[go: up one dir, main page]

JP2011179998A - Method of inspecting crystal substrate - Google Patents

Method of inspecting crystal substrate Download PDF

Info

Publication number
JP2011179998A
JP2011179998A JP2010045157A JP2010045157A JP2011179998A JP 2011179998 A JP2011179998 A JP 2011179998A JP 2010045157 A JP2010045157 A JP 2010045157A JP 2010045157 A JP2010045157 A JP 2010045157A JP 2011179998 A JP2011179998 A JP 2011179998A
Authority
JP
Japan
Prior art keywords
crystal substrate
inspection
resin
substrate
single crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010045157A
Other languages
Japanese (ja)
Other versions
JP5458958B2 (en
Inventor
Daizo Yamazaki
大蔵 山崎
Naoyuki Ikenaka
直行 生中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2010045157A priority Critical patent/JP5458958B2/en
Publication of JP2011179998A publication Critical patent/JP2011179998A/en
Application granted granted Critical
Publication of JP5458958B2 publication Critical patent/JP5458958B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

【課題】本発明は、結晶基板の検査方法に関するもので、結晶の検査工程に要する時間を短縮することを目的とするものである。
【解決手段】準備工程として、結晶基板に樹脂溶液を塗布する第1の工程と、検査工程として、前記樹脂溶液を塗布した結晶基板を検査装置に固定し、検査を行い、その後、結晶基板を検査装置から取り外す第2の工程と、検査後工程として、検査装置から取り外された結晶基板を樹脂除去溶媒に浸漬し、結晶基板表面の樹脂を除去する第3の工程と、を備えた結晶基板の検査方法。
【選択図】図1
The present invention relates to a method for inspecting a crystal substrate, and an object thereof is to shorten the time required for the crystal inspection process.
As a preparatory step, a first step of applying a resin solution to a crystal substrate, and as an inspection step, the crystal substrate on which the resin solution has been applied is fixed to an inspection device, and an inspection is performed. A crystal substrate comprising: a second step of removing from the inspection device; and a third step of removing the resin on the surface of the crystal substrate by immersing the crystal substrate removed from the inspection device in a resin removal solvent as a post-inspection step Inspection method.
[Selection] Figure 1

Description

本発明は、結晶基板の検査方法に関するものである。   The present invention relates to a crystal substrate inspection method.

従来、結晶基板は、以下の様にして検査されていた。   Conventionally, crystal substrates have been inspected as follows.

すなわち、検査工程として、結晶基板を検査装置に固定し、検査装置で結晶基板を検査し、結晶基板を検査装置より取り外す第2の工程と、取り外した結晶基板を研磨する第3の工程と、を備えた検査方法となっていた。   That is, as the inspection step, a second step of fixing the crystal substrate to the inspection device, inspecting the crystal substrate with the inspection device, and removing the crystal substrate from the inspection device, and a third step of polishing the removed crystal substrate, It was an inspection method with

基板の検査方法についての先行文献としては、導電性の基板を検査装置に固定する際に、基板に対して必要以上の応力がかからないように基板の導電状態をモニターしながら固定する方法もあった(例えば、これに類似する技術は下記特許文献1に記載されている)。   Prior literature on the substrate inspection method includes a method of fixing the conductive substrate to the inspection apparatus while monitoring the conductive state of the substrate so that an unnecessary stress is not applied to the substrate. (For example, a technique similar to this is described in Patent Document 1 below).

特開2005−106606号公報JP-A-2005-106606

上記従来例における課題は、検査に時間がかかってしまうことであった。   The problem in the conventional example is that the inspection takes time.

すなわち、従来例においては、検査装置に固定する際に、結晶基板の表面を傷つけてしまうことが多く、検査装置から取り外した後工程として、結晶基板の表面を研磨する等の必要があった。この工程には、長時間かかってしまう。例えば、窒化物結晶基板においては、1日を要してしまうため、検査後の研磨工程を行うことによって時間がかかってしまうのであった。   That is, in the conventional example, the surface of the crystal substrate is often damaged when it is fixed to the inspection apparatus, and it is necessary to polish the surface of the crystal substrate as a post-process after removal from the inspection apparatus. This process takes a long time. For example, in a nitride crystal substrate, since one day is required, it takes time to perform a polishing process after inspection.

そこで本発明は、検査時間を短縮することを目的とするものである。   Therefore, the object of the present invention is to shorten the inspection time.

そして、この目的を達成するために本発明は、準備工程として、結晶基板に樹脂溶液を塗布する第1の工程と、検査工程として、前記樹脂溶液を塗布した結晶基板を検査装置に固定し、検査を行い、その後、結晶基板を検査装置から取り外す第2の工程と、検査後工程として、検査装置から取り外された結晶基板を樹脂除去溶媒に浸漬し、結晶基板表面の樹脂を除去する第3の工程と、を備えたことにより、所期の目的を達成するものである。   And in order to achieve this object, the present invention, as a preparatory step, a first step of applying a resin solution to the crystal substrate, and as an inspection step, the crystal substrate coated with the resin solution is fixed to an inspection device, A second step of performing inspection and then removing the crystal substrate from the inspection device, and a third step of removing the resin on the surface of the crystal substrate by immersing the crystal substrate removed from the inspection device in a resin removal solvent as a post-inspection step This process achieves the intended purpose.

以上のように本発明は、準備工程として、結晶基板に樹脂溶液を塗布する第1の工程と、検査工程として、前記樹脂溶液を塗布した結晶基板を検査装置に固定し、検査を行い、その後、結晶基板を検査装置から取り外す第2の工程と、検査後工程として、検査装置から取り外された結晶基板を樹脂除去溶媒に浸漬し、結晶基板表面の樹脂を除去する第3の工程と、を備えたので、結晶基板の検査時間を短縮することができる。   As described above, in the present invention, the first step of applying the resin solution to the crystal substrate as a preparation step, and the inspection step of fixing the crystal substrate to which the resin solution has been applied to the inspection apparatus, performing the inspection, A second step of removing the crystal substrate from the inspection device, and a third step of removing the resin on the surface of the crystal substrate by immersing the crystal substrate removed from the inspection device in a resin removal solvent as a post-inspection step. Since it is provided, the inspection time of the crystal substrate can be shortened.

すなわち、本発明においては、検査装置に固定する前に、結晶基板の表面に樹脂溶液を塗布して、保護膜を形成しておくことで、検査装置に固定する際の損傷を防止し、検査後にこの保護膜を除去する工程となっているので、検査後に、結晶基板の傷を取るための研磨工程が必要でなくなるので、検査時間を大幅に短縮することができるのである。   That is, in the present invention, before fixing to the inspection apparatus, the resin solution is applied to the surface of the crystal substrate to form a protective film, thereby preventing damage when fixing to the inspection apparatus, Since this protective film is later removed, a polishing process for removing scratches on the crystal substrate is not required after the inspection, and the inspection time can be greatly shortened.

X線単結晶方位測定装置のホルダー部に単結晶基板を固定した図Figure of single crystal substrate fixed to holder part of X-ray single crystal orientation measuring device スピンコーターによる樹脂塗布の図Figure of resin application by spin coater スピンコーター回転速度と保護膜の膜厚の関係を示す図Diagram showing the relationship between spin coater rotation speed and protective film thickness X線単結晶方位測定装置の図Diagram of X-ray single crystal orientation measuring device X線単結晶方位測定装置のホルダー部を示す図The figure which shows the holder part of a X-ray single crystal orientation measuring device 単結晶基板の方位評価部位を示す図Diagram showing the orientation evaluation part of a single crystal substrate 単結晶基板の方位測定結果を示す図The figure which shows the direction measurement result of the single crystal substrate

以下、本発明の一実施形態をIII族窒化物結晶の一例としてIII族窒化物結晶基板の検査方法として適用したものを、添付図面を用いて説明する。   Hereinafter, an embodiment in which an embodiment of the present invention is applied as a group III nitride crystal substrate inspection method as an example of a group III nitride crystal will be described with reference to the accompanying drawings.

最初に、結晶基板に樹脂溶液を塗布する第1の工程について説明する。   First, the first step of applying a resin solution to the crystal substrate will be described.

結晶基板1として、窒化ガリウム単結晶基板を用い、これを図2に示すようにスピンコーター3へ真空吸着によって固定する。固定された当該単結晶基板1に樹脂溶液2を滴下し、所定の回転速度で回転させ、スピンコート法により樹脂溶液2を塗布する。さらに、加熱したホットプレートに当該基板を静置し、塗布した樹脂溶液を乾燥定着させた。   A gallium nitride single crystal substrate is used as the crystal substrate 1, and this is fixed to the spin coater 3 by vacuum adsorption as shown in FIG. The resin solution 2 is dropped onto the fixed single crystal substrate 1 and rotated at a predetermined rotation speed, and the resin solution 2 is applied by a spin coating method. Further, the substrate was left on a heated hot plate, and the applied resin solution was dried and fixed.

図3はスピンコーターの回転速度と樹脂の膜厚の関係を示す。図3に示すようにスピンコート法は、当該基板に対し、樹脂薄膜を形成するのに優れた方法である。しかしながら、塗布方法はスピンコート法に限るものではなく、ディップコート法、スプレーコート法あるいは真空蒸着法等の気相法でもよい。このうち、ディップコート法、スプレーコート法は当該単結晶基板1のオリフラへの塗布に適した方法であり、スピンコート法同様、本発明の実施形態に適した手法である。   FIG. 3 shows the relationship between the rotation speed of the spin coater and the resin film thickness. As shown in FIG. 3, the spin coating method is an excellent method for forming a resin thin film on the substrate. However, the coating method is not limited to the spin coating method, and may be a vapor phase method such as a dip coating method, a spray coating method, or a vacuum deposition method. Among these, the dip coating method and the spray coating method are methods suitable for application to the orientation flat of the single crystal substrate 1, and are methods suitable for the embodiment of the present invention like the spin coating method.

また、使用する樹脂等の保護膜の硬度(Hp)は、当該単結晶基板(H)より低いものを使用する(Hp<H)。これは、保護膜剥離片等により、基板表面の損傷を防止するためである。また、当該保護膜は樹脂に限るものではなく、当該単結晶基板1の表面を保護できる材質であれば、低分子系、無機系のものでも適用できる。 In addition, the hardness (Hp) of the protective film such as resin used is lower than that of the single crystal substrate (H S ) (Hp <H S ). This is to prevent the substrate surface from being damaged by a protective film peeling piece or the like. The protective film is not limited to resin, and any low molecular or inorganic material can be used as long as it can protect the surface of the single crystal substrate 1.

次に、検査工程として、前記樹脂溶液を塗布した結晶基板を検査装置に固定し、検査を行い、その後、結晶基板を検査装置から取り外す第2の工程について説明する。   Next, as the inspection step, a second step will be described in which the crystal substrate coated with the resin solution is fixed to the inspection device, inspected, and then the crystal substrate is removed from the inspection device.

図4はX線単結晶方位測定装置である。本実施形態での装置は、単結晶基板1を保持するホルダー部7、単結晶基板1にX線を照射するX発生部4及び結晶から回折された回折X線を検出するX線検出部5を備えている。   FIG. 4 shows an X-ray single crystal orientation measuring apparatus. The apparatus in this embodiment includes a holder unit 7 that holds a single crystal substrate 1, an X generation unit 4 that irradiates the single crystal substrate 1 with X-rays, and an X-ray detection unit 5 that detects diffracted X-rays diffracted from the crystal. It has.

単結晶基板1は、円柱形状の窒化ガリウムインゴットにオリフラを形成したのち、所定の厚みにスライスされている。この基板をさらに、研削工程、機械研磨工程、CMP工程にかけ、洗浄した後、前述の樹脂塗布を行う。   Single crystal substrate 1 is sliced to a predetermined thickness after orientation flat is formed on a cylindrical gallium nitride ingot. The substrate is further subjected to a grinding process, a mechanical polishing process, and a CMP process, washed, and then coated with the resin.

単結晶基板1を保持するホルダー部7は、単結晶の方位を正確に測定するため、図5に示すような盤面が平坦であり、ステンレス等の硬質金属でできている。また、この盤面には真空吸着機構が設けられており、図1に示すように単結晶基板1は本機構により固定され、さらには磁石等を単結晶基板の背面に当て、押圧することにより基板が固定される。   The holder portion 7 that holds the single crystal substrate 1 has a flat surface as shown in FIG. 5 and is made of a hard metal such as stainless steel in order to accurately measure the orientation of the single crystal. Further, a vacuum suction mechanism is provided on the surface of the board, and as shown in FIG. 1, the single crystal substrate 1 is fixed by this mechanism, and further, a substrate is applied by pressing a magnet or the like against the back surface of the single crystal substrate. Is fixed.

このように構成されたX線単結晶方位測定装置を用いて、保護膜付き窒化ガリウム単結晶基板の平面方向(001)面における結晶方位のずれ、即ちオフ角を評価した。   Using the X-ray single crystal orientation measuring apparatus configured as described above, the deviation of crystal orientation in the plane direction (001) plane of the gallium nitride single crystal substrate with a protective film, that is, the off angle was evaluated.

まず、当該単結晶基板1の(001)面を、単結晶基板を保持するホルダー部盤面7に真空吸着により固定する。さらに、当該単結晶基板の裏面から、磁石を当て、当該単結晶基板1をホルダー部に押圧し、強固に固定した。   First, the (001) plane of the single crystal substrate 1 is fixed to the holder board surface 7 holding the single crystal substrate by vacuum suction. Further, a magnet was applied from the back surface of the single crystal substrate, and the single crystal substrate 1 was pressed against the holder portion to be firmly fixed.

これにX線発生部4から照射されたX線6が当該単結晶基板1の(001)面に対して入射し、回折されたX線がX線検出部5で検出される。そして、ホルダー部7を回転させて、X線検出部5で検出される回折X線の強さがピークになる時の回転角度を探す。これを、当該単結晶基板の(001)面の複数の箇所にて行い、オフ角の面内分布を評価した。   X-rays 6 irradiated from the X-ray generator 4 are incident on the (001) plane of the single crystal substrate 1, and the diffracted X-rays are detected by the X-ray detector 5. And the holder part 7 is rotated and the rotation angle when the intensity | strength of the diffraction X-ray detected by the X-ray detection part 5 becomes a peak is looked for. This was performed at a plurality of locations on the (001) plane of the single crystal substrate, and the in-plane distribution of off angles was evaluated.

保護膜の測定値に対する影響を調べるために、単結晶基板1に保護膜を設けた場合(保護膜厚み5μm)、保護膜無しの場合のそれぞれのオフ角を評価した。図7に評価結果を示す。なお、図6は評価部位を示す図である。図7のように、測定点5箇所の内、(−15、0)及び(0、−15)の2箇所で角度は完全に一致し、他の3箇所についても測定値の差異は0〜0.04度と、有意な差は観察されず保護膜の測定値への影響は無いことが確認できた。   In order to investigate the influence of the protective film on the measured value, the off-angles when the protective film was provided on the single crystal substrate 1 (protective film thickness 5 μm) and without the protective film were evaluated. FIG. 7 shows the evaluation results. In addition, FIG. 6 is a figure which shows an evaluation site | part. As shown in FIG. 7, among the five measurement points, the angles are completely the same at (−15, 0) and (0, −15), and the difference between the measured values at the other three points is 0 to 0. A significant difference of 0.04 degrees was not observed, and it was confirmed that there was no influence on the measured value of the protective film.

従来、基板の表面を検査するX線検査において、表面は結晶材料が露出した状態でないと検査ができない、もしくは測定誤差がでるとの考え方から、結晶材料が露出した状態で、装置ホルダー部盤面と結晶表面を圧着させ測定評価を行っていた。その過程で基板表面に傷が発生した場合には、再研磨を行うことにより、発生した傷を除去していた。しかしながら、上記のように結晶表面に樹脂等で保護膜10を設け、それが存在する場合でも、保護膜材質、膜厚を制御することにより、X線検査が可能であることを見出し、傷の発生を防止しながら従前通りの正確なX線検査測定を可能にした。   Conventionally, in the X-ray inspection for inspecting the surface of a substrate, the surface cannot be inspected unless the crystal material is exposed, or a measurement error occurs. The crystal surface was pressure bonded to perform measurement evaluation. If scratches occurred on the substrate surface during the process, the generated scratches were removed by repolishing. However, as described above, the protective film 10 is provided on the crystal surface with a resin or the like, and even when it is present, it is found that the X-ray inspection can be performed by controlling the protective film material and film thickness. It was possible to perform accurate X-ray inspection measurement as before while preventing the occurrence.

また、本方法は窒化ガリウム基板だけでなく、また、従来の方法(特開2005−106606)の様に基板の導電性も不要であるため、結晶基板全般に適用可能な汎用性の高い技術である。   In addition, this method is not only a gallium nitride substrate, and also does not require the conductivity of the substrate as in the conventional method (Japanese Patent Application Laid-Open No. 2005-106606). is there.

また、使用する保護膜は、下記式1を満たすことが求められる。これは、X線の吸収が保護膜の密度、厚みに依存するため、保護膜で吸収されて測定できなくなることを防ぐためであり、下記式1を満たすことにより、正確なX線評価が可能となる。   Further, the protective film to be used is required to satisfy the following formula 1. This is to prevent X-ray absorption depending on the density and thickness of the protective film, so that it cannot be measured by being absorbed by the protective film. By satisfying the following formula 1, accurate X-ray evaluation is possible. It becomes.

0<Iexp(−μx/ρ) (式1)
(ここで、IはX線初期強度、μは線吸収係数、xは保護膜の厚み、ρは保護膜の密度を示す。)
また、本発明の実施形態では、前記(001)面のような平面方向だけでなく、オリフラのような縦断面についても同様に樹脂を塗布することにより適用できるものである。
0 <I 0 exp (−μx / ρ) (Formula 1)
(Here, I 0 is the X-ray initial intensity, μ is the linear absorption coefficient, x is the thickness of the protective film, and ρ is the density of the protective film.)
In the embodiment of the present invention, not only the planar direction such as the (001) plane but also a longitudinal section such as an orientation flat can be applied by applying the resin in the same manner.

次に、検査後工程として、検査装置から取り外された結晶基板を樹脂除去溶媒に浸漬し、結晶基板表面の樹脂を除去する第3の工程について説明する。   Next, as a post-inspection step, a third step of immersing the crystal substrate removed from the inspection apparatus in a resin removal solvent to remove the resin on the crystal substrate surface will be described.

検査装置から取り外した窒化ガリウム単結晶基板1を、ウエハートレーに装填し、これを有機溶剤が満たされた超音波洗浄機に入れ、10分間超音波洗浄を行った。有機溶剤を適宜交換しながら、超音波洗浄を数回行った後、ウエハートレーを取り出し、窒素ブローすることにより当該単結晶基板1を乾燥させた。   The gallium nitride single crystal substrate 1 removed from the inspection apparatus was loaded on a wafer tray, placed in an ultrasonic cleaner filled with an organic solvent, and subjected to ultrasonic cleaning for 10 minutes. Ultrasonic cleaning was performed several times while appropriately changing the organic solvent, and then the wafer tray was taken out and blown with nitrogen to dry the single crystal substrate 1.

なお、洗浄方法は、超音波洗浄に限るものではなく、溶媒に浸漬した状態で溶媒を撹拌させる撹拌洗浄、溶媒で湿潤させたウエス等で拭き取る方法もしくはドライエッチング等を用いることができる。また、溶媒は有機溶媒に限るものではなく、樹脂を除去できる良溶媒であれば、酸もしくはアルカリ溶媒等を用いることができる。   Note that the cleaning method is not limited to ultrasonic cleaning, and a stirring cleaning method in which the solvent is stirred in a state of being immersed in a solvent, a method of wiping with a cloth moistened with a solvent, dry etching, or the like can be used. Further, the solvent is not limited to an organic solvent, and an acid or alkali solvent can be used as long as it is a good solvent capable of removing the resin.

次に、樹脂を除去した当該単結晶基板1について、目視検査及び金属顕微鏡による外観検査を20枚行った。目視検査については、2000ルクスの照度下で、金属顕微鏡検査については、観察倍率を100倍として検査を行った。樹脂が塗布された基板については、スクラッチ傷、チッピング等の基板の損傷は無かった。一方、比較として、樹脂を塗布していない基板20枚について同様の評価を行った結果、16枚について、スクラッチ傷もしくはチッピング等の損傷が観察された。   Next, the single crystal substrate 1 from which the resin was removed was subjected to visual inspection and visual inspection using a metal microscope. The visual inspection was performed under an illuminance of 2000 lux, and the metal microscope inspection was performed with an observation magnification of 100 times. For the substrate coated with the resin, there was no damage to the substrate such as scratches and chipping. On the other hand, as a comparison, the same evaluation was performed on 20 substrates not coated with resin, and as a result, 16 scratches or damages such as chipping were observed.

また、損傷が観察された上記16枚について、再研磨を実施したところ、損傷が除去され初期の鏡面状態に戻るまで、最短で7時間、最長で30時間、全16枚の平均で17時間を要した。一方、本発明の方法によれば、樹脂溶液の塗布工程10分、乾燥工程5分、樹脂を除去する工程10分の合計25分で完了し、大幅な時間短縮が可能となる。さらに、本発明の実施形態での方法は、再研磨時のような処理時間のロット間バラツキが殆ど生じないため、工程管理が非常に容易となる。   Further, when the above 16 sheets in which damage was observed were re-polished, it took 7 hours at the shortest, 30 hours at the longest, and 17 hours on the average of all 16 sheets until the damage was removed and returned to the initial mirror state. It cost. On the other hand, according to the method of the present invention, the resin solution coating process is completed for 10 minutes, the drying process is 5 minutes, and the resin removing process is 10 minutes in total. Furthermore, the method according to the embodiment of the present invention makes process management very easy because there is almost no lot-to-lot variation in processing time as in re-polishing.

以上のように本発明は、準備工程として、結晶基板に樹脂溶液を塗布する第1の工程と、検査工程として、前記樹脂溶液を塗布した結晶基板を検査装置に固定し、検査を行い、その後、結晶基板を検査装置から取り外す第2の工程と、検査後工程として、検査装置から取り外された結晶基板を樹脂除去溶媒に浸漬し、結晶基板表面の樹脂を除去する第3の工程と、を備えたので、結晶基板の検査時間を短縮することができる。   As described above, in the present invention, the first step of applying the resin solution to the crystal substrate as a preparation step, and the inspection step of fixing the crystal substrate to which the resin solution has been applied to the inspection apparatus, performing the inspection, A second step of removing the crystal substrate from the inspection device, and a third step of removing the resin on the surface of the crystal substrate by immersing the crystal substrate removed from the inspection device in a resin removal solvent as a post-inspection step. Since it is provided, the inspection time of the crystal substrate can be shortened.

すなわち、本発明においては、検査装置に固定する前に、結晶基板の表面に樹脂溶液を塗布して、保護膜を形成しておくことで、検査装置に固定する際の傷つけることを防止し、検査後にこの保護膜を除去する工程となっているので、検査後に、結晶基板の傷を取るための研磨工程が必要でなくなるので、検査時間を短縮することができるのである。   That is, in the present invention, before fixing to the inspection apparatus, by applying a resin solution to the surface of the crystal substrate and forming a protective film, it prevents damage when fixing to the inspection apparatus, Since the protective film is removed after the inspection, a polishing step for removing the scratches on the crystal substrate is not necessary after the inspection, so that the inspection time can be shortened.

したがって、たとえば、窒化物結晶基板のみならず結晶基板の検査方法として広く活用が期待されるものである。   Therefore, for example, it is expected to be widely used as an inspection method for not only nitride crystal substrates but also crystal substrates.

1 単結晶基板
2 樹脂溶液
3 スピンコーター
4 X線発生部
5 X線検出部
6 X線
7 ホルダー部
8 X線通過用貫通孔
9 真空吸着用貫通孔
10 保護膜
DESCRIPTION OF SYMBOLS 1 Single crystal substrate 2 Resin solution 3 Spin coater 4 X-ray generation part 5 X-ray detection part 6 X-ray 7 Holder part 8 Through-hole for X-ray passage 9 Through-hole for vacuum adsorption 10 Protective film

Claims (7)

準備工程として、結晶基板に樹脂溶液を塗布する第1の工程と、
検査工程として、前記樹脂溶液を塗布した結晶基板を検査装置に固定し、検査を行い、その後、結晶基板を検査装置から取り外す第2の工程と、
検査後工程として、検査装置から取り外された結晶基板を樹脂除去溶媒に浸漬し、結晶基板表面の樹脂を除去する第3の工程と、を備えた結晶基板の検査方法。
As a preparatory step, a first step of applying a resin solution to a crystal substrate;
As the inspection step, the crystal substrate coated with the resin solution is fixed to the inspection device, the inspection is performed, and then the crystal substrate is removed from the inspection device;
As a post-inspection step, a third step of immersing the crystal substrate removed from the inspection apparatus in a resin removal solvent to remove the resin on the surface of the crystal substrate, and a crystal substrate inspection method.
前記第1の工程と、第2の工程の間に、結晶基板上の樹脂溶液を乾燥固化させる工程を備えた請求項1に記載の結晶基板の検査方法。 The crystal substrate inspection method according to claim 1, further comprising a step of drying and solidifying a resin solution on the crystal substrate between the first step and the second step. 前記第1の工程の塗布方法は、スピンコート法である請求項1または2に記載の結晶基板の検査方法。 The crystal substrate inspection method according to claim 1, wherein the coating method in the first step is a spin coating method. 前記第1の工程の塗布方法は、ディップ(浸漬)コート法である請求項1または2に記載の結晶基板の検査方法。 The crystal substrate inspection method according to claim 1, wherein the coating method in the first step is a dip coating method. 前記第1の工程の塗布方法は、スプレーコート法である請求項1または2に記載の結晶基板の検査方法。 The crystal substrate inspection method according to claim 1, wherein the coating method in the first step is a spray coating method. 前記第2の工程の検査装置は、X線検査装置である請求項1から5のいずれか一つに記載の結晶基板の検査方法。 The crystal substrate inspection method according to claim 1, wherein the inspection apparatus in the second step is an X-ray inspection apparatus. 前記結晶基板は窒化物結晶基板である請求項1から6のいずれか一つに記載の結晶基板の検査方法。 The crystal substrate inspection method according to claim 1, wherein the crystal substrate is a nitride crystal substrate.
JP2010045157A 2010-03-02 2010-03-02 Crystal substrate inspection method Expired - Fee Related JP5458958B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010045157A JP5458958B2 (en) 2010-03-02 2010-03-02 Crystal substrate inspection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010045157A JP5458958B2 (en) 2010-03-02 2010-03-02 Crystal substrate inspection method

Publications (2)

Publication Number Publication Date
JP2011179998A true JP2011179998A (en) 2011-09-15
JP5458958B2 JP5458958B2 (en) 2014-04-02

Family

ID=44691647

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010045157A Expired - Fee Related JP5458958B2 (en) 2010-03-02 2010-03-02 Crystal substrate inspection method

Country Status (1)

Country Link
JP (1) JP5458958B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08236592A (en) * 1995-02-28 1996-09-13 Nec Corp Measuring method of stepped part
JP2000266651A (en) * 1999-03-18 2000-09-29 Asahi Chem Ind Co Ltd Preparation of analysis sample

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08236592A (en) * 1995-02-28 1996-09-13 Nec Corp Measuring method of stepped part
JP2000266651A (en) * 1999-03-18 2000-09-29 Asahi Chem Ind Co Ltd Preparation of analysis sample

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6013061971; 酒井 士郎: '「GaNバルク結晶の育成とデバイス応用への展望」' 応用物理 Vol. 67, No. 11, 19981110, p. 1276-1280, 社団法人応用物理学会 *

Also Published As

Publication number Publication date
JP5458958B2 (en) 2014-04-02

Similar Documents

Publication Publication Date Title
CN105531811B (en) Substrate back texture
Namba et al. Ultrafine finishing of sapphire single crystal
KR101326903B1 (en) Apparatus and methods for real-time error detection in cmp processing
JP2012134515A (en) Method for polishing substrate surface
JP6345700B2 (en) Method for manufacturing gallium arsenide substrate, gallium arsenide substrate, and method of using the same
KR20110057181A (en) Silicon Carbide Monocrystalline Substrate
CN108140556A (en) Substrate back side textures
CN111551488A (en) Method for testing interlayer adhesion and method for preparing test sample
JP5458958B2 (en) Crystal substrate inspection method
TW202336847A (en) Method for evaluating silicon wafer and method for removing process-affected layer of silicon wafer
TW506037B (en) Semiconductor wafer and device for semiconductor processing
CN103472265B (en) The method for observing TSV copper crystal grain
CN114184628A (en) A method for rapid preparation of bulk ceramic EBSD samples
JP4688108B2 (en) Method for evaluating the fixed state of seed crystals
Mykhaylyk et al. Comparative characterisation by atomic force microscopy and ellipsometry of soft and solid thin films
Amman High purity germanium based radiation detectors with segmented amorphous semiconductor electrical contacts: Fabrication procedures
JP5587257B2 (en) Deterioration judgment method for substrate holder of ion implanter
Budz et al. Properties of octadecanethiol self-assembled monolayers deposited on GaAs from liquid and vapor phases
US7262849B2 (en) Method of polishing thin film formed on substrate
JP5689218B2 (en) Defect detection method for SOI substrate with transparent support substrate
Bodlaki et al. In situ second-harmonic generation measurements of the stability of Si (111)–H and kinetics of oxide regrowth in ambient
JP3642250B2 (en) Method for judging polishing conditions of semiconductor substrate
KR20210062116A (en) Contact depth detection device of cleaning brush for wafer and its depth detection method
KR101356400B1 (en) Wafer contamination prevention method, inspection method and production method
JPH0297500A (en) GaAs single crystal mirror wafer and its manufacturing method

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20130121

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130207

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131217

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131230

R151 Written notification of patent or utility model registration

Ref document number: 5458958

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees