information with each tag ground element 81, 82, 83, 84 from the RFID readers 51, 53 and the antennas 52, 54 provided at the head and rear of the vehicle 50 while the vehicle is running. Obtain sequentially. The RFID readers 51 and 53 sequentially transmit the information received when communicating with the tag ground unit 8 to the on-board control device 61. However, as long as communication with the tag ground unit 8 is not performed, the on-board control is performed. Nothing is sent to the device 61. Therefore, the RFID readers 51 and 53 are connected to the tag grounds 81, 82, 83, and the like due to an abnormality of one of the non-contact communication devices (the RFID readers 51 and 53 and the antennas 52 and 54) at a point passing through the tag ground 8. If the information 84 is not received, it is overlooked as it is, and the on-board controller 61 cannot recognize that a communication error has occurred.

そこで、車上制御装置61は、先頭及び後尾のRFIDリーダ51,53及びアンテナ52,54にてタグ地上子8からの情報を受信しているか相互に診断する。すなわち、車上制御装置61は、先頭及び後尾のRFIDリーダ51,53のうちいずれか一方における情報受信を検知し、その検知時期を基準として、他方のRFIDリーダ51,53における情報受信時期を特定する。特定した時期に他方の非接触通信装置においてタグ地上子との通信が行われたか否かを判定する。図1、図3に示すように、先頭側の通信を検知した場合は、自車両の走行距離(速度発電機65の速度パルス)を監視し、走行距離が先頭及び後尾のRFIDリーダ51,53のアンテナ52,54の間の距離(以下、アンテナ間距離)となったときを、後尾側の通信時として特定し、特定されたタイミングで後尾側がタグ地上子8と通信を行うか否かを判定する。
また、図5に示すように、後尾側の通信を検知した場合は、アンテナ間距離を走行するのに要した時間だけさかのぼったときを先頭側の通信時として特定できる。
Therefore, the on-board control device 61 diagnoses whether or not information from the tag ground unit 8 is received by the leading and trailing RFID readers 51 and 53 and the antennas 52 and 54. That is, the on-board controller 61 detects information reception at one of the leading and trailing RFID readers 51 and 53, and specifies the information reception timing at the other RFID reader 51 and 53 based on the detection timing. To do. It is determined whether or not communication with the tag ground element is performed in the other non-contact communication device at the specified time. As shown in FIGS. 1 and 3, when the communication on the head side is detected, the travel distance of the host vehicle (speed pulse of the speed generator 65) is monitored, and the RFID readers 51 and 53 whose travel distance is the head and tail are shown. The distance between the antennas 52 and 54 (hereinafter referred to as the distance between the antennas) is specified as the time of communication on the tail side, and whether the tail side communicates with the tag ground unit 8 at the specified timing is determined. judge.
Further, as shown in FIG. 5, when the rear side communication is detected, it is possible to specify the time of going back the time required to travel the distance between the antennas as the time of the front side communication.

図4のフローチャートに従って、後尾側RFIDリーダ53の故障診断について説明する。
車上制御装置61は、図1に示すように、先頭側RFIDリーダ51におけるタグ地上子82の受信後、アンテナ間距離を走行した後に後尾側RFIDリーダ53にて当該タグ地上子82との通信が行われるか否かを監視することにより、後尾側RFIDリーダ53が正常に動作しているか否かを判定する。
The failure diagnosis of the rear RFID reader 53 will be described with reference to the flowchart of FIG.
As shown in FIG. 1, the on-board controller 61 communicates with the tag ground element 82 by the rear RFID reader 53 after traveling the distance between the antennas after receiving the tag ground element 82 in the leading RFID reader 51. By monitoring whether or not the trailing RFID reader 53 is operating normally, it is determined.

先頭側のRFIDリーダ51にて、例えばタグ地上子82の情報を受信すると(ステップS101)、車上制御装置61は後尾側RFIDリーダ53の通信状況を監視する。また、車上制御装置61は、速度発電機65からの出力信号(速度パルス)を利用して先頭側RFIDリーダ51における情報受信時からの走行距離を監視する(ステップS102)。
そして、車上制御装置61は、車両5がアンテナ間距離またはその許容誤差範囲を走行したときに(ステップS103;Yes)、後尾側RFIDリーダ53にて、先頭側RFIDリーダ51にて受信したタグ地上子82の情報と対応する情報(タグ地上子82の情報)を受信したか否かを判定する(ステップS104)。後尾側RFIDリーダ53においてタグ地上子82の情報を受信した場合は(ステップS104;Yes)、正常と診断し(ステップS105)、処理を終了する。
When the first RFID reader 51 receives, for example, information on the tag ground element 82 (step S101), the on-board control device 61 monitors the communication status of the rear RFID reader 53. Further, the on-board controller 61 uses the output signal (speed pulse) from the speed generator 65 to monitor the travel distance from the time when the information is received by the leading RFID reader 51 (step S102).
Then, the on-board control device 61 receives the tag received by the leading RFID reader 51 by the trailing RFID reader 53 when the vehicle 5 travels the distance between the antennas or the allowable error range thereof (step S103; Yes). It is determined whether information corresponding to the information on the ground element 82 (information on the tag ground element 82) has been received (step S104). When the tail-side RFID reader 53 receives the information on the tag ground element 82 (step S104; Yes), it is diagnosed as normal (step S105), and the process ends.

一方、後尾側RFIDリーダ53においてタグ地上子82の情報を受信していない場合は(ステップS104;No)、後尾側RFIDリーダ53が故障していると診断する(ステップS105)。車上制御装置61は、判定結果に応じた処理を実行する。例えば車上制御装置61は、非接触通信機器のエラーを通知したり、無線LAN63を用いて後尾側RFIDリーダ53が故障していることを地上制御装置へ通知したり、列車制御パターン(ブレーキパターン等)を安全側制御パターンへ切り替えたりする。   On the other hand, when the information on the tag ground element 82 is not received by the tail-side RFID reader 53 (step S104; No), it is diagnosed that the tail-side RFID reader 53 is out of order (step S105). The on-board control device 61 executes a process according to the determination result. For example, the on-board control device 61 notifies an error of a non-contact communication device, notifies the ground control device that the rear-side RFID reader 53 has failed using the wireless LAN 63, or train control patterns (brake patterns). Etc.) to the safe side control pattern.

上述の後尾側RFIDリーダ53の通信診断を行なうことにより、先頭側RFIDリーダ51の通信が正常に行われている場合に、後尾側RFIDリーダ53の通信診断を行なうことが可能となり、後尾側RFIDリーダ53の故障を検知できる。その結果、従来のように、検知ループ等の故障診断用の新たな設備を設けなくても、既存の設備で故障を検知でき、低コストで列車の運行の安全性を確保できる。   By performing the communication diagnosis of the tail RFID reader 53 described above, the communication diagnosis of the tail RFID reader 53 can be performed when the communication of the head RFID reader 51 is normally performed. A failure of the reader 53 can be detected. As a result, it is possible to detect a failure with existing facilities and secure the safety of train operation at low cost without providing a new facility for failure diagnosis such as a detection loop.

また、例えば、図5に示すように、後尾側RFIDリーダ53にてタグ地上子8の情報を受信した際に、先頭側RFIDリーダ51の通信履歴を照査して、先頭側RFIDリーダ51の故障を診断してもよい。
車上制御装置61は、先頭側RFIDリーダ51とタグ地上子8との通信情報を取得して、通信履歴を順次記録しておく。
図6は、車上制御装置61の記憶部に順次蓄積して記録される通信履歴情報7の一例である。図6に示すように、通信履歴情報7は、例えば、先頭側RFIDリーダ51または後尾側RFIDリーダ53にてタグ地上子8から受信した情報(ここでは、タグ識別情報と、地点情報)を、受信時刻及びRFIDリーダ51の識別情報(例えば、先頭または後尾の別等。各RFIDリーダのIDでもよい)と対応付けて記憶している。受信時刻は、各RFIDリーダが地上子との通信時に付与した時刻としてもよいし、車上制御装置61が各RFIDリーダから通信情報を取得した際に付与した時刻としてもよい。なお、図6では先頭側及び後尾側の通信履歴を混在させる例を示しているが、分けて管理してもよい。
Also, for example, as shown in FIG. 5, when the information on the tag ground element 8 is received by the trailing RFID reader 53, the communication history of the leading RFID reader 51 is checked, and the leading RFID reader 51 fails. May be diagnosed.
The on-vehicle controller 61 acquires communication information between the leading RFID reader 51 and the tag ground unit 8 and sequentially records communication histories.
FIG. 6 is an example of the communication history information 7 that is sequentially accumulated and recorded in the storage unit of the on-board controller 61. As shown in FIG. 6, the communication history information 7 includes, for example, information (here, tag identification information and point information) received from the tag ground unit 8 by the leading RFID reader 51 or the trailing RFID reader 53. The reception time and the identification information of the RFID reader 51 (for example, the head or tail, etc., which may be the ID of each RFID reader) are stored in association with each other. The reception time may be a time given by each RFID reader when communicating with the ground unit, or may be a time given when the on-board control device 61 acquires communication information from each RFID reader. Although FIG. 6 shows an example in which the communication history on the head side and the tail side are mixed, they may be managed separately.

図6の例では、時刻「7:30:00」に先頭側RFIDリーダ51でタグ地上子81の情報を受信し、時刻「7:30:03」に先頭側RFIDリーダ51でタグ地上子82の情報を受信し、時刻「7:30:10」に後尾側RFIDリーダ53でタグ地上子81の情報を受信し、時刻「7:30:13」に後尾側RFIDリーダ53でタグ地上子82の情報を受信しており、これらの情報が受信履歴として記録されている。   In the example of FIG. 6, the information on the tag ground element 81 is received by the leading RFID reader 51 at time “7:30”, and the tag ground element 82 is received by the leading RFID reader 51 at time “7:30:03”. At the time “7:30:10” and the tag ground element 81 is received by the tail RFID reader 53 at the time “7:30:10”, and the tag ground element 82 is received at the tail RFID reader 53 at the time “7:30:13”. The information is received, and such information is recorded as a reception history.

なお、先頭側RFIDリーダ51がタグ地上子8との通信を行なっていなければ通信履歴は記録されない。
後尾側RFIDリーダ53においてタグ地上子82の情報を受信した際、車上制御装置61は通信履歴情報7を照査する。そして、アンテナ間距離を走行するのに要する時間だけ遡った時点に先頭側RFIDリーダ51の当該タグ地上子82との通信履歴があるか否かを判定する。対応する通信履歴があれば、先頭側RFIDリーダ51も正常に動作していると判定する。
Note that the communication history is not recorded unless the leading RFID reader 51 communicates with the tag ground unit 8.
When the information on the tag ground element 82 is received by the rear RFID reader 53, the on-board controller 61 checks the communication history information 7. Then, it is determined whether or not there is a communication history of the leading RFID reader 51 with the tag ground element 82 at a time point that is back by the time required to travel the distance between the antennas. If there is a corresponding communication history, it is determined that the leading RFID reader 51 is also operating normally.

図7のフローチャートを参照して先頭側RFIDリーダ51の故障診断の流れを説明する。
車上制御装置61は、先頭側RFIDリーダ51または後尾側RFIDリーダ53から通信情報(地上子からの受信情報)を取得すると、その通信情報とともに通信時刻とRFIDリーダ51(53)の識別情報を通信履歴として順次記録している(ステップS201、ステップS202)。
The flow of failure diagnosis of the leading RFID reader 51 will be described with reference to the flowchart of FIG.
When the on-board controller 61 obtains communication information (received information from the ground unit) from the leading RFID reader 51 or the rear RFID reader 53, the on-board controller 61 obtains the communication time and the identification information of the RFID reader 51 (53) together with the communication information. The communication history is sequentially recorded (step S201, step S202).

車上制御装置61は、後尾側RFIDリーダ53から通信情報を取得すると(ステップS203)、先頭側RFIDリーダ51の通信履歴を照査する(ステップS204)。そして、後尾側RFIDリーダ53にて情報を受信した時点からアンテナ間距離を走行する時間またはその許容誤差範囲だけさかのぼった時点に、対応する先頭側RFIDリーダ51の通信履歴があるか否かを判定する(ステップS205)。
アンテナ間距離を走行する時間は、速度発電機65にて計測している速度パルスとアンテナ間距離とから算出できる。例えば、後尾側受信時の走行速度値でアンテナ間距離を除算すれば、車両が先頭側アンテナから後尾側アンテナまでを走行した時間(アンテナ間走行時間)が算出できる。車上制御装置61は、算出したアンテナ間走行時間だけ後尾側での情報受信時からさかのぼった時刻かその許容誤差範囲の時刻での通信履歴を照査する。
When the on-board control device 61 acquires the communication information from the rear RFID reader 53 (step S203), the onboard control device 61 checks the communication history of the head RFID reader 51 (step S204). Then, it is determined whether or not there is a communication history of the corresponding front RFID reader 51 at the time when the distance between the antennas travels from the time when the information is received by the rear RFID reader 53 or the allowable error range is traced back. (Step S205).
The time for traveling the distance between the antennas can be calculated from the speed pulse measured by the speed generator 65 and the distance between the antennas. For example, if the distance between the antennas is divided by the traveling speed value at the time of reception on the rear side, the time during which the vehicle has traveled from the front antenna to the rear antenna (inter-antenna traveling time) can be calculated. The on-board control device 61 checks the communication history at the time that is traced back from the time of information reception on the tail side or the time within the allowable error range for the calculated traveling time between antennas.

後尾側受信時からアンテナ間走行時間を遡った時刻の許容誤差範囲内に、先頭側RFIDリーダ51の対応する地上子との通信履歴があれば(ステップS205;Yes)、正常と診断し(ステップS206)、処理を終了する。
一方、後尾側受信時からアンテナ間走行時間を遡った時刻の前後の許容誤差範囲内に、先頭側RFIDリーダ51の対応する地上子との通信履歴がない場合は(ステップS205;No)、先頭側RFIDリーダ51が故障していると診断する(ステップS105)。車上制御装置61は、判定結果に応じた処理を実行する。例えば車上制御装置61は、無線LAN63を用いて後尾側RFIDリーダ53の故障の旨を地上制御装置へ通知したり、列車制御パターンを安全側制御パターンへ切り替えたりする。
If there is a communication history with the corresponding ground element of the leading RFID reader 51 within the allowable error range of the time when the inter-antenna traveling time is traced from the time of receiving on the rear side (step S205; Yes), it is diagnosed as normal (step S206), the process is terminated.
On the other hand, if there is no communication history with the corresponding ground element of the leading RFID reader 51 within the allowable error range before and after the time when the traveling time between the antennas is traced from the time of receiving on the trailing side (step S205; No), the leading It is diagnosed that the side RFID reader 51 is out of order (step S105). The on-board control device 61 executes a process according to the determination result. For example, the on-board controller 61 uses the wireless LAN 63 to notify the ground controller that the rear RFID reader 53 has failed, or switches the train control pattern to the safe control pattern.

以上説明したように、後尾側RFIDリーダ53の通信が正常に行われている場合は、先頭側RFIDリーダ51の通信履歴7を照査することにより、先頭側RFIDリーダ51の通信診断を行なうことが可能となり、先頭側RFIDリーダ51の故障を検知できる。その結果、従来のように、検知ループ等の故障診断用の新たな設備を設けなくても、既存の設備で故障を検知でき、低コストで列車の運行の安全性を確保できる。   As described above, when the communication of the trailing RFID reader 53 is normally performed, the communication diagnosis 7 of the leading RFID reader 51 can be performed by checking the communication history 7 of the leading RFID reader 51. The failure of the leading RFID reader 51 can be detected. As a result, it is possible to detect a failure with existing facilities and secure the safety of train operation at low cost without providing a new facility for failure diagnosis such as a detection loop.

なお、車上制御装置61は、後尾側RFIDリーダ53の通信診断(図4)及び先頭側RFIDリーダ51の通信診断(図7)を互いに行なうことが望ましいが、いずれか一方のみを実行するものとしてもよい。   The on-board control device 61 preferably performs the communication diagnosis of the rear RFID reader 53 (FIG. 4) and the communication diagnosis of the front RFID reader 51 (FIG. 7), but only one of them is executed. It is good.

以上、添付図面を参照しながら、本発明に係る故障検知方法等の好適な実施形態について説明したが、本発明は係る例に限定されない。当業者であれば、本願で開示した技術的思想の範疇内において、各種の変更例又は修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。   The preferred embodiments of the failure detection method and the like according to the present invention have been described above with reference to the accompanying drawings, but the present invention is not limited to such examples. It will be apparent to those skilled in the art that various changes or modifications can be conceived within the scope of the technical idea disclosed in the present application, and these naturally belong to the technical scope of the present invention. Understood.

1・・・・・位置検知システム
5・・・・・列車
50・・・・・車上装置
51・・・・・先頭側RFIDリーダ
52・・・・・先頭側アンテナ
53・・・・・後尾側RFIDリーダ
54・・・・・後尾側アンテナ
55・・・・・車輪
61・・・・・車上制御装置
62・・・・・車両データベース
63・・・・・GPS装置
64・・・・・無線LAN装置
65・・・・・速度発電機
7・・・・・・通信履歴情報
81,82,83,84、8・・・・タグ地上子
9・・・・・・・・レール
DESCRIPTION OF SYMBOLS 1 ... Position detection system 5 ... Train 50 ... On-board device 51 ... Lead-side RFID reader 52 ... Lead-side antenna 53 ... Rear side RFID reader 54... Rear side antenna 55... Wheel 61 .. On-board control device 62... Vehicle database 63. ..Wireless LAN device 65... Speed generator 7... Communication history information 81, 82, 83, 84, 8.

Claims (6)

車両の先頭及び後尾に搭載される非接触通信機器と、地上に設置され地点情報を保持する地上子との間で非接触通信を行なうことにより車上で車両の走行位置を検知する位置検知システムにおける前記非接触通信機器の故障検知方法であって、
車両の先頭及び後尾のいずれか一方の非接触通信機器と前記地上子との通信を検知する通信検知ステップと、
前記通信検知ステップにおける通信検知時を基準に、車両が先頭及び後尾の非接触通信機器のアンテナ間の距離だけ走行した時、または該アンテナ間の距離を走行するのに要する時間だけ前記基準からさかのぼった時における、他方の非接触通信機器の通信状況を確認する確認ステップと、
前記確認ステップにより確認した他方の非接触通信機器の通信状況に基づき他方の非接触通信機器が故障であるか否かを判定する故障判定ステップと、
を含むことを特徴とする非接触通信機器の故障検知方法。
A position detection system that detects the traveling position of a vehicle on the vehicle by performing non-contact communication between a non-contact communication device mounted at the front and rear of the vehicle and a ground unit installed on the ground and holding point information. A failure detection method for the non-contact communication device in
A communication detection step of detecting communication between the non-contact communication device at one of the front and rear of the vehicle and the ground unit;
Based on the time of communication detection in the communication detection step, when the vehicle travels the distance between the antennas of the front and rear non-contact communication devices, or the time required to travel the distance between the antennas goes back from the reference. A confirmation step for confirming the communication status of the other non-contact communication device when
A failure determination step of determining whether or not the other non-contact communication device is in failure based on the communication status of the other non-contact communication device confirmed in the confirmation step;
A failure detection method for non-contact communication equipment, comprising:
前記通信検知ステップにおいて、先頭の非接触通信機器と前記地上子との通信を検知した場合は、
前記確認ステップにおいて、前記基準時から前記後尾の非接触通信装置における前記地上子との通信状況の監視を開始するとともに、車両の走行距離の監視を開始し、
前記故障判定ステップにおいて、
当該走行距離が前記アンテナ間の距離またはその許容誤差範囲となる時期に、後尾の非接触通信機器にて前記地上子との通信が行われたか否かを判定し、該当する時期に後尾の非接触通信機器において前記地上子との通信が行われない場合は、後尾の非接触通信機器が故障であると判定し、故障検知情報を出力することを特徴とする請求項1に記載の非接触通信機器の故障検知方法。
In the communication detection step, when communication between the top non-contact communication device and the ground unit is detected,
In the confirmation step, starting monitoring of the communication status with the ground unit in the trailing non-contact communication device from the reference time, and monitoring of the travel distance of the vehicle,
In the failure determination step,
At the time when the mileage is within the distance between the antennas or its allowable error range, it is determined whether or not communication with the ground unit has been performed by the rear non-contact communication device. 2. The contactless device according to claim 1, wherein when the communication with the ground unit is not performed in the contact communication device, it is determined that the rear contactless communication device is in failure, and failure detection information is output. Failure detection method for communication equipment.
前記通信検知ステップにおいて、車両の先頭及び後尾のいずれか一方の非接触通信機器と前記地上子との通信を検知した際に、通信履歴を記録する通信履歴記録ステップを更に備え、
前記通信検知ステップにおいて、後尾の非接触通信機器と前記地上子との通信を検知した場合は、
前記確認ステップにおいて、先頭の非接触通信機器の通信履歴を照査し、
前記故障判定ステップにおいて、当該車両が前記アンテナ間の距離を走行する時間だけ遡った時期またはその許容誤差範囲内に前記先頭の非接触通信装置における前記地上子との通信履歴が記録されているか否かを判定し、該当する通信履歴がない場合は、先頭の非接触通信機器が故障したと判定し、故障検知情報を出力することを特徴とする請求項1に記載の非接触通信機器の故障検知方法。
In the communication detection step, further comprising a communication history recording step of recording a communication history when detecting communication between the non-contact communication device on either the front or rear of the vehicle and the ground unit,
In the communication detection step, when communication between the rear non-contact communication device and the ground unit is detected,
In the confirmation step, check the communication history of the first contactless communication device,
Whether the communication history with the ground unit in the leading non-contact communication device is recorded in the failure determination step, at a time that the vehicle travels the distance between the antennas, or within an allowable error range thereof 2. If there is no corresponding communication history, it is determined that the leading non-contact communication device has failed, and failure detection information is output. Detection method.
車両の先頭及び後尾に搭載される非接触通信機器と、地上に設置され地点情報を保持する地上子との間で非接触通信を行なうことにより車上で車両の走行位置を検知する位置検知システムにおける前記非接触通信機器の故障検知装置であって、
車両の走行距離を検出する走行距離検出手段と、
車両の先頭及び後尾のいずれか一方の非接触通信機器と前記地上子との通信を検知する通信検知手段と、
前記通信検知手段における通信検知時を基準に、車両が先頭及び後尾の非接触通信機器のアンテナ間の距離だけ走行した時、または該アンテナ間の距離を走行するのに要する時間だけ前記基準からさかのぼった時における、他方の非接触通信機器の通信状況を確認する確認手段と、
前記確認手段により確認した他方の非接触通信機器の通信状況に基づき他方の非接触通信機器が故障であるか否かを判定する故障判定手段と、
を備えることを特徴とする非接触通信機器の故障検知装置。
A position detection system that detects the traveling position of a vehicle on the vehicle by performing non-contact communication between a non-contact communication device mounted at the front and rear of the vehicle and a ground unit installed on the ground and holding point information. In the non-contact communication equipment failure detection device in
Mileage detection means for detecting the mileage of the vehicle;
Communication detection means for detecting communication between the non-contact communication device at the head and the rear of the vehicle and the ground unit;
Based on the time when the communication is detected by the communication detection means, the vehicle travels from the reference when the vehicle travels the distance between the antennas of the front and rear non-contact communication devices, or the time required to travel the distance between the antennas. Confirmation means for confirming the communication status of the other non-contact communication device at the time,
Failure determination means for determining whether or not the other non-contact communication device is in failure based on the communication status of the other non-contact communication device confirmed by the confirmation means;
A failure detection apparatus for non-contact communication equipment, comprising:
前記通信検知手段が、先頭の非接触通信機器と前記地上子との通信を検知した場合は、
前記確認手段は、前記基準時から前記後尾の非接触通信装置における前記地上子との通信状況の監視を開始するとともに、前記走行距離検出手段により計測される車両の走行距離の監視を開始し、
前記故障判定手段は、
当該走行距離が前記アンテナ間の距離またはその許容誤差範囲となる時期に、後尾の非接触通信機器にて前記地上子との通信が行われたか否かを判定し、該当する時期に後尾の非接触通信機器において前記地上子との通信が行われない場合は、後尾の非接触通信機器が故障であると判定し、故障検知情報を出力することを特徴とする請求項4に記載の非接触通信機器の故障検知装置。
When the communication detection means detects communication between the head non-contact communication device and the ground unit,
The confirmation unit starts monitoring the communication status with the ground unit in the trailing non-contact communication device from the reference time, and starts monitoring the travel distance of the vehicle measured by the travel distance detection unit,
The failure determination means includes
At the time when the mileage is within the distance between the antennas or its allowable error range, it is determined whether or not communication with the ground unit has been performed by the rear non-contact communication device. 5. The contactless device according to claim 4, wherein, when the communication with the ground unit is not performed in the contact communication device, it is determined that the rear contactless communication device is in failure and the failure detection information is output. Failure detection device for communication equipment.
前記通信検知手段が車両の先頭及び後尾のいずれか一方の非接触通信機器と前記地上子との通信を検知した際に、通信履歴を記録する通信履歴記録手段を更に備え、
前記通信検知手段が、後尾の非接触通信機器と前記地上子との通信を検知した場合は、
前記確認手段は、先頭の非接触通信機器の通信履歴を照査し、
前記故障判定手段は、当該車両が前記アンテナ間の距離を走行する時間だけ遡った時期またはその許容誤差範囲内に前記先頭の非接触通信装置における前記地上子との通信履歴が記録されているか否かを判定し、該当する通信履歴がない場合は、先頭の非接触通信機器が故障したと判定し、故障検知情報を出力することを特徴とする請求項4に記載の非接触通信機器の故障検知装置。
A communication history recording unit that records a communication history when the communication detection unit detects communication between the non-contact communication device of either the head or the rear of the vehicle and the ground unit;
When the communication detection unit detects communication between the non-contact communication device at the rear and the ground unit,
The confirmation means checks the communication history of the leading non-contact communication device,
Whether or not the failure determination means records the communication history with the ground unit in the leading non-contact communication device within a time or a permissible error range in which the vehicle travels the distance between the antennas. The failure of the non-contact communication device according to claim 4, wherein if there is no corresponding communication history, it is determined that the leading non-contact communication device has failed, and failure detection information is output. Detection device.
JP2010051326A 2010-03-09 2010-03-09 Method and device for detecting failure of non-contact communication equipment Pending JP2011183937A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010051326A JP2011183937A (en) 2010-03-09 2010-03-09 Method and device for detecting failure of non-contact communication equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010051326A JP2011183937A (en) 2010-03-09 2010-03-09 Method and device for detecting failure of non-contact communication equipment

Publications (1)

Publication Number Publication Date
JP2011183937A true JP2011183937A (en) 2011-09-22

Family

ID=44790740

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010051326A Pending JP2011183937A (en) 2010-03-09 2010-03-09 Method and device for detecting failure of non-contact communication equipment

Country Status (1)

Country Link
JP (1) JP2011183937A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012066756A (en) * 2010-09-27 2012-04-05 Railway Technical Research Institute On-rail position detection method, brake control method, course control method, onboard device, and management device
WO2013114622A1 (en) * 2012-02-03 2013-08-08 三菱電機株式会社 Circuit breaker controller for electrically powered train
CN103523055A (en) * 2013-09-23 2014-01-22 华中科技大学 Large gradient shield tunnel inner transport cart anti-collision pre-warning system and working method thereof
CN104002837A (en) * 2014-06-11 2014-08-27 上海工程技术大学 RFID-based automatic time recording and positioning system for rail transit train
KR101607958B1 (en) 2014-09-18 2016-04-01 현대로템 주식회사 relay system between cab of ERTMS applied railway vehicle and the signal processing method
JP2016147582A (en) * 2015-02-12 2016-08-18 株式会社日立製作所 Course control system, course control method, and ground device
JP2016154277A (en) * 2015-02-20 2016-08-25 株式会社東芝 Radio equipment and antenna device
KR101793310B1 (en) * 2013-07-05 2017-11-20 엘에스산전 주식회사 Apparatus for detecting tag reader failure of railway vehicle
CN109178039A (en) * 2018-10-31 2019-01-11 成都柏森松传感技术有限公司 A kind of track train auxiliary control method based on RFID
JP2020036394A (en) * 2018-08-27 2020-03-05 日本信号株式会社 On-vehicle system of train
JP2022018242A (en) * 2020-07-15 2022-01-27 Jfeスチール株式会社 Operation management method and system for railroad vehicle
JP2022517642A (en) * 2019-01-17 2022-03-09 オカド・イノベーション・リミテッド RFID tag
WO2022198945A1 (en) * 2021-03-23 2022-09-29 卡斯柯信号有限公司 Whole-network train autonomous positioning system
KR102522841B1 (en) * 2022-07-07 2023-04-18 주식회사 뉴플랫폼 The redundant system for detecting the position of train using RFID
US11688887B2 (en) 2019-02-11 2023-06-27 Lg Energy Solution, Ltd. Slave BMS inspection system and method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11171017A (en) * 1997-12-15 1999-06-29 Hitachi Ltd Vehicle control device
JP2008247217A (en) * 2007-03-30 2008-10-16 Daido Signal Co Ltd Train position detector

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11171017A (en) * 1997-12-15 1999-06-29 Hitachi Ltd Vehicle control device
JP2008247217A (en) * 2007-03-30 2008-10-16 Daido Signal Co Ltd Train position detector

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012066756A (en) * 2010-09-27 2012-04-05 Railway Technical Research Institute On-rail position detection method, brake control method, course control method, onboard device, and management device
EP2810847B1 (en) 2012-02-03 2018-05-23 Mitsubishi Electric Corporation Circuit breaker controller for electrically powered train
US9260014B2 (en) 2012-02-03 2016-02-16 Mitsubishi Electric Corporation Circuit breaker controller for electric train
WO2013114622A1 (en) * 2012-02-03 2013-08-08 三菱電機株式会社 Circuit breaker controller for electrically powered train
KR101793310B1 (en) * 2013-07-05 2017-11-20 엘에스산전 주식회사 Apparatus for detecting tag reader failure of railway vehicle
CN103523055A (en) * 2013-09-23 2014-01-22 华中科技大学 Large gradient shield tunnel inner transport cart anti-collision pre-warning system and working method thereof
CN103523055B (en) * 2013-09-23 2014-12-10 华中科技大学 Large gradient shield tunnel inner transport cart anti-collision pre-warning system and working method thereof
CN104002837A (en) * 2014-06-11 2014-08-27 上海工程技术大学 RFID-based automatic time recording and positioning system for rail transit train
KR101607958B1 (en) 2014-09-18 2016-04-01 현대로템 주식회사 relay system between cab of ERTMS applied railway vehicle and the signal processing method
JP2016147582A (en) * 2015-02-12 2016-08-18 株式会社日立製作所 Course control system, course control method, and ground device
JP2016154277A (en) * 2015-02-20 2016-08-25 株式会社東芝 Radio equipment and antenna device
JP2020036394A (en) * 2018-08-27 2020-03-05 日本信号株式会社 On-vehicle system of train
JP7204378B2 (en) 2018-08-27 2023-01-16 日本信号株式会社 on-board system for trains
CN109178039A (en) * 2018-10-31 2019-01-11 成都柏森松传感技术有限公司 A kind of track train auxiliary control method based on RFID
JP2022517642A (en) * 2019-01-17 2022-03-09 オカド・イノベーション・リミテッド RFID tag
JP7155438B2 (en) 2019-01-17 2022-10-18 オカド・イノベーション・リミテッド RFID tag
US11688887B2 (en) 2019-02-11 2023-06-27 Lg Energy Solution, Ltd. Slave BMS inspection system and method
US12040458B2 (en) 2019-02-11 2024-07-16 Lg Energy Solution, Ltd. Slave BMS inspection system and method
JP2022018242A (en) * 2020-07-15 2022-01-27 Jfeスチール株式会社 Operation management method and system for railroad vehicle
JP7409248B2 (en) 2020-07-15 2024-01-09 Jfeスチール株式会社 Railway vehicle operation management method and system
WO2022198945A1 (en) * 2021-03-23 2022-09-29 卡斯柯信号有限公司 Whole-network train autonomous positioning system
KR102522841B1 (en) * 2022-07-07 2023-04-18 주식회사 뉴플랫폼 The redundant system for detecting the position of train using RFID

Similar Documents

Publication Publication Date Title
JP2011183937A (en) Method and device for detecting failure of non-contact communication equipment
RU2640389C1 (en) Train and railway depot management system
JP5613511B2 (en) Train control method, course control method, on-board device, and management device
US10749159B2 (en) Sensor system
CN102785681B (en) Train is in way method for monitoring safety status, equipment and system
US9175709B2 (en) Device for detecting relative movements in a vehicle
JP2011189863A (en) Train control system, ground device, and train control method
CN103661492A (en) Dual-mode train tail device and control method thereof
JP6196688B2 (en) Detection of vehicles guided on guideways based on RFID systems
CN104620530A (en) Method for carrying out a safety function of a vehicle and system for carrying out the method
JP6297280B2 (en) Rail break detection device
CN102139704A (en) High-accuracy train positioning system based on radio frequency technology and positioning method thereof
CN103786755A (en) Axis counter fault detection method based on zone controller (ZC) system
CN110225856B (en) Self-powered device for logistics/diagnostic monitoring of railway vehicles
KR101488420B1 (en) System and method for monitoring a railroad car using wireless and self-generation sensor
CN111016975B (en) Speed measurement positioning method and system of magnetic-levitation train and magnetic-levitation train
JP2016137731A (en) Vehicle control system, on-board device, and ground device
CN100482512C (en) Cab signal quality detecting and reporting system and method
CN102123005A (en) Online monitoring method for safety data communication process of train control system
CN203323919U (en) Bearing temperature detection system
CN101857044B (en) Non-contact section train occupancy sensing system
CN113147834B (en) Auxiliary train positioning system and method of CBTC (communication based train control) system
Dhage et al. Structural health monitoring of railway tracks using WSN
KR20080087970A (en) CB vehicle signal signaling tester for magnetic levitation train
JP2007015517A (en) Train management system

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20120705

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20130417

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130507

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130924