JP2011179357A - 内燃機関の制御装置 - Google Patents
内燃機関の制御装置 Download PDFInfo
- Publication number
- JP2011179357A JP2011179357A JP2010042687A JP2010042687A JP2011179357A JP 2011179357 A JP2011179357 A JP 2011179357A JP 2010042687 A JP2010042687 A JP 2010042687A JP 2010042687 A JP2010042687 A JP 2010042687A JP 2011179357 A JP2011179357 A JP 2011179357A
- Authority
- JP
- Japan
- Prior art keywords
- lift amount
- learning
- value
- angle
- mot
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000002485 combustion reaction Methods 0.000 title claims abstract description 20
- 239000000446 fuel Substances 0.000 claims abstract description 44
- 230000007246 mechanism Effects 0.000 claims description 22
- 230000033228 biological regulation Effects 0.000 claims description 4
- 239000000203 mixture Substances 0.000 claims description 4
- 238000000034 method Methods 0.000 description 32
- 230000008569 process Effects 0.000 description 29
- 230000001419 dependent effect Effects 0.000 description 15
- 239000000498 cooling water Substances 0.000 description 8
- 230000008859 change Effects 0.000 description 7
- 238000002347 injection Methods 0.000 description 6
- 239000007924 injection Substances 0.000 description 6
- 208000032325 CEBPE-associated autoinflammation-immunodeficiency-neutrophil dysfunction syndrome Diseases 0.000 description 5
- 230000008034 disappearance Effects 0.000 description 4
- 230000009471 action Effects 0.000 description 3
- 239000002826 coolant Substances 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 238000001514 detection method Methods 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000003921 oil Substances 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- 238000011144 upstream manufacturing Methods 0.000 description 2
- 230000002411 adverse Effects 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 239000010687 lubricating oil Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/12—Improving ICE efficiencies
Landscapes
- Output Control And Ontrol Of Special Type Engine (AREA)
- Combined Controls Of Internal Combustion Engines (AREA)
Abstract
【課題】 吸気弁リフト量を検出するリフト量センサ出力の基準値の学習を比較的高い頻度で実行可能とし、リフト量制御精度を維持することができる内燃機関の制御装置を提供する。
【解決手段】 全閉ストッパまたは全開ストッパによりコントロール軸56(及びモータ43)の作動が規制された状態におけるMOT角度センサの出力値によって、基準MOT角度θZEROの学習が行われる。学習は、エンジン1への燃料供給を停止する燃料カット運転中において行われる。学習実行時のモータ駆動方向は、燃料カット運転終了直後に設定されるリフト量であるリフト量下限指令値ALCMDMINと、学習終了時のリフト量である最大リフト量LFTMAXまたは最小リフト量LFTMINとの差が小さくなる方向が選択され、基準MOT角度θZEROの学習を行うときは、選択された方向へモータ43が駆動される。
【選択図】 図6
【解決手段】 全閉ストッパまたは全開ストッパによりコントロール軸56(及びモータ43)の作動が規制された状態におけるMOT角度センサの出力値によって、基準MOT角度θZEROの学習が行われる。学習は、エンジン1への燃料供給を停止する燃料カット運転中において行われる。学習実行時のモータ駆動方向は、燃料カット運転終了直後に設定されるリフト量であるリフト量下限指令値ALCMDMINと、学習終了時のリフト量である最大リフト量LFTMAXまたは最小リフト量LFTMINとの差が小さくなる方向が選択され、基準MOT角度θZEROの学習を行うときは、選択された方向へモータ43が駆動される。
【選択図】 図6
Description
本発明は、吸気弁のリフト量を連続的に変更する弁作動特性可変機構を備える内燃機関の制御装置に関し、特にリフト量を検出するリフト量センサ出力の基準値を学習し、学習した基準値を用いてリフト量制御を行うものに関する。
特許文献1には、リフト量を連続的に変更する動弁機構を備える内燃機関の制御装置が示されている。この装置によれば、リフト量を変更するために使用される制御軸が、その回転速度を目標値に制御して吸気弁の全閉状態に対応する位置まで駆動され、そのときのリフト量センサの出力値が、基準値として学習される。
上記特許文献1に示された手法により学習された基準値はメモリに記憶されるが、メモリの記憶内容を保持するための電源が一時的に切れた場合には、記憶された基準値が失われる。したがって、迅速に基準値の学習を再度実行する必要があるが、特許文献1に示された手法は、機関停止中のみ行うことが可能であるため、必要に応じて直ちに学習を実行できないことがある。そのため、吸気弁リフト量の制御誤差が増加し、機関運転性に悪影響を与えるおそれがある。
本発明はこの点に着目してなされたものであり、吸気弁リフト量を検出するリフト量センサ出力の基準値の学習を比較的高い頻度で実行可能とし、リフト量制御精度を維持することができる内燃機関の制御装置を提供することを目的とする。
上記目的を達成するため請求項1に記載の発明は、内燃機関の吸気弁のリフト量を連続的に変更する弁作動特性可変機構(41)と、該弁作動特性可変機構(41)を駆動するアクチュエータ(43)とを備える内燃機関の制御装置において、前記吸気弁のリフト量を検出するリフト量センサ(72)と、該リフト量センサ(72)により検出されるリフト量に基づいて前記アクチュエータ(43)を制御する制御手段と、前記リフト量の最大値(LFTMAX)及び最小値(LFTMIN)の少なくとも一方に対応する規制位置で前記アクチュエータの作動を規制する規制手段と、前記規制手段により前記アクチュエータの作動が規制された状態における前記リフト量センサの出力値(θMOTFO,θMOTS)に応じて、前記リフト量センサ出力の基準値(θZERO)を学習する学習手段とを備え、前記学習手段は、前記機関への燃料供給を停止する燃料カット運転中において、前記学習を行うことを特徴とする。
請求項2に記載の発明は、請求項1に記載の内燃機関の制御装置において、前記規制手段は、前記リフト量の最小値(LFTMIN)に対応する下限規制位置で前記アクチュエータの作動を規制する下限規制手段と、前記リフト量の最大値(LFTMAX)に対応する上限規制位置で前記アクチュエータの作動を規制する上限規制手段とを有し、前記制御手段は、前記下限規制位置及び上限規制位置のうち、前記燃料カット運転終了直後に設定されるリフト量(ALCMDMIN)と、前記学習終了時のリフト量(LFTMIN,LFTMAX)との差が小さくなる方の規制位置を選択する規制位置選択手段を備え、前記学習手段による学習を行うときは、前記規制位置選択手段により選択された規制位置の方向へ前記アクチュエータ(43)を駆動することを特徴とする。
請求項3に記載の発明は、請求項2に記載の内燃機関の制御装置において、前記燃料カット運転終了直後に設定されるリフト量(ALCMDMIN)は、前記リフト量の下限制御値であり、前記下限制御値は、前記機関において燃焼する混合気の自着火を抑制可能なリフト量に設定されることを特徴とする。
ここで「自着火」は、点火プラグによる点火時期以外の時期に燃焼室内の混合気が着火することを意味する。
ここで「自着火」は、点火プラグによる点火時期以外の時期に燃焼室内の混合気が着火することを意味する。
請求項1に記載の発明によれば、規制手段によりアクチュエータの作動が規制された状態におけるリフト量センサの出力値に応じて、リフト量センサ出力の基準値が学習され、その学習は、機関への燃料供給を停止する燃料カット運転中において行われる。燃料カット運転は、機関運転中において比較的高い頻度で実行されるので、基準値の記憶値が消失した場合に、リフト量センサ出力の基準値の学習を早期に実行し、リフト量制御精度を維持することができる。
請求項2に記載の発明によれば、下限規制位置及び上限規制位置のうち、燃料カット運転終了直後に設定されるリフト量と、学習中のリフト量との差が小さくなる方の規制位置が選択され、リフト量センサ出力基準値の学習を行うときは、選択された規制位置の方向へアクチュエータが駆動される。したがって、燃料カット運転中に学習を実行した後のリフト量の変化量が小さくなり、リフト量の変更を迅速かつ円滑に行うことができる。
請求項3に記載の発明によれば、燃料カット運転終了直後においては、吸気弁リフト量は、自着火を抑制可能なリフト量である下限制御値に制御されるので、燃料カット運転終了直後における自着火を確実に防止することができる。
以下本発明の実施の形態を図面を参照して説明する。
図1は、本発明の一実施形態にかかる内燃機関とその制御装置の構成を示す図であり、図2は弁作動特性可変装置の構成を示す図である。図1において、例えば4気筒を有する内燃機関(以下単に「エンジン」という)1は、吸気弁及び排気弁と、これらを駆動するカムを備えるとともに、吸気弁の弁リフト量及び開角(開弁期間)を連続的に変更する第1弁作動特性可変機構41と、吸気弁を駆動するカムの、クランク軸回転角度を基準とした作動位相を連続的に変更するカム位相可変機構としての第2弁作動特性可変機構42とを有する弁作動特性可変装置40を備えている。第2弁作動特性可変機構42により吸気弁を駆動するカムの作動位相が変更され、吸気弁の作動位相が変更される。
図1は、本発明の一実施形態にかかる内燃機関とその制御装置の構成を示す図であり、図2は弁作動特性可変装置の構成を示す図である。図1において、例えば4気筒を有する内燃機関(以下単に「エンジン」という)1は、吸気弁及び排気弁と、これらを駆動するカムを備えるとともに、吸気弁の弁リフト量及び開角(開弁期間)を連続的に変更する第1弁作動特性可変機構41と、吸気弁を駆動するカムの、クランク軸回転角度を基準とした作動位相を連続的に変更するカム位相可変機構としての第2弁作動特性可変機構42とを有する弁作動特性可変装置40を備えている。第2弁作動特性可変機構42により吸気弁を駆動するカムの作動位相が変更され、吸気弁の作動位相が変更される。
エンジン1の吸気管2の途中にはスロットル弁3が配されている。また、スロットル弁3にはスロットル弁開度(TH)センサ4が連結されており、当該スロットル弁3の開度に応じた電気信号を出力して電子コントロールユニット(以下(ECU)という)5に供給する。スロットル弁3には、スロットル弁3を駆動するアクチュエータ7が接続されており、アクチュエータ7は、ECU5によりその作動が制御される。
燃料噴射弁6はエンジン1とスロットル弁3との間かつ吸気管2の図示しない吸気弁の少し上流側に各気筒毎に設けられており、各噴射弁は図示しない燃料ポンプに接続されていると共にECU5に電気的に接続されて当該ECU5からの信号により燃料噴射弁6の開弁時間が制御される。
スロットル弁の上流側には吸入空気流量GAIRを検出する吸入空気流量センサ13が設けられている。スロットル弁3の下流には吸気圧PBAを検出する吸気圧センサ8及び吸気温TAを検出する吸気温センサ9が取付けられている。またエンジン1の本体には、エンジン冷却水温TWを検出するエンジン冷却水温センサ10が取り付けられている。これらのセンサの検出信号は、ECU5に供給される。
ECU5には、エンジン1のクランク軸(図示せず)の回転角度を検出するクランク角度位置センサ11及び、エンジン1の吸気弁を駆動するカムが固定されたカム軸の回転角度を検出するカム角度位置センサ12が接続されており、クランク軸の回転角度及びカム軸の回転角度に応じた信号がECU5に供給される。クランク角度位置センサ11は、一定クランク角周期毎(例えば6度周期)に1パルス(以下「CRKパルス」という)と、クランク軸の所定角度位置を特定するパルスを発生する。また、カム角度位置センサ12は、エンジン1の特定の気筒の所定クランク角度位置でパルス(以下「CYLパルス」という)と、各気筒の吸入行程開始時の上死点(TDC)でパルス(以下「TDCパルス」という)を発生する。これらのパルスは、燃料噴射時期、点火時期等の各種タイミング制御及びエンジン回転数(エンジン回転速度)NEの検出に使用される。なお、カム角度位置センサ12より出力されるTDCパルスと、クランク角度位置センサ11より出力されるCRKパルスとの相対関係からカム軸の実際の作動位相CAINが検出される。
ECU5には、エンジン1によって駆動される車両のアクセルペダルの踏み込み量(以下「アクセルペダル操作量」という)APを検出するアクセルセンサ31、当該車両の走行速度(車速)VPを検出する車速センサ32、及び大気圧PAを検出する大気圧センサ33が接続されている。これらのセンサの検出信号は、ECU5に供給される。
弁作動特性可変装置40は、図2に示すように、吸気弁のリフト量及び開角(以下単に「リフト量」という)を連続的に変更する第1弁作動特性可変機構41と、吸気弁の作動位相を連続的に変更する第2弁作動特性可変機構42と、吸気弁のリフト量LFTを連続的に変更するためのモータ43と、吸気弁の作動位相を連続的に変更するために、その開度が連続的に変更可能な電磁弁44とを備えている。吸気弁の作動位相を示すパラメータとして、上記カム軸の作動位相CAINが用いられる。電磁弁44には、オイルパン46の潤滑油がオイルポンプ45により、加圧されて供給される。なお、第2弁作動特性可変機構42の具体的な構成は、例えば特開2000−227013号公報に示されている。
第1弁作動特性可変機構41は、図3(a)に示すように、カム52が設けられたカム軸51と、シリンダヘッドに軸55aを中心として揺動可能に支持されるコントロールアーム55と、コントロールアーム55を揺動させるコントロールカム57が設けられたコントロール軸56と、コントロールアーム55に支軸53bを介して揺動可能に支持されるとともに、カム52に従動して揺動するサブカム53と、サブカム53に従動し、吸気弁60を駆動するロッカアーム54とを備えている。ロッカアーム54は、コントロールアーム55内に揺動可能に支持されている。
サブカム53は、カム52に当接するローラ53aを有し、カム軸51の回転により、軸53bを中心として揺動する。ロッカアーム54は、サブカム53に当接するローラ54aを有し、サブカム53の動きが、ローラ54aを介して、ロッカアーム54に伝達される。
コントロールアーム55は、コントロールカム57に当接するローラ55bを有し、コントロール軸56の回動により軸55aを中心として揺動する。図3(a)に示す状態では、サブカム53の動きはロッカアーム54にほとんど伝達されないため、吸気弁60はほぼ全閉の状態(最小リフト量LFTMIN(例えば0.6mm))を維持する。一方同図(b)に示す状態では、サブカム53の動きがロッカアーム54を介して吸気弁60に伝達され、吸気弁60は最大リフト量LFTMAX(例えば13.3mm)まで開弁する。
したがって、モータ43によりコントロール軸56を回動させることにより、吸気弁60のリフト量LFTを連続的に変更することがきる。
なお、第1弁作動特性可変機構41の詳細な構成は、特開2008−25418号公報に示されている。
なお、第1弁作動特性可変機構41の詳細な構成は、特開2008−25418号公報に示されている。
第1弁作動特性可変機構41により、図4(a)に示すように吸気弁のリフト量LFT(及び開角)が変更される。また第2弁作動特性可変機構42により、吸気弁は、同図(b)に実線L3及びL4で示す特性を中心として、カムの作動位相CAINの変化に伴って破線L1,L2で示す最進角位相から、一点鎖線L5,L6で示す最遅角位相までの間の位相で駆動される。以下、「CAIN」を吸気弁作動位相という。
モータ43の駆動力は、図5に示すように、モータ出力軸43aから伝達機構71を介してコントロール軸56に伝達される。モータ出力軸43aに、該軸43aの回転角度(以下「MOT角度」という)θMOTを検出するモータ出力軸回転角度センサ(以下「MOT角度センサ」という)72が設けられており、センサ72の検出信号はECU5に供給される。MOT角度センサ72としては、例えばレゾルバが使用される。
MOT角度θMOTと、コントロール軸56の回転角度(以下「CS角度」という)θCSとの関係は、下記式(1)で示される。式(1)のRDは、伝達機構71の減速比であり、θZEROはリフト量LFTが最小リフト量LFTMINである状態に対応する基準MOT角度である。基準MOT角度θZEROの算出手法は後述する。
θCS=(θMOT+θZERO)/RD (1)
θCS=(θMOT+θZERO)/RD (1)
本実施形態では、式(1)により算出されるCS角度θCSが、リフト量LFTを示すパラメータとして使用される。したがって、MOT角度センサ72がリフト量センサに想到する。
ECU5は各種センサからの入力信号波形を整形し、電圧レベルを所定レベルに修正し、アナログ信号値をデジタル信号値に変換する等の機能を有する入力回路、中央演算処理ユニット(以下「CPU」という)、CPUで実行される演算プログラム及び演算結果等を記憶する記憶回路のほか、アクチュエータ7、燃料噴射弁6、モータ43、電磁弁44、及び点火プラグ(図示せず)に駆動信号を供給する出力回路等から構成される。
ECU5のCPUは、上記センサの検出信号に応じて、スロットル弁3の開度制御、エンジン1に供給する燃料量(燃料噴射弁6の開弁時間)の制御、点火時期制御、並びにモータ43及び電磁弁44による弁作動特性(吸入空気流量)の制御を行う。
吸気弁のリフト量制御においては、エンジン運転状態に応じて吸気弁のリフト量指令値LFTCMDが算出され、リフト量指令値LFTCMDに応じてCS角度指令値θCSCMDが算出され、検出されるMOT角度θMOTから得られるCS角度θCSがCS角度指令値θCSCMDと一致するように、モータ43の駆動電流IMDのフィードバック制御が行われる。
図6は、基準MOT角度θZEROの学習処理のフローチャートである。この処理は、ECU5のCPUで所定時間毎に実行される。
ステップS11では、エンジン運転状態に応じて推定リフト量LIFTHATを算出する。具体的には、エンジン回転数NE及び吸気弁作動位相CAINに応じて複数設定されているリフト量マップ(一例を図7(a)に示す)の一つあるいは二つを選択し、ゲージ圧PBGA(=PBA−PA)及び気筒吸入空気量GAIRCYLに応じて、このリフト量マップを検索し、適宜補間演算を行うことにより、推定リフト量LIFTHATを算出する。
ステップS11では、エンジン運転状態に応じて推定リフト量LIFTHATを算出する。具体的には、エンジン回転数NE及び吸気弁作動位相CAINに応じて複数設定されているリフト量マップ(一例を図7(a)に示す)の一つあるいは二つを選択し、ゲージ圧PBGA(=PBA−PA)及び気筒吸入空気量GAIRCYLに応じて、このリフト量マップを検索し、適宜補間演算を行うことにより、推定リフト量LIFTHATを算出する。
リフト量マップは、実リフト量LFT、ゲージ圧PBGA、及び気筒吸入空気量GAIRCYLの関係が設定されたマップであり、図7(a)に示す各曲線は所定ゲージ圧PBGA1〜PBGA5に対応する。所定ゲージ圧PBGA1〜PBGA5は、PBGA1<PBGA2<PBGA3<PBGA4<PBGA5なる関係を満たす。また気筒吸入空気量GAIRCYLは、検出される吸入空気流量GAIRをエンジン回転数NEに応じて、TDCパルスの発生周期当たりの吸入空気量に変換することにより算出される。
ステップS12では、推定リフト量LIFTHATに応じて図7(b)に示すθCS−LFTテーブルを検索し、推定CS角度θCSHATを算出する。図7(b)に示すように、リフト量LFTは、CS角度θCSの増加に伴ってほぼ直線的に増加する。
ステップS13では、推定CS角度θCSHATを下記式(2)に適用し、推定MOT角度θMOTHATを算出する。式(2)のRDは減速比、θZEROは基準MOT角度の現在の記憶値である。
θMOTHAT=θCSHAT×RD−θZERO (2)
θMOTHAT=θCSHAT×RD−θZERO (2)
ステップS14では、図8に示す基準値消失判断処理を実行する。
図8のステップS31では、検出されるMOT角度θMOTを読み込み、ステップS32では、推定MOT角度θMOTHATとMOT角度θMOTの差の絶対値が、判定閾値DθTH(例えば1deg)以上であるか否かを判別する。
図8のステップS31では、検出されるMOT角度θMOTを読み込み、ステップS32では、推定MOT角度θMOTHATとMOT角度θMOTの差の絶対値が、判定閾値DθTH(例えば1deg)以上であるか否かを判別する。
ステップS32の答が肯定(YES)であるときは、基準MOT角度θZEROの記憶値が消失したと判定し、消失フラグFLSTを「1」に設定する(ステップS33)。またステップS32の答が否定(NO)であるときは、基準MOT角度θZEROの記憶値が正常に保持されていると判定し、消失フラグFLSTを「0」に設定する(ステップS34)。
図6に戻り、ステップS15では消失フラグFLSTが「1」であるか否かを判別する。この答が否定(NO)であるときは、基準MOT角度θZEROの学習は不要であるので、直ちに処理を終了する。
ステップS15の答が肯定(YES)であるときは、燃料カットフラグFFCが「1」であるか否かを判別する(ステップS16)。燃料カットフラグFFCは、エンジン1への燃料供給を停止する燃料カット運転が行われているとき「1」に設定される。ステップS16の答が否定(NO)であるときは、直ちに処理を終了し、肯定(YES)であるとき、すなわち燃料カット運転中であるときは、ステップS17〜S20を実行し、基準MOT角度θZEROの学習を行う。
ステップS17では、図9に示す全閉/全開判断処理を実行し、全閉位置学習を行うか、全開位置学習を行うかを決定する。図9の処理では、全閉位置学習を行うとき全閉位置学習フラグFLCLSが「1」に設定される。
ステップS18では、全閉位置学習フラグFLCLSが「1」であるか否かを判別し、その答が肯定(YES)であるときは図12に示す全閉位置学習処理を実行し(ステップS19)、否定(NO)であるときは図13に示す全開位置学習処理を実行する(ステップS20)。
図9は図6のステップS17で実行される全閉/全開判断処理のフローチャートである。
ステップS41では、急速暖機フラグFFIRが「1」であるか否かを判別する。急速暖機フラグFFIRは、エンジン1の冷間始動直後において「1」に設定され、暖機が完了すると「0」に戻される。ステップS41の答が肯定(YES)であるときは、アイドル運転時における吸気弁リフト量の下限値であるアイドル下限値ALIDLLMTを、急速暖機用所定値ALCMDFIR(例えば3mm)に設定する(ステップS42)。ステップS41の答が否定(NO)であって急速暖機運転中でないときは、アイドル下限値ALIDLLMTを最小リフト量LFTMINに設定する(ステップS43)。
ステップS41では、急速暖機フラグFFIRが「1」であるか否かを判別する。急速暖機フラグFFIRは、エンジン1の冷間始動直後において「1」に設定され、暖機が完了すると「0」に戻される。ステップS41の答が肯定(YES)であるときは、アイドル運転時における吸気弁リフト量の下限値であるアイドル下限値ALIDLLMTを、急速暖機用所定値ALCMDFIR(例えば3mm)に設定する(ステップS42)。ステップS41の答が否定(NO)であって急速暖機運転中でないときは、アイドル下限値ALIDLLMTを最小リフト量LFTMINに設定する(ステップS43)。
ステップS44では、エンジン回転数NEに応じて図10(a)に示すALNELMTテーブルを検索し、回転数依存下限値ALNELMTを算出する。ALNELMTテーブルは、エンジン回転数NEが増加するほど回転数依存下限値ALNELMTが増加するように設定されている。
ステップS45では、エンジン回転数NEに応じて図10(b)に示すKNEテーブルを検索し、回転数補正係数KNEを算出する。回転数補正係数KNEは、以下に説明する冷却水温依存下限値ALTWLMT及び吸気温依存下限値ALTALMTの算出に適用される。KNEテーブルは、エンジン回転数NEが低下するほど自着火が発生し易いことを考慮し、エンジン回転数NEが低下するほど回転数補正係数KNEが増加するように設定されている。
ステップS46では、エンジン冷却水温TWに応じて図10(c)に示すALTWLMTBテーブルを検索し、基本冷却水温依存下限値ALTWLMTBを算出する。ALTWLMTBテーブルは、エンジン冷却水温TWが25℃より高い範囲では、エンジン冷却水温TWが高くなるほど基本冷却水温依存下限値ALTWLMTBが増加するように設定されている。
ステップS47では、吸気温TAに応じて図10(d)に示すALTALMTBテーブルを検索し、基本吸気温依存下限値ALTALMTBを算出する。ALTALMTBテーブルは、吸気温TAが25℃より高い範囲では、吸気温TAが高くなるほど基本吸気温依存下限値ALTALMTBが増加するように設定されている。
ステップS48では、基本冷却水温依存下限値ALTWLMTB及び回転数補正係数KNEを下記式(3)に適用して、冷却水温依存下限値ALTWLMTを算出するとともに、基本吸気温依存下限値ALTALMTB及び回転数補正係数KNEを下記式(4)に適用して、吸気温依存下限値ALTALMTを算出する。
ALTWLMT=ALTWLMTB×KNE (3)
ALTALMT=ALTALMTB×KNE (4)
ALTWLMT=ALTWLMTB×KNE (3)
ALTALMT=ALTALMTB×KNE (4)
ステップS49では、リフト量下限指令値ALCMDMINを、上記アイドル下限値ALIDLLMT、回転数依存下限値ALNELMT、冷却水温依存下限値ALTWLMT、及び吸気温依存下限値ALTALMTのうちの最大値に設定する。リフト量下限指令値ALCMDMINは、燃料カット運転終了直後において、燃焼室内の混合気の自着火を抑制可能なリフト量に設定され、リフト量指令値LFTCMDは、燃料カット運転終了直後においてリフト量下限指令値ALCMDMINに設定される。
ステップS50では、リフト量下限指令値ALCMDMINが所定中間リフト量LFTMIDより大きいか否かを判別する。所定中間リフト量LFTMIDは、最大リフト量LFTMAXと最小リフト量LFTMINの平均値である。
ステップS50の答が否定(NO)であるときは、全閉位置学習フラグFLCLSを「1」に設定する一方(ステップS51)、ALCMDMIN>LFTMIDであるときは、全閉位置学習フラグFLCLSを「0」に設定する(ステップS52)。
図9に処理によれば、最大リフト量LFTMAX及び最小リフト量LFTMINのうち、燃料カット運転終了直後におけるリフト量指令値であるリフト量下限指令値ALCMDMINとの差が小さい方のリフト量(最大リフト量LFTMAXまたは最小リフト量LFTMIN)においてMOT角度センサ出力基準値の学習を行うように、全閉位置学習フラグFLCLSが行われる。
次に全閉位置学習処理及び全開位置学習処理の概要を説明する。本実施形態では、コントロール軸56に全閉ストッパ及び全開ストッパが取り付けられており、コントロール軸56が閉弁方向に回動して全閉角度位置に達すると全閉ストッパによって停止する一方、コントロール軸56が回転方向に回動して全開角度位置に達すると全開ストッパによって停止するように構成されている。
そして、コントロール軸56が全閉ストッパにより停止した状態におけるMOT角度センサ72のセンサ出力θMOTSに、負号を付した値によって基準MOT角度θZEROを更新することにより、全閉位置学習が行われる。またコントロール軸56が全開ストッパにより停止した状態におけるMOT角度センサ72のセンサ出力θMOTFOからMOT角度センサ出力の変化幅DRANGEを減算した値に、負号を付した値によって基準MOT角度θZEROを更新することにより、全開位置学習が行われる。
ただし、全閉ストッパまたは全開ストッパまでコントロール軸56を回動させるときのモータ出力トルクが大きすぎるときは全閉ストッパまたは全開ストッパを損傷するおそれがあり、逆に小さすぎると全閉ストッパまたは全開ストッパに達する前に停止してしまうおそれがある。そのような不具合を防止するために、本実施形態では、コントロール軸56を回動させるときのモータ43の回転角速度(以下「モータ角速度」という)ωMOTをその指令値ωMOTCMDに一致させるフィードバック制御を実行し、検出されるモータ角速度ωMOTと指令値ωMOTCMDとの偏差Dωが所定値DωTH以上となったときに、コントロール軸56が全閉ストッパまたは全開ストッパに達したと判定するようにしている。これにより、コントロール軸56を全閉角度位置または全開角度位置に正確に停止させ、全閉位置学習及び全開位置学習を正確に行うことができる。
図11は、全閉位置学習処理を説明するためのタイムチャートであり、同図(a)の実線及び破線がそれぞれモータ角速度ωMOT及び指令値ωMOTCMDの推移を示す。また同図(b)及び(c)は、それぞれMOT角度θMOT、及びモータ43の出力トルクTMOTの推移を示す。時刻t1に学習処理が開始されると、指令値ωMOTCMDが所定速度ωLRNに設定され、モータ角速度ωMOTが指令値ωMOTCMDに追従する。時刻t2においてコントロール軸56が全閉ストッパに到達すると、モータ角速度ωMOTが急激に減少し、偏差Dωが所定値DωTHを超えるので、全閉位置に到達したと判定され、モータ43の駆動が停止される。
全開位置学習処理は、コントロール軸56の回動方向(モータ43の回転方向)を、全閉位置学習処理と逆とする点を除き、全閉位置学習処理と同様に行われる。
図12は、全閉位置学習処理のフローチャートである。
ステップS61では、コントロール軸56がその全閉ストッパの方向に回動するようにモータ43を駆動し、モータ角速度ωMOTが指令値ωMOTCMDと一致するようにモータ駆動電流のフィードバック制御を行う。モータ角速度ωMOTは、MOT角度θMOTの一定時間当たりの変化量として算出される。例えば、図12の処理の実行周期Tで離散化した離散化時刻kを用いると、ωMOTは、下記式(5)により算出される。
ωMOT=θMOT(k)−θMOT(k-1) (5)
ステップS61では、コントロール軸56がその全閉ストッパの方向に回動するようにモータ43を駆動し、モータ角速度ωMOTが指令値ωMOTCMDと一致するようにモータ駆動電流のフィードバック制御を行う。モータ角速度ωMOTは、MOT角度θMOTの一定時間当たりの変化量として算出される。例えば、図12の処理の実行周期Tで離散化した離散化時刻kを用いると、ωMOTは、下記式(5)により算出される。
ωMOT=θMOT(k)−θMOT(k-1) (5)
ステップS62では、下記式(6)により速度偏差Dωを算出する。
Dω=|ωMOT−ωMOTCMD| (6)
ステップS63では、速度偏差Dωが所定値DωTH以上であるか否かを判別する。この答が否定(NO)である間は、コントロール軸56が回動していることを示すので、直ちに処理を終了する。ステップS63で速度偏差Dωが所定値DωTH以上となったときは、コントロール軸56が全閉ストッパに到達したと判定し、基準MOT角度θZEROを、その時点のMOT角度である全閉角度位置θMOTSに負号を付した値に設定する(ステップS64)。
Dω=|ωMOT−ωMOTCMD| (6)
ステップS63では、速度偏差Dωが所定値DωTH以上であるか否かを判別する。この答が否定(NO)である間は、コントロール軸56が回動していることを示すので、直ちに処理を終了する。ステップS63で速度偏差Dωが所定値DωTH以上となったときは、コントロール軸56が全閉ストッパに到達したと判定し、基準MOT角度θZEROを、その時点のMOT角度である全閉角度位置θMOTSに負号を付した値に設定する(ステップS64)。
図13は、全開位置学習処理のフローチャートである。
ステップS71では、コントロール軸56がその全開ストッパの方向に回動するようにモータ43を駆動し、モータ角速度ωMOTが指令値ωMOTCMDと一致するようにモータ駆動電流のフィードバック制御を行う。このときモータ43の駆動方向は、全開位置学習処理とは逆である。ステップS72では、速度偏差Dωを算出し、次いで速度偏差Dωが所定値DωTH以上であるか否かを判別する(ステップS73)。この答が肯定(YES)、すなわち速度偏差Dωが所定値DωTH以上となったときは、コントロール軸56が全開ストッパに到達したと判定し、基準MOT角度θZEROを、その時点のMOT角度である全開角度位置θMOTFOから変化幅DRANGEを減算した値に負号を付した値に設定する(ステップS74)。変化幅DRANGEとしては、全閉角度位置と全開角度位置との差として予め設定されている値が適用される。
ステップS71では、コントロール軸56がその全開ストッパの方向に回動するようにモータ43を駆動し、モータ角速度ωMOTが指令値ωMOTCMDと一致するようにモータ駆動電流のフィードバック制御を行う。このときモータ43の駆動方向は、全開位置学習処理とは逆である。ステップS72では、速度偏差Dωを算出し、次いで速度偏差Dωが所定値DωTH以上であるか否かを判別する(ステップS73)。この答が肯定(YES)、すなわち速度偏差Dωが所定値DωTH以上となったときは、コントロール軸56が全開ストッパに到達したと判定し、基準MOT角度θZEROを、その時点のMOT角度である全開角度位置θMOTFOから変化幅DRANGEを減算した値に負号を付した値に設定する(ステップS74)。変化幅DRANGEとしては、全閉角度位置と全開角度位置との差として予め設定されている値が適用される。
以上のように図6の処理によれば、全閉ストッパまたは全開ストッパによりコントロール軸56(及びモータ43)の作動が規制された状態におけるMOT角度センサの出力値θMOTS,θMOTFOに応じて、基準MOT角度θZEROの学習が行われ、その学習は、エンジン1への燃料供給を停止する燃料カット運転中において行われる。燃料カット運転は、エンジン運転中において比較的高い頻度で実行されるので、基準MOT角度θZEROが消失した場合に、基準MOT角度θZEROの学習を早期に実行し、リフト量制御精度を維持することができる。
さらに、全閉位置学習を行うかあるいは全開位置学習を行うか、すなわち学習実行時のモータ駆動方向は、燃料カット運転終了直後に設定されるリフト量であるリフト量下限指令値ALCMDMINと、学習終了時のリフト量である最大リフト量LFTMAXまたは最小リフト量LFTMINとの差が小さくなる方向が選択され、基準MOT角度θZEROの学習を行うときは、選択された方向へモータ43が駆動される。したがって、燃料カット運転中に学習を実行した後のリフト量の変化量が小さくなり、リフト量の変更を迅速かつ円滑に行うことができる。
また燃料カット運転終了直後においては、吸気弁リフト量は、自着火を抑制可能なリフト量であるリフト量下限指令値ALCMDMINに制御されるので、燃料カット運転終了直後における自着火を確実に防止することができる。
本実施形態では、MOT角度センサ72がリフト量センサに相当し、モータ43がアクチュエータに相当し、コントロール軸54の全閉ストッパ及び全開ストッパが、それぞれ下限規制手段及び上限規制手段に相当し、ECU5が制御手段、規制位置選択手段、及び学習手段を構成する。
なお本発明は上述した実施形態に限るものではなく、種々の変形が可能である。例えば、図6のステップS14〜S16を削除し、基準MOT角度θZEROの更新を、基準MOT角度θZEROが消失したか否かに拘わらず、燃料カット運転実行時は常に行うようにしてもよい。
また上述した実施形態では、MOT角度位置センサ72をリフト量センサとして使用したが、これに限るものではなくコントロール軸56の回転角度(CS角度)θCSを検出するコントロール軸回転角度センサを設け、このコントロール軸回転角度センサをリフト量センサとして使用するようにしても良い。
1 内燃機関
5 電子制御ユニット(制御手段、規制位置選択手段、学習手段)
41 第1弁作動特性可変機構
43 モータ(アクチュエータ)
72 モータ出力軸回転角度センサ(リフト量センサ)
5 電子制御ユニット(制御手段、規制位置選択手段、学習手段)
41 第1弁作動特性可変機構
43 モータ(アクチュエータ)
72 モータ出力軸回転角度センサ(リフト量センサ)
Claims (3)
- 内燃機関の吸気弁のリフト量を連続的に変更する弁作動特性可変機構と、該弁作動特性可変機構を駆動するアクチュエータとを備える内燃機関の制御装置において、
前記吸気弁のリフト量を検出するリフト量センサと、
該リフト量センサにより検出されるリフト量に基づいて前記アクチュエータを制御する制御手段と、
前記リフト量の最大値及び最小値の少なくとも一方に対応する規制位置で前記アクチュエータの作動を規制する規制手段と、
前記規制手段により前記アクチュエータの作動が規制された状態における前記リフト量センサの出力値に応じて、前記リフト量センサ出力の基準値を学習する学習手段とを備え、
前記学習手段は、前記機関への燃料供給を停止する燃料カット運転中において、前記学習を行うことを特徴とする内燃機関の制御装置。 - 前記規制手段は、前記リフト量の最小値に対応する下限規制位置で前記アクチュエータの作動を規制する下限規制手段と、前記リフト量の最大値に対応する上限規制位置で前記アクチュエータの作動を規制する上限規制手段とを有し、
前記制御手段は、前記下限規制位置及び上限規制位置のうち、前記燃料カット運転終了直後に設定されるリフト量と、前記学習終了時のリフト量との差が小さくなる方の規制位置を選択する規制位置選択手段を備え、前記学習手段による学習を行うときは、前記規制位置選択手段により選択された規制位置の方向へ前記アクチュエータを駆動することを特徴とする請求項1に記載の内燃機関の制御装置。 - 前記燃料カット運転終了直後に設定されるリフト量は、前記リフト量の下限制御値であり、前記下限制御値は、前記機関において燃焼する混合気の自着火を抑制可能なリフト量に設定されることを特徴とする請求項2に記載の内燃機関の制御装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010042687A JP2011179357A (ja) | 2010-02-26 | 2010-02-26 | 内燃機関の制御装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010042687A JP2011179357A (ja) | 2010-02-26 | 2010-02-26 | 内燃機関の制御装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2011179357A true JP2011179357A (ja) | 2011-09-15 |
Family
ID=44691133
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010042687A Pending JP2011179357A (ja) | 2010-02-26 | 2010-02-26 | 内燃機関の制御装置 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2011179357A (ja) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003041977A (ja) * | 2001-08-01 | 2003-02-13 | Toyota Motor Corp | 可変動弁機構付内燃機関の制御装置 |
JP2004011435A (ja) * | 2002-06-03 | 2004-01-15 | Toyota Motor Corp | 多気筒内燃機関の空燃比制御装置 |
JP2005016426A (ja) * | 2003-06-26 | 2005-01-20 | Hitachi Unisia Automotive Ltd | 可変動弁機構の制御装置 |
JP2006220077A (ja) * | 2005-02-10 | 2006-08-24 | Hitachi Ltd | 可変動弁機構の制御装置 |
-
2010
- 2010-02-26 JP JP2010042687A patent/JP2011179357A/ja active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003041977A (ja) * | 2001-08-01 | 2003-02-13 | Toyota Motor Corp | 可変動弁機構付内燃機関の制御装置 |
JP2004011435A (ja) * | 2002-06-03 | 2004-01-15 | Toyota Motor Corp | 多気筒内燃機関の空燃比制御装置 |
JP2005016426A (ja) * | 2003-06-26 | 2005-01-20 | Hitachi Unisia Automotive Ltd | 可変動弁機構の制御装置 |
JP2006220077A (ja) * | 2005-02-10 | 2006-08-24 | Hitachi Ltd | 可変動弁機構の制御装置 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5209454B2 (ja) | 内燃機関の停止時に点火を停止する時期を制御する装置 | |
US8554451B2 (en) | Stop control system for internal combustion engine | |
JP5118774B2 (ja) | 内燃機関の停止制御装置および方法 | |
JPWO2011013800A1 (ja) | 内燃機関の停止制御装置および方法 | |
JP4779757B2 (ja) | 内燃機関の制御装置及び制御方法 | |
US7322323B2 (en) | Valve actuation control apparatus for internal combustion engine | |
JP4710738B2 (ja) | 内燃機関の吸気流動制御弁の開度検出装置 | |
JPH10227235A (ja) | 内燃機関用バルブタイミング制御装置 | |
JP5759106B2 (ja) | 内燃機関の制御装置 | |
JP2008184919A (ja) | 内燃機関の吸気制御装置 | |
JP5302844B2 (ja) | 内燃機関の制御装置 | |
KR100779843B1 (ko) | 가변 밸브 타이밍 장치의 펄스폭 변조 제어 방법 | |
JP5026499B2 (ja) | 内燃機関の制御装置 | |
JP2011256802A (ja) | 内燃機関の可変動弁装置 | |
JP2009036034A (ja) | 内燃機関の吸気弁の基準位置を学習するための装置 | |
JP2011179357A (ja) | 内燃機関の制御装置 | |
JP5279572B2 (ja) | エンジンの点火制御装置 | |
JP2011169282A (ja) | 内燃機関の制御装置 | |
JP2008196466A (ja) | 内燃機関の制御装置 | |
JP7352756B2 (ja) | 内燃機関制御装置及び内燃機関制御方法 | |
JP4679608B2 (ja) | 内燃機関のスロットル弁制御装置 | |
JP2010270593A (ja) | 内燃機関の制御装置 | |
JP4576303B2 (ja) | 内燃機関の動弁装置 | |
JP2009293533A (ja) | 内燃機関の制御装置 | |
JP2018003699A (ja) | 内燃機関の制御装置及びその制御方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20121128 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130730 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20130731 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20131126 |