[go: up one dir, main page]

JP2011183346A - Catalyst for producing hydrogen, method for producing the catalyst and method for producing hydrogen - Google Patents

Catalyst for producing hydrogen, method for producing the catalyst and method for producing hydrogen Download PDF

Info

Publication number
JP2011183346A
JP2011183346A JP2010053568A JP2010053568A JP2011183346A JP 2011183346 A JP2011183346 A JP 2011183346A JP 2010053568 A JP2010053568 A JP 2010053568A JP 2010053568 A JP2010053568 A JP 2010053568A JP 2011183346 A JP2011183346 A JP 2011183346A
Authority
JP
Japan
Prior art keywords
catalyst
component
titanium
hydrogen production
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010053568A
Other languages
Japanese (ja)
Inventor
Shinya Kitaguchi
真也 北口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP2010053568A priority Critical patent/JP2011183346A/en
Publication of JP2011183346A publication Critical patent/JP2011183346A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Hydrogen, Water And Hydrids (AREA)
  • Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a catalyst for producing hydrogen, which exhibits long-term durability to the poisoning by a sulfur compound contained in a hydrocarbon-based compound being a raw material and to the deterioration or coking of a catalyst component due to a temperature change or an atmospheric change because that the operation of a fuel cell system is stopped repeatedly. <P>SOLUTION: The catalyst for producing hydrogen by reforming the hydrocarbon-based compound contains a tightly mixed titanium-based oxide as a catalyst A component, an oxide of at least one element selected from the group comprising Na, K, Mg, Ca, Sr, Ba, Y, La, Pr, Nd, Ce, Cu and Zn as a catalyst B component, and at least one element selected from the group comprising Ni, Pt, Pd, Rh, Ru and Ir as a catalyst C component. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、炭化水素系化合物を改質して水素含有ガスを製造する水素製造用触媒、この触媒の製造方法およびこの触媒を用いた水素製造方法に関する。   The present invention relates to a hydrogen production catalyst for producing a hydrogen-containing gas by reforming a hydrocarbon compound, a production method for the catalyst, and a hydrogen production method using the catalyst.

主に水素と一酸化炭素からなる水素含有ガス(合成ガス)は、水素ガス製造用の他に還元用ガス、更には各種化学製品の原料等として広く活用されており、最近では、燃料電池用燃料等としても実用化研究が進められている。このような水素含有ガスは、炭化水素系化合物の水蒸気改質によって得られることが知られている。天然ガスの主成分であるメタンを原料とした場合の水蒸気改質反応を下式に示した。
CH +H O→CO+3H
天然ガスの水蒸気改質によって工業的に水素を製造する水素製造用触媒としては主にニッケル系触媒が使用されている。しかしながら家庭用燃料電池システムにおいては、電力および熱需要の状況への対応によりシステムの稼動停止を頻繁に実施される。この際、改質器内部に水および未改質燃料が存在したままシステムを停止すると、触媒の劣化、再起動性の悪化、燃料の漏洩等の原因となる。そこで燃料電池システムを停止する場合は、燃料を停止して水蒸気のみを流通させて改質器内部を不活性なガスでパージしてから停止する方法が採用されている。水素製造用触媒として工業的に実績があるニッケル系触媒は高温の水蒸気雰囲気にてニッケルが酸化されてシンタリングし失活することが知られており、家庭用燃料電池システムの水素製造用触媒としては白金族であるルテニウム系触媒が一般的に使用されている。パージガスとしては水蒸気以外に窒素や空気などが考えられ、特に空気が好ましいがルテニウム系触媒は高温の酸化雰囲気で昇華性が高いことが知られており、耐酸化性の優れた触媒開発が望まれている。
Hydrogen-containing gas (syngas) mainly composed of hydrogen and carbon monoxide is widely used as a reducing gas in addition to hydrogen gas production, and as a raw material for various chemical products. Recently, it is used for fuel cells. Research into practical use is also in progress as a fuel. It is known that such a hydrogen-containing gas can be obtained by steam reforming of a hydrocarbon compound. The steam reforming reaction when methane, the main component of natural gas, is used as a raw material is shown in the following equation.
CH 4 + H 2 O → CO + 3H 2
Nickel-based catalysts are mainly used as hydrogen production catalysts for industrially producing hydrogen by steam reforming of natural gas. However, in a domestic fuel cell system, the system is frequently shut down in response to the situation of power and heat demand. At this time, if the system is stopped while water and unreformed fuel are present inside the reformer, it may cause deterioration of the catalyst, deterioration of restartability, fuel leakage, and the like. Therefore, when the fuel cell system is stopped, a method is adopted in which the fuel is stopped, only water vapor is circulated, and the interior of the reformer is purged with an inert gas and then stopped. Nickel-based catalysts that have an industrial track record as a catalyst for hydrogen production are known to be oxidized and deactivated by oxidation of nickel in a high-temperature steam atmosphere. As a catalyst for hydrogen production in home fuel cell systems A ruthenium-based catalyst which is a platinum group is generally used. As the purge gas, nitrogen and air can be considered in addition to water vapor, and air is particularly preferable. However, ruthenium-based catalysts are known to have high sublimation properties in a high-temperature oxidizing atmosphere, and development of a catalyst with excellent oxidation resistance is desired. ing.

改質反応の原料となる炭化水素系化合物には、メタノール、LPガス、天然ガス、ガソリン、軽油、灯油等が挙げられるが、特に家庭用の燃料電池向けの水素源としてはインフラの点で都市ガス、LPガスおよび灯油を使用することが好ましい。しかしながら、都市ガスやLPガスに付臭剤として含まれるメルカプタン類などの硫黄系化合物や灯油に残留している硫黄系化合物は微量存在するだけで水蒸気改質触媒や後段のCO変成触媒の触媒被毒物質となることが知られており、触媒の耐硫黄被毒性の向上が望まれている。そこで原料に含まれる硫黄系化合物による水素製造用触媒の劣化を回避するための手段として、改質器の前段に前処理脱硫装置を併設し、原料ガスから予め硫黄分を除去してから改質反応に供する等の防止策が提案されている。しかしながらこれら防止策を講じる場合、前処理脱硫装置の設置や維持管理に費用が発生するため、水素製造コストが上昇するという問題が新たに生じてくる。   Hydrocarbon compounds that can be used as raw materials for reforming reactions include methanol, LP gas, natural gas, gasoline, light oil, and kerosene. It is preferred to use gas, LP gas and kerosene. However, sulfur compounds such as mercaptans contained in city gas and LP gas as odorants and sulfur compounds remaining in kerosene are present in trace amounts, so that the catalyst coverage of the steam reforming catalyst and the CO conversion catalyst in the subsequent stage is small. It is known that it becomes a toxic substance, and it is desired to improve the sulfur poisoning resistance of the catalyst. Therefore, as a means of avoiding deterioration of the catalyst for hydrogen production due to sulfur compounds contained in the raw material, a pretreatment desulfurization device is installed in front of the reformer to remove the sulfur content from the raw material gas before reforming. Preventive measures such as use for reaction have been proposed. However, when these preventive measures are taken, a new problem arises in that the cost of hydrogen production rises because of the expense of installing and maintaining the pretreatment desulfurization apparatus.

これに対し、硫黄系化合物を含有する原料の改質反応において、硫黄被毒による触媒劣化を抑制した触媒として、白金およびロジウムを含有する触媒が提案されている(特許文献1)。該文献では、特にロジウムは耐硫黄被毒性の向上に有効的であることが開示されている。同様に、炭化水素化合物類の原料に硫黄系化合物が一定濃度以上含有する場合においても長期間の触媒安定性を確保できる手段として、ルテニウムに加えてロジウムを含有する水蒸気改質触媒が提案されている(特許文献2)。ロジウム含有触媒は耐硫黄被毒性に優れ、耐酸化性も優れているが、ロジウムは白金族金属の中でも非常に高価な貴金属であるため触媒単価の大幅な上昇を招く可能性がある。   On the other hand, a catalyst containing platinum and rhodium has been proposed as a catalyst that suppresses catalyst deterioration due to sulfur poisoning in a reforming reaction of a raw material containing a sulfur compound (Patent Document 1). This document discloses that rhodium is particularly effective in improving sulfur poisoning resistance. Similarly, a steam reforming catalyst containing rhodium in addition to ruthenium has been proposed as a means for ensuring long-term catalyst stability even when a sulfur compound is contained in a raw material of hydrocarbon compounds above a certain concentration. (Patent Document 2). The rhodium-containing catalyst is excellent in sulfur poisoning resistance and oxidation resistance. However, rhodium is a very expensive noble metal among platinum group metals, which may cause a significant increase in the unit cost of the catalyst.

また硫黄被毒による触媒劣化を抑制するためにAl、Ti、Caなどからなる群より選択される少なくとも1種の元素およびZrとの複合酸化物を含有する担体に、少なくとも白金を担持させた改質触媒が開示されている(特許文献3)。更にはジルコニア・チタニア固溶体の粉末とアルミナや希土類元素などを含有する改質用触媒担体が提案されている(特許文献4)。これらジルコニア系担体は一般的に白金族金属の担体に用いられているアルミナ系と比較しては耐熱性が劣り、高温での使用条件において白金族金属のシンタリングや白金族金属元素とジルコニアとの固溶化などによって性能低下を招きやすいという問題があった。   In addition, in order to suppress catalyst deterioration due to sulfur poisoning, a carrier containing at least one element selected from the group consisting of Al, Ti, Ca and the like and a complex oxide with Zr is supported by at least platinum. A quality catalyst is disclosed (Patent Document 3). Further, a reforming catalyst carrier containing zirconia / titania solid solution powder and alumina or rare earth elements has been proposed (Patent Document 4). These zirconia-based carriers are inferior in heat resistance as compared with alumina-based materials generally used for platinum group metal carriers, and platinum group metal sintering and platinum group metal elements and zirconia under high temperature use conditions. There was a problem that the performance was liable to deteriorate due to the solid solution.

特開平04−281845号公報Japanese Patent Laid-Open No. 04-281845 特許公報4227779号公報Japanese Patent Publication No. 42277779 特開2002−121006号公報JP 2002-121006 A 特開2008−246416号公報JP 2008-246416 A

水素製造用触媒は高温高湿度条件で使用されるため触媒成分のシンタリングによる熱劣化や原料ガスに含まれる硫黄化合物による被毒劣化が生じるため耐久性の向上が望まれている。また触媒寿命は、改質時の反応温度にも依存し、低温で効率的に改質反応が進行すれば触媒寿命を延長することができる。   Since the catalyst for hydrogen production is used under high-temperature and high-humidity conditions, thermal deterioration due to sintering of catalyst components and poisoning deterioration due to sulfur compounds contained in the raw material gas occur, so that improvement in durability is desired. Further, the catalyst life depends on the reaction temperature at the time of reforming, and if the reforming reaction proceeds efficiently at a low temperature, the catalyst life can be extended.

本発明は上記事情に鑑みてなされたものであって、その目的は、原料である炭化水素系化合物に含まれる硫黄化合物による被毒、燃料電池システムの稼動停止の繰り返しでの温度や雰囲気変化による触媒成分変質やコーキングに対して長期耐久性を有した水素製造用触媒およびその製造方法、ならびにこの触媒を用いた水素製造方法を提供することである。   The present invention has been made in view of the above circumstances, and its purpose is due to changes in temperature and atmosphere due to poisoning by sulfur compounds contained in the hydrocarbon-based compounds as raw materials and repeated shutdown of the fuel cell system. It is to provide a hydrogen production catalyst having a long-term durability against catalyst component alteration and coking, a production method thereof, and a hydrogen production method using this catalyst.

本発明者らは、炭化水素系化合物の改質反応について詳細に検討した結果、触媒A成分としてチタン系均密混合酸化物、触媒B成分としてNa、K、Mg、Ca、Sr、Ba、Y、La、Pr、Nd、Ce、CuおよびZnからなる群から選ばれる少なくとも1種の元素の酸化物、それに触媒C成分としてNi、Pt、Pd、Rh、RuおよびIrからなる群から選ばれる少なくとも1種の元素を含有する触媒を用いることにより、耐熱耐水性が改善すると共に耐硫黄被毒性が向上し、触媒寿命を大幅に延長できることを見出し本発明を完成させた。   As a result of detailed investigations on the reforming reaction of hydrocarbon compounds, the present inventors have found that titanium-based homogeneous mixed oxide is used as the catalyst A component, and Na, K, Mg, Ca, Sr, Ba, Y as the catalyst B component. At least one element selected from the group consisting of La, Pr, Nd, Ce, Cu and Zn, and at least selected from the group consisting of Ni, Pt, Pd, Rh, Ru and Ir as the catalyst C component The inventors have found that the use of a catalyst containing one kind of element improves the heat and water resistance, improves the sulfur poisoning resistance, and greatly extends the catalyst life, thereby completing the present invention.

本発明の水素製造用触媒によれば、原料ガスが硫黄系化合物を含む場合であっても、低温で改質反応を行うことができ、かつ硫黄化合物による被毒を抑制できる。このため、本発明の水素製造用触媒は燃料電池向けに使用でき、例えば家庭用の固体高分子型燃料電池や固体酸化物型燃料電池への組み込みに適する。   According to the hydrogen production catalyst of the present invention, even when the raw material gas contains a sulfur compound, the reforming reaction can be performed at a low temperature, and poisoning by the sulfur compound can be suppressed. Therefore, the hydrogen production catalyst of the present invention can be used for fuel cells, and is suitable for incorporation into, for example, household polymer electrolyte fuel cells and solid oxide fuel cells.

本発明の水素製造用触媒は触媒A成分としてチタン系均密混合酸化物、触媒B成分としてNa、K、Mg、Ca、Sr、Ba、Y、La、Pr、Nd、Ce、CuおよびZnからなる群から選ばれる少なくとも1種の元素の酸化物、それに触媒C成分としてNi、Pt、Pd、Rh、RuおよびIrからなる群から選ばれる少なくとも1種の元素を含有することを特徴としている。この水素製造用触媒は改質反応により炭化水素系化合物から水素を生成することができる。以下に本発明を詳細に説明する。   The catalyst for hydrogen production of the present invention comprises a titanium-based homogeneous mixed oxide as the catalyst A component, and Na, K, Mg, Ca, Sr, Ba, Y, La, Pr, Nd, Ce, Cu and Zn as the catalyst B component. It is characterized by containing at least one element selected from the group consisting of Ni, Pt, Pd, Rh, Ru, and Ir as an oxide of at least one element selected from the group consisting of the oxides. This hydrogen production catalyst can generate hydrogen from a hydrocarbon compound by a reforming reaction. The present invention is described in detail below.

本発明の水素製造用触媒は、触媒A成分としてチタン系均密混合酸化物を含有するものである。触媒A成分は触媒B成分および触媒C成分の担体の役割を有しており、その含有率は水素製造用触媒の総質量に対して50〜98質量%であり、より好ましい触媒A成分の含有率は70〜98質量%である。触媒A成分が50質量%未満では、触媒B成分や触媒C成分の分散性が低下し使用に際して性能低下を招いてしまう。また95質量%を超える場合は触媒B成分およびC成分の含有率が低くなり十分な性能が得られない。   The catalyst for hydrogen production of the present invention contains a titanium-based homogeneous mixed oxide as the catalyst A component. The catalyst A component serves as a support for the catalyst B component and the catalyst C component, and the content thereof is 50 to 98% by mass with respect to the total mass of the hydrogen production catalyst, and the more preferable content of the catalyst A component The rate is 70 to 98% by mass. When the catalyst A component is less than 50% by mass, the dispersibility of the catalyst B component and the catalyst C component is lowered, and the performance is lowered during use. On the other hand, when the content exceeds 95% by mass, the contents of the catalyst B component and the C component become low and sufficient performance cannot be obtained.

触媒A成分としてのチタン系均密混合酸化物は、特に限定されないが、好ましくは複合酸化物または固溶体であって、具体的にはX線回折測定において各構成元素の単独の酸化物に由来する固有のピークを示さないか、もしくは示しても単独の酸化物の回折ピークよりもブロードな回折ピークを呈するアモルファスな結晶構造を有するものである。なかでも、チタンとケイ素および/またはタングステンとを組み合わせたチタン系均密混合酸化物が好適に用いられる。具体的には、チタン−ケイ素、チタン−タングステンの二元系均密混合酸化物、およびチタン−タングステン−ケイ素の三元系均密混合酸化物が挙げられる。   The titanium-based dense mixed oxide as the catalyst A component is not particularly limited, but is preferably a complex oxide or a solid solution, and specifically derived from a single oxide of each constituent element in X-ray diffraction measurement. It has an amorphous crystal structure that does not show an intrinsic peak or has a broader diffraction peak than the diffraction peak of a single oxide. Among these, a titanium-based dense mixed oxide in which titanium and silicon and / or tungsten are combined is preferably used. Specific examples include titanium-silicon, titanium-tungsten binary dense mixed oxides, and titanium-tungsten-silicon ternary dense mixed oxides.

チタン単独の場合でもアモルファスで高表面積な酸化チタンは得られるが耐熱性に乏しく、熱処理によって急激に比表面積が低下して800℃以上の高温に曝されると結晶転位を起こす。このような熱処理による比表面積低下や結晶転位は、触媒B成分や触媒C成分の粒子成長の原因となるため好ましくない。これに対して前記チタン系均密混合酸化物では、熱処理による比表面積低下や結晶転位が抑制され、他の触媒成分を分散良く担持することが可能であり触媒の長期耐久性を維持することができる。   Even in the case of titanium alone, an amorphous titanium oxide having a high surface area can be obtained, but the heat resistance is poor, and the specific surface area is rapidly decreased by heat treatment, and crystal dislocation occurs when exposed to a high temperature of 800 ° C. or higher. Such a reduction in specific surface area and crystal dislocation due to heat treatment are not preferable because they cause particle growth of the catalyst B component and the catalyst C component. In contrast, the titanium-based dense mixed oxide suppresses a decrease in specific surface area and crystal dislocation due to heat treatment, and can support other catalyst components with good dispersion and maintain the long-term durability of the catalyst. it can.

チタン系均密混合酸化物におけるチタンの含有率は二酸化チタン換算で70〜95質量%であることが好ましく、より好ましくは80〜90質量%である。チタンの含有率が70質量%未満である場合は耐硫黄被毒性の低下を招き本発明の効果が得られ難くなる。またチタンの含有率が95質量%を超える場合は耐熱性が不十分となり高温で使用する本発明の用途に適さない。   The titanium content in the titanium-based dense mixed oxide is preferably 70 to 95% by mass, more preferably 80 to 90% by mass in terms of titanium dioxide. When the content of titanium is less than 70% by mass, the sulfur poisoning resistance is lowered and the effects of the present invention are hardly obtained. On the other hand, if the content of titanium exceeds 95% by mass, the heat resistance is insufficient and it is not suitable for the use of the present invention used at a high temperature.

チタン系均密混合酸化物の比表面積は、好ましくは50〜250m/g、より好ましくは70〜200m/g、さらに好ましくは80〜160m/gである。またチタン系均密混合酸化物は成形性が良好であり、押出成形法などによって各種形状のペレットやハニカム構造とすることが容易である。 The specific surface area of the titanium-based dense mixed oxide is preferably 50 to 250 m 2 / g, more preferably 70 to 200 m 2 / g, and still more preferably 80 to 160 m 2 / g. In addition, the titanium-based dense mixed oxide has good moldability and can be easily formed into pellets or honeycomb structures of various shapes by an extrusion method or the like.

チタン系均密混合酸化物において、チタン−ケイ素の均密混合酸化物、チタン−タングステンの均密混合酸化物およびチタン−タングステン−ケイ素の均密混合酸化物は高い比表面積を有しており、耐熱性も優れており触媒A成分として使用することが好ましい。特に押出成形法により触媒形状をハニカム構造とする場合は触媒A成分としてチタン−ケイ素の均密混合酸化物またはチタン−タングステン−ケイ素の均密混合酸化物を使用することにより、良好な機械的強度を有した触媒製造が可能となる。   In the titanium-based dense mixed oxide, the titanium-silicon dense mixed oxide, the titanium-tungsten dense mixed oxide, and the titanium-tungsten-silicon dense mixed oxide have a high specific surface area, It is also excellent in heat resistance and is preferably used as the catalyst A component. In particular, when the catalyst shape is a honeycomb structure by extrusion molding, good mechanical strength can be obtained by using a titanium-silicon homogeneous mixed oxide or a titanium-tungsten-silicon homogeneous mixed oxide as the catalyst A component. It is possible to produce a catalyst having

触媒A成分は、チタン系均密混合酸化物を構成するチタン源とケイ素源および/またはタングステン源とを用いて、通常の共沈法などによって調製することができる。チタン源としては、塩化チタン、硫酸チタン等の無機性チタン化合物、および蓚酸チタン、テトライソプロピルチタネート等の有機性チタン化合物が挙げられる。ケイ素源としては、コロイド状シリカ、水ガラス、四塩化ケイ素等の無機性ケイ素化合物、およびテトラエチルシリケート等の有機ケイ素化合物が挙げられる。また、タングステン源としては、メタタングステン酸アンモニウム、パラタングステン酸アンモニウム、タングステン酸などが挙げられる。   The catalyst A component can be prepared by a common coprecipitation method using a titanium source and a silicon source and / or a tungsten source constituting a titanium-based dense mixed oxide. Examples of the titanium source include inorganic titanium compounds such as titanium chloride and titanium sulfate, and organic titanium compounds such as titanium oxalate and tetraisopropyl titanate. Examples of the silicon source include inorganic silicon compounds such as colloidal silica, water glass, and silicon tetrachloride, and organic silicon compounds such as tetraethyl silicate. Examples of the tungsten source include ammonium metatungstate, ammonium paratungstate, and tungstic acid.

例えば、チタン−ケイ素の二元系均密混合酸化物を調製する方法としては、下記(1)〜(3)の方法が挙げられる。
(1)四塩化チタンをシリカゾルと共に混合し、アンモニアを添加して沈殿を生成せしめ、この沈殿を洗浄、乾燥後に焼成する方法。
(2)四塩化チタンに珪酸ナトリウム水溶液(水ガラス)を添加して沈殿(共沈物)を生成させ、これを洗浄、乾燥後に焼成する方法。
(3)四塩化チタンの水−アルコール溶液にテトラエチルシリケートを添加して加水分解により沈殿を生成させ、これを洗浄、乾燥後に焼成する方法。
For example, as a method for preparing a titanium-silicon binary mixed oxide, the following methods (1) to (3) may be mentioned.
(1) A method in which titanium tetrachloride is mixed with silica sol, ammonia is added to form a precipitate, the precipitate is washed, dried and then fired.
(2) A method in which a sodium silicate aqueous solution (water glass) is added to titanium tetrachloride to form a precipitate (coprecipitate), which is washed and dried and then fired.
(3) A method in which tetraethyl silicate is added to a water-alcohol solution of titanium tetrachloride to form a precipitate by hydrolysis, which is washed and dried and then fired.

上記各方法において、共沈物を300〜950℃で1〜10時間焼成することによって容易にチタン−ケイ素の二元系均密混合酸化物を得ることができる。また同様にして、チタン源、ケイ素源あるいはタングステン源の混合比率を適宜調整することにより、二元系もしくは三元系の各チタン系均密混合酸化物を製造することができる。
共沈以外の方法としてチタンのアモルファス酸化物、チタニアゾル、メタチタン酸やオルトチタン酸のようなチタン水酸化物や酸化チタン水和物などの固体状のチタン化合物と、前記ケイ素源、タングステン源とを混合して乾燥焼成したり、加熱還流処理や水熱合成処理してから、加熱乾燥して焼成することによってチタン系均密混合酸化物を得ることもできる。
In each of the above methods, a titanium-silicon binary mixed oxide can be easily obtained by firing the coprecipitate at 300 to 950 ° C. for 1 to 10 hours. Similarly, by adjusting the mixing ratio of the titanium source, silicon source or tungsten source as appropriate, binary or ternary titanium-based dense mixed oxides can be produced.
As a method other than coprecipitation, an amorphous oxide of titanium, titania sol, a solid titanium compound such as titanium hydroxide or titanium oxide hydrate such as metatitanic acid or orthotitanic acid, and the silicon source and tungsten source are used. It is possible to obtain a titanium-based dense mixed oxide by mixing and drying and baking, or by heating and refluxing or hydrothermal synthesis, and then heating and drying and baking.

本発明の水素製造用触媒は、Na、K、Mg、Ca、Sr、Ba、Y、La、Pr、Nd、Ce、CuおよびZnからなる群から選ばれる少なくとも1種の元素の酸化物を触媒B成分として含有している。触媒B成分の役割としては触媒A成分の耐熱性の向上、触媒C成分の分散性向上および触媒に塩基性を付与することなどが挙げられる。触媒B成分の含有率は、水素製造用触媒の総質量に対して2〜30質量%であることが好ましく、より好ましくは5〜20質量%である。触媒A成分のチタン系均密混合酸化物が強い固体酸性を有しているが、触媒B成分の含有率が2質量%未満である場合は触媒A成分に由来する固体酸点が前記式で水素と共に生成し、塩基性ガスである一酸化炭素の吸着点となり反応の進行が阻害され、水素製造の反応速度が著しく遅くなることが確認されている。また触媒B成分の含有率が30質量%を超える場合は耐硫黄被毒性や耐熱性が低下して触媒の長期耐久性が得られにくくなる。また前記固体酸点は改質反応においてコーキングの原因になることが知られており、触媒B成分の含有率が最適な範囲を外れると触媒の長期使用が困難となる。   The hydrogen production catalyst of the present invention catalyzes an oxide of at least one element selected from the group consisting of Na, K, Mg, Ca, Sr, Ba, Y, La, Pr, Nd, Ce, Cu and Zn Contains as component B. The role of the catalyst B component includes improving the heat resistance of the catalyst A component, improving the dispersibility of the catalyst C component, and imparting basicity to the catalyst. The content of the catalyst B component is preferably 2 to 30% by mass, more preferably 5 to 20% by mass with respect to the total mass of the catalyst for hydrogen production. The titanium-based homogeneous mixed oxide of the catalyst A component has strong solid acidity, but when the content of the catalyst B component is less than 2% by mass, the solid acid point derived from the catalyst A component is expressed by the above formula. It has been confirmed that it is generated together with hydrogen and becomes an adsorption point for carbon monoxide, which is a basic gas, and the progress of the reaction is inhibited, and the reaction rate of hydrogen production is remarkably slowed. Moreover, when the content rate of a catalyst B component exceeds 30 mass%, sulfur poisoning resistance and heat resistance fall and it becomes difficult to obtain the long-term durability of a catalyst. The solid acid point is known to cause coking in the reforming reaction, and if the content of the catalyst B component is outside the optimum range, it becomes difficult to use the catalyst for a long time.

触媒B成分としてはアルカリ土類金属または希土類元素の酸化物が好ましく、Mg、Ca、Sr、Ba、Y、La、Ce、PrおよびNdから選ばれる少なくとも1種の元素の酸化物を含有することが好ましい。特に好ましくはアルカリ土類金属と希土類元素とを各々1種以上を選択して組み合わせて触媒B成分を含有せしめることが好ましい。特に好ましい触媒B成分の2種の酸化物の組合せとして、Sr−La、Sr−Ce、Sr−Pr、Sr−Nd、Ba−La、Ba−Ce、Ba−PrおよびBa−Ndを使用することで、耐硫黄被毒性やコーキングが抑制され本発明の目的とする触媒の長期使用が可能となる。2種以上の触媒B成分の配合比は特に限定されず、トータル量として前記範囲の含有率になればよい。   The catalyst B component is preferably an alkaline earth metal or rare earth oxide, and contains an oxide of at least one element selected from Mg, Ca, Sr, Ba, Y, La, Ce, Pr and Nd. Is preferred. Particularly preferably, the catalyst B component is preferably contained by selecting and combining at least one of an alkaline earth metal and a rare earth element. Use of Sr—La, Sr—Ce, Sr—Pr, Sr—Nd, Ba—La, Ba—Ce, Ba—Pr and Ba—Nd as a combination of two oxides of particularly preferred catalyst B component Thus, sulfur poisoning resistance and coking are suppressed, and the target catalyst of the present invention can be used for a long time. The blending ratio of the two or more kinds of catalyst B components is not particularly limited, and it is sufficient that the total content is within the above range.

本発明の水素製造用触媒は、さらに、触媒C成分としてNi、Pt、Pd、Rh、RuおよびIrからなる群から選ばれる少なくとも1種の元素を含有している。活性成分である触媒C成分の含有率は水素製造用触媒の総質量に対して金属として0.05〜48質量%であることが好ましい。触媒C成分としてNiを選択することが好ましく、Niを使用する場合、触媒C成分の含有率は1〜48質量%、より好ましくは5〜30質量%である。Niの含有率が1質量%より少ない場合は初期および耐久性能が不十分であり、48質量%を超える場合は触媒A成分および触媒B成分の含有率が少なくなり本発明の効果が得られなくなる。また触媒C成分としてPt、Pd、Rh、RuおよびIrから選ばれる少なくとも1種の白金族金属を使用する場合は、前記含有率は0.05〜2質量%とすることが好ましく、より好ましくは0.1〜1質量%であることが好ましい。白金族金属の含有率が0.05質量%以下である場合は十分な長期耐久性能が得られず、2質量%を超えても高価な白金族金属を増量に見合う効果が得られない。   The hydrogen production catalyst of the present invention further contains at least one element selected from the group consisting of Ni, Pt, Pd, Rh, Ru and Ir as the catalyst C component. It is preferable that the content rate of the catalyst C component which is an active component is 0.05-48 mass% as a metal with respect to the total mass of the catalyst for hydrogen production. Ni is preferably selected as the catalyst C component. When Ni is used, the content of the catalyst C component is 1 to 48 mass%, more preferably 5 to 30 mass%. When the Ni content is less than 1% by mass, the initial and durability performance is insufficient. When the Ni content exceeds 48% by mass, the content of the catalyst A component and the catalyst B component is reduced, and the effects of the present invention cannot be obtained. . In the case where at least one platinum group metal selected from Pt, Pd, Rh, Ru and Ir is used as the catalyst C component, the content is preferably 0.05 to 2% by mass, more preferably It is preferable that it is 0.1-1 mass%. When the content of the platinum group metal is 0.05% by mass or less, sufficient long-term durability performance cannot be obtained, and even if it exceeds 2% by mass, an effect corresponding to the increase in the amount of the expensive platinum group metal cannot be obtained.

より好ましい実施形態としては、触媒成分Cとして、Pt、Pd、Rh、RuおよびIrから選ばれる少なくとも1種の白金族金属とNiとを併用することが特に好ましい。この場合にNiを100として他の白金族金属の質量比を0.1〜10の範囲とし、より好ましくは0.3〜3とすることが好ましい。特にNiと組み合わせて使用する白金族金属としてはRhまたはRuを選択することが好ましい。触媒C成分として、Niと白金族金属とを組み合わせて使用することにより、耐硫黄被毒性および耐コーキング性の著しい改善効果が得られる。
<水素製造用触媒の製造方法>
本発明の水素製造用触媒は、触媒A成分としてのチタン系均密混合酸化物、触媒B成分としてのNa、K、Mg、Ca、Sr、Ba、Y、La、Pr、Nd、Ce、CuおよびZnからなる群から選ばれる少なくとも1種の元素の酸化物、それに触媒C成分としてのNi、Pt、Pd、Rh、RuおよびIrからなる群から選ばれる少なくとも1種の元素から構成されており、押出成形法、含浸法やスラリーコート法などによって製造することができる。特に触媒A成分のチタン系均密混合酸化物は成形性が良好であり、押出成形法により製造することが好ましい。触媒の形状としてはペレット形状やハニカム形状とすることができる。工業的に水素を製造する水素製造用触媒は、触媒は数インチの反応管を多数並べた多管式反応器に充填して使用されるため、外径が1〜数mm程度のペレット形状のものが一般に使用されている。一方、本発明の水素製造触媒は、家庭用燃料電池の水素生成に適していることから、ガス量が少なく、コンパクトな設計が可能な押出成形法によってハニカム形状の触媒とするのが好ましい。
In a more preferred embodiment, it is particularly preferable that the catalyst component C is a combination of Ni and at least one platinum group metal selected from Pt, Pd, Rh, Ru and Ir. In this case, it is preferable that Ni is 100 and the mass ratio of other platinum group metals is in the range of 0.1 to 10, more preferably 0.3 to 3. In particular, it is preferable to select Rh or Ru as the platinum group metal used in combination with Ni. By using Ni and a platinum group metal in combination as the catalyst C component, a remarkable improvement effect of sulfur poisoning resistance and coking resistance can be obtained.
<Method for producing hydrogen production catalyst>
The catalyst for hydrogen production of the present invention comprises a titanium-based dense mixed oxide as the catalyst A component, Na, K, Mg, Ca, Sr, Ba, Y, La, Pr, Nd, Ce, Cu as the catalyst B component. And an oxide of at least one element selected from the group consisting of Zn, and at least one element selected from the group consisting of Ni, Pt, Pd, Rh, Ru and Ir as the catalyst C component It can be produced by an extrusion molding method, an impregnation method, a slurry coating method, or the like. In particular, the titanium-based homogeneous mixed oxide of the catalyst A component has good moldability and is preferably produced by an extrusion molding method. The shape of the catalyst can be a pellet shape or a honeycomb shape. The hydrogen production catalyst for industrially producing hydrogen is used by filling a multi-tubular reactor in which many reaction tubes of several inches are arranged, so that the outer diameter is in the form of a pellet of about 1 to several mm. Things are commonly used. On the other hand, since the hydrogen production catalyst of the present invention is suitable for hydrogen generation in a domestic fuel cell, it is preferable to form a honeycomb-shaped catalyst by an extrusion method that requires a small amount of gas and enables a compact design.

本発明の水素製造用触媒の製造方法としては、触媒A成分の含有率を水素製造用触媒の総質量に対して50〜98質量%として押出成形法によって製造することが好ましい。特にハニカム形状に押出成形する場合は、触媒A成分の含有率を水素製造用触媒の総質量に対して70〜98質量%として製造することが好ましい。触媒A成分の含有率が70質量%を超えることにより、ハニカム形状の機械的な強度が著しく高い水素製造用触媒を製造することができる。押出成形法によるハニカム触媒は工業的に使用されている数mm径以下のペレット触媒と比較して機械的強度が強く、かつ圧力損失も大幅に低減することができる。   As a manufacturing method of the catalyst for hydrogen production of this invention, it is preferable to manufacture by the extrusion method by making content rate of a catalyst A component into 50-98 mass% with respect to the total mass of the catalyst for hydrogen production. In particular, when extrusion-molding into a honeycomb shape, it is preferable that the content of the catalyst A component is 70 to 98% by mass with respect to the total mass of the hydrogen production catalyst. When the content of the catalyst A component exceeds 70% by mass, a catalyst for hydrogen production having a remarkably high mechanical strength in a honeycomb shape can be produced. The honeycomb catalyst by the extrusion molding method has higher mechanical strength and pressure loss can be greatly reduced as compared with a pellet catalyst having a diameter of several mm or less which is used industrially.

好ましいハニカム触媒のセル数は60〜600セル/inch (1平方インチ当たりのセル数)であり、より好ましくは80〜500セル/inch で、更に好ましくは100〜400セル/inch である。セル数が60セル/inch 未満である場合は幾何学表面積が小さくなりハニカム化する効果が十分得られず、600セル/inch を超える場合は機械的強度が弱くなるため好ましくない。また押出成形によるハニカム触媒のリブ厚は0.05〜0.5mmの範囲であり、好ましくは0.1〜0.4mmで、更に好ましく0.15〜0.3mmである。触媒リブ厚が0.05mmより小さい場合は、触媒の十分な機械強度が得られず、0.5mmを超えると触媒の重量が重たくなって熱容量が大きくなるため本用途には適さない。 Cell number of preferred honeycomb catalyst is 60 to 600 cells / inch 2 (number of cells per square inch), more preferably 80 to 500 cells / inch 2, more preferably is 100 to 400 cells / inch 2 . When the number of cells is less than 60 cells / inch 2 , the geometric surface area becomes small and the effect of forming a honeycomb cannot be sufficiently obtained, and when it exceeds 600 cells / inch 2 , the mechanical strength becomes weak, which is not preferable. Moreover, the rib thickness of the honeycomb catalyst by extrusion molding is in the range of 0.05 to 0.5 mm, preferably 0.1 to 0.4 mm, and more preferably 0.15 to 0.3 mm. If the catalyst rib thickness is less than 0.05 mm, sufficient mechanical strength of the catalyst cannot be obtained, and if it exceeds 0.5 mm, the weight of the catalyst increases and the heat capacity increases, which is not suitable for this application.

以下に本発明の水素製造用触媒の具体的な製造方法を例示する。
<ハニカム触媒製造方法1>
予め調製した触媒A成分であるチタン系均密混合酸化物と触媒B成分および触媒C成分の出発原料を計量して各成分の組成比となるように配合し、ニーダーなどの混合機で十分混合する。この際、有機バインダーやガラス繊維などの成形助剤を適宜添加することができる。その後、水分を調整して混練して、練り物をハニカム成形金型にてハニカム状に押出し成形し、乾燥してから焼成することによって本発明の水素製造用触媒を調製することができる。前記焼成は窒素、空気または酸素雰囲気下で300〜800℃の範囲で0.5〜20時間の保持時間で実施することが好ましい。また必要により前記焼成後または焼成の代わりに水素雰囲気下にて300〜700℃で活性化処理を実施しても良い。
<ハニカム触媒製造方法2>
前記ハニカム製造方法1において、チタン系均密混合酸化物である触媒A成分と触媒B成分とを押出成形する以外は同様にして乾燥、焼成してハニカムを作成する。得られたハニカム状成形体に触媒C成分を含浸法などで後から担持してハニカム触媒を製造する。
<ハニカム触媒製造方法3>
前記ハニカム製造方法1においてチタン系均密混合酸化物である触媒A成分と触媒C成分とを押出成形する以外は同様にして乾燥、焼成してハニカムを作成する。得られたハニカム成形体に触媒B成分を含浸法などで後から担持してハニカム触媒を製造する。
<ハニカム触媒製造方法4>
前記ハニカム製造方法1においてチタン系均密混合酸化物のみで押出成形する以外は同様にして乾燥、焼成してハニカムを作成する。得られたハニカム成形体に触媒B成分および触媒C成分を含浸法などで後から担持してハニカム触媒を製造する。この際、触媒B成分と触媒C成分は別々に担持しても良いし同時に担持しても良い。
The specific manufacturing method of the catalyst for hydrogen production of this invention is illustrated below.
<Honeycomb catalyst manufacturing method 1>
Titanium-based intimate mixed oxide that is catalyst A component prepared in advance and starting materials of catalyst B component and catalyst C component are weighed and blended so that the composition ratio of each component is obtained, and thoroughly mixed with a mixer such as a kneader To do. At this time, a molding aid such as an organic binder or glass fiber can be appropriately added. Then, the catalyst for hydrogen production of the present invention can be prepared by adjusting the moisture and kneading, extruding the kneaded material into a honeycomb shape with a honeycomb molding die, drying and firing. The firing is preferably performed in a nitrogen, air, or oxygen atmosphere at a temperature of 300 to 800 ° C. for a holding time of 0.5 to 20 hours. If necessary, an activation treatment may be performed at 300 to 700 ° C. in a hydrogen atmosphere after firing or instead of firing.
<Honeycomb catalyst production method 2>
In the honeycomb manufacturing method 1, a honeycomb is produced by drying and firing in the same manner except that the catalyst A component and the catalyst B component, which are titanium-based dense mixed oxides, are extruded. A honeycomb catalyst is manufactured by subsequently supporting the catalyst C component on the obtained honeycomb-shaped formed body by an impregnation method or the like.
<Honeycomb catalyst manufacturing method 3>
A honeycomb is prepared by drying and firing in the same manner as in the honeycomb manufacturing method 1 except that the catalyst A component and the catalyst C component, which are titanium-based dense mixed oxides, are extruded. A honeycomb catalyst is manufactured by supporting the catalyst B component on the obtained honeycomb molded body later by an impregnation method or the like.
<Honeycomb catalyst production method 4>
A honeycomb is prepared by drying and firing in the same manner as in the honeycomb manufacturing method 1 except that extrusion molding is performed only with a titanium-based dense mixed oxide. A honeycomb catalyst is manufactured by subsequently supporting the catalyst B component and the catalyst C component on the obtained honeycomb molded body by an impregnation method or the like. At this time, the catalyst B component and the catalyst C component may be supported separately or simultaneously.

本発明の水素製造用触媒の製造方法は上記のハニカム触媒製造方法に限定されるものではなく、例えば上記製造方法1〜4において、触媒A〜C成分の一部のみを押出成形時に添加し、ハニカム成形後に残りを含浸により担持するなどしても良い。特に触媒C成分としてPt、Pd、Rh、RuおよびIrから選ばれる白金族金属を選択する場合、触媒C成分はハニカム成形後に後から含浸法にて触媒セルの表層部に担持することが好ましい。   The production method of the catalyst for hydrogen production of the present invention is not limited to the above honeycomb catalyst production method. For example, in the production methods 1 to 4, only a part of the components of the catalysts A to C are added at the time of extrusion, The remaining portion may be supported by impregnation after honeycomb formation. In particular, when a platinum group metal selected from Pt, Pd, Rh, Ru, and Ir is selected as the catalyst C component, it is preferable that the catalyst C component is supported on the surface layer portion of the catalyst cell later by the impregnation method after honeycomb formation.

前記触媒の製造方法において触媒B成分であるNa、K、Mg、Ca、Sr、Ba、Y、La、Pr、Nd、Ce、CuおよびZnは各元素の水溶性金属塩を使用することが好ましく、例えば塩化物、硝酸塩、硫酸塩、酢酸塩などを水に溶解した金属塩水溶液として触媒に添加したり、ハニカム成形体に含浸により担持することができる。また触媒C成分であるNi、Pt、Pd、Rh、RuおよびIrに関しても各元素の水溶性金属塩を使用することが好ましく、同様に各元素の塩化物、硝酸塩、硫酸塩や酢酸塩などの金属塩水溶液として触媒に添加したりハニカム成形体に含浸して担持することができる。例えば、ルテニウム化合物では、塩化ルテニウム水溶液、硝酸ルテニウム水溶液、ロジウム化合物では塩化ロジウム水溶液、硝酸ロジウム水溶液、イリジウム化合物では塩化イリジウム水溶液、硝酸イリジウム水溶液、白金化合物では塩化白金酸水溶液、ジニトロジアミノ白金硝酸水溶液等が使用できる。   In the catalyst production method, Na, K, Mg, Ca, Sr, Ba, Y, La, Pr, Nd, Ce, Cu, and Zn as the catalyst B component are preferably water-soluble metal salts of respective elements. For example, a metal salt aqueous solution in which chloride, nitrate, sulfate, acetate or the like is dissolved in water can be added to the catalyst, or supported on the honeycomb formed body by impregnation. Further, regarding the catalyst C component Ni, Pt, Pd, Rh, Ru and Ir, it is preferable to use a water-soluble metal salt of each element. Similarly, chlorides, nitrates, sulfates and acetates of each element are used. It can be added to the catalyst as an aqueous metal salt solution or impregnated and supported on the honeycomb formed body. For example, ruthenium compounds, ruthenium chloride aqueous solution, ruthenium nitrate aqueous solution, rhodium compounds, rhodium chloride aqueous solution, rhodium nitrate aqueous solution, iridium compounds iridium chloride aqueous solution, iridium nitrate aqueous solution, platinum compounds chloroplatinic acid aqueous solution, dinitrodiaminoplatinum nitric acid aqueous solution, etc. Can be used.

また、本発明の水素製造触媒の製造方法は上記押出成形法に限定されるものではなく、触媒A〜C成分よりなる触媒組成物を球、円柱、リング、板やハニカム、コルゲートなどの各種形状の支持体に担持して水素製造用触媒を製造しても良い。この場合、支持体としては、コージライト、ムライト、炭化珪素のようなセラミックやステンレスなど金属の材質のものを使用することができる。
(炭化水素系化合物の改質方法)
本発明の水素製造用触媒を用いて炭化水素系化合物の改質により水素を製造する方法について説明する。改質反応の原料となる炭化水素系化合物としては、メタン、エタン、プロパン、ブタン、ヘプタン、ヘキサンなどの軽質炭化水素、ガソリン、軽油、ナフサなどの石油系炭化水素などが挙げられ、例えば天然ガス、LPG、都市ガス、灯油などの工業的に安定的に入手できる原料を使用することができる。ただし炭化水素系化合物は脱硫処理などの精製が実施されていても微量に硫黄化合物が残留していたり、一般家庭用LPGや都市ガスに付臭剤としてメルカプタン、チオフェン、スルフィドなどの硫黄化合物が添加されていたりする。硫黄系化合物は触媒の被毒物質となることが知られているが、本発明の水素製造用触媒を用いることにより、これら硫黄化合物を含有する炭化水素系化合物も改質反応の原料に使用することができる。なお、脱硫器を設置して原料中に含まれる数ppm以下に硫黄化合物を除去してから本発明の水素製造触媒により改質反応を実施することにより、長期に渡る触媒使用が可能となり燃料電池システムの維持管理が更に容易となることは言うまでもない。
Further, the method for producing the hydrogen production catalyst of the present invention is not limited to the above-described extrusion molding method, and the catalyst composition comprising the catalysts A to C is formed into various shapes such as spheres, cylinders, rings, plates, honeycombs, corrugates and the like. The catalyst for hydrogen production may be produced by supporting it on the support. In this case, the support may be made of a metal material such as cordierite, mullite, ceramics such as silicon carbide, or stainless steel.
(Method for reforming hydrocarbon compounds)
A method for producing hydrogen by reforming a hydrocarbon compound using the hydrogen production catalyst of the present invention will be described. Examples of the hydrocarbon compound used as a raw material for the reforming reaction include light hydrocarbons such as methane, ethane, propane, butane, heptane, and hexane, and petroleum hydrocarbons such as gasoline, light oil, and naphtha. , LPG, city gas, kerosene, and other industrially available raw materials can be used. However, even if hydrocarbon compounds are refined such as desulfurization treatment, sulfur compounds remain in trace amounts, or sulfur compounds such as mercaptans, thiophenes, sulfides are added as odorants to general household LPG and city gas Have been. Sulfur compounds are known to be poisons for catalysts, but by using the hydrogen production catalyst of the present invention, hydrocarbon compounds containing these sulfur compounds are also used as raw materials for reforming reactions. be able to. In addition, by installing a desulfurizer to remove sulfur compounds to a few ppm or less contained in the raw material and then carrying out the reforming reaction with the hydrogen production catalyst of the present invention, it becomes possible to use the catalyst for a long time. Needless to say, system maintenance becomes easier.

本発明の水素製造方法において、原料ガスとなる炭化水素系化合物は水蒸気と混合して用いることができる。炭化水素系化合物に含まれる炭素原子モル数に対する水蒸気のモル数の比(S/C比)は1〜5、好ましくは2〜4、より好ましくは2.5〜3.5であることが望ましい。スチーム/カーボン比が1より小さい場合はコークが析出しやすくなり、5より大きくすると設備の大型化を招き好ましくない。   In the hydrogen production method of the present invention, the hydrocarbon compound serving as the raw material gas can be used by mixing with water vapor. The ratio of the number of moles of water vapor to the number of moles of carbon atoms contained in the hydrocarbon compound (S / C ratio) is 1 to 5, preferably 2 to 4, more preferably 2.5 to 3.5. . When the steam / carbon ratio is smaller than 1, coke is likely to precipitate, and when it is larger than 5, the equipment becomes larger, which is not preferable.

圧力は、常圧以上であって5MPa以下、好ましくは3MPa以下とするのがよい。ガス空間速度(SV)は500〜100,000H−1、好ましくは1,000〜30,000H−1とするのがよい。反応温度は、効率的な改質反応を行うために、触媒層温度が500〜1,000℃、好ましくは600〜900℃の範囲内となるようにするのがよい。 The pressure is normal pressure or more and 5 MPa or less, preferably 3 MPa or less. Gas space velocity (SV) is 500~100,000H -1, and it is preferably a 1,000~30,000H -1. In order to perform an efficient reforming reaction, the reaction temperature should be such that the catalyst layer temperature is in the range of 500 to 1,000 ° C., preferably 600 to 900 ° C.

本発明の水素製造用触媒は、耐酸化性が優れており必要により微量酸素を添加してもよい。酸素の添加により炭化水素系化合物が部分酸化反応により発熱し、外部から加熱しなくても触媒の温度を所定の温度に高めることができる炭化水素含有ガスと酸素含有ガスとの割合については、炭素原子モル数に対する酸素分子のモル数の比(酸素/カーボン比)が0〜0.75とすることができる。   The catalyst for producing hydrogen of the present invention has excellent oxidation resistance, and a trace amount of oxygen may be added if necessary. With respect to the ratio of the hydrocarbon-containing gas to the oxygen-containing gas, the hydrocarbon compound generates heat due to the partial oxidation reaction due to the addition of oxygen, and the temperature of the catalyst can be raised to a predetermined temperature without heating from the outside. The ratio of the number of moles of oxygen molecules to the number of moles of atoms (oxygen / carbon ratio) can be 0 to 0.75.

本発明の水素製造用触媒によって得られる改質ガスは、水素と一酸化炭素を主に含有しており、燃料電池の燃料や、化学工業用原料として使用できる。例えば、高温作動型燃料電池と類別される溶融炭酸塩型燃料電池や固体酸化物型燃料電池は、一酸化炭素や炭化水素も燃料として利用できるので、前記改質ガスをそのまま燃料電池の燃料として使用できる好ましい用途である。   The reformed gas obtained by the hydrogen production catalyst of the present invention mainly contains hydrogen and carbon monoxide and can be used as a fuel for fuel cells and a raw material for the chemical industry. For example, molten carbonate fuel cells and solid oxide fuel cells, which are classified as high-temperature operation fuel cells, can use carbon monoxide and hydrocarbons as fuel, so that the reformed gas can be used as fuel for fuel cells. This is a preferred application that can be used.

前記改質ガスは、更にCO変性反応で一酸化炭素濃度を低減したり、深冷分離法、PAS法、水素貯蔵合金或いはパラジウム膜拡散法等により不純物を除去したりして高純度の水素ガスとすることができる。例えばCO変性反応は一酸化炭素と水を反応させて水素と二酸化炭素に転換することものであり一酸化炭素濃度を1%程度まで低減することができる。CO変性反応に用いる触媒としては、例えば銅主体、或いは鉄主体とする公知の触媒を用いて行えばよい。低温作動型固体高分子燃料電池の燃料などのように更に一酸化炭素濃度を低減する必要がある場合は、CO変性触媒の後段に設置するCO選択酸化触媒により二酸化炭素に酸化するかCO選択メタン化触媒によりメタンに転換させて、一酸化炭素濃度を10ppm以下とすることが望ましい。   The reformed gas is a high-purity hydrogen gas by further reducing the carbon monoxide concentration by CO modification reaction or removing impurities by a cryogenic separation method, PAS method, hydrogen storage alloy or palladium membrane diffusion method, etc. It can be. For example, the CO modification reaction is a reaction in which carbon monoxide and water are converted into hydrogen and carbon dioxide, and the carbon monoxide concentration can be reduced to about 1%. As the catalyst used for the CO modification reaction, for example, a known catalyst mainly composed of copper or iron may be used. When it is necessary to further reduce the carbon monoxide concentration, such as the fuel of a low-temperature operation type solid polymer fuel cell, it is oxidized to carbon dioxide by a CO selective oxidation catalyst installed at the subsequent stage of the CO modification catalyst, or CO selective methane It is desirable that the carbon monoxide concentration be 10 ppm or less by converting it to methane using a catalyst.

以下に、実施例を用いて本発明を詳細に説明するが、本発明の趣旨に反しない限り実施例に限定されるものではない。   Hereinafter, the present invention will be described in detail with reference to examples. However, the present invention is not limited to the examples without departing from the spirit of the present invention.

(実施例1)
最初にチタン−ケイ素均密混合酸化物を以下のようにして調製した。硫酸チタニルの硫酸水溶液180リットル(TiO 濃度250g/リットル、全硫酸濃度1100g/リットル)を水250kgで希釈してチタン含有水溶液を得た。次にシリカゾル(日産化学社製スノーテックス−30)16.7kgに、アンモニア水300kg(濃度25%)と水400kgを添加して水溶液を作成し、攪拌しながら前記硫酸チタニル希釈水溶液を徐々に滴下して共沈ゲルを生成させた。15時間静置後、ろ過して共沈ゲルを得て、これを十分に水洗後、150℃で10時間乾燥した。乾燥後、650℃で5時間焼成し、この焼成物をハンマーミルにて粉砕して、チタン−ケイ素均密混合酸化物を調製した。このチタン−ケイ素均密混合酸化物はTiO /SiO の質量比が90/10であり、BET比表面積は105m /gであった。またX線回折の測定チャートにおいて明確なSiO の固有のピークは見られず、ブロードなアナターゼ型TiO の結晶構造を有していた。
Example 1
First, a titanium-silicon dense mixed oxide was prepared as follows. A titanium-containing aqueous solution was obtained by diluting 180 liters of a sulfuric acid aqueous solution of titanyl sulfate (TiO 2 concentration 250 g / liter, total sulfuric acid concentration 1100 g / liter) with 250 kg of water. Next, 300 kg of ammonia water (concentration 25%) and 400 kg of water are added to 16.7 kg of silica sol (Snowtex-30 manufactured by Nissan Chemical Co., Ltd.) to prepare an aqueous solution, and the titanyl sulfate diluted aqueous solution is gradually added dropwise with stirring. Thus, a coprecipitated gel was produced. The mixture was allowed to stand for 15 hours and then filtered to obtain a coprecipitated gel, which was thoroughly washed with water and dried at 150 ° C. for 10 hours. After drying, it was fired at 650 ° C. for 5 hours, and the fired product was pulverized with a hammer mill to prepare a titanium-silicon dense mixed oxide. This titanium-silicon dense mixed oxide had a TiO 2 / SiO 2 mass ratio of 90/10 and a BET specific surface area of 105 m 2 / g. Further, no clear intrinsic peak of SiO 2 was observed in the X-ray diffraction measurement chart, and the crystal had a broad anatase TiO 2 crystal structure.

上記チタン−ケイ素均密混合酸化物20kgに成形助剤として澱粉400gを加えて混合し、適当量の水を添加してニーダーで混練した後、押し出し成形機で、外形80mm角、目開き2.1mm、肉厚0.4mm、長さ100mmのハニカム状に成形した。次いで、80℃で乾燥した後、550℃で空気雰囲気下5時間焼成することにより、セル数が146セル/inch である触媒成分Aよりなるハニカム成形体を得た。次に含浸法により酢酸バリウム水溶液に含浸して乾燥して500℃で2時間焼成して触媒B成分を担持した。次に硝酸ニッケル水溶液に含浸して乾燥し500℃で空気中で焼成して触媒C成分を担持して完成触媒を得た。得られた触媒の組成を分析したところ、Ti−Si均密混合酸化物:BaO:Ni=90:5:5(質量比)であった。なお、触媒組成の分析は、蛍光X線装置を用いて定量分析を実施した。 After adding 400 g of starch as a molding aid to 20 kg of the above-mentioned titanium-silicon dense mixed oxide, mixing, adding an appropriate amount of water and kneading with a kneader, the outer shape is 80 mm square and the aperture is 2. It was formed into a honeycomb shape having a thickness of 1 mm, a wall thickness of 0.4 mm, and a length of 100 mm. Next, after drying at 80 ° C., firing was performed at 550 ° C. in an air atmosphere for 5 hours to obtain a honeycomb formed body made of the catalyst component A having 146 cells / inch 2 cells. Next, it was impregnated with an aqueous barium acetate solution by an impregnation method, dried and calcined at 500 ° C. for 2 hours to carry the catalyst B component. Next, it was impregnated with an aqueous nickel nitrate solution, dried, and calcined in the air at 500 ° C. to carry the catalyst C component to obtain a finished catalyst. When the composition of the obtained catalyst was analyzed, it was Ti—Si dense mixed oxide: BaO: Ni = 90: 5: 5 (mass ratio). The catalyst composition was analyzed quantitatively using a fluorescent X-ray apparatus.

(比較例1)
実施例1において触媒B成分を担持しなかった以外は実施例1と同様にして比較触媒を得た。得られた触媒の組成を分析したところ、Ti−Si均密混合酸化物:Ni=95:5(質量比)であった。
(Comparative Example 1)
A comparative catalyst was obtained in the same manner as in Example 1 except that the catalyst B component was not supported in Example 1. When the composition of the obtained catalyst was analyzed, it was Ti—Si homogeneous mixed oxide: Ni = 95: 5 (mass ratio).

(実施例2〜7)
実施例1においてチタン−ケイ素の均密混合酸化物のハニカム成形体に含浸法により担持する触媒成分B及び触媒成分Cの種類や質量比を表1のように変更した以外は実施例1と同様にして完成触媒を得た。
(Examples 2 to 7)
Example 1 is the same as Example 1 except that the types and mass ratios of the catalyst component B and the catalyst component C supported by the impregnation method on the honeycomb formed body of the intimate mixed oxide of titanium and silicon are changed as shown in Table 1. Thus, a finished catalyst was obtained.

(実施例8)
チタン−タングステン−ケイ素の均密混合酸化物を以下のようにして調製した。硫酸チタニルの硫酸水溶液(TiO2 換算で250g/L)168リットルに、水80kg及びメタタングステン酸アンモニウム水溶液(日本無機化学工業製WOとして50重量%含有)8kgを加えてチタン−タングステン含有水溶液を作成した。次にシリカゾル(日産化学製スノーテックス−30)13.3kgに、アンモニア水280kg(濃度25%)と水400kgを添加して水溶液を作成し、攪拌しながら前記硫酸チタニル希釈水溶液を徐々に滴下して共沈ゲルを生成させた。この水溶液を温度約30℃に保持して撹拌しながら、更にpHが6となるまでアンモニア水を加え、そのまま放置して2時間熟成した。このようにして得られた共沈ゲルを十分に水洗して、150℃で10時間乾燥した後、650℃で5時間焼成してチタン−タングステン−ケイ素の均密混合酸化物を得た。このチタン−タングステン−ケイ素均密混合酸化物はTiO/WO/SiOの質量比が84/8/8であり、BET比表面積は85m/gであった。またX線回折の測定チャートにおいて明確なWOおよびSiOの固有のピークは見られず、ブロードなアナターゼ型TiO結晶構造を呈していた。
(Example 8)
A close-mixed oxide of titanium-tungsten-silicon was prepared as follows. To 168 liters of sulfuric acid aqueous solution of titanyl sulfate (250 g / L in terms of TiO 2 ), 80 kg of water and 8 kg of ammonium metatungstate aqueous solution (containing 50 wt% as WO 3 manufactured by Nippon Inorganic Chemical Industry Co., Ltd.) were added to obtain a titanium-tungsten containing aqueous solution. Created. Next, to 13.3 kg of silica sol (Nissan Chemical Snowtex-30), 280 kg of ammonia water (concentration 25%) and 400 kg of water were added to prepare an aqueous solution, and the above-mentioned dilute aqueous solution of titanyl sulfate was gradually added dropwise with stirring. A coprecipitated gel was formed. While this aqueous solution was kept at a temperature of about 30 ° C. and stirred, aqueous ammonia was further added until the pH reached 6, and the mixture was left to stand for aging for 2 hours. The coprecipitated gel thus obtained was washed thoroughly with water, dried at 150 ° C. for 10 hours, and then fired at 650 ° C. for 5 hours to obtain a titanium-tungsten-silicon homogeneous mixed oxide. This titanium-tungsten-silicon dense mixed oxide had a mass ratio of TiO 2 / WO 3 / SiO 2 of 84/8/8 and a BET specific surface area of 85 m 2 / g. Further, no clear intrinsic peaks of WO 3 and SiO 2 were observed in the X-ray diffraction measurement chart, and a broad anatase TiO 2 crystal structure was exhibited.

上記チタン−タングステン−ケイ素の均密混合酸化物19kgと酢酸バリウム1.0kgを溶解した水溶液と成形助剤として澱粉400gを加えて混合し、適当量の水を添加してニーダーで混練した後、以下は実施例1と同様にして押し出し成形機で、成形して乾燥焼成して触媒A成分及び触媒B成分を含有するハニカム成形体を得た。次に含浸法により硝酸ルテニウム水溶液に含浸して乾燥して窒素中で500℃で2時間焼成して、触媒C成分を担持し完成触媒を得た。得られた触媒の組成を分析したところ、Ti−W−Si均密混合酸化物:BaO:Ru=95:3:2(質量比)であった。   After adding and mixing 400 kg of starch as a forming aid, an aqueous solution in which 19 kg of the above-mentioned titanium-tungsten-silicon mixed oxide and 1.0 kg of barium acetate are dissolved, and kneading with a kneader. In the same manner as in Example 1, the following was molded by an extrusion molding machine, dried and fired, and a honeycomb molded body containing the catalyst A component and the catalyst B component was obtained. Next, it was impregnated with an aqueous ruthenium nitrate solution by an impregnation method, dried and calcined in nitrogen at 500 ° C. for 2 hours to carry a catalyst C component to obtain a finished catalyst. When the composition of the obtained catalyst was analyzed, it was Ti—W—Si dense mixed oxide: BaO: Ru = 95: 3: 2 (mass ratio).

(実施例9〜10)
実施例8と同様にして、チタン−タングステン−ケイ素の均密混合酸化物と触媒B成分(BaO)を含有するハニカム成形体を得た。得られたハニカム成形体に表1に示す組成となるように、含浸法により、更に触媒成分Bを担持してから触媒成分Cを担持して完成触媒を得た。完成触媒の組成分析により求めた各触媒成分の質量比を表1に示した。
(Examples 9 to 10)
In the same manner as in Example 8, a honeycomb formed body containing an intimate mixed oxide of titanium-tungsten-silicon and a catalyst B component (BaO) was obtained. The resulting honeycomb formed body was further loaded with catalyst component B and then with catalyst component C so as to have the composition shown in Table 1 to obtain a finished catalyst. Table 1 shows the mass ratio of each catalyst component determined by composition analysis of the finished catalyst.

(実施例11)
実施例8において、チタン−タングステン−ケイ素均密混合酸化物の代わりに市販のチタン−タングステン粉体(Millennium Inorganic Chemicals社製DT52、比表面積90m/g、WO 含有率10質量%)を使用した以外は実施例8と同様にして触媒A成分および触媒B成分(BaO)を含有するハニカム成形体を得た。上記チタン−タングステン粉末をX線回折で測定したところ、明確なWO のピークは見られず、ブロードなアナターゼ型TiO の結晶構造を有するチタン−タングステンの均密混合酸化物であることを確認した。次に、上記成形体に硝酸ランタン水溶液を含浸して乾燥してから空気中で500℃で2時間焼成して触媒B成分(La)を担持し、冷却してから硝酸ルテニウムを含浸して乾燥して窒素中で500℃で2時間焼成して、触媒C成分を担持し完成触媒を得た。得られた触媒の組成を分析したところ、Ti−W均密混合酸化物:BaO:La:Ru=93:3:3:1(質量比)であった。
(Example 11)
In Example 8, a commercially available titanium-tungsten powder (DT52 manufactured by Millennium Inorganic Chemicals, specific surface area 90 m 2 / g, WO 3 content 10 mass%) was used in place of the titanium-tungsten-silicon dense mixed oxide. A honeycomb formed body containing a catalyst A component and a catalyst B component (BaO) was obtained in the same manner as in Example 8 except that. When the above-mentioned titanium-tungsten powder was measured by X-ray diffraction, no clear WO 3 peak was observed, and it was confirmed that this was a titanium-tungsten homogeneous mixed oxide having a broad anatase TiO 2 crystal structure. did. Next, the molded body is impregnated with an aqueous solution of lanthanum nitrate, dried and then calcined in air at 500 ° C. for 2 hours to support the catalyst B component (La 2 O 3 ), cooled, and impregnated with ruthenium nitrate. Then, it was dried and calcined in nitrogen at 500 ° C. for 2 hours to carry a catalyst C component to obtain a finished catalyst. When the composition of the obtained catalyst was analyzed, it was Ti—W dense mixed oxide: BaO: La 2 O 3 : Ru = 93: 3: 3: 1 (mass ratio).

(実施例12)
実施例11において、ハニカム成形後に担持する触媒B成分および触媒C成分の種類や比率を変更し表1に示す組成とした以外は実施例11と同様にして完成触媒を得た。
(Example 12)
In Example 11, a finished catalyst was obtained in the same manner as in Example 11 except that the types and ratios of the catalyst B component and the catalyst C component supported after honeycomb formation were changed to the compositions shown in Table 1.

(比較例2)
実施例11においてハニカム成形時及びハニカム化後に触媒B成分(BaOおよびLa )を添加しなかった以外は実施例11と同様にして比較触媒を得た。得られた触媒の組成を分析したところ、Ti−W均密混合酸化物:Ru=99:1(質量比)であった。
(Comparative Example 2)
In Example 11, a comparative catalyst was obtained in the same manner as in Example 11 except that the catalyst B component (BaO and La 2 O 3 ) was not added at the time of forming the honeycomb and after forming the honeycomb. When the composition of the obtained catalyst was analyzed, it was Ti—W dense mixed oxide: Ru = 99: 1 (mass ratio).

実施例1〜12及び比較例1〜2の触媒の組成を表1に示した。   The compositions of the catalysts of Examples 1 to 12 and Comparative Examples 1 and 2 are shown in Table 1.

Figure 2011183346
(比較例3)
比較用ペレット触媒を以下のようにして調製した。外径3mm活性アルミナペレット担体(比表面積115m/g)に硝酸ニッケル水溶液に浸漬し、80℃の空気を通風しながらロータリーエバポレーターで十分に乾燥した後に500℃で空気中で焼成して比較触媒を得た。得られた触媒の組成はAl:Ni=90/10であった。
Figure 2011183346
(Comparative Example 3)
A comparative pellet catalyst was prepared as follows. A comparative catalyst which is immersed in an aqueous nickel nitrate solution on an activated alumina pellet carrier with an outer diameter of 3 mm (specific surface area 115 m 2 / g), sufficiently dried by a rotary evaporator while ventilating air at 80 ° C., and calcined in air at 500 ° C. Got. The composition of the obtained catalyst was Al 2 O 3 : Ni = 90/10.

(初期性能試験)
ラボ活性試験装置を用いて以下の試験条件で水素製造用触媒の初期性能を測定した。最初に各触媒試料を水素気流中で500℃にて2時間還元処理してから、原料ガスとして都市ガス13Aを脱硫処理せずにそのまま使用し、触媒入口温度700℃、GHSV=20,000H−1でスチーム/カーボン(S/C)モル比=3.0の条件にて改質反応を実施した。ガスクロマトグラフィー(島津製作所:ガスクロマトグラフGC−8A)を用いて生成ガスの各濃度を測定し、反応開始3時間後の原料転化率を下記式(1)により算出した。
(Initial performance test)
The initial performance of the hydrogen production catalyst was measured under the following test conditions using a laboratory activity test apparatus. First, each catalyst sample was reduced in a hydrogen stream at 500 ° C. for 2 hours, and then the city gas 13A was used as a raw material gas without being desulfurized, and the catalyst inlet temperature was 700 ° C., GHSV = 20,000 H − The reforming reaction was carried out under the condition of 1 steam / carbon (S / C) molar ratio = 3.0. Each concentration of the product gas was measured using gas chromatography (Shimadzu Corporation: gas chromatograph GC-8A), and the raw material conversion after 3 hours from the start of the reaction was calculated by the following formula (1).

Figure 2011183346
なお、上記式において、CO濃度、CO濃度およびCH濃度は、それぞれ生成ガス(触媒出口)における一酸化炭素、二酸化炭素およびメタンのガス濃度を表す。実施例1〜実施例12及び比較例1〜3の水素製造用触媒の性能試験結果を表2に示す。
Figure 2011183346
In the above formula, the CO concentration, the CO 2 concentration, and the CH 4 concentration represent the gas concentrations of carbon monoxide, carbon dioxide, and methane in the product gas (catalyst outlet), respectively. Table 2 shows the performance test results of the hydrogen production catalysts of Examples 1 to 12 and Comparative Examples 1 to 3.

(耐久性能試験)
耐久性能を確認するためにチューブ炉を用いて窒素気流中に水分10%を含有するガスを触媒試料に通ガスして800℃で100時間の水熱加速エージングを実施した。エージング後に前記同一条件で改質反応を実施し、反応開始後12時間後の原料転化率の測定値を耐久性能として表2に示した。初期性能において性能差異は小さいが、耐久性能は比較触媒と比較して本願発明の触媒が良好である。なお本耐久性能試験は触媒の耐熱性、耐水性、耐硫黄被毒性、耐コーキング性などの複合要因に対する性能試験となっている。
(Durability test)
In order to confirm the durability, a tube furnace was used to pass a gas containing 10% of water in a nitrogen stream through the catalyst sample, and hydrothermal accelerated aging was performed at 800 ° C. for 100 hours. The reforming reaction was carried out under the same conditions after aging, and the measured values of the raw material conversion rate 12 hours after the start of the reaction are shown in Table 2 as the durability performance. Although the performance difference is small in the initial performance, the durability of the catalyst of the present invention is better than that of the comparative catalyst. This durability performance test is a performance test for complex factors such as heat resistance, water resistance, sulfur poisoning resistance and coking resistance of the catalyst.

Figure 2011183346
Figure 2011183346

本発明の水素製造用触媒は、炭化水素系化合物よりなる原料ガスの改質により水素を製造するに際して、性能劣化が少なく、長期にわたり安定して使用でき、特に硫黄化合物を含有している原料ガスに好適に適用できる。   The catalyst for hydrogen production according to the present invention has little deterioration in performance when hydrogen is produced by reforming a raw material gas comprising a hydrocarbon compound, and can be used stably over a long period of time, particularly a raw material gas containing a sulfur compound It can be suitably applied to.

Claims (6)

改質反応により水素を生成する水素製造用触媒であって、触媒A成分としてチタン系均密混合酸化物、触媒B成分としてNa、K、Mg、Ca、Sr、Ba、Y、La、Pr、Nd、Ce、CuおよびZnからなる群から選ばれる少なくとも1種の元素の酸化物、それに触媒C成分としてNi、Pt、Pd、Rh、RuおよびIrからなる群から選ばれる少なくとも1種の元素を含有することを特徴とする水素製造用触媒。   A catalyst for hydrogen production that generates hydrogen by a reforming reaction, wherein the catalyst A component is a titanium-based dense mixed oxide, and the catalyst B component is Na, K, Mg, Ca, Sr, Ba, Y, La, Pr, An oxide of at least one element selected from the group consisting of Nd, Ce, Cu and Zn, and at least one element selected from the group consisting of Ni, Pt, Pd, Rh, Ru and Ir as the catalyst C component A catalyst for producing hydrogen, comprising: 触媒A成分がチタンとケイ素および/またはタングステンとからなるチタン系均密混合酸化物である請求項1記載の水素製造用触媒。   The catalyst for hydrogen production according to claim 1, wherein the catalyst A component is a titanium-based dense mixed oxide comprising titanium and silicon and / or tungsten. 触媒A成分であるチタン系均密混合酸化物の含有率が水素製造用触媒の総質量に対して50〜98質量%である請求項1または2記載の水素製造用触媒。   The catalyst for hydrogen production according to claim 1 or 2, wherein the content of the titanium-based dense mixed oxide as the catalyst A component is 50 to 98 mass% with respect to the total mass of the catalyst for hydrogen production. 請求項1〜3のいずれかの水素製造用触媒を押出成形法によって製造することを特徴とする水素製造用触媒の製造方法。   A method for producing a catalyst for hydrogen production, wherein the catalyst for hydrogen production according to any one of claims 1 to 3 is produced by an extrusion molding method. ハニカム状に成形するにあたり、触媒A成分であるチタン系均密混合酸化物の含有率を水素製造用触媒の総質量に対して70〜98質量%とする請求項4記載の水素製造用触媒の製造方法。   5. The hydrogen production catalyst according to claim 4, wherein in forming into a honeycomb shape, the content of the titanium-based dense mixed oxide as the catalyst A component is 70 to 98 mass% with respect to the total mass of the hydrogen production catalyst. Production method. 請求項1〜3のいずれかの水素製造用触媒を用いて炭化水素系化合物から改質反応により水素を製造することを特徴とする水素製造方法。   A hydrogen production method comprising producing hydrogen from a hydrocarbon compound by a reforming reaction using the hydrogen production catalyst according to any one of claims 1 to 3.
JP2010053568A 2010-03-10 2010-03-10 Catalyst for producing hydrogen, method for producing the catalyst and method for producing hydrogen Pending JP2011183346A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010053568A JP2011183346A (en) 2010-03-10 2010-03-10 Catalyst for producing hydrogen, method for producing the catalyst and method for producing hydrogen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010053568A JP2011183346A (en) 2010-03-10 2010-03-10 Catalyst for producing hydrogen, method for producing the catalyst and method for producing hydrogen

Publications (1)

Publication Number Publication Date
JP2011183346A true JP2011183346A (en) 2011-09-22

Family

ID=44790270

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010053568A Pending JP2011183346A (en) 2010-03-10 2010-03-10 Catalyst for producing hydrogen, method for producing the catalyst and method for producing hydrogen

Country Status (1)

Country Link
JP (1) JP2011183346A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200101028A (en) * 2019-02-19 2020-08-27 현대자동차주식회사 A nanocomposite for hydrogen production of hydrogen which has improved longevity and the method of manufacture thereof
US11215148B2 (en) 2018-07-12 2022-01-04 Exxonmobil Research And Engineering Company Vehicle powertrain with on-board catalytic reformer
WO2024128638A1 (en) * 2022-12-13 2024-06-20 울산과학기술원 Catalyst for dehydrogenation reaction based on palladium, method for producing same, and dehydrogenation reaction method using same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11215148B2 (en) 2018-07-12 2022-01-04 Exxonmobil Research And Engineering Company Vehicle powertrain with on-board catalytic reformer
KR20200101028A (en) * 2019-02-19 2020-08-27 현대자동차주식회사 A nanocomposite for hydrogen production of hydrogen which has improved longevity and the method of manufacture thereof
KR102805105B1 (en) * 2019-02-19 2025-05-08 현대자동차주식회사 A nanocomposite for hydrogen production of hydrogen which has improved longevity and the method of manufacture thereof
WO2024128638A1 (en) * 2022-12-13 2024-06-20 울산과학기술원 Catalyst for dehydrogenation reaction based on palladium, method for producing same, and dehydrogenation reaction method using same

Similar Documents

Publication Publication Date Title
JP5666777B2 (en) Carbon monoxide conversion catalyst and carbon monoxide conversion method using the same
Polychronopoulou et al. Ceria-based materials for hydrogen production via hydrocarbon steam reforming and water-gas shift reactions
US10010876B2 (en) Catalyst for high temperature steam reforming
JP5327323B2 (en) Hydrocarbon gas reforming catalyst, method for producing the same, and method for producing synthesis gas
WO2010122855A1 (en) Catalyst for selective methanation of carbon monoxide, process for producing same, and device using same
JPWO2008084785A1 (en) Carbon dioxide reforming catalyst and method for producing the same
US20070128100A1 (en) Method for making hydrogen using a gold containing water-gas shift catalyst
WO2003092888A1 (en) Catalyst for partial oxidation of hydrocarbon, process for producing the same, process for producing hydrogen-containing gas with the use of the catalyst and method of using hydrogen-containing gas produced with the use of the catalyst
JP2007252989A (en) Carbon monoxide methanation catalyst and carbon monoxide methanation method using the catalyst
JP5096712B2 (en) Carbon monoxide methanation method
JP5702910B2 (en) Treatment conditions for Pt-Re bimetallic water gas shift catalyst
WO2011030800A1 (en) Porous catalytic object for decomposing hydrocarbon and process for producing same, process for producing hydrogen-containing mixed reformed gas from hydrocarbon, and fuel cell system
WO2020012687A1 (en) Hydrocarbon reforming catalyst and hydrocarbon reforming apparatus
JP5531462B2 (en) Carbon dioxide reforming catalyst, method for producing the same, carrier for carbon dioxide reforming catalyst, reformer, and method for producing synthesis gas
JP2012061398A (en) Catalyst for producing hydrogen, method for manufacturing the catalyst, and method for producing hydrogen by using the catalyst
JP2010279911A (en) Catalyst for manufacturing hydrogen, manufacturing method of the catalyst, and manufacturing method of hydrogen using the catalyst
JP2013017913A (en) Steam-reforming catalyst and hydrogen production process using the same
JP2011183346A (en) Catalyst for producing hydrogen, method for producing the catalyst and method for producing hydrogen
JP2012061399A (en) Catalyst for producing hydrogen, method for manufacturing the catalyst, and method for producing hydrogen by using the catalyst
JP4525909B2 (en) Water gas shift reaction catalyst, method for producing the same, and method for producing water gas
JP5619598B2 (en) Copper-zinc-aluminum catalyst, production method thereof, carbon monoxide conversion method, and hydrogen production method
JP4707526B2 (en) Catalyst for partial oxidation of hydrocarbons
JP6376494B2 (en) CO selective methanation reactor
JP4514419B2 (en) Hydrocarbon partial oxidation catalyst, method for producing the same, and method for producing hydrogen-containing gas
JP2005044651A (en) Method of manufacturing hydrogen rich gas