JP2011179836A - Device and method for measuring grain size distribution - Google Patents
Device and method for measuring grain size distribution Download PDFInfo
- Publication number
- JP2011179836A JP2011179836A JP2010041585A JP2010041585A JP2011179836A JP 2011179836 A JP2011179836 A JP 2011179836A JP 2010041585 A JP2010041585 A JP 2010041585A JP 2010041585 A JP2010041585 A JP 2010041585A JP 2011179836 A JP2011179836 A JP 2011179836A
- Authority
- JP
- Japan
- Prior art keywords
- size distribution
- measurement
- particle size
- measurement cell
- particles
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000009826 distribution Methods 0.000 title claims abstract description 56
- 238000000034 method Methods 0.000 title claims abstract description 21
- 239000002245 particle Substances 0.000 claims abstract description 147
- 238000005259 measurement Methods 0.000 claims abstract description 92
- 239000000725 suspension Substances 0.000 claims abstract description 38
- 239000002904 solvent Substances 0.000 claims abstract description 37
- 238000003860 storage Methods 0.000 claims abstract description 26
- 238000004062 sedimentation Methods 0.000 claims description 21
- 238000010790 dilution Methods 0.000 abstract description 5
- 239000012895 dilution Substances 0.000 abstract description 5
- 230000005540 biological transmission Effects 0.000 abstract description 3
- 238000001556 precipitation Methods 0.000 abstract 2
- 230000001376 precipitating effect Effects 0.000 abstract 1
- 239000000243 solution Substances 0.000 abstract 1
- 230000000052 comparative effect Effects 0.000 description 9
- 239000011521 glass Substances 0.000 description 7
- 239000000463 material Substances 0.000 description 7
- 238000002834 transmittance Methods 0.000 description 5
- 239000011324 bead Substances 0.000 description 4
- 238000004364 calculation method Methods 0.000 description 3
- 238000005119 centrifugation Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000012937 correction Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- 239000004925 Acrylic resin Substances 0.000 description 1
- 229920000178 Acrylic resin Polymers 0.000 description 1
- 238000002835 absorbance Methods 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 230000008033 biological extinction Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000002952 polymeric resin Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 238000009849 vacuum degassing Methods 0.000 description 1
- 238000003260 vortexing Methods 0.000 description 1
Images
Landscapes
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
Description
本発明は、遠心場における粒子沈降過程を、光線透過率の時間変化として測定し、粒度分布を求める遠心沈降式の粒度分布測定装置及び測定方法に関し、特に粒子が溶媒中に高濃度で分散させている材料の粒度分布を測定するのに適した測定装置及び測定方法に関する。 The present invention relates to a centrifugal sedimentation type particle size distribution measuring apparatus and a measuring method for measuring a particle sedimentation process in a centrifugal field as a change in light transmittance with time, and obtaining a particle size distribution, and in particular, particles are dispersed in a solvent at a high concentration. The present invention relates to a measuring apparatus and a measuring method suitable for measuring the particle size distribution of a material.
電子情報材料分野では、溶媒に固体の粉体を分散させたペーストやスラリー状の材料が多く利用されており、その粒度分布は、製品を製造する際の加工性や製品となった後の機械特性などにも影響を及ぼすことから、重要な因子として認識されている。特に、近年では粒子を高濃度に分散させた材料が数多く開発され、その発展にともなってこれら材料が機能を十分発揮できるかどうかを評価したり、安定した分散性が達成できない場合には、その要因を明らかにするために、粒度分布をより正確に、迅速に、測定評価したいという要望が多く出されるようになっている。 In the field of electronic information materials, many pastes and slurry-like materials in which solid powder is dispersed in a solvent are used, and the particle size distribution is based on the workability when manufacturing the product and the machine after the product is made. It is recognized as an important factor because it affects properties and the like. In particular, in recent years, a large number of materials in which particles are dispersed at a high concentration have been developed, and with the development of these materials, it is evaluated whether these materials can sufficiently perform their functions, or when stable dispersibility cannot be achieved, In order to clarify the factors, there is a growing demand for measuring and evaluating the particle size distribution more accurately and quickly.
その粒度分布測定法の一つに、遠心沈降法がある。(例えば、特許文献1)。図4に従来の粒度分布測定装置を模式的に表した図を、図3に従来の一般的な測定セルの断面図を示す。粒子を溶媒中に分散させた試料を測定セル2に封入し、蓋3を装着した状態で、その測定セルを粒度分布測定装置内の円盤状の回転ロータ4にセットし、駆動装置5により回転し遠心力を付与すると、測定セル2に封入した試料中の粒子は、下記式(1)に示すストークスの法則に則り、遠心力方向に沈降する。なお、式(1)において、vは沈降速度、dは粒子経(直径)、ηは溶媒粘度、σは粒子密度、ρは溶媒密度、rは回転半径、ωは角速度である。
One of the particle size distribution measuring methods is a centrifugal sedimentation method. (For example, patent document 1). FIG. 4 schematically shows a conventional particle size distribution measuring apparatus, and FIG. 3 shows a sectional view of a conventional general measurement cell. A sample in which particles are dispersed in a solvent is sealed in a
上記式(1)から明らかなように、粒子経dが大きい粒子ほど早く沈降する。様々な粒子経からなる粒子を溶媒中に分散させた試料を遠心場にて沈降させると、それぞれの粒子は式(1)に従って、粒子経に応じた速度で沈降する。その様子を、図4に示す光源6と検出器7により、ある一定距離における光の透過率変化として測定し、下記式(2)に示すランバート・ベールの法則から吸光度を連続的に演算すれば、それぞれの粒子の粒度を求めることができる。
As is clear from the above formula (1), particles having a larger particle diameter d settle faster. When a sample in which particles having various particle diameters are dispersed in a solvent is precipitated in a centrifugal field, each particle is precipitated at a speed corresponding to the particle diameter according to the equation (1). The state is measured as a change in light transmittance at a certain distance by the
なお、上記式(2)において、I0は入射光の強度、Ilは透過光の強度、εはモル吸光係数、cはモル濃度、lは光が通過する溶媒の厚さである。 In the above formula (2), I 0 is the intensity of incident light, I l is the intensity of transmitted light, ε is the molar extinction coefficient, c is the molar concentration, and l is the thickness of the solvent through which light passes.
以上が、遠心沈降法に基づく粒度分布の演算方法の一例であり、その他にもいくつかのバリエーションがあるが、測定自体が光の透過率を測定する原理にもとづいていたため、検出器の性能により自ずと粒子濃度に限界がある。例えば、検出器がCCDセンサの場合では、測定値のバラツキを考慮すると、透過光量の変化として測定できる精度は100%透過率に対して0.1%(光学濃度OD値換算で3.0)程度であるため、その測定精度
0.1%以下の低透過光領域はCCDセンサの検出器では検出することができない。そのため、粒子濃度が高い試料を測定した場合、遠心により粒子の濃度が下がり、光の透過光量が0.1%以上になって始めて透過率変化として測定できるようになる。その結果、遠心初期の粒子の沈降は見逃すことになり、正確な粒度分布を求めることはできない。それを回避するため、従来は検出器の性能の範囲内に入るように注意深く試料の濃度を調節したり、希釈したりするなど測定前に煩雑な作業を行う必要があった。しかも試料の調整や希釈といった操作を行うことにより、粒子の凝集状態が変化するなど、本来の粒度分布に変化をもたらす可能性があるうえ、データの解釈にはそれらの影響を有無について配慮する必要があった。
The above is an example of the particle size distribution calculation method based on the centrifugal sedimentation method, and there are several other variations, but because the measurement itself was based on the principle of measuring the light transmittance, it depends on the performance of the detector. Naturally there is a limit to the particle concentration. For example, when the detector is a CCD sensor, the accuracy that can be measured as a change in the amount of transmitted light is 0.1% with respect to 100% transmittance (3.0 in terms of optical density OD value) in consideration of variations in measured values. Therefore, a low transmission light region with a measurement accuracy of 0.1% or less cannot be detected by a CCD sensor detector. Therefore, when a sample with a high particle concentration is measured, the concentration of particles decreases by centrifugation, and the transmittance change can be measured only after the amount of transmitted light reaches 0.1% or more. As a result, the sedimentation of particles at the initial stage of centrifugation is overlooked, and an accurate particle size distribution cannot be obtained. In order to avoid this, conventionally, it has been necessary to perform complicated operations before measurement, such as carefully adjusting the sample concentration or diluting the sample so as to be within the range of the detector performance. In addition, operations such as sample preparation and dilution may change the particle size distribution, such as the state of particle aggregation, and it is necessary to consider whether or not there is an influence on the interpretation of the data. was there.
一方、粒子の沈降に伴って、測定セルの下部の粒子濃度が徐々に高くなっていくと、粒子間の衝突、溶媒の上昇流といった粒子の沈降を阻害する要因により沈降速度は遅くなる。これは、濃度が高いほど影響が大きく、測定したデータをそのまま演算すると無視できない誤差となるため、従来は粒子濃度に対する沈降速度を測定し、その結果から補正式を求めてきた。しかし、材料の組成や粒子が異なると完全に一致せず、品種毎に補正式を求める必要があるため、とても非効率であった。 On the other hand, when the particle concentration in the lower part of the measurement cell gradually increases with the sedimentation of the particles, the sedimentation rate becomes slow due to factors that inhibit the sedimentation of the particles such as collision between particles and upward flow of solvent. This is because the higher the concentration, the greater the effect. If the measured data is calculated as it is, an error that cannot be ignored is obtained. Conventionally, the sedimentation velocity with respect to the particle concentration is measured, and a correction formula is obtained from the result. However, if the composition and particles of the material are different, they do not match completely, and it is necessary to obtain a correction formula for each type, which is very inefficient.
本発明では、上記のような課題に鑑みて、粒子が溶媒中に高濃度で分散させている懸濁液であっても希釈することなく、そのままの状態で正確に測定することができる粒度分布測定装置および粒度分布測定方法を提供することを目的とする。 In the present invention, in view of the problems as described above, a particle size distribution that can be accurately measured as it is without dilution even in a suspension in which particles are dispersed at a high concentration in a solvent. An object is to provide a measuring apparatus and a particle size distribution measuring method.
本発明は、上記目的を達成するため以下の測定装置及び測定方法を提供する。
(1)溶媒に粒子を分散させた懸濁液を測定セルに封入し、前記測定セルを回転軸を中心に回転させることによって前記粒子を遠心力により沈降させ、その沈降過程における透過光量変化を測定し、前記透過光量変化から粒度分布を求める粒度分布測定装置であって、前記回転軸に垂直な断面における前記測定セルのサンプル収容部の面積を収容部断面積とし、前記測定セルが、前記回転軸に近い側に配され、収容部面積が略一定である測定部と、前記回転軸から遠い側に配され、回転軸からの距離が大きくなるに従い収容部面積が大きくなるテーパー部とを有するものである粒度分布測定装置。
(2)前記測定部における測定セルのサンプル収容部の厚さが0.1〜1.0mmであることを特徴とする請求項1に記載する粒度分布測定装置。
(3)溶媒に粒子を分散させた懸濁液を測定セルに封入し、前記測定セルを回転軸を中心に回転させることによって前記粒子を遠心力により沈降させ、その沈降過程における透過光量変化を測定し、前記透過光量変化から粒度分布を求める粒度分布測定方法であって、前記回転軸に垂直な断面における前記測定セルのサンプル収容部の面積を収容部断面積とし、前記測定セルとして、前記回転軸に近い側に配され、収容部面積が略一定である測定部と、前記回転軸から遠い側に配され、回転軸からの距離が大きくなるに従い収容部面積が大きくなるテーパー部を有する測定セルを用い、前記テーパー部における前記懸濁液の粒子濃度が、前記測定部における前記懸濁液の粒子濃度よりも低い状態で測定を開始することを特徴とする粒度分布測定方法。
In order to achieve the above object, the present invention provides the following measuring apparatus and measuring method.
(1) A suspension in which particles are dispersed in a solvent is sealed in a measurement cell, and the particles are settled by centrifugal force by rotating the measurement cell around a rotation axis, and the amount of transmitted light in the sedimentation process is changed. A particle size distribution measuring apparatus for measuring and obtaining a particle size distribution from the change in transmitted light amount, wherein the area of the sample storage portion of the measurement cell in a cross section perpendicular to the rotation axis is a storage portion cross-sectional area, and the measurement cell is A measuring unit disposed on the side closer to the rotation axis and having a substantially constant storage area, and a taper portion disposed on the side far from the rotation axis and having a larger storage area as the distance from the rotation axis increases. A particle size distribution measuring apparatus that has the same.
(2) The particle size distribution measuring apparatus according to claim 1, wherein the thickness of the sample storage part of the measurement cell in the measurement part is 0.1 to 1.0 mm.
(3) A suspension in which particles are dispersed in a solvent is sealed in a measurement cell, and the measurement cell is rotated around a rotation axis so that the particles are sedimented by centrifugal force. A particle size distribution measurement method for measuring and obtaining a particle size distribution from the transmitted light amount change, wherein the area of the sample storage portion of the measurement cell in a cross section perpendicular to the rotation axis is a storage portion cross-sectional area, as the measurement cell, A measuring unit that is disposed on the side closer to the rotation axis and has a substantially constant storage area, and a taper portion that is disposed on the side far from the rotation axis and increases in storage area as the distance from the rotation axis increases. The particle size distribution measurement is characterized in that the measurement is started in a state where the particle concentration of the suspension in the tapered portion is lower than the particle concentration of the suspension in the measuring portion. Method.
本発明によれば、従来の粒度分布測定装置では測定できなかった検出器の能力よりも高濃度な懸濁液を、希釈することなく、そのままの状態で測定することができ、さらに、高濃度になればなるほど大きくなる粒子沈降により発生する阻害要因を低減できるため正確な測定が可能となる。その結果、希釈により分散性に変化をもたらすような高濃度な懸濁液でも正確に粒度分布を測定することが可能となる。 According to the present invention, a suspension having a concentration higher than the ability of a detector that could not be measured by a conventional particle size distribution measuring apparatus can be measured as it is without dilution, and further, a high concentration can be measured. Therefore, since the obstruction factor generated by particle sedimentation that becomes larger as the value becomes smaller can be reduced, accurate measurement becomes possible. As a result, it is possible to accurately measure the particle size distribution even with a high-concentration suspension that changes the dispersibility by dilution.
本発明の実施の形態について、図に基づいて説明する。図1は本発明の粒度分布測定装置の一例を模式的に表した図である。 Embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a diagram schematically showing an example of a particle size distribution measuring apparatus of the present invention.
図1において、溶媒に粒子を分散させた懸濁液を封入する測定セル1と、前記測定セル1をセットする回転ロータ4、その回転ロータ4を駆動するモータが具備されている。前記測定セル1は、試料に応じてガラスや樹脂製を用いることができる。測定セル1の挟む片側の面には、回転中心から一定距離に取り付けられた光源6と、その光源6からの光を平行光とするためのコリメートレンズ8を具備し、もう一方の対抗する面には、透過してきた平行光を集光する集光レンズ9と、その集光した光を受光する検出器7が具備されている。検出器7はCCDセンサなどの光電子変換素子が好ましい。透過光量変化から粒度分布を求めるため、検出器は受光感度の高い低画素分解能のものが好ましく、尚且つ階調は1024階調以上のものがより好ましい。
In FIG. 1, a measurement cell 1 that encloses a suspension in which particles are dispersed in a solvent, a
また、検出器7からの出力信号は、画像取込ボードを介して、演算処理装置に取り込まれ、演算により粒度分布を算出する。 The output signal from the detector 7 is taken into the arithmetic processing device via the image taking board, and the particle size distribution is calculated by the calculation.
図2は本発案の特徴部分である測定セル1の断面図を示している。本発明の測定セル1は、回転軸に近い側に配された、収容部断面積が略一定となる測定部1aと、回転軸から遠い側に配された、回転軸からの距離が遠くなるに従って収容部の断面積が大きくなるテーパー部1bから構成されている。なお、本発明において、サンプル収容部とはサンプルとして用いる懸濁液が収容される、測定セルの内面で囲まれた部分を指し、収容部断面積とは、回転軸に垂直な断面における前記測定セルのサンプル収容部の断面積をいう。収容部およびテーパー部の回転軸に垂直な断面の形状は、長方形、正方形またはこれらの形状の頂点付近を丸く変形させた形状、楕円形、円形等のいずれであっても良いが、測定部においては測定に用いる光が透過する懸濁液の幅と厚みが一定となる長方形または長方形の頂点付近を丸く変形させた形状が好ましい。
FIG. 2 shows a sectional view of the measuring cell 1 which is a characteristic part of the present invention. The measuring cell 1 according to the present invention has a
粒子濃度が高い試料を測定する場合、遠心力による粒子の沈降により測定セル1の回転軸から遠い側の粒子濃度は徐々に高くなり、粒子同士の接触や衝突や粒子沈降に伴う上昇流などの影響で粒子は沈降し難くなる。また、その傾向は粒子濃度が高いほど顕著である。従って、測定部1aの厚さが薄いセルを使用するだけでは、正確な測定はできない。その解決手段として、測定セル1の回転軸から遠い側に回転軸からの距離が大きくなるに従って収容部断面積が大きくなるテーパー部1bを設けることを特徴とする。なお、テーパー部の形状は回転軸からの距離が大きくなるに従って収容部断面積が大きくなるようになっていれば問題がなく、サンプル収容部の幅方向、厚さ方向のいずれか一方のみの寸法が大きくなる形状であっても良いし、一方が小さくなり、他方が大きくなる形状であっても良いし、両方が大きくなる形状であってもよい。また、サンプル収容部の厚さまたは幅は、必ずしも直線状に増加する形状である必要はないが、図2に示すように直線状に増加する形状であることが好ましい。
When measuring a sample with a high particle concentration, the particle concentration on the side far from the rotation axis of the measurement cell 1 gradually increases due to sedimentation of the particles due to centrifugal force. The particles become difficult to settle due to the influence. Moreover, the tendency is more remarkable as the particle concentration is higher. Therefore, accurate measurement cannot be performed only by using a cell having a
なお、本発明においては、透過光量変化は測定部1aで測定し、テーバー部1bでは測定を行わない。テーパー部1bを設けることで、沈降してきた粒子同士の物理的な間隙が広くなり、粒子同士の衝突や接触が低減すること、さらに粒子沈降に伴い上昇流が発生しても、テーパー部1b内で渦を巻くことで、測定セル1の測定部1aへの影響がちいさくなり、正確な測定を行うことが可能となる。
In the present invention, the transmitted light amount change is measured by the measuring
また、測定部1aの厚さは、0.1〜1.0mmの範囲内であることが好ましい。なお、本発明における測定セルまたは測定部の厚さとは、測定に用いる光が透過する方向の収容部の長さをいい、測定を行う場合は、測定に用いる光が透過する懸濁液部分の長さに相当する。
Moreover, it is preferable that the thickness of the
図3に示す従来の一般的な測定セル2は、測定部の厚さが3mm以上であるため、粒子濃度が低く、OD値換算で3.0未満の懸濁液を試料として用いて粒度分布を測定する場合は、比較的正確に測定することが可能である。しかし、粒子濃度が高く、OD値換算で3.0以上の懸濁液を試料として用いて粒度分布を測定する場合は、測定初期において透過光量が小さく、検出器の分解能以下となり、粒子が沈降する様子を透過光量の変化として測定できないため、測定初期の比較的大きな粒子の沈降が見逃されることになる。これに対して、図2に示すような、本発明で用いる測定セルで測定した場合、粒子濃度が高い試料でも、測定部の厚さが小さいためOD値は小さく、透過光量が大きくなるため、粒子の沈降を透過光量の変化として測定することができ、見逃しのない測定が可能となる。ただし、あまり測定部1aの厚さを薄くしすぎると、粒子とセル内壁との接触や摩擦の影響が大きくなり、計算誤差の要因となる場合があるため、測定部1aの厚さは、0.1〜1.0mmの範囲内であることが好ましい。
The conventional
次に本発明の粒度分布測定方法について説明する。本発明の粒度分布測定方法においては、上述の本発明の測定セル1に懸濁液を封入して測定する際に、テーパー部1bにおける懸濁液の粒子濃度が、測定部1aにおける前記懸濁液の粒子濃度よりも低い状態で測定を開始することが好ましい。具体的には、テーパー部1bに測定したい懸濁液よりも粒子濃度が低い懸濁液、あるいは粒子を分散させない溶媒のみを封入したあと、測定部1aに測定したい懸濁液を封入し、測定を開始することで、より効果を得ることができる。測定したい懸濁液よりも粒子濃度が低い懸濁液あるいは溶媒のみをテーパー部1bに封入することで、粒子間の衝突や接触を抑えることが可能となり、さらに粒子濃度が低く抑えられるため粒子の沈降に伴う上昇流も低減することが可能である。なお、この効果はテーパー部1bに封入する懸濁液の粒子濃度が低いほどより効果を得ることができる。また、テーパー部1bに封入する懸濁液の溶媒(溶媒のみを用いる場合はその溶媒)は、測定部に封入する試料の溶媒と同じ溶媒であることが望ましい。例えば、測定部に封入する試料の溶媒よりも、密度が低い溶媒や高い溶媒を使用した場合には、たとえ粒子がなくとも、溶媒の密度差の影響により粒子の沈降が理想的な状態、すなわち上述の式(1)を満たす状態から乖離してしまう場合がある。テーパー部1bに密度の低い溶媒または密度の低い溶媒を用いた懸濁液を充填した場合は、溶媒自体が浮上するため粒子の沈降の阻害要因となり、正確な測定ができなくなる場合がある。また、テーパー部1bに密度の高い溶媒または密度の高い溶媒を用いた懸濁液を充填した場合は、粒子がその領域に沈降した際に速度が減速され、界面付近で粒子濃度の高い層が形成され、正確な測定ができなくなる場合がある。ただし、溶媒間に多少の密度差がある程度では問題とならない場合が多く、また、粒子と溶媒の密度差、懸濁液の濃度等によってもその影響は変化するので、必ずしも同じ溶媒に限定するものではない。
Next, the particle size distribution measuring method of the present invention will be described. In the particle size distribution measuring method of the present invention, when the measurement is performed by enclosing the suspension in the measurement cell 1 of the present invention described above, the particle concentration of the suspension in the tapered
以下、本発明を実施例により説明する。なお、本発明は実施例に限定されるものではない。 Hereinafter, the present invention will be described with reference to examples. In addition, this invention is not limited to an Example.
実施例1、比較例1
図5に、本発明の粒度分布測定装置により、粒子の濃度を変化させた試料の粒度分布を測定した結果を示す。また、比較例として、従来の粒度分布測定装置での測定結果を併せて示す。
実施例1では以下の寸法を有するガラスセルを測定セルとして用いた。なお、測定光が透過する方向の寸法を厚さ、回転軸の方向の寸法を高さ、これら両方に垂直な方向の寸法を幅とした。
・外形:幅12.5mm、厚さ12.5mm、高さ80mmの立方体
・測定部のサンプル収容部:幅10mm、厚さ1mm、高さ74mmの立方体
・テーパー部のサンプル収容部:回転軸に近い側の収容武断面が幅10mm、厚さ1mmの長方形、回転軸に遠い側が幅10mm、厚さ9mmの長方形、高さ4mm、テーパー角45°となる形状。
Example 1 and Comparative Example 1
FIG. 5 shows the result of measuring the particle size distribution of a sample in which the particle concentration is changed by the particle size distribution measuring apparatus of the present invention. Moreover, the measurement result in the conventional particle size distribution measuring apparatus is also shown as a comparative example.
In Example 1, a glass cell having the following dimensions was used as a measurement cell. It should be noted that the dimension in the direction in which the measurement light is transmitted is the thickness, the dimension in the direction of the rotation axis is the height, and the dimension in the direction perpendicular to both is the width.
・ External shape: Cube with a width of 12.5 mm, a thickness of 12.5 mm, and a height of 80 mm. ・ Sample storage part of the measurement part: a cube with a width of 10 mm, a thickness of 1 mm, and a height of 74 mm. A shape in which the accommodating cross section on the near side is a rectangle with a width of 10 mm and a thickness of 1 mm, a side far from the rotation axis is a rectangle with a width of 10 mm and a thickness of 9 mm, a height of 4 mm, and a taper angle of 45 °.
比較例1では、以下の形状を有する日本ルフト社製の円筒型のガラスセルを測定セルとして用いた。
・外形:直径12.5mm、高さ84mmの円柱
・サンプル収容部:直径10.0mm、高さ82.5mmの円柱
測定は、市販の日本ルフト社製の粒度分布・分散安定性分析装置LumiSizerに、本発明の測定セルおよび従来の測定セルを配置して行った。遠心分離は500回転で60分間行い、得られた全てのデータを、Constant Positionモードで粒度分布を計算した。
In Comparative Example 1, a cylindrical glass cell manufactured by Nippon Luft Co. having the following shape was used as a measurement cell.
-External shape: a cylinder with a diameter of 12.5 mm and a height of 84 mm-Sample storage part: a cylinder with a diameter of 10.0 mm and a height of 82.5 mm The measurement is performed with a commercially available particle size distribution / dispersion stability analyzer LumiSizer manufactured by Nippon Luft The measurement cell of the present invention and the conventional measurement cell were arranged. Centrifugation was performed at 500 rpm for 60 minutes, and the particle size distribution of all the obtained data was calculated in the Constant Position mode.
粒子として、製品表示粒子経が22μmのガラスビーズ(カタログ値として、10%粒子径d10が18μm、50%粒子径d50が22μm、90%粒子径d90が26μmと表示されたもの)を用いた。溶媒としては、有機溶剤にポリマー樹脂を溶解(粘度20Pa・s)したものを用いた。懸濁液は、溶媒に粒子をそれぞれ0.5重量%、1重量%、2重量%、5重量%、10重量%、20重量%となるように混合し、真空脱泡しながら20℃で15分攪拌し分散させた。 As the particles, glass beads having a product display particle size of 22 μm (as catalog values, 10% particle diameter d10 was displayed as 18 μm, 50% particle diameter d50 as 22 μm, 90% particle diameter d90 as 26 μm) were used. As the solvent, a polymer resin dissolved in an organic solvent (viscosity: 20 Pa · s) was used. The suspension was mixed with the solvent so that the particles would be 0.5 wt%, 1 wt%, 2 wt%, 5 wt%, 10 wt% and 20 wt%, respectively, and at 20 ° C with vacuum degassing. Stir for 15 minutes to disperse.
実施例1においてはテーパー部に溶媒のみを、測定部に懸濁液を封入し、粒度分布を測定した。比較例1においては測定セルに懸濁液を封入し、粒度分布を測定した。 In Example 1, only the solvent was sealed in the taper portion, and the suspension was sealed in the measurement portion, and the particle size distribution was measured. In Comparative Example 1, the suspension was sealed in the measurement cell, and the particle size distribution was measured.
各測定における測定結果を表1に示す。なお、表1中のd10、d50、d90はそれぞれ重量分布曲線における10%粒子径、50%粒子径、90%粒子径を指し、粒径が小さいものからの重量基準の累積値が、それぞれ10%、50%、10%となる粒径を表す。 Table 1 shows the measurement results for each measurement. In Table 1, d10, d50, and d90 indicate the 10% particle diameter, 50% particle diameter, and 90% particle diameter in the weight distribution curve, respectively. %, 50%, and 10%.
実施例1ではそれぞれの粒子濃度の試料で製品表示粒子経(d50)に近い値が得られており、d10、d90についても粒子濃度に依存せずほぼ一定の値が得られているが、比較例1では、0.5重量%や1.0重量%といった粒子濃度が低い試料では、比較的製品表示粒径に近い値が得られているものの、5%以上の粒子濃度が高い試料になると、徐々にd50の粒子径が小さくなっていることがわかる。また、同様に粒子濃度が高くなるにつれて、d10とd90が、d50の粒子経に近い値となっており、正確な測定ができていないことが分かる。 In Example 1, a value close to the product display particle size (d50) was obtained for each particle concentration sample, and d10 and d90 were also substantially constant without depending on the particle concentration. In Example 1, a sample having a low particle concentration such as 0.5% by weight or 1.0% by weight has a value relatively close to the product display particle diameter, but a sample having a high particle concentration of 5% or more is obtained. It can be seen that the particle diameter of d50 gradually decreases. Similarly, as the particle concentration increases, d10 and d90 become values close to the particle diameter of d50, indicating that accurate measurement is not possible.
実施例2、比較例2
実施例1で使用した製品表示粒子経が22μmのガラスビーズと、製品表示粒子経が41μmのガラスビーズ(d10が37μm、d50が41μm、d90が45μm)を、質量割合で4:1となるように配合し、有機溶媒にアクリル樹脂を溶解(粘度20Pa・s)した溶媒に、10重量%の粒子濃度となるように混合し、実施例1と同様に分散させた懸濁液をサンプルとして用いた。実施例1、比較例1と同様にして粒度分布を測定した。
Example 2 and Comparative Example 2
The glass beads having a product display particle size of 22 μm and the glass beads having a product display particle size of 41 μm (d10 is 37 μm, d50 is 41 μm, d90 is 45 μm) used in Example 1 are in a mass ratio of 4: 1. A suspension in which an acrylic resin is dissolved in an organic solvent (viscosity: 20 Pa · s) and mixed to a particle concentration of 10% by weight and dispersed in the same manner as in Example 1 is used as a sample. It was. The particle size distribution was measured in the same manner as in Example 1 and Comparative Example 1.
図5と図6に、実施例2および比較例2の測定結果を示す。実施例2においては、図5に示すとおり、それぞれのガラスビーズの製品表示粒子径付近に2つのピークを有する粒径分布曲線が得られたが、比較例2においては、図6に示すとおり18μm付近に1つのピークのみを有する粒径分布曲線が得られた。これらの結果から、10重量%と高濃度な懸濁液を用いた方法では、従来技術を用いると正確な測定ができないが、本発明によれば正確な測定結果が得られることが分かる。 5 and 6 show the measurement results of Example 2 and Comparative Example 2. FIG. In Example 2, as shown in FIG. 5, a particle size distribution curve having two peaks in the vicinity of the product display particle size of each glass bead was obtained, but in Comparative Example 2, as shown in FIG. A particle size distribution curve having only one peak in the vicinity was obtained. From these results, it can be seen that the method using the suspension having a high concentration of 10% by weight cannot perform accurate measurement using the conventional technique, but according to the present invention, an accurate measurement result can be obtained.
1 測定セル
1a 測定部
1b テーパー部
2 測定セル
3 蓋
4 回転ロータ
5 駆動装置
6 光源
7 検出器
8 コリメートレンズ
9 集光レンズ
DESCRIPTION OF SYMBOLS 1
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010041585A JP2011179836A (en) | 2010-02-26 | 2010-02-26 | Device and method for measuring grain size distribution |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010041585A JP2011179836A (en) | 2010-02-26 | 2010-02-26 | Device and method for measuring grain size distribution |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2011179836A true JP2011179836A (en) | 2011-09-15 |
Family
ID=44691512
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010041585A Pending JP2011179836A (en) | 2010-02-26 | 2010-02-26 | Device and method for measuring grain size distribution |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2011179836A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103163052A (en) * | 2013-02-01 | 2013-06-19 | 河北联合大学 | Multi-product elutriation instrument |
JPWO2020090775A1 (en) * | 2018-10-31 | 2021-09-24 | 株式会社堀場製作所 | Centrifugal sedimentation type particle size distribution measuring device |
-
2010
- 2010-02-26 JP JP2010041585A patent/JP2011179836A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103163052A (en) * | 2013-02-01 | 2013-06-19 | 河北联合大学 | Multi-product elutriation instrument |
JPWO2020090775A1 (en) * | 2018-10-31 | 2021-09-24 | 株式会社堀場製作所 | Centrifugal sedimentation type particle size distribution measuring device |
JP7362648B2 (en) | 2018-10-31 | 2023-10-17 | 株式会社堀場製作所 | Centrifugal sedimentation type particle size distribution measuring device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Bowen | Particle size distribution measurement from millimeters to nanometers and from rods to platelets | |
CN103534572B (en) | Viscosity/elasticity measurement device and assay method thereof | |
CN1055423A (en) | The improvement that two condition and ternary flow measurement are done | |
CN101660992B (en) | A method for rapidly detecting the sedimentation velocity of algae cells | |
CN1888858A (en) | Rotary liquid comprehensive experimental instrument and experimental method | |
JP2011179836A (en) | Device and method for measuring grain size distribution | |
Denmud et al. | Effects of operating parameters on the cut size of turbo air classifier for particle size classification of sac305 lead-free solder powder | |
He et al. | Solid particle swarm measurement in jet fuel based on Mie scattering theory and extinction method | |
CN106443809B (en) | Gravitational acceleration experiment system and method based on laser measurement of height difference of rotating liquid | |
Priyadarshini et al. | A combined spectroscopic and light scattering study of hydrolysis of uranium (VI) leading to colloid formation in aqueous solutions | |
Liao et al. | Behavior of density-induced segregation with multi-density granular materials in a thin rotating drum | |
Luo et al. | Laser diffraction measurements of pigment size distributions of coatings and mill bases: implications of dilution medium and dispersion process parameters | |
Nöske et al. | Multicomponent comminution within a stirred media mill and its application for processing a lithium-ion battery slurry | |
CN115040903B (en) | Method for separating filler | |
Jung et al. | Effect of immiscible secondary fluid on particle dynamics and coffee ring characteristics during suspension drying | |
WO2022131289A1 (en) | Optical cell for sedimentation analysis, centrifugal sedimentation analysis device, and centrifugal sedimentation analysis method | |
CN100432652C (en) | Particle size distribution device | |
JP6931895B2 (en) | Optical members, optical light guide members, and methods for producing optical members | |
CN201477109U (en) | A laser gyro dynamic locking area measurement device | |
Cao et al. | Solid–liquid separation properties in centrifugal sedimentation of bidisperse colloidal suspension | |
JPS6010150A (en) | Particle size distribution measuring machine | |
CN210720060U (en) | Rotational viscometer based on circular grating angular displacement sensor | |
CN114264577A (en) | A method for rapid detection of dispersion stability of nano-titanium dioxide in oil phase | |
Chen et al. | A new drag model for bidisperse particle agglomerates | |
Jung et al. | Experimental study into the effects of pitch and coning angles on the flight performance of the natural samara |