[go: up one dir, main page]

JP2011176305A - 光電変換素子、太陽電池及び太陽電池モジュール - Google Patents

光電変換素子、太陽電池及び太陽電池モジュール Download PDF

Info

Publication number
JP2011176305A
JP2011176305A JP2011016942A JP2011016942A JP2011176305A JP 2011176305 A JP2011176305 A JP 2011176305A JP 2011016942 A JP2011016942 A JP 2011016942A JP 2011016942 A JP2011016942 A JP 2011016942A JP 2011176305 A JP2011176305 A JP 2011176305A
Authority
JP
Japan
Prior art keywords
group
solar cell
film
layer
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011016942A
Other languages
English (en)
Inventor
Ichiji Ota
一司 太田
Seiji Akiyama
誠治 秋山
Shinji Aramaki
晋司 荒牧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2011016942A priority Critical patent/JP2011176305A/ja
Publication of JP2011176305A publication Critical patent/JP2011176305A/ja
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Landscapes

  • Electroluminescent Light Sources (AREA)
  • Photovoltaic Devices (AREA)

Abstract

【課題】 耐久性及び光電変換特性が良好で、かつ実用的に使用しうる光電変換素子、これを用いた太陽電池及び太陽電池モジュールを提供する。
【解決手段】 少なくとも活性層、電子取り出し層及び一対の電極を有する光電変換素子において、該電子取り出し層が無機化合物層及び有機化合物層を有してなり、該有機化合物層はDSC法によるガラス転移温度が80℃以上であるか又は観測されない光電変換素子、これを用いた太陽電池及び太陽電池モジュール。
【選択図】 図1

Description

本発明は、光電変換素子、これを用いた太陽電池、及び太陽電池モジュールに関する。
有機薄膜太陽電池としては塗布系高分子有機半導体化合物又は蒸着系低分子有機半導体化合物を使用するものが知られているほか、近年、テトラベンゾポルフィリン(BP)等を用いた塗布変換系低分子有機薄膜太陽電池が提案されている(特許文献1)。
塗布系高分子有機薄膜太陽電池では、p型半導体化合物として可溶性の共役高分子であるポリヘキシルチオフェン(P3HT)等が、n型半導体化合物としてPCBM等のフラーレンの溶解度を高めた化合物が用いられることが多い。また活性層の層構造としては、p型半導体化合物とn型半導体化合物の分子が共存したバルクヘテロ層のみで構成されているものが大半である。
一方、蒸着系低分子有機薄膜太陽電池では、p型半導体化合物としてフタロシアニン類、ペンタセン、オリゴチオフェン等が、n型半導体化合物としてC60が用いられることが多く、活性層の層構造としてはp−n接合界面にp型半導体化合物とn型半導体化合物が共存するi層を導入したp−i−n積層構造を取る場合もある。
更に塗布変換系低分子有機薄膜太陽電池では、p型半導体化合物としてテトラベンゾポルフィリン等が、n型半導体化合物としてフラーレン化合物等が用いられる。活性層の層構造は蒸着系と同様である
また一般に、有機薄膜太陽電池は一対の電極で活性層を挟んだ構成をとるが、電極と活性層の間にバッファ層を挟む場合もある。カソード電極と活性層との間に設けられるバッファ層は電子取り出し層と呼ばれ、2,9−ジメチル−4,7−ジフェニル−1,10−フェナントロリン(BCP)やホスフィンオキサイド化合物等(非特許文献1、特許文献2)、フッ化リチウム(LiF)や酸化チタニア(TiOx)等(非特許文献2、3)の使用例が報告されている。
特開2008−016834号公報 特開2006−073583号公報
Organic Electronics 2008年, 9巻 p. 656−660 Sol. Energy Mater. Sol. Cells 2005年, 86巻 p. 499−516 Sol. Energy Mater. Sol. Cells 2008年, 92巻 p. 1476−1482 Electronic Materials Letters vol.5. No.1 (2009) pp 47−50
有機化合物材料の電子取り出し層としてBCPを使用した例は、非特許文献1にペンタセンとフラーレンC60を組み合わせた蒸着系低分子有機薄膜太陽電池が報告されている。しかしながら、室温における擬似太陽光照射下で、短時間(約70分)で電池特性が劣
化する問題があり、さらなる改善が必要であった。又、特許文献2には、ホスフィンオキサイド化合物を使った蒸着系低分子有機薄膜太陽電池が報告されている。しかしながら、光電変換特性が悪く、実用化させるには変換効率を向上させる必要があった。
無機化合物材料の電子取り出し層としてLiFを使用した例は、ポリマー半導体(MEH−PPVV)とフラーレン誘導体(PCBM)を組み合わせた塗布系高分子有機薄膜太陽電池が非特許文献2に報告されている。しかしながら、72℃における擬似太陽光照射下で、短時間(約8000秒)で電池特性が劣化する問題があり、かつ光電変換特性が悪いことから、実用化させるには耐久性及び変換効率を向上させる必要があった。
TiOxを使った例として、非特許文献3にポリマー半導体(P3HT)とフラーレン誘導体(PCBM)を組み合わせた塗布系高分子有機薄膜太陽電池が、耐久性に優れていることが報告されている。しかしながら、室温での擬似太陽光照射下で20時間程度の耐久性を報告しているに過ぎず、有機薄膜太陽電池で実用上求められる高温での光照射耐久性や高湿度条件での耐候性等については報告されていない。
バッファ層にBCP層とLiF層を用いる例として、非特許文献4が挙げられる。非特許文献4には、カソードバッファ層(すなわち電子取り出し層)として、有機化合物であるBCPと無機化合物であるLiFを組合せ、また、アノード側のバッファ層(正孔取り出し層)としては、PEDOT:PSSを用い、PEDOT:PSS及びLiFの膜厚の太陽電池の光電変換特性への影響を調べた結果が記載されている。しかしながら、BCP層とLiF層(0.5nm)を電子取り出し層とする光電変換素子は、BCP層のみ(つまり、LiF層を追加しない)のものと比べて、光電変換素子の光電変換特性は極僅かに改良するだけであり、性能改良効果が十分にあるとは認められなかった。
以上述べたとおり、本発明者らの検討によれば、従来報告されている例はいずれも耐久性や光電変換特性などの面で課題があり、実用上さらなる改良の必要性があることが判明した。
本発明者らは、上記課題を解決すべく鋭意検討した結果、電子取り出し層を無機化合物層と特定の有機化合物層の二層とすることにより、光電変換素子の耐久性や光電変換効率を向上しうることを見出し、本発明を達成するに至った。
即ち、本発明の要旨は以下のとおりである。
[1]少なくとも活性層、バッファ層及び一対の電極を有する光電変換素子において、該バッファ層が無機化合物層及び有機化合物層を有してなり、該有機化合物層はDSC法によるガラス転移温度が80℃以上であるか又は観測されないことを特徴とする光電変換素子。
[2]該無機化合物層がアルカリ金属塩及び金属酸化物からなる群より選ばれる1つ以上の化合物からなる、[1]に記載の光電変換素子。
[3]該有機化合物層が下記一般式(1)で表される化合物からなる、[1]又は[2]に記載の光電変換素子。
式中、R及びRは各々独立して置換基を有しても良い芳香族基を表し、nは1以上5
以下の整数を表す。Rは置換基を有しても良いn価の芳香族基を表す。Uは第16族元素を表す。
[4]一対の電極はカソード及びアノードからなり、
該光電変換素子は、カソード、無機化合物層、有機化合物層、活性層、及びアノードがこの順に積層されてなる、[1]から[3]のいずれかに記載の光電変換素子。
[5]該光電変換素子は、更に、スルホン酸基含有化合物を含む正孔取り出し層を有する、[1]から[4]のいずれかに記載の光電変換素子。
[6][1]から[5]のいずれかに記載の光電変換素子を含むことを特徴とする太陽電池。
[7][6]に記載の太陽電池を含むことを特徴とする太陽電池モジュール。
本発明によれば、光電変換素子の活性層とカソード電極との間の電子の移動が促進され、光電変換効率を高めうる利点がある。また、耐熱性が向上して劣化を引き起こす熱的な変化が起こりにくくなること、活性層、バッファ層及び電極の各層間の密着性が向上することから、耐久性を向上させる利点がある。更に、このような光電変換素子を含む太陽電池及び太陽電池モジュールは、光電変換特性及び耐久性に優れる利点がある。
本発明の一実施形態としての光電変換素子の構成を模式的に示す断面図である。 本発明の一実施形態としての太陽電池の構成を模式的に示す断面図である。 本発明の一実施形態としての太陽電池モジュールの構成を模式的に示す断面図である。
以下に、本発明の実施の形態を詳細に説明する。
以下に記載する構成要件の説明は、本発明の実施形態の一例(代表例)であり、本発明のその要旨を超えない限り、これらの内容に特定はされない。
<光電変換素子>
本発明に係る光電変換素子は、少なくとも活性層、バッファ層及び一対の電極を有する。該バッファ層が無機化合物層及び有機化合物層を有してなり、該有機化合物層はDSC法によるガラス転移温度が80℃以上であるか又は観測されないものである。該活性層と該バッファ層は一対の電極間に配置されている。
図1は一般的な有機薄膜太陽電池に用いられる光電変換素子を表すが、これに限るわけではない。
本発明の一実施形態としての光電変換素子108は、基板上100上に電極(カソード)101、無機化合物層102、有機化合物層103、活性層104(p型半導体化合物とn型半導体化合物混合層)、正孔取り出し層105、電極(アノード)106が順次形成された層構造を有する。尚、無機化合物層102と有機化合物層103は合わせて電子取り出し層107を形成する。
又、本発明に係る光電変換素子108が電子取り出し層107を含み正孔取り出し層105を含まない場合は、電極106、活性層104、電子取り出し層107、電極101がこの順に配置されている。正孔取り出し層105と電子取り出し層107とは積層順序が逆であってもよいし、また正孔取り出し層105と電子取り出し層107が異なる複数の膜により構成されていてもよい。電子取り出し層の無機化合物層と有機化合物層の積層順は、特段の制限はないが、好ましくは有機化合物層103を活性層104側に、無機化合物層102をカソード101側に積層する電子取り出し層である。
本発明に係る光電変換素子108の好ましい態様としては、一対の電極はカソード及びアノードからなり、該光電変換素子108は、カソード101、無機化合物層102、有機化合物層103、活性層104、及びアノード105がこの順に積層されてなるものである。その中でも、カソード101、無機化合物層102、有機化合物層103及び活性層104がこの順で接しているものがより好ましい。カソード101と無機化合物層102との密着性、無機化合物層102と有機化合物層103との密着性及び有機化合物層103と活性層104との密着性が強まり、光電変換素子108の耐久性が向上するために好ましい。
それぞれの各層の間には、後述の各層機能に影響を与えない程度に、別の層が挿入されていても良い。
<バッファ層105、107>
バッファ層としては、正孔取り出し層105及び電子取り出し層107に分類することができ、それぞれ、活性層104とアノード106又はカソード101との間に設けることができる。バッファ層を設けることで、活性層と電極の間での電子や正孔の移動度が高まるほか、電極間の短絡を防止しうる利点がある。
<電子取り出し層107>
本発明に係る電子取り出し層107は、具体的には、無機化合物層102及び有機化合物層103を有してなり、該有機化合物層103はDSC法によるガラス転移温度が80℃以上であるか又は観測されない電子取り出し層である。その中でも好ましくは有機化合物層103を活性層104側に、無機化合物層102をカソード101側に積層する電子取り出し層107である。又、電子取り出し層107には複数の無機化合物層102及び/又は複数の有機化合物層103を含有しても良い。本発明に係る光電変換素子108が電子取り出し層107を有することで、p半導体化合物とn半導体化合物を含む有機活性層104からカソード101へ電子の取り出し機能を向上させることができるために、好ましい。
<無機化合物層102>
本発明に係る無機化合物層102の材料としては、特に限定はないが、Li、Na、K、Cs等のアルカリ金属塩又は酸化チタン(TiOx)や酸化亜鉛(ZnO)等の金属酸化物が、光電変換特性を向上させる点で好ましい。なお、無機化合物層102には電子取り出し効率に大きく影響しない物質を添加しても良い。
アルカリ金属塩としてはフッ化物、塩化物、臭化物、ヨウ化物のいずれであってもよいが、好ましくはLiF、NaF、KF、CsFのようなフッ化物塩である。より好ましくはLiFである。
このような材料が光電変換特性を高める動作機構は不明であるが、Al等の電子取り出し電極(カソード101)と組み合わされてカソード101の仕事関数を小さくし、光電変換素子内部に印加される電圧を上げる事が考えられる。
アルカリ金属塩は真空蒸着又はスパッタ等の真空成膜によって成膜可能であるが、中でも抵抗加熱による真空蒸着によって形成するのが望ましい。この様な方法によれば、有機化合物層の上に積層する際に、下地となる有機化合物層へのダメージを小さくできるため、好ましい。
アルカリ金属塩を使用した場合の無機化合物層の膜厚は、通常0.1nm以上、一方、通常50nm以下、好ましくは、20nm以下である。該無機化合物層の膜厚が0.1nm以上であると、電子取り出し層の効果が十分に発揮され、該無機化合物層の膜厚が50nm以下であると、直列抵抗成分として作用することなく、素子の特性を損なわないため
に好ましい傾向がある。
酸化チタンTiOxはスパッタ法等の真空成膜も利用できるが、塗布法での成膜が望ましい。例えば、Adv. Mater. 18, 572 (2006)に記載のゾルゲル法によって形成できる。酸化チタンを使用した場合の無機化合物層の膜厚は、通常0.1nm以上、好ましくは0.5nm以上、より好ましくは1nm以上、一方、通常1μm以下、好ましくは100nm以下、より好ましくは50nm以下である。
酸化亜鉛ZnOもスパッタ法等の真空成膜も利用できるが、塗布法での成膜が望ましい。例えば、Sol−Gel Science、C.J.Brinker、G.W.Scherer著、Academic Press(1990)に記載のゾルゲル法によって形成できる。酸化亜鉛を使用した場合の無機化合物層の膜厚は、通常0.1nm以上、好ましくは2nm以上、より好ましくは5nm以上、一方、通常1μm以下、好ましくは100nm以下、より好ましくは50nm以下が好ましい。
<有機化合物層103>
本発明に係る有機化合物層の材料103は、DSC法によるガラス転移温度(以下、Tgと記載する場合もある)が観測されないか、DSC法によるガラス転移温度が80℃以上の化合物である。
DSC法によるガラス転移温度が観測されないとは、ガラス転移温度がないことを意味する。具体的には300℃以下のガラス転移温度の有無により判別する。DSC法によるガラス転移温度が観測されない材料は、熱的に高い安定性を有している点で好ましい。
又、DSC法によるガラス転移温度が80℃以上の化合物である場合には、より好ましくは100℃以上、さらには120℃以上が望ましい。一方、上限は特に限定はないが、通常400℃以下、好ましくは350℃以下、より好ましくは300℃以下である。また、本発明に係る有機化合物層の材料103は、DSC法によるガラス転移温度が30℃以上80度未満に観測されないものである。なお、有機化合物層103には電子取り出し機能に大きく影響しない物質を添加してもよい。
本発明に係るガラス転移温度とは、有機化合物のアモルファス状態の固体が、熱エネルギーにより局所的な分子運動が開始される温度とされており、比熱が変化する点として定義される。さらに温度が上がると、固体構造が変化して結晶化が起こる(この時の温度を結晶化温度(Tc)とする)。さらに温度が上がると、融点(Tm)で融解し液体状態に変化するのが一般的である。但し、高温で分子が分解したり、昇華したりして、それらの相転移が見られないこともある。ガラス転移温度は公知の方法で測定すれば良く、たとえばDSC法が挙げられる。
DSC法とは、JIS K−0129“熱分析通則”に定義された熱物性の測定法(示差走査熱量測定法)である。有機材料の非晶質固体状態がガラス転移温度は、ガラス状態から分子運動が開始する温度であり、比熱の変化する温度としてDSCで測定できる。ガラス転移温度をより明確に決める為に、一度ガラス転移点以上の温度に加熱したサンプルを急冷した後に測定することが望ましい。
電子取り出し層に用いられる有機化合物のガラス転移温度が80℃以上であることにより、該有機化合物は、印加される電場、流れる電流、曲げや温度変化による応力等の外部ストレスに対して構造が変化しにくいため、耐久性の面で好ましい。さらに、該有機化合物の薄膜の結晶化が進みにくい傾向も有すことから、使用温度範囲において該有機化合物がアモルファス状態と結晶状態に変化しにくくなることにより電子取り出し層としての安定性が良くなるため、耐久性の面で好ましい。
本発明の電子取り出し層に用いられる有機化合物の具体例として、バソフェナントレン(Bphen)、(8−ヒドロキシキノリナト)アルミニウム(Alq3)、ホウ素化合物、オキサジアゾール化合物、ベンゾイミダゾール化合物、ナフタレンテトラカルボン酸無水物(NTCDA)、ペリレンテトラカルボン酸無水物(PTCDA)、又はホスフィンオキサイド化合物若しくはホスフィンスルフィド化合物等の第16族元素と二重結合を有するホスフィン化合物が挙げられる。その中でも好ましくは、アリール基で置換されたホスフィンオキサイド化合物、アリール基で置換されたホスフィンスルフィド化合物等のアリール基で置換された第16族元素と二重結合を有するホスフィン化合物であり、より好ましくは、トリアリールホスフィンオキサイド化合物、トリアリールホスフィンスルフィド化合物、ジアリールホスフィンスルフィドユニットを2つ以上有する芳香族炭化水素化合物又はジアリールホスフィンオキシドユニットを2つ以上有する芳香族炭化水素化合物である。上記アリール基にはフッ素原子又はパーフルオロアルキル基等のフッ素原子が置換されたアルキル基が置換されていてもよい。上記材料に加えてアルカリ金属又はアルカリ土類金属をドープしてもよい。
アリール基で置換された第16族元素と二重結合を有するホスフィン化合物とは、下記一般式(1)で表される。
一般式(1)中、R、Rは各々独立して置換基を有していても良い芳香族基を表し、nは1以上5以下の整数を表す。Rは置換基を有していても良いn価の芳香族基を表す。Uは第16族元素である。芳香族基を有することにより熱安定性が向上する点で好ましい。さらに、芳香族基は平面性が高いため、有機活性層104のπ共役系と相互作用しやすく、より電荷移動しやすくなる点で特に好ましい。
式中、R、Rは各々独立して置換基を有していても良い芳香族基である。好ましくは、R及びRのうち少なくとも一つは置換基を有していても良い縮合多環芳香族基である。
芳香族基としては、フェニル基、ナフチル基、フェナントリル基、ビフェニレニル基、トリフェニレニル基、アントリル基、ピレニル基、フルオレニル基、アズレニル基、アセナフテニル基、フルオランテニル基、ナフタセニル基、ペリレニル基又はペンタセニル基等の芳香族炭化水素基;ピリジル基、チエニル基、フリル基、ピロリル基、オキサゾリル基、チアゾリル基、オキサジアゾリル基、チアジアゾリル基、ピラジル基、ピリミジル基、ピラゾリル基、イミダゾリル基、ベンゾチエニル基、ジベンゾフリル基、ジベンゾチエニル基、フェニルカルバゾリル基、フェノキサチエニル基、キサンテニル基、ベンゾフラニル基、チアントレニル基、インドリジニル基、フェノキサジニル基、フェノチアジニル基、アクリジニル基、フェナントリジニル基、キノリル基、イソキノリル基、インドリル基又はキノキサリニル基等の芳香族複素環基が挙げられる。好ましくは、フェニル基、ナフチル基、フェナントリル基、トリフェニレニル基、アントリル基、ピレニル基、フルオレニル基、アセナフテニル基、フルオランテニル基、ペリレニル基又はトリフェニレニル基等の芳香族炭化水素基;ピリジル基、ピラジル基、ピリミジル基、ピラゾリル基、キノリル基、イソキノリル基、イミダゾリル基、アクリジニル基、フェナントリジニル基、キノキサリニル基、ジベンゾフリル基、ジベンゾチエニル基、フェニルカルバゾリル基、キ
サンテニル基又はフェノキサジニル基等の芳香族複素環基である。
芳香族基が有していてもよい置換基としては、特に限定はないが、ハロゲン原子、水酸基、シアノ基、アミノ基、カルボキシル基、カルボニル基、アセチル基、スルホニル基、シリル基、ボリル基、ニトリル基、アルキル基、フッ化アルキル基、アルケニル基、アルキニル基、アルコキシ基、芳香族炭化水素基又は芳香族複素環基が好ましい。
また、縮合多環芳香族基を形成する環として好ましくは、置換基を有していても良い環状アルキル基、置換基を有していても良い芳香族炭化水素基、置換基を有していても良い芳香族複素環基である。
環状アルキル基の具体例としては、シクロペンチル基やシクロヘキシル基が挙げられる。芳香族炭化水素基の具体例としては、フェニル基である。芳香族複素環基の具体例としては、ピリジル基、チエニル基、フリル基、ピロリル基、オキサゾリル基、チアゾリル基、オキサジアゾリル基、チアジアゾリル基、ピラジル基、ピリミジル基、ピラゾリル基又はイミダゾリル基等が挙げられる。芳香族複素環基として好ましくは、ピリジル基やチエニル基である。
環状アルキル基、芳香族炭化水素基及び芳香族複素環基が有していてもよい置換基としては、特に限定はないが、ハロゲン原子、水酸基、シアノ基、アミノ基、カルボキシル基、カルボニル基、アセチル基、スルホニル基、シリル基、ボリル基、ニトリル基、アルキル基、フッ化アルキル基、アルケニル基、アルキニル基、アルコキシ基、芳香族炭化水素基又は芳香族複素環基が好ましい。縮合多環芳香族基が有していてもよい置換基は、上記と同義である。
縮合多環芳香族基は、前記環が縮合した基である。好ましくは、フェナントリル基、アントリル基、ピレニル基、フルオランテニル基、ナフタセニル基、ペリレニル基、ペンタセニル基又はトリフェニレニル基等の縮合多環式芳香族炭化水素基;フェノキサジニル基、フェノチアジニル基、アクリジニル基又はフェナントリジニル基等の縮合多環式芳香族複素環基が挙げられる。
は置換基を有しても良いn価の芳香族基を表し、例えば、置換基を有してもよいn価の芳香族炭化水素基、置換基を有してもよいn価の芳香族複素環基又は置換基を有してもよい芳香族炭化水素基及び置換基を有してもよい芳香族複素環基が連結したn価の芳香族基 が挙げられる。なお、Rは置換基を有しても良い縮合多環芳香族基であってもよ
い。
芳香族炭化水素基としては、R及びRで規定する1価の芳香族炭化水素基又はその2価以上5価以下の芳香族炭化水素基が挙げられる。
芳香族複素環基としては、R及びRで規定する1価の芳香族複素環基又はその2価以上5価以下の芳香族複素環基が挙げられる。
縮合多環芳香族基としては、R及びRで規定する1価の縮合多環芳香族基又はその2価以上5価以下の縮合多環芳香族基が挙げられる。
芳香族炭化水素基、芳香族複素環基及び縮合多環芳香族基が有していても良い置換基は、R及びRで規定する置換基と同義である。
が二価の連結基の場合、以下の具体例が挙げられるがこれらに限定されるものではない。
一般式(1)中、nは1以上の整数であり、一方、通常5以下の整数、好ましくは4以下の整数、より好ましくは3以下の整数、特に好ましくは2以下の整数である。
Uは第16族元素である。その中でも好ましくは、酸素原子又は硫黄原子である。
本発明のアリール基で置換された第16族元素と二重結合を有するホスフィン化合物の好ましい具体例としては、例えば、以下に例示されるものが挙げられる。ただし、本発明の要旨を超えない限り、これらに限定されるものではない。
又、上記アリール基で置換された第16族元素と二重結合を有するホスフィン化合物以外の例としては、次に示すものが挙げられる。
電子取り出し層107全体としての膜厚は、特に限定はないが、通常0.5nm以上、より好ましくは1nm以上、一方、通常1μm以下、より好ましくは100nm以下が望ましい。電子取り出し層107全体としての厚さが0.5nm以上であることにより、電子取り出し層としての機能を果たすことになり、電子取り出し層107全体としての膜厚が100nm以下であることで、電子が取り出し易くなり、光電変換効率が向上する。
電子取り出し層に用いられる有機化合物層103の膜厚は、特に限定はないが、通常0.1nm以上、より好ましくは0.2nm以上、一方、通常100nm以下、より好ましくは60nm以下が望ましい。該有機化合物層の厚さ103が0.1nm以上であることにより、電子取り出し層107としての有機化合物層の機能を果たすことになり、該有機化合物層103の膜厚が100nm以下であることで、電子が取り出し易くなり、光電変換効率が向上する。
該電子取り出し層107とカソード101との密着性、電子取り出し層107と活性層104との密着性、及び/又は有機化合物層103と無機化合物層102の密着性は、耐久性の面で重要である。長時間素子が動作した場合には、温度変化や材料の機械物性の変化などで層にストレスがかかり、密着性が悪い場合には、積層構造がはがれたりして、特性の劣化が引き起こされると考えられる。層間の密着性は、層の表面エネルギーが大きくなるほど高くなると考えられる。
有機光電変換素子でこれまでによく電子取り出し層として利用されたbathocuproine(BCP)は、TgやTmが非常に低く、Tgが62℃と報告されていた。さらに、80℃以下で結晶化までもが進行する為に熱的な安定性が悪く、かつ電極との密着性も不十分であることが本発明者の検討により判明した。
<本発明の電子取り出し層107の作用>
無機化合物層102と有機化合物層103を含有する電子取り出し層107の採用により耐久性が向上する理由は、色々な要因があり現在検討中であるが、次の様な事が考えられる。
有機光電変換素子で最も耐久性の弱い部分は、カソード周辺であると考えられる。これは、仕事関数の小さなAlなどの金属をカソードとして用いる為、このカソード自体が非常に活性であり、それが接している材料との間で酸化還元反応が進み、結果としてカソード及び/又カソードと接する材料が劣化する可能性がある。光電変換素子の活性層の材料は酸化又は還元されやすい材料を用いている事から、活性層の材料にカソードが直接接触するのではなく、本願電子取り出し層を設けることにより、耐久性が改良されると考えられる。
一方で、電子取り出し層107は、電極(カソード)101と活性層104の電気的な接合を改良する効果があると考えられる。これには、カソード101の仕事関数を変化させたり、活性層より上にカソード101を蒸着する際に、電子取り出し層107が活性層104にダメージを与えないように保護して、カソード101と活性層104との良好な電気的接合を形成する事が考えられる。
また、機械的な付着力も重要である。電気的に良好な層の組合せが必ずしも良好な付着力を与えるとは限らず、付着力に問題があると、当初は良好な特性が得られていても、層のはがれなどの劣化により特性が劣化してくることが考えられる。
さらに、正孔取り出し層105にPEDOT:PSSに代表されるような、スルホン酸基を含む導電性高分子が用いられる場合には、そのスルホン酸基の分解物がカソードに作用して特性が劣化する事も考えられる。電子取り出し層107はカソード101と活性層104の間に存在して、そのような特性の劣化を防ぐ機能も期待される。
このように、電子取り出し層107は複数の機能を有していると考えられる。その場合に、一つの材料のみですべての機能を発現することは容易ではなく、複数の層で電子取り出し層107の機能を担わせることは理にかなっている。そうはいっても、BCPはTgが低く熱的な特性が不十分であり、LiFなどの無機材料との付着力も小さいと考えられ、高いTgの材料や高い付着力を与える有機化合物と組み合わせることが必要である。
<正孔取り出し層105>
正孔取り出し層105の材料は、後述のp型半導体化合物とn型半導体化合物を含む活性層104から電極106(アノード)へ正孔の取り出し効率を向上させることが可能な材料であれば特に限定されない。具体的には、ポリチオフェン、ポリピロール、ポリアセチレン、トリフェニレンジアミン又はポリアニリンなどに、スルホン酸及び/又はヨウ素などがドーピングされた導電性ポリマー、スルホニル基を置換基に有するポリチオフェン誘導体、アリールアミン等の導電性有機化合物或いは後述のp型半導体化合物等が挙げられる。その中でも、スルホン酸をドーピングした導電性ポリマーが好ましく、ポリチオフェン誘導体にポリスチレンスルホン酸をドーピングしたポリ(3,4−エチレンジオキシチオフェン)ポリ(スチレンスルホン酸)(PEDOT:PSS)がより好ましい。また、Au、In、Ag又はPd等の金属等の薄膜も使用することができる。さらに、金属等の薄膜は、単独で形成してもよく、上記の材料と組み合わせて用いることもできる。
一般的に、アノード106である透明電極(ITO等)表面に正孔取り出し層105としてPEDOT:PSSが用いられている。この化合物は、発電効率等の電池特性向上に寄与するものの、PEDOT:PSSは熱、光に対する安定性が悪く、熱、光照射に伴い構造破壊が生じる。PEDOT:PSSの分解成分は電極(カソード)101側に拡散し、動作の不安定化や短絡を招く可能性がある。作用機構としてはまだ定かではないものの、本願発明の有機化合物103層を有する電子取り出し層107が、PEDOT:PSSの分解成分の電極(カソード)101側への移行をブロックすることで耐久性等を向上していることが要因のひとつとして考えられる。
正孔取り出し層105の膜厚は特に限定はないが、通常2nm以上である。一方、通常40nm以下、好ましくは20nm以下である。正孔取り出し層105の膜厚が2nm以上であることでバッファ材料としての機能を果たすことになり、正孔取り出し層105の膜厚が40nm以下であることで、正孔が取り出し易くなり、光電変換効率が向上する。
正孔取り出し層105と電子取り出し層107とは、1対の電極間(101、106)に、活性層104を挟むように配置される。すなわち、本発明に係る光電変換素子108が正孔取り出し層105と電子取り出し層107の両者を含む場合、電極106、正孔取り出し層105、活性層104、電子取り出し層107、電極101がこの順に配置されている。
正孔取り出し層105と電子取り出し層107との形成方法に制限はない。例えば、昇華性を有する材料を用いる場合は真空蒸着法等により形成することができる。また、例えば、溶媒に可溶な材料を用いる場合は、スピンコートやインクジェット等の湿式塗布法等により形成することができる。正孔取り出し層に後述のp型半導体化合物を用いる場合は、活性層の低分子有機半導体化合物と同様に、低分子有機半導体化合物前駆体を用いて層を形成した後に該前駆体を低分子有機半導体化合物に変換してもよい。
<電極101、106>
本発明に係る電極(101及び106)は、光吸収により生じた正孔及び電子を捕集する機能を有するものである。したがって、一対の電極には、正孔の捕集に適した電極106(以下、アノードと記載する場合もある)と電子の捕集に適した電極101(以下、カソードと記載する場合もある)を用いることが好ましい。1対の電極は、いずれか一方が透光性であればよく、両方が透光性であっても構わない。透光性があるとは太陽光が40%以上透過する程度のものである。また、透明電極の太陽光線透過率が70%以上であることが、透明電極を透過させて活性層に光を到達させるためには、好ましい。なお、光の透過率は、通常の分光光度計で測定可能できる。
正孔の捕集に適した電極106(アノード)とは、一般には仕事関数がカソードよりも高い値を有する導電性材料で、活性層104で発生した正孔をスムーズに取り出す機能を有する電極である。
アノード106の材料を挙げると、例えば、酸化ニッケル、酸化錫、酸化インジウム、酸化錫インジウム(ITO)、インジウムージルコニウム酸化物(IZO)、酸化チタン、酸化インジウム又は酸化亜鉛等の導電性金属酸化物;金、白金、銀、クロム又はコバルト等の金属あるいはその合金が挙げられる。
これらの物質は高い仕事関数を有するため、好ましく、さらに、ポリチオフェン誘導体にポリスチレンスルホン酸をドーピングしたPEDOT/PSSで代表されるような導電性高分子材料を積層することができるため、好ましい。このような導電性高分子を積層する場合には、その導電性高分子材料の仕事関数が高いことから、上記のような高い仕事関数の材料でなくとも、AlやMg等のカソードに適した金属も広く用いることが可能である。
ポリチオフェン誘導体にポリスチレンスルホン酸をドーピングしたPEDOT/PSSや、ポリピロール又はポリアニリン等にヨウ素等のドーピングした導電性高分子材料をアノードの材料として使用することもできる。
また、アノード106が透明電極である場合には、ITO、酸化亜鉛又は酸化錫等の透光性がある導電性金属酸化物を用いることが好ましく、特にITOが好ましい。
アノード106の膜厚は特に制限は無いが、通常10nm以上、好ましくは20nm以上、さらに好ましくは、50nm以上である。一方、通常10μm以下、好ましくは1μm以下、さらに好ましくは500nm以下である。アノード106の膜厚が10nm以上であることにより、シート抵抗が抑えられ、アノード106の膜厚が10μm以下であることにより、光透過率が低下せずに効率よく光を電気に変換することができる。透明電極に用いる場合には、光透過率とシート抵抗を両立する膜厚を選ぶ必要がある。
アノード106のシート抵抗は、特段の制限はないが、通常1Ω/□以上、一方、1000Ω/□以下、好ましくは500Ω/□以下、さらに好ましくは100Ω/□以下である。
アノード106の形成方法は、蒸着若しくはスパッタ等の真空成膜方法又はナノ粒子や前駆体を含有するインクを塗布して成膜する方法等がある。
電子の捕集に適した電極101(カソード)とは、一般には仕事関数がアノードよりも高い値を有する導電性材料で、活性層104で発生した電子をスムーズに取り出す機能を有する電極であり、本発明の電子取り出し層107と隣接することを特徴とする。
カソード101の材料を挙げると、例えば、白金、金、銀、銅、鉄、錫、亜鉛、アルミニウム、インジウム、クロム、リチウム、ナトリウム、カリウム、セシウム、カルシウム又はマグネシウム等の金属及びその合金;フッ化リチウムやフッ化セシウム等の無機塩;酸化ニッケル、酸化アルミニウム、酸化リチウム又は酸化セシウムのような金属酸化物等が挙げられる。これらの材料は低い仕事関数を有する材料のため、好ましい。カソード101についてもアノード106と同様に、電子取り出し層107にチタニアのようなn型半導体で導電性を有するものを用いることにより、アノード106に適した高い仕事関数を有する材料も用いることができる。電極保護の観点から、アノード106材料として好ましくは、白金、金、銀、銅、鉄、錫、アルミニウム、カルシウム又はインジウム等の金属及びこれらの金属を用いた合金である。
カソード101の膜厚は特に制限は無いが、通常10nm以上、好ましくは20nm以上下、より好ましくは50nm以上である。一方、通常10μm以下、好ましくは1μm以下、より好ましくは500nm以下である。透明電極に用いる場合には、光透過率とシート抵抗を両立する膜厚を選ぶ必要がある。カソード101の膜厚が10nm以上であることにより、シート抵抗が抑えられ、カソード101の膜厚が10μm以下であることにより、光透過率が低下せずに効率よく光を電気に変換することができる。
カソード101のシート抵抗は、特に制限は無いが、通常1000Ω/□以下、好ましくは500Ω/□以下、さらに好ましくは100Ω/□以下である。下限に制限は無いが、通常は1Ω/□以上である。
カソード101の形成方法は、蒸着若しくはスパッタ等の真空成膜方法又はナノ粒子や前駆体を含有するインクを塗布して成膜する方法等がある。
さらに、アノード106あるいはカソード101は2層以上積層してもよく、表面処理により特性(電気特性やぬれ特性等)を改良してもよい。
アノード106及びカソード101を積層した後に、当該光電変換素子を通常50℃以
上、好ましくは80℃以上、一方、通常300℃以下、好ましくは280℃以下、より好ましくは250℃以下の温度範囲において、加熱することが好ましい(この工程をアニーリング処理工程と称する場合がある)。該アニーリング処理工程の温度を50℃以上にすることで、電子取り出し層107と電極101及び/又は電子取り出し層107と活性層104の密着性が向上する効果が得られるため、好ましい。該アニーリング処理工程の温度が300℃以下にすることで、活性層の有機化合物が熱分解する可能性が低くなるため、好ましい。
なお、温度操作については上記範囲内で段階的に加熱してもよい。
加熱する時間としては、通常1分以上、好ましくは3分以上、一方、通常3時間以下、好ましくは1時間以下である。該アニーリング処理は太陽電池性能のパラメーターである開放電圧、短絡電流及びフィルファクターが一定の値になったところで終了させることが好ましい。また、該アニーリング処理の雰囲気は常圧下、かつ不活性ガス雰囲気で実施することが好ましい。
該アニーリング処理工程により、電子取り出し層107と電極101及び/又は電子取り出し層107と活性層104の密着性を向上させることで、光電変換素子の熱安定性や耐久性等が向上する効果とともに、活性層の自己組織化が促進される効果が得られる。
加熱する方法としては、ホットプレート等の熱源に当該光電変換素子を載せても良いし、オーブン等の加熱雰囲気下に当該光電変換素子を入れても良い。また、バッチ式であっても連続方式であっても構わない。
<基板100>
本発明に係る光電変換素子108は、通常は支持体となる基板100を有する。すなわち、基板100上に、電極(101、106)と、活性層104、バッファ層(105,107)とが形成される。基板100の材料(基板材料)は本発明の効果を著しく損なわない限り任意である。基板材料の好適な例を挙げると、石英、ガラス、サファイア又はチタニア等の無機材料;ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリエーテルスルホン、ポリイミド、ナイロン、ポリスチレン、ポリビニルアルコール、エチレンビニルアルコール共重合体、フッ素樹脂フィルム、塩化ビニル又はポリエチレン等のポリオレフィン、セルロース、ポリ塩化ビニリデン、アラミド、ポリフェニレンスルフィド、ポリウレタン、ポリカーボネート、ポリアリレート、ポリノルボルネン又はエポキシ樹脂等の有機材料;紙又は合成紙等の紙材料;ステンレス、チタン又はアルミニウム等の金属に、絶縁性を付与するために表面をコート又はラミネートしたもの等の複合材料等が挙げられる。
ガラスとしてはソーダガラスや青板ガラスや無アルカリガラスなどが挙げられる。ガラスの材質については、ガラスからの溶出イオンが少ない方がよいので無アルカリガラスの方が好ましい。
基板100の形状に制限はなく、例えば、板、フィルム、シート等の形状を用いることができる。基板の膜厚に制限はない。ただし、通常5μm以上、中でも20μm以上であり、一方、通常20mm以下、中でも10mm以下に形成することが好ましい。基板の膜厚が5μm以上であると、半導体デバイスの強度が不足する可能性は少なくなるため、好ましい。基板の膜厚が20mm以下であることで、コストが抑えられ、かつ重量が重くならず、好ましい。又、基板がガラスの場合の膜厚は、通常0.01mm以上、好ましくは0.1mm以上であり、一方、また、通常1cm以下、好ましくは0.5cm以下である。ガラス基板が0.01mm以上であると、機械的強度が増加し、割れにくくなるために、好ましい。ガラス基板が0.5cm以下であると、重量が重くならずに好ましい。
<活性層104>
本発明に係る光電変換素子において、活性層104はp型半導体化合物とn型半導体化合物を含む。光電変換素子108が光を受けると、光が活性層104に吸収され、p型半導体化合物とn型半導体化合物の界面で電気が発生し、発生した電気が電極101及び106から取り出される。
活性層の層構成は、p型半導体化合物とn型半導体化合物が積層された薄膜積層型、p型半導体化合物とn型半導体化合物が混合したバルクヘテロ接合型、薄膜積層型の中間層にp型半導体化合物とn型半導体化合物が混合した層(i層)を有する構造等が挙げられる。中でも、p型半導体化合物が後述する高分子有機半導体化合物の場合には、p型半導体化合物とn型半導体化合物が混合したバルクヘテロ接合型が好ましい。また、p型半導体化合物が後述する低分子有機半導体化合物の場合には、薄膜積層型の中間層にp型半導体化合物とn型半導体化合物が混合した層(i層)を有する構造は光電流を発生できる活性層を厚くできることから好ましい。
活性層104の膜厚は特に限定されないが、通常10nm以上、好ましくは50nm以上であり、一方通常1000nm以下、好ましくは500nm以下、より好ましくは200nm以下である。活性層の膜厚が10nm以上であることで、均一性が保たれ、短絡を起こしにくくなるため、好ましい。また、活性層の厚さが1000nm以下であることで、内部抵抗が小さくなり、かつ電極間の距離が離れず電荷の拡散が良好となるため、好ましい。
活性層104の作成方法としては、特段に制限はないが、塗布法が好ましい。塗布法については、以下の任意の方法で行うことができる。例えば、リバースロールコート法、グラビアコート法、キスコート法、ロールブラッシュ法、スプレーコート法、エアナイフコート法、ワイヤーバーバーコート法、パイプドクター法、含浸・コート法、カーテンコート法などが挙げられる。
[p型半導体化合物]
本発明に係るp型半導体化合物とは、特に限定はないが、低分子有機半導体化合物と高分子有機半導体化合物が挙げられる。
[低分子有機半導体化合物]
低分子有機半導体化合物の分子量は、上限、下限ともに特に制限されないが、通常5000以下、好ましくは2000以下であり、一方、通常100以上、好ましくは200以上である。
また、低分子有機半導体化合物は結晶性を有するものが好ましい。結晶性を有するp型半導体化合物は分子間相互作用が強く、活性層104においてp型半導体化合物とn型半導体化合物の混合物層界面で生成した正孔(ホール)を効率よく電極(アノード)106へ輸送できることが期待されるためである。
本発明における結晶性とは、分子間相互作用等によって配向の揃った3次元周期配列をとる化合物の性質である。
結晶性の測定方法としては、X線回折法(XRD)又は電界効果移動度測定等が挙げられる。特に電界効果移動度測定において、正孔移動度が1.0×10(−5)cm/(Vs)以上である結晶性化合物が好ましく、1.0×10(−4)cm/(Vs)以上である結晶性化合物がより好ましい。一方、正孔移動度が通常1.0×10(4)cm/(Vs)以下である結晶性化合物が好ましく、1.0×10(3)cm/(Vs)以下である結晶性化合物がより好ましく、1.0×10(2)cm/(Vs)以下である結晶性化合物が更に好ましい。
該低分子有機半導体化合物は、上記性能を満たせば特段の制限はないが、具体的には、ナフタセン、ペンタセン又はピレン等の縮合芳香族炭化水素;α−セキシチオフェン等のチオフェン環を4個以上含むオリゴチオフェン類;チオフェン環、ベンゼン環、フルオレン環、ナフタレン環、アントラセン環、チアゾール環、チアジアゾール環及びベンゾチアゾール環のうち少なくとも一つ以上を含み、かつ合計4個以上連結したもの;フタロシアニン化合物及びその金属錯体、又はテトラベンゾポルフィリン等のポルフィリン化合物及びその金属錯体、等の大環状化合物等が挙げられる。好ましくは、フタロシアニン化合物及びその金属錯体又はポルフィリン化合物及びその金属錯体である。
p型半導体化合物として用いられるポルフィリン化合物及びその金属錯体(図中のQがCH)、フタロシアニン化合物及びその金属錯体(図中のQがN)としては、例えば、以下のような構造の化合物が挙げられる。
ここで、Mは金属あるいは2個の水素原子を表し、金属としては、Cu、Zn、Pb、Mg、Co又はNi等の2価の金属のほか、軸配位子を有する3価以上の金属、例えば、TiO、VO、SnCl、AlCl、InCl又はSi等も挙げられる。
〜Yはそれぞれ独立に、水素原子又は炭素数1〜24のアルキル基である。炭素数1〜24のアルキル基とは、炭素数が1〜24の飽和もしくは不飽和の鎖状炭化水素基又は炭素数が3〜24の飽和もしくは不飽和の環式炭化水素である。その中でも好ましくは炭素数1〜12の飽和もしくは不飽和の鎖状炭化水素基又は炭素数が3〜12の飽和もしくは不飽和の環式炭化水素である。
フタロシアニン化合物及びその金属錯体の中でも、好ましくは、29H,31H−フタロシアニン、銅フタロシアニン錯体、亜鉛フタロシアニン錯体、チタンフタロシアニンオキシド錯体、マグネシウムフタロシアニン錯体、鉛フタロシアニン錯体又は銅4,4’,4’’,4’’’−テトラアザ−29H,31H−フタロシアニン錯体であり、より好ましくは、29H,31H−フタロシアニン又は銅フタロシアニン錯体である。なお、上記一種の化合物でも複数種の化合物の混合物でもよい。
ポルフィリン化合物及びその金属錯体の中でも、好ましくは、5,10,15,20−テトラフェニル−21H,23H−ポルフィン、5,10,15,20−テトラフェニル−21H,23H−ポルフィンコバルト(II)、5,10,15,20−テトラフェニル−21H,23H−ポルフィン銅(II)、5,10,15,20−テトラフェニル−21H,23H−ポルフィン亜鉛(II)、5,10,15,20−テトラフェニル−21H,23H−ポルフィンニッケル(II)、5,10,15,20−テトラフェニル−21H,23H−ポルフィンバナジウム(IV)オキシド、5,10,15,20−テトラ(4−ピリジル)−21H,23H−ポルフィン、29H,31H−テトラベンゾ[b,g,l,q]ポルフィン、29H,31H−テトラベンゾ[b,g,l,q]ポルフィンコバルト(II)、29H,31H−テトラベンゾ[b,g,l,q]ポルフィン銅(II)、29H,31H−テトラベンゾ[b,g,l,q]ポルフィン亜鉛(II)、29H,31H−テトラベンゾ[b,g,l,q]ポルフィンニッケル(II)又は29H,31H−テトラベンゾ[b,g,l,q]ポルフィンバナジウム(IV)オキシドであり、好ましくは、5,10,15,20−テトラフェニル−21H,23H−ポルフィン又は29H,31H−テトラベンゾ[b,g,l,q]ポルフィンである。なお、上記一種の化合物でも複数種の化合物の混合物でもよい。
低分子有機半導体化合物の製膜方法としては、蒸着法によって製膜する方法や低分子有機半導体化合物前駆体を塗布後に低分子有機半導体化合物に変換することで製膜する方法がある。塗布製膜できるというプロセス上の利点からは後者が好ましい。
[低分子有機半導体化合物前駆体]
低分子有機半導体化合物前駆体とは、例えば加熱や光照射等の外的刺激を与えることにより、その化学構造が変化し、低分子有機半導体化合物に変換される物質である。本発明に係る低分子有機半導体化合物前駆体は成膜性に優れるものが好ましい。特に、塗布法を適用できるようにするためには、前駆体自体が液状で塗布可能であるか又は前駆体が何らかの溶媒に対して溶解性が高く溶液として塗布可能であることが好ましい。このため、低分子有機半導体化合物前駆体の溶媒に対する溶解性は、通常0.1重量%以上、好ましくは0.5重量%以上、より好ましくは1重量%以上である。一方、上限に特段の制限はないが、通常50重量%以下、好ましくは40重量%以下である。
溶媒の種類としては、半導体前駆体化合物を均一に溶解あるいは分散できるものであれば特に限定されないが、例えば、ヘキサン、ヘプタン、オクタン、イソオクタン、ノナン又はデカン等の脂肪族炭化水素類;トルエン、キシレン、シクロヘキシルベンゼン、クロロベンゼン又はオルトジクロロベンゼン等の芳香族炭化水素類;メタノール、エタノール又はプロパノール等の低級アルコール類;アセトン、メチルエチルケトン、シクロペンタノン又はシクロヘキサノン等のケトン類;酢酸エチル、酢酸ブチル又は乳酸メチル等のエステル類;クロロホルム、塩化メチレン、ジクロロエタン、トリクロロエタン又はトリクロロエチレン等のハロゲン炭化水素類;エチルエーテル、テトラヒドロフラン又はジオキサン等のエーテル類;ジメチルホルムアミド又はジメチルアセトアミド等のアミド類等が挙げられる。なかでも好ましくは、トルエン、キシレン、シクロヘキシルベンゼン、クロロベンゼン又はオルトジクロロベンゼン等の芳香族炭化水素類;アセトン、メチルエチルケトン、シクロペンタノン又はシクロヘキサノン等のケトン類;クロロホルム、塩化メチ
レン、ジクロロエタン、トリクロロエタン又はトリクロロエチレン等のハロゲン炭化水素類;エチルエーテル、テトラヒドロフラン又はジオキサン等のエーテル類である。より好ましくは、トルエン、キシレン又はシクロヘキシルベンゼン等の非ハロゲン芳香族炭化水素類;シクロペンタノン又はシクロヘキサノン等の非ハロゲン系ケトン類;テトラヒドロフラン又は1,4−ジオキサン等の非ハロゲン系脂肪族エーテル類である。特に好ましくは、トルエン、キシレン又はシクロヘキシルベンゼン等の非ハロゲン芳香族炭化水素類である。なお、溶媒は1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用しても良い。
さらに、本発明に係る低分子有機半導体化合物前駆体は、容易に半導体化合物に変換できることが好ましい。後述する低分子有機半導体化合物前駆体から半導体化合物への変換工程において、どのような外的刺激を半導体前躯体に与えるかは任意であるが、通常は、熱処理、光処理等を行なう。好ましくは、熱処理である。この場合には、低分子有機半導体化合物前駆体の骨格の一部に逆ディールス・アルダー反応によって脱離可能な所定の溶媒に対する親溶媒性の基を有するものが好ましい。
また、本発明に係る低分子有機半導体化合物前駆体は、変換工程を経て、高い収率で半導体化合物に変換されることが好ましい。この際、低分子有機半導体化合物前駆体から変換して得られる半導体化合物の収率は有機光電変換素子の性能を損なわない限り任意であるが、低分子有機半導体化合物前躯体から得られる低分子有機半導体化合物の収率は、通常90モル%以上、好ましくは95モル%以上、より好ましくは99モル%以上である。
本発明に係る低分子有機半導体化合物前駆体は上記特徴を有するものであれば特に制限はないが、具体的には特開2007−324587に記載の化合物などが用いられうる。なかでも好ましい例としては、下記式(2)で表わされる化合物が挙げられる。
式(2)において、X及びXの少なくとも一方はπ共役した2価の芳香族環を形成する基を表わし、Z−Zは熱又は光により脱離可能な基であって、Z−Zが脱離して得られるπ共役化合物が顔料分子となるものを表わす。また、X及びXのうちπ共役した2価の芳香族環を形成する基でないものは、置換又は無置換のエテニレン基を表わす。
式(2)で表わされる化合物は、下記化学反応式に示すように熱又は光によりZ−Zが脱離して、平面性の高いπ共役化合物を生成する。この生成されたπ共役化合物が本発明に係る半導体化合物である。本発明においては、この半導体化合物が半導体特性を示すことが好ましい。
式(2)で表わされる化合物の例としては、以下のものが挙げられる。なお、t−Buはt−ブチル基を表わす。Mは、2価の金属原子又は3価以上の金属と他の原子とが結合した原子団を表わす。
上記低分子有機半導体化合物前駆体の半導体化合物への変換の具体例としては、例えば以下が挙げられる。
式(2)で表わされる低分子有機半導体化合物前駆体は、位置異性体が存在する構造であってもよく、またその場合、複数の位置異性体の混合物から成っていてもよい。複数の位置異性体からなる低分子有機半導体化合物前駆体は、単一異性体成分からなる低分子有機半導体化合物前駆体と比較して溶媒に対する溶解度が向上するため、塗布製膜が行いやすく好ましい。複数の位置異性体の混合物とすると溶解度が向上する理由は、詳細なメカニズムは明確ではないが、化合物そのものの結晶性が潜在的に保持されつつも、複数の異性体混合物が溶液内に混在することで、三次元規則的な分子間相互作用が困難になるためと想定される。本発明においては、複数の異性体化合物からなる前駆体混合物の非ハロゲン性溶媒への溶解度は、通常0.1重量%以上、好ましくは1重量%以上、より好ましくは5重量%以上である。上限に制限は無いが、通常50重量%以下、より好ましくは40重量%以下である。
[高分子有機半導体化合物]
高分子有機半導体化合物として、特に限定はなく、ポリチオフェン、ポリフルオレン、ポリフェニレンビニレン、ポリチエニレンビニレン、ポリアセチレン又はポリアニリン等の共役ポリマー半導体;アルキル基やその他の置換基が置換されたオリゴチオフェン等のポリマー半導体が挙げられる。また、二種以上のモノマー単位を共重合させた半導体ポリマーも挙げられる。共役ポリマーは、例えば、Handbook of Conducting Polymers, 3rd Ed.(全2巻), 2007、Materials Science and Engineering, 2001, 32, 1−40、Pure Appl. Chem. 2002, 74, 2031−3044、Handbook of THIOPHENE−BASED MATERIALS(全2巻), 2009などの公知文献に記載されたポリマー及びその誘導体、又は記載されているモノマーの組み合わせによって合成し得るポリマーを用いることができる。ポリマーやモノマーの置換基は、溶解性、結晶性、製膜性、HOMOレベル又はLUMOレベルなどを制御するために選択することができる。
有機溶媒に可溶な高分子有機半導体化合物が、有機太陽電池素子の製造プロセスにおいて塗布法を使用できるため好ましい。なお、上記一種の化合物でも複数種の化合物の混合物でもよい。高分子有機半導体化合物は、製膜された状態において、何らかの自己組織化した構造を有するものであっても、アモルファス状態であっても良い。
高分子有機半導体化合物の具体例としては以下のものが挙げられるが、これに限定されることはない。
p型半導体化合物としてはポルフィリン化合物及び/又は高分子有機半導体化合物を用いることが望ましい。
[n型半導体化合物]
本発明に係るn型半導体化合物としては、特段の制限はないが、具体的にはフラーレン化合物、8−ヒドロキシキノリンアルミニウムに代表されるキノリノール誘導体金属錯体;ナフタレンテトラカルボン酸ジイミド又はペリレンテトラカルボン酸ジイミド等の縮合環テトラカルボン酸ジイミド類;ペリレンジイミド誘導体、ターピリジン金属錯体、トロポロン金属錯体、フラボノール金属錯体、ペリノン誘導体、ベンズイミダゾール誘導体、ベンズオキサゾール誘導体、チアゾール誘導体、ベンズチアゾール誘導体、ベンゾチアジアゾール誘導体、オキサジアゾール誘導体、チアジアゾール誘導体、トリアゾール誘導体
、アルダジン誘導体、ビススチリル誘導体、ピラジン誘導体、フェナントロリン誘導体、キノキサリン誘導体、ベンゾキノリン誘導体、ビピリジン誘導体、ボラン誘導体、アントラセン、ピレン、ナフタセン又はペンタセン等の縮合多環芳香族炭化水素の全弗化物;単層カーボンナノチューブ等が挙げられる。これらの化合物を一種又は二種以上含んでもよい。
本発明のフラーレン化合物としては、一般式(n1)、(n2)、(n3)及び(n4)で表される部分構造を有することが好ましい。
式中、FLNとは、閉殻構造を有する炭素クラスターであるフラーレンを表わす。フラーレンの炭素数は、通常60〜130の偶数であれば何でも良い。フラーレンとしては、例えば、C60、C70、C76、C78、C82、C84、C90、C94、C96及びこれらよりも多くの炭素を有する高次の炭素クラスターなどが挙げられる。その中でも、C60又はC70が好ましい。フラーレンとしては、一部のフラーレン環上の炭素―炭素結合が切れていても良い。又、一部の炭素原子が、他の原子に置き換えられていても良い。さらに、金属原子、非金属原子あるいはこれらから構成される原子団をフラーレンケージ内に内包していても良い。
a、b、c及びdは整数であり、a、b、c及びdの合計が通常1以上であり、一方、通常5以下であり、好ましくは3以下である。(n1)、(n2)、(n3)及び(n4)中の部分構造は、フラーレン骨格中の同一の五員環もしくは六員環に付加される。一般式(n1)では、フラーレン骨格中の同一の5員環又は6員環上の隣接する2つの炭素原子に対して、−Rと−(CHとがそれぞれ付加している。一般式(n2)では、フラーレン骨格中の同一の5員環又は6員環上の隣接する2つの炭素原子に対して、−C(R)(R)−N(R10)−C(R11)(R12)が付加し5員環を形成してなる。一般式(n3)では、フラーレン骨格中の同一の5員環又は6員環上の隣接する2つの炭素原子に対して、−C(R13)(R14)−C−C−C(R15)(R16)が付加し6員環を形成してなる。一般式(n4)では、フラーレン骨格中の同一の5員環又は
6員環上の隣接する2つの炭素原子に対して−C(R17)(R18)が付加し3員環を形成してなる。Lは1〜8の整数である。Lとして好ましくは1以上4以下の整数であり、さらに好ましくは1以上2以下の整数である。
一般式(n1)中のRは置換基を有していても良い炭素数1〜14のアルキル基、置換基を有していても良い炭素数1〜14のアルコキシ基又は置換基を有していても良い芳香族基である。
アルキル基としては、炭素数1〜10のアルキル基が好ましく、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基又はイソブチル基がより好ましく、メチル基又はエチル基が更に好ましい。
アルコキシ基としては、炭素数1〜10のアルコキシ基が好ましく、炭素数1〜6のアルコキシ基がより好ましく、メトキシ基又はエトキシ基が特に好ましい。
芳香族基としては、炭素数6〜20の芳香族炭化水素基又は炭素数2〜20の芳香族複素環基が好ましく、フェニル基、チエニル基、フリル基又はピリジル基がより好ましく、フェニル基又はチエニル基が更に好ましい。
上記アルキル基、アルコキシ基及び芳香族基が有していてもよい置換基としては、ハロゲン原子又はシリル基が好ましい。ハロゲン原子としてはフッ素原子が好ましい。シリル基としては、ジアリールアルキルシリル基、ジアルキルアリールシリル基、トリアリールシリル基又はトリアルキルシリル基が好ましく、ジアルキルアリールシリル基がより好ましく、ジメチルアリールシリル基がさらに好ましい。
一般式(n1)中のR〜Rは各々独立して置換基を表し、水素原子、置換基を有していても良い炭素数1〜14のアルキル基又は置換基を有していても良い芳香族基である。
アルキル基としては、炭素数1〜10のアルキル基が好ましく、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、t−ブチル基又はn−ヘキシル基が好ましい。アルキル基が有していてもよい置換基としてはハロゲン原子が好ましい。ハロゲン原子としてはフッ素原子が好ましい。フッ素原子で置換されたアルキル基としては、パーフルオロオクチル基、パーフルオロヘキシル基又はパーフルオロブチル基が好ましい。
芳香族基は、炭素数6〜20の芳香族炭化水素基又は炭素数2〜20の芳香族複素環基が好ましく、フェニル基、チエニル基、フリル基又はピリジル基がより好ましく、フェニル基又はチエニル基が更に好ましい。芳香族基が有していてもよい置換基としては、フッ素原子、炭素数1〜14のアルキル基、炭素数1〜14のフッ化アルキル基、炭素数1〜14のアルコキシ基又は炭素数3〜10の芳香族基が好ましく、フッ素原子又は炭素数1〜14のアルコキシ基がより好ましく、メトキシ基、n−ブトキシ基又は2−エチルヘキシルオキシ基が更に好ましい。芳香族基が置換基を有する場合、その数に限定は無いが、1以上3以下が好ましく、1がより好ましい。芳香族基が置換基を複数有する場合、その置換基の種類は異なっていてもよいが、好ましくは同一である。
一般式(n2)中のR〜R12は各々独立に、水素原子、置換基を有していても良い炭素数1〜14のアルキル基又は置換基を有していても良い芳香族基である。アルキル基として好ましくは、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、n−ヘキシル基又はオクチル基であり、より好ましくはメチル基である。芳香族基は、炭素数6〜20の芳香族炭化水素基又は炭素数2〜20の芳香族複素環基が好ましく、フェニル基又はピリジル基がより好ましく、フェニル基がさらに好ましい。
アルキル基が有していてもよい置換基としてはハロゲン原子が好ましい。ハロゲン原子としてはフッ素原子が好ましい。フッ素原子で置換されたアルキル基としては、パーフルオロオクチル基、パーフルオロヘキシル基又はパーフルオロブチル基が好ましい。
芳香族基が有していてもよい置換基としては、特に限定は無いが、好ましくはフッ素原子、炭素数1〜14のアルキル基、炭素数1〜14のアルコキシ基である。アルキル基にはフッ素原子が置換されていてもよい。さらに好ましくは炭素数1〜14のアルコキシ基であり、さらに好ましくはメトキシ基である。置換基を有する場合、その数に限定は無いが、好ましくは1〜3であり、より好ましくは1である。置換基の種類は異なっていても良いが、好ましくは同一である。
一般式(n3)中のArは、置換基を有していても良い炭素数6〜20の芳香族炭化水素基又は炭素数2〜20芳香族複素環基であり、好ましくはフェニル基、ナフチル基、ビフェニル基、チエニル基、フリル基、ピリジル基、ピリミジル基、キノリル基又はキノキサリル基であり、さらに好ましくはフェニル基、チエニル基又はフリル基である。有していても良い置換基として限定は無いが、有していてもよい置換基として限定は無いが、フッ素原子、塩素原子、水酸基、シアノ基、シリル基、ボリル基、アルキル基で置換してもよいアミノ基、炭素数1〜14のアルキル基、炭素数1〜14のアルコキシ基、炭素数1〜14のアルキルカルボニル基、炭素数1〜14のアルキルチオ基、炭素数1〜14のアルケニル基、炭素数1〜14のアルキニル基、エステル基、アリールカルボニル基、アリールチオ基、アリールオキシ基、炭素数6〜20の芳香族炭化水素基又は炭素数2〜20の複素環基が好ましく、フッ素原子、炭素数1〜14のアルキル基、炭素数1〜14のアルコキシ基、エステル基、炭素数1〜14のアルキルカルボニル基又はアリールカルボニル基がより好ましい。炭素数1〜14のアルキル基にはフッ素が置換されていても良い。
炭素数1〜14のアルキル基としては、メチル基、エチル基又はプロピル基が好ましい。炭素数1〜14のアルコキシ基としては、メトキシ基、エトキシ基又はプロポキシル基が好ましい。炭素数1〜14のアルキルカルボニル基としては、アセチル基が好ましい。
エステル基としては、メチルエステル基又はn−ブチルエステル基が好ましい。アリールカルボニル基としては、ベンゾイル基が好ましい。
置換基を有する場合、その数に限定は無いが、1〜4が好ましく、1〜3がより好ましい。置換基が複数の場合、その種類は異なっていてもよいが、好ましくは同一である。
一般式(n3)中のR13〜R16は各々独立して、水素原子、置換基を有してもよいアルキル基、置換基を有してもよいアミノ基、置換基を有してもよいアルコキシ基または置換基を有してもよいアルキルチオ基である。R13またはR14は、R15またはR16との間のいずれか一方と環を形成してもよい。
環を形成する場合における構造は、例えば、芳香族基が縮合したビシクロ構造である一般式(n5)で示すことができる。一般式(n5)中におけるfはcと同様であり、Xは、酸素原子、硫黄原子、アミノ基、アルキレン基又はアリーレン基である。アルキレン基としては炭素数1〜2が好ましい。アリーレン基としては炭素数5〜12が好ましく、例えばフェニレン基である。
アミノ基は、メチル基やエチル基等の炭素数1〜6のアルキル基で置換されていてもよい。
アルキレン基は、メトキシ基等の炭素数1〜6のアルコキシ基、炭素数1〜5の脂肪族炭化水素基、炭素数6〜20の芳香族炭化水素基又は炭素数2〜20の芳香族複素環基で置換されていてもよい。
アリーレン基は、メトキシ基等の炭素数1〜6のアルコキシ基、炭素数1〜5の脂肪族炭化水素基、炭素数6〜20の芳香族炭化水素基又は炭素数2〜20の芳香族複素環基で置換されていてもよい。
一般式(n4)中のR17〜R18は各々独立して、水素原子、アルコキシカルボニル基、置換基を有していても良い炭素数1〜14のアルキル基又は置換基を有していても良い芳香族基である。
アルコキシカルボニル基におけるアルコキシ基としては、炭素数1〜12のアルコキシ基又は炭素数1〜12のフッ化アルコキシ基が好ましく、炭素数1〜12のアルコキシ基がより好ましく、メトキシ基、エトキシ基、n−プロポキシ基、イソプロポキシ基、n−ブトキシ基、イソブトキシ基、n−ヘキソキシ基、オクトキシ基、2−プロピルペントキシ基、2−エチルヘキソキシ基、シクロヘキシルメトキシ基又はベンジルオキシ基がさらに好ましく、メトキシ基、エトキシ基、イソプロポキシ基、n−ブトキシ基、イソブトキシ基又はn−ヘキソキシ基が特に好ましい。
アルキル基としては、炭素数1〜8の直鎖アルキル基が好ましく、n−プロピル基がより好ましい。アルキル基が有していてもよい置換基には特に限定は無いが、好ましくはアルコキシカルボニル基である。アルコキシカルボニル基のアルコキシ基としては、炭素数1〜14のアルコキシ基又はフッ化アルコキシ基が好ましく、炭素数1〜14の炭化水素基がより好ましく、メトキシ基、エトキシ基、n−プロポキシ基、イソプロポキシ基、n−ブトキシ基、イソブトキシ基、n−ヘキソキシ基、オクトキシ基、2−プロピルペントキシ基、2−エチルヘキソキシ基、シクロヘキシルメトキシ基又はベンジルオキシ基がさらに好ましく、メトキシ基又はn−ブトキシ基が特に好ましい。
芳香族基としては、炭素数6〜20の芳香族炭化水素基又は炭素数2〜20の芳香族複素環基が好ましく、フェニル基、ビフェニル基、チエニル基、フリル基又はピリジル基が好ましく、フェニル基又はチエニル基がさらに好ましい。芳香族基が有していてもよい置換基としては、炭素数1〜14のアルキル基、炭素数1〜14のフッ化アルキル基又は炭素数1〜14のアルコキシ基が好ましく、炭素数1〜14のアルコキシ基がさらに好ましく、メトキシ基又は2−エチルヘキシルオキシ基が特に好ましい。置換基を有する場合、その数に限定は無いが、好ましくは1以上3以下であり、より好ましくは1である。置換基の種類は異なっていても同一でもよく、好ましくは同一である。
一般式(n4)の構造として好ましくは、R17、R18が共にアルコキシカルボニル基であるか、R17、R18が共に芳香族基であるか又はR17が芳香族基でかつR18が3−(アルコキシカルボニル)プロピル基である。
なお、本発明に用いられるn型半導体化合物は一種の化合物でも複数種の化合物の混合物でもよい。
フラーレン化合物は、塗布法に適用できるようにするためには、当該フラーレン化合物自体が液状で塗布可能であるか、当該フラーレン化合物が何らかの溶媒に対して溶解性が高く溶液として塗布可能であることが好ましい。溶解性の好適な範囲をあげると、25℃でのトルエンに対する溶解度が、通常0.1重量%以上、好ましくは0.4重量%以上、より好ましくは0.7重量%以上である。フラーレン化合物の溶解度が0.1重量%以上であることで、フラーレン化合物の分散安定性が増加し、凝集、沈降、分離等を起こりにくくなるため好ましい。
[太陽電池モジュール13]
本発明の光電変換素子108は、太陽電池素子として薄膜太陽電池として使用されることが好ましい。
図2は本発明の一実施形態としての薄膜太陽電池の構成を模式的に示す断面図である。図2に示すように、本実施形態の薄膜太陽電池14は、耐候性保護フィルム1と、紫外線カットフィルム2と、ガスバリアフィルム3と、ゲッター材フィルム4と、封止材5と、太陽電池素子6と、封止材7と、ゲッター材フィルム8と、ガスバリアフィルム9と、バックシート10とをこの順に備え、更に、耐候性保護フィルム1とバックシート10の縁部をシールするシール材11を備えている。そして、耐候性保護フィルム1が形成された側(図中下方)から光が照射されて、太陽電池素子6が発電するようになっている。なお、後述するバックシート10としてアルミ箔の両面にフッ素系樹脂フィルムを接着したシート等の防水性の高いシートを用いる場合は、用途によりゲッター材フィルム8及び/又はガスバリアフィルム9を用いなくてもよい。なお、太陽電池素子の封止に影響がない場合にはシール材11を用いなくても良い。
[耐候性保護フィルム1]
耐候性保護フィルム1は天候変化から太陽電池素子6を保護するフィルムである。
太陽電池素子6の構成部品のなかには、温度変化、湿度変化、自然光及び/又は風雨による侵食等により劣化するものがある。そこで、耐候性保護フィルム1で太陽電池素子6を覆うことにより、太陽電池素子6等を天候変化等から保護し、発電能力を高く維持するようにしている。
耐候性保護フィルム1は、薄膜太陽電池14の最表層に位置するため、耐候性、耐熱性、透明性、撥水性、耐汚染性及び/又は機械強度等の、薄膜太陽電池14の表面被覆材として好適な性能を備え、しかもそれを屋外暴露において長期間維持する性質を有することが好ましい。
また、耐候性保護フィルム1は、太陽電池素子6の光吸収を妨げない観点から可視光を透過させるものが好ましい。例えば、可視光(波長360〜830nm)の光の透過率が80%以上であることが好ましく、90%以上であることがより好ましく、特に好ましくは95%である。
さらに、薄膜太陽電池14は光を受けて熱せられることが多いため、耐候性保護フィルム1も熱に対する耐性を有することが好ましい。この観点から、耐候性保護フィルム1の構成材料の融点は、通常100℃以上、好ましくは120℃以上、より好ましくは130℃以上であり、また、通常350℃以下、好ましくは320℃以下、より好ましくは300℃以下である。融点を高くすることで薄膜太陽電池14の使用時に耐候性保護フィルム1が融解・劣化する可能性を低減できる。
耐候性保護フィルム1を構成する材料は、天候変化から太陽電池素子6を保護することができるものであれば任意である。その材料の例を挙げると、ポリエチレン樹脂、ポリプロピレン樹脂、環状ポリオレフィン樹脂、AS(アクリロニトリル−スチレン)樹脂、ABS(アクリロニトリル−ブタジエン−スチレン)樹脂、ポリ塩化ビニル樹脂、フッ素系
樹脂、ポリエチレンテレフタラート、ポリエチレンナフタレート等のポリエステル樹脂、フェノール樹脂、ポリアクリル系樹脂、各種ナイロン等のポリアミド樹脂、ポリイミド樹脂、ポリアミド−イミド樹脂、ポリウレタン樹脂、セルロース系樹脂、シリコーン系樹脂又はポリカーボネート樹脂等が挙げられる。
中でも好ましくはフッ素系樹脂が挙げられ、その具体例を挙げるとポリテトラフルオロエチレン(PTFE)、4−フッ化エチレン−パークロロアルコキシ共重合体(PFA)、4−フッ化エチレン−6−フッ化プロピレン共重合体(FEP)、2−エチレン−4−フッ化エチレン共重合体(ETFE)、ポリ3−フッ化塩化エチレン(PCTFE)、ポリフッ化ビニリデン(PVDF)又はポリフッ化ビニル(PVF)等が挙げられる。
なお、耐候性保護フィルム1は1種の材料で形成されていてもよく、2種以上の材料で形成されていてもよい。また、耐候性保護フィルム1は単層フィルムにより形成されていても良いが、2層以上のフィルムを備えた積層フィルムであってもよい。
耐候性保護フィルム1の厚みは特に規定されないが、通常10μm以上、好ましくは15μm以上、より好ましくは20μm以上であり、また、通常200μm以下、好ましくは180μm以下、より好ましくは150μm以下である。厚みを厚くすることで機械的強度が高まる傾向にあり、薄くすることで柔軟性が高まる傾向にある。
また耐候性保護フィルム1には、他のフィルムとの接着性の改良のために、コロナ処理及び/又はプラズマ処理等の表面処理を行なってもよい。
耐候性保護フィルム1は、薄膜太陽電池14においてできるだけ外側に設けることが好ましい。薄膜太陽電池14の構成部材のうちより多くのものを保護できるようにするためである。
[紫外線カットフィルム2]
紫外線カットフィルム2は紫外線の透過を防止するフィルムである。
薄膜太陽電池14の構成部品のなかには紫外線により劣化するものがある。また、ガスバリアフィルム3、9等は種類によっては紫外線により劣化するものがある。そこで、
紫外線カットフィルム2を薄膜太陽電池14の受光部分に設け、紫外線カットフィルム2で太陽電池素子6の受光面6aを覆うことにより、太陽電池素子6及び必要に応じてガスバリアフィルム3、9等を紫外線から保護し、発電能力を高く維持することができるようになっている。
紫外線カットフィルム2に要求される紫外線の透過抑制能力の程度は、紫外線(例えば、波長300nm)の透過率が50%以下であることが好ましく、30%以下であることがより好ましく、特に好ましくは10%以下である。
また、紫外線カットフィルム2は、太陽電池素子6の光吸収を妨げない観点から可視光を透過させるものが好ましい。例えば、可視光(波長360〜830nm)の光の透過率が80%以上であることが好ましく、90%以上であることがより好ましく、特に好ましくは95%以上である。
さらに、薄膜太陽電池14は光を受けて熱せられることが多いため、紫外線カットフィルム2も熱に対する耐性を有することが好ましい。この観点から、紫外線カットフィルム2の構成材料の融点は、通常100℃以上、好ましくは120℃以上、より好ましくは130℃以上であり、また、通常350℃以下、好ましくは320℃以下、より好ましくは300℃以下である。融点が低すぎると薄膜太陽電池14の使用時に紫外線カットフィルム2が融解する可能性がある。
また、紫外線カットフィルム2は、柔軟性が高く、隣接するフィルムとの接着性が良好
であり、水蒸気や酸素をカットしうるものが好ましい。
紫外線カットフィルム2を構成する材料は、紫外線の強度を弱めることができるものであれば任意である。その材料の例を挙げると、エポキシ系、アクリル系、ウレタン系又はエステル系の樹脂に紫外線吸収剤を配合して成膜したフィルム等が挙げられる。また、紫外線吸収剤を樹脂中に分散あるいは溶解させたものの層(以下、適宜「紫外線吸収層」という)を基材フィルム上に形成したフィルムを用いてもよい。
紫外線吸収剤としては、例えば、サリチル酸系、ベンゾフェノン系、ベンゾトリアゾール系、シアノアクリレート系のものを用いることができる。中でもベンゾフェノン系、ベンゾトリアゾール系が好ましい。この例としては、ベンゾフェノン系やベンゾトリアゾール系の種々の芳香族系有機化合物等が挙げられる。なお、紫外線吸収剤は、1種を用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
前記したように、紫外線吸収フィルムとしては紫外線吸収層を基材フィルム上に形成したフィルムを用いることもできる。このようなフィルムは、例えば、紫外線吸収剤を含む塗布液を基材フィルム上に塗布し、乾燥させることで作製できる。
基材フィルムの材質は特に限定されないが、耐熱性、柔軟性のバランスが良好なフィルムが得られる点で、例えばポリエステルが挙げられる。
塗布は任意の方法で行うことができる。例えば、リバースロールコート法、グラビアコート法、キスコート法、ロールブラッシュ法、スプレーコート法、エアナイフコート法、ワイヤーバーバーコート法、パイプドクター法、含浸・コート法又はカーテンコート法等が挙げられる。また、これらの方法は1種を単独で行なってもよく、2種以上を任意に組み合わせて行うこともできる。
塗布液に用いる溶剤は、紫外線吸収剤を均一に溶解あるいは分散できるものであれば特に限定されない。例えば液状の樹脂を溶剤として用いることができ、その例を挙げると、ポリエステル系、アクリル系、ポリアミド系、ポリウレタン系、ポリオレフィン系、ポリカ−ボネ−ト系又はポリスチレン系等の各種合成樹脂等が挙げられる。また、例えば、ゼラチンやセルロース誘導体等の天然高分子;水、水とエタノール等のアルコール混合溶液等も溶剤として用いることができる。さらに、溶剤として有機溶剤を使用してもよい。有機溶剤を使用すれば、色素や樹脂を溶解又は分散させることが可能となり、塗工性を向上させることが可能となる。なお、溶剤は1種を用いてもよく、2種以上を任意の組み合わせ及び比率で併用しても良い。
塗布液にはさらに界面活性剤も含有させてもよい。界面活性剤の使用により、紫外線吸収色素の樹脂への分散性が向上する。これにより、紫外線吸収層において、微小な泡によるヌケ、異物等の付着による凹み及び/又は乾燥工程でのハジキ等の発生が抑制される。
界面活性剤としては、公知の界面活性剤(カチオン系界面活性剤、アニオン系界面活性剤又はノニオン系界面活性剤)を用いることができる。中でも、シリコン系界面活性剤又はフッ素系界面活性剤が好ましい。なお、界面活性剤は、1種を用いてもよく、2種以上を任意の組み合わせ及び比率で併用しても良い。
なお、塗布液を基材フィルムに塗布した後の乾燥は、例えば熱風乾燥、赤外線ヒーターによる乾燥等の公知の乾燥方法が採用できる。中でも、乾燥速度が速い熱風乾燥が好適である。
紫外線カットフィルム2の具体的な商品の例を挙げると、カットエース(MKVプラスティック株式会社)等が挙げられる。
なお、紫外線カットフィルム2は1種の材料で形成されていてもよく、2種以上の材料
で形成されていてもよい。また、紫外線カットフィルム2は単層フィルムにより形成されていてもよいが、2層以上のフィルムを備えた積層フィルムであってもよい。
紫外線カットフィルム2の厚みは特に規定されないが、通常5μm以上、好ましくは10μm以上、より好ましくは15μm以上であり、また、通常200μm以下、好ましくは180μm以下、より好ましくは150μm以下である。厚みを厚くすることで紫外線の吸収が高まる傾向にあり、薄くすることで可視光の透過率を増加させられる傾向にある。
紫外線カットフィルム2は、太陽電池素子6の受光面6aの少なくとも一部を覆う位置に設ければよいが、好ましくは太陽電池素子6の受光面6aの全てを覆う位置に設ける。
ただし、太陽電池素子6の受光面6aを覆う位置以外の位置にも紫外線カットフィルム2が設けられていてもよい。
[ガスバリアフィルム3]
ガスバリアフィルム3は水及び酸素の透過を防止するフィルムである。
太陽電池素子6は湿気及び酸素に弱い傾向があり、特に、ZnO:Al等の透明電極や、化合物半導体系太陽電池素子及び有機太陽電池素子が水分及び酸素により劣化することがある。そこで、ガスバリアフィルム3で太陽電池素子6を被覆することにより、太陽電池素子6を水及び酸素から保護し、発電能力を高く維持することができる。
ガスバリアフィルム3に要求される防湿能力の程度は、太陽電池素子6の種類等に応じて様々である。例えば、太陽電池素子6が化合物半導体系太陽電池素子である場合には、単位面積(1m)の1日あたりの水蒸気透過率が、1×10−1g/m/day以下であることが好ましく、1×10−2g/m/day以下であることがより好ましく、1×10−3g/m/day以下であることが更に好ましく、1×10−4g/m/day以下であることが中でも好ましく、1×10−5g/m/day以下であることがとりわけ好ましく、1×10−6g/m/day以下であることが特に好ましい。
また、太陽電池素子6が有機太陽電池素子である場合には、単位面積(1m)の1日あたりの水蒸気透過率が、1×10−1g/m/day以下であることが好ましく、1×10−2g/m/day以下であることがより好ましく、1×10−3g/m/day以下であることが更に好ましく、1×10−4g/m/day以下であることが中でも好ましく、1×10−5g/m/day以下であることがとりわけ好ましく、1×10−6g/m/day以下であることが特に好ましい。水蒸気が透過しなければしないほど、太陽電池素子6及び当該素子6のZnO:Al等の透明電極の水分との反応に起因する劣化が抑えられるので、発電効率が上がると共に寿命が延びる。
ガスバリアフィルム3に要求される酸素透過性の程度は、太陽電池素子6の種類等に応じて様々である。例えば、太陽電池素子6が化合物半導体系太陽電池素子である場合には、単位面積(1m)の1日あたりの酸素透過率が、1×10−1cc/m/day/atm以下であることが好ましく、1×10−2cc/m/day/atm以下であることがより好ましく、1×10−3cc/m/day/atm以下であることが更に好ましく、1×10−4cc/m/day/atm以下であることが中でも好ましく、1×10−5cc/m/day/atm以下であることがとりわけ好ましく、1×10−6cc/m/day/atm以下であることが特に好ましい。また、例えば、太陽電池素子6が有機太陽電池素子である場合には、単位面積(1m)の1日あたりの酸素透過率が、1×10−1cc/m/day/atm以下であることが好ましく、1×10−2cc/m/day/atm以下であることがより好ましく、1×10−3cc/m/day/atm以下であることが更に好ましく、1×10−4cc/m/day/atm以下であることが中でも好ましく、1×10−5cc/m/day/atm以下であることがとりわけ好ましく、1×10−6cc/m/day/atm以下であること
が特に好ましい。酸素が透過しなければしないほど、太陽電池素子6及び当該素子6のZnO:Al等の透明電極の酸化による劣化が抑えられる。
従来はこのように高い防湿及び酸素遮断能力を有するガスバリアフィルム3の実装が困難であったため、化合物半導体系太陽電池素子及び有機太陽電池素子のように優れた太陽電池素子を備えた太陽電池を実現することが困難であったが、このようなガスバリアフィルム3を適用することにより化合物半導体系太陽電池素子及び有機太陽電池素子等の優れた性質を活かした薄膜太陽電池14の実施が容易となる。
また、ガスバリアフィルム3は、太陽電池素子6の光吸収を妨げない観点から可視光を透過させるものが好ましい。例えば、可視光(波長360〜830nm)の光の透過率は、通常60%以上、好ましくは70%以上、より好ましくは75%以上、更に好ましくは80%以上、中でも好ましくは85%以上、とりわけ好ましくは90%以上、特に好ましくは95%以上、その中でも特に好ましくは97%以上である。太陽光をより多く電気エネルギーに変換するためである。
さらに、薄膜太陽電池14は光を受けて熱せられることが多いため、ガスバリアフィルム3も熱に対する耐性を有することが好ましい。この観点から、ガスバリアフィルム3の構成材料の融点は、通常100℃以上、好ましくは120℃以上、より好ましくは130℃以上であり、また、通常350℃以下、好ましくは320℃以下、より好ましくは300℃以下である。融点を高くすることで薄膜太陽電池14の使用時にガスバリアフィルム3が融解・劣化する可能性を低減できる。
ガスバリアフィルム3の具体的な構成は、太陽電池素子6を水から保護できる限り任意である。ただし、ガスバリアフィルム3を透過しうる水蒸気や酸素の量を少なくできるフィルムほど製造コストが高くなるため、これらの点を総合的に勘案して適切なものを使用することが好ましい。
以下、ガスバリアフィルム3の構成について、例を挙げて説明する。
ガスバリアフィルム3の構成として好ましいものは以下の2例が挙げられる。
一つ目の例は、プラスチックフィルム基材に無機バリア層を配置したフィルムである。この際、無機バリア層は、プラスチックフィルム基材の片面のみに形成してもよいし、プラスチックフィルム基材の両面に形成してもよい。両面に形成するときは、両面に形成する無機バリア層の数が、それぞれ一致していていもよく、異なっていてもよい。
二つ目の例は、プラスチックフィルム基材に、無機バリア層とポリマー層とが互いに隣接して配置された2層からなるユニット層が形成されたフィルムである。この際、無機バリア層とポリマー層とが互いに隣接して配置された2層からなるユニット層を1単位として、このユニット層が1単位(無機バリア層1層とポリマー層1層を合わせて1単位の意味)のみを形成しても良いが、2単位以上形成しても良い。例えば2〜5単位、積層してもよい。
ユニット層は、プラスチックフィルム基材の片面のみに形成してもよいし、プラスチックフィルム基材の両面に形成してもよい。両面に形成するときは、両面に形成する無機バリア層及びポリマー層の数が、それぞれ一致していていもよく、異なっていてもよい。また、プラスチックフィルム基材上にユニット層を形成する場合、無機バリア層を形成してからその上にポリマー層を形成してもよいし、ポリマー層を形成してから無機バリア層を形成してもよい。
(プラスチックフィルム基材)
ガスバリアフィルム3に使用されるプラスチックフィルム基材は、上記の無機バリア層及びポリマー層を保持しうるフィルムであれば特に制限はなく、ガスバリアフィルム3の使用目的等から適宜選択することができる。
プラスチックフィルム基材の材料の例を挙げると、ポリエステル樹脂、ポリアリレート樹脂、ポリエーテルスルホン樹脂、フルオレン環変性ポリカーボネート樹脂、脂環変性ポリカーボネート樹脂又はアクリロイル化合物が挙げられる。また、スピロビインダン、スピロビクロマンを含む縮合ポリマーを用いるのも好ましい。ポリエステル樹脂の中でも、二軸延伸を施したポリエチレンテレフタレート(PET)又は同じく二軸延伸したポリエチレンナフタレート(PEN)は、熱的寸度安定性に優れるため、プラスチックフィルム基材として好ましく用いられる。
なおプラスチックフィルム基材の材料は、1種を用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
プラスチックフィルム基材の厚みは特に規定されないが、通常10μm以上、好ましくは15μm以上、より好ましくは20μm以上であり、また、通常200μm以下、好ましくは180μm以下、より好ましくは150μm以下である。厚みを厚くすることで機械的強度が高まる傾向にあり、薄くすることで柔軟性が高まる傾向にある。
プラスチックフィルム基材は、太陽電池素子6の光吸収を妨げない観点から可視光を透過させるものが好ましい。例えば、可視光(波長360〜830nm)の光の透過率は、通常60%以上、好ましくは70%以上、より好ましくは75%以上、更に好ましくは80%以上、中でも好ましくは85%以上、とりわけ好ましくは90%以上、特に好ましくは95%以上、その中でも特に好ましくは97%以上である。太陽光をより多く電気エネルギーに変換するためである。
プラスチックフィルム基材には、無機バリア層との密着性向上のため、アンカーコート剤の層(アンカーコート層)を形成してもよい。通常、アンカーコート層はアンカーコート剤を塗布して形成される。アンカーコート剤としては、例えば、ポリエステル樹脂、ウレタン樹脂、アクリル樹脂、オキサゾリン基含有樹脂、カルボジイミド基含有樹脂、エポキシ基含有樹脂、イソシアネート含有樹脂及びこれらの共重合体等が挙げられる。中でも、ポリエステル樹脂、ウレタン樹脂及びアクリル樹脂の中から選ばれる少なくとも1種類以上の樹脂と、オキサゾリン基含有樹脂、カルボジイミド基含有樹脂、エポキシ基含有樹脂及びイソシアネート基含有樹脂の中から選ばれる少なくとも1種類以上の樹脂とを組み合わせたものが好ましい。なお、アンカーコート剤は、1種を用いてもよく、2種以上を任意の組み合わせ及び比率で併用しても良い。
アンカーコート層の厚さは、通常0.005μm以上、好ましくは0.01μm以上であり、通常5μm以下、好ましくは1μm以下である。この範囲の上限値以下の厚さであれば滑り性が良好であり、アンカーコート層自体の内部応力によるプラスチックフィルム基材からの剥離もほとんどない。また、この範囲の下限値以上の厚さであれば、均一な厚さを保つことができ好ましい。
また、プラスチックフィルム基材へのアンカーコート剤の塗布性、接着性を改良するため、アンカーコート剤の塗布前に、プラスチックフィルム基材に通常の化学処理、放電処理等の表面処理を施してもよい。
(無機バリア層)
無機バリア層は通常は金属酸化物、窒化物もしくは酸化窒化物により形成される層である。なお、無機バリア層を形成する金属酸化物、窒化物及び酸化窒化物は、1種でもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
金属酸化物としては、例えば、Si、Al、Mg、In、Ni、Sn、Zn、Ti、Cu、Ce又はTa等の酸化物が挙げられる。中でも、高いバリア性と高透明性とを両立させるために、酸化アルミニウム又は酸化珪素を含むことが好ましく、特に水分の透過性、光線透過性の観点から、酸化珪素を含むことが好ましい。
各々の金属原子と酸素原子との比率も任意であるが、無機バリア層の透明度を向上させ着色を防ぐためには、酸素原子の比率が酸化物の化学量論的な比率から極端に少なくないことが望ましい。一方、無機バリア層の緻密性を向上させバリア性を高くするためには、酸素原子を少なくすることが望ましい。この観点から、例えば金属酸化物としてSiOを用いる場合には前記xの値は1.5〜1.8が特に好ましい。また、例えば金属酸化物としてAlOを用いる場合には前記xの値は1.0〜1.4が特に好ましい。
また、2種以上の金属酸化物より無機バリア層を構成する場合、金属酸化物としては酸化アルミニウム及び酸化珪素を含むことが望ましい。中でも無機バリア層が酸化アルミニウム及び酸化珪素からなる場合、無機バリア層中のアルミニウムとケイ素との比率は任意に設定することができるが、Si/Alの比率は、通常1/9以上、好ましくは2/8以上であり、また、通常9/1以下、好ましくは2/8以下である。
無機バリア層の厚みを厚くするとバリア性が高まる傾向にあるが、曲げた際にクラックを生じにくくし割れを防ぐためには、厚みを薄くすることが望ましい。そこで無機バリア層の適正な厚みとしては、通常5nm以上、好ましくは10nm以上であり、また、通常1000nm以下、好ましくは200nm以下である。
無機バリア層の成膜方法に制限は無いが、一般的にスパッタリング法、真空蒸着法、イオンプレーティング法、プラズマCVD法等で行うことができる。例えばスパッタリング法では1種類のあるいは複数の金属ターゲットと酸素ガスを原料とし、プラズマを用いた反応性スパッタ方式で形成することができる。
(ポリマー層)
ポリマー層にはいずれのポリマーでも使用することができ、例えば真空チャンバー内で成膜できるものも用いることができる。なお、ポリマー層を構成するポリマーは、1種を用いてもよく、2種以上を任意の組み合わせ及び比率で併用しても良い。
前記ポリマーを与える化合物としては多種多様なものを用いることができるが、例えば以下の(i)〜(vii)のようなものが例示される。なお、モノマーは1種を用いてもよく、2種以上を任意の組み合わせ及び比率で併用しても良い。
(i)例えばヘキサメチルジシロキサン等のシロキサンが挙げられる。ヘキサメチルジシロキサンを用いる場合のポリマー層の形成方法の例を挙げると、RF電極を用いた平行平板型のプラズマ装置にヘキサメチルジシロキサンを蒸気として導入し、プラズマ中で重合反応を起こさせ、プラスチックフィルム基材上に堆積させることでポリマー層をポリシロキサン薄膜として形成できる。
(ii)例えばジパラキシリレン等のパラキシリレンが挙げられる。ジパラキシリレンを用いる場合のポリマー層の形成方法の例を挙げると、まず高真空中でジパラキシリレンの蒸気を650℃〜700℃で加熱することで熱分解させて熱ラジカルを発生させる。そして、そのラジカルモノマー蒸気をチャンバー内に導いて、プラスチックフィルム基材への吸着させると同時にラジカル重合反応を進行させてポリパラキシリレンを堆積させることでポリマー層を形成できる。
(iii)例えば二種のモノマーを交互に繰り返し付加重合させることができるモノマーが挙げられる。これにより得られるポリマーは重付加ポリマーである。重付加ポリマーとしては、例えば、ポリウレタン(ジイソシアナート/グリコール)、ポリ尿素(ジイソ
シアナート/ジアミン)、ポリチオ尿素(ジチオイソシアナート/ジアミン)、ポリチオエーテルウレタン(ビスエチレンウレタン/ジチオール)、ポリイミン(ビスエポキシ/第一アミン)、ポリペプチドアミド(ビスアゾラクトン/ジアミン)又はポリアミド(ジオレフィン/ジアミド)等が挙げられる。
(iv)例えばアクリレートモノマーが挙げられる。アクリレートモノマーには単官能、2官能又は多官能のアクリレートモノマーがあるが、いずれを用いてもよい。ただし、適切な蒸発速度、硬化度及び/又は硬化速度等を得るために、前記のアクリレートモノマーを2種以上組み合わせて併用することが好ましい。
また、単官能アクリレートモノマーとしては、例えば脂肪族アクリレートモノマー、脂環式アクリレートモノマー、エーテル系アクリレートモノマー、環状エーテル系アクリレートモノマー、芳香族系アクリレートモノマー、水酸基含有アクリレートモノマー又はカルボキシ基含有アクリレートモノマー等があるが、いずれも用いることができる。
(v)例えばエポキシ系やオキセタン系等の、光カチオン硬化ポリマーが得られるモノマーが挙げられる。エポキシ系モノマーとしては、例えば、脂環式エポキシ系モノマー、2官能性モノマー又は多官能性オリゴマー等が挙げられる。また、オキセタン系モノマーとしては、例えば、単官能オキセタン、2官能オキセタン又はシルセスキオキサン構造を有するオキセタン等が挙げられる。
(vi)例えば酢酸ビニルが挙げられる。モノマーとして酢酸ビニルを用いると、その重合体をケン化することでポリビニルアルコールが得られ、このポリビニルアルコールをポリマーとして使用できる。
(vii)例えば、アクリル酸、メタクリル酸、エタクリル酸、フマル酸、マレイン酸、イタコン酸、マレイン酸モノメチル、マレイン酸モノエチル、無水マレイン酸又は無水イタコン酸等の不飽和カルボン酸等が挙げられる。これらは、エチレンとの共重合体を構成させ、この共重合体をポリマーとして使用できる。さらに、これらの混合物、あるいはグリシジルエーテル化合物を混合した混合物、さらにはエポキシ化合物との混合物もポリマーとして用いることができる。
前記のモノマーを重合してポリマーを生成させる際、モノマーの重合方法に制限は無い。ただし、通常は、モノマーを含む組成物を塗布又は蒸着して成膜した後で重合を行うようにする。重合方法の例を挙げると、熱重合開始剤を用いたときはヒーター等による接触加熱又は赤外線若しくはマイクロ波等の放射加熱等により重合を開始させる。また、光重合開始剤を用いたときは活性エネルギー線を照射して重合を開始させる。活性エネルギー線を照射する場合には様々な光源を使用することができ、例えば、水銀アークランプ、キセノンアークランプ、蛍光ランプ、炭素アークランプ、タングステンーハロゲン輻射ランプ又は日光による照射光等を用いることができる。また、電子線照射や大気圧プラズマ処理を行うこともできる。
ポリマー層の形成方法は、例えば、塗布法、真空成膜法等が挙げられる。
塗布法でポリマー層を形成する場合、例えば、ロールコート、グラビアコート、ナイフコート、ディップコート、カーテンフローコート、スプレーコート、バーコート等の方法を用いることができる。また、ポリマー層形成用の塗布液をミスト状で塗布するようにしてもよい。この場合の液滴の平均粒径は適切な範囲に調整すればよく、例えば重合性モノマーを含有する塗布液をミスト状でプラスチックフィルム基材上に成膜して形成する場合には、液滴の平均粒径は通常5μm以下、好ましくは1μm以下である。
他方、真空成膜法でポリマー層を形成する場合、例えば、蒸着やプラズマCVD等の成膜方法が挙げられる。
ポリマー層の厚みについては特に限定はないが、通常10nm以上であり、また、通常5000nm以下、好ましくは2000nm以下、より好ましくは1000nm以下である。ポリマー層の厚みを厚くすることで、厚みの均一性が得やすくなり無機バリア層の構造欠陥を効率よくポリマー層で埋めることができ、バリア性が向上する傾向にある。また、ポリマー層の厚みを薄くする事で、曲げ等の外力によりポリマー層自身がクラックを発生しにくくなるためバリア性が向上しうる。
中でも好適なガスバリアフィルム3としては、例えば、ポリエチレンテレフタレート(PET)或いはポリエチレンナフタレート(PEN)等の基材フィルムにSiOを真空蒸着したフィルム等が挙げられる。
なお、ガスバリアフィルム3は1種の材料で形成されていてもよく、2種以上の材料で形成されていてもよい。また、ガスバリアフィルム3は単層フィルムにより形成されていてもよいが、2層以上のフィルムを備えた積層フィルムであってもよい。
ガスバリアフィルム3の厚みは特に規定されないが、通常5μm以上、好ましくは10μm以上、より好ましくは15μm以上であり、また、通常200μm以下、好ましくは180μm以下、より好ましくは150μm以下である。厚みを厚くすることでガスバリア性が高まる傾向にあり、薄くすることで柔軟性が高まりまた可視光の透過率が向上する傾向にある。
ガスバリアフィルム3は、太陽電池素子6を被覆して湿気及び酸素から保護できればその形成位置に制限は無いが、太陽電池素子6の正面(受光面側の面。図2では下側の面)及び背面(受光面とは反対側の面。図2では上側の面)を覆うことが好ましい。薄膜太陽電池14においてはその正面及び背面が他の面よりも大面積に形成されることが多いためである。本実施形態ではガスバリアフィルム3が太陽電池素子6の正面を覆い、後述するガスバリアフィルム9が太陽電池素子6の背面を覆うようになっている。そして、ガスバリアフィルム3、9の縁部をシール材11でシールし、ガスバリアフィルム3、9及びシール材11で囲まれた空間内に太陽電池素子6を納めることにより、太陽電池素子6を湿気及び酸素から保護できるようになっている。なお、後述するバックシート10としてアルミ箔の両面にフッ素系樹脂フィルムを接着したシート等の防水性の高いシートを用いる場合は、用途によりゲッター材フィルム8及び/又はガスバリアフィルム9を用いなくてもよい。
[ゲッター材フィルム4]
ゲッター材フィルム4は水分及び/又は酸素を吸収するフィルムである。太陽電池素子6の構成部品のなかには前記のように水分で劣化するものがあり、また、酸素によって劣化するものもある。そこで、ゲッター材フィルム4で太陽電池素子6を覆うことにより、太陽電池素子6等を水分及び/又は酸素から保護し、発電能力を高く維持するようにしている。
ここで、ゲッター材フィルム4は前記のようなガスバリアフィルム3とは異なり、水分の透過を妨げるものではなく、水分を吸収するものである。水分を吸収するフィルムを用いることにより、ガスバリアフィルム3等で太陽電池素子6を被覆した場合に、ガスバリアフィルム3、9及びシール材11で形成される空間に僅かに浸入する水分をゲッター材フィルム4が捕捉して水分による太陽電池素子6への影響を排除できる。
ゲッター材フィルム4の水分吸収能力の程度は、通常0.1mg/cm以上、好ましくは0.5mg/cm以上、より好ましくは1mg/cm以上である。この数値が高いほど水分吸収能力が高く太陽電池素子6の劣化を抑制しうる。また、上限に制限は無いが、通常10mg/cm以下である。
また、ゲッター材フィルム4が酸素を吸収することにより、ガスバリアフィルム3、9等で太陽電池素子6を被覆した場合に、ガスバリアフィルム3、9及びシール材11で形成される空間に僅かに浸入する酸素をゲッター材フィルム4が捕捉して酸素による太陽電池素子6への影響を排除できる。
さらに、ゲッター材フィルム4は、太陽電池素子6の光吸収を妨げない観点から可視光を透過させるものが好ましい。例えば、可視光(波長360〜830nm)の光の透過率は、通常60%以上、好ましくは70%以上、より好ましくは75%以上、更に好ましくは80%以上、中でも好ましくは85%以上、とりわけ好ましくは90%以上、特に好ましくは95%以上、その中でも特に好ましくは97%以上である。太陽光をより多く電気エネルギーに変換するためである。
さらに、薄膜太陽電池14は光を受けて熱せされることが多いため、ゲッター材フィルム4も熱に対する耐性を有することが好ましい。この観点から、ゲッター材フィルム4の構成材料の融点は、通常100℃以上、好ましくは120℃以上、より好ましくは130℃以上であり、また、通常350℃以下、好ましくは320℃以下、より好ましくは300℃以下である。融点を高くすることで薄膜太陽電池14の使用時にゲッター材フィルム4が融解・劣化する可能性を低減できる。
ゲッター材フィルム4を構成する材料は、水分及び/又は酸素を吸収することができるものであれば任意である。その材料の例を挙げると、水分を吸収する物質としてアルカリ金属、アルカリ土類金属又はアルカリ土類金属の酸化物;アルカリ金属又はアルカリ土類金属の水酸化物;シリカゲル、ゼオライト系化合物、硫酸マグネシウム、硫酸ナトリウム又は硫酸ニッケル等の硫酸塩;アルミニウム金属錯体又はアルミニウムオキサイドオクチレート等の有機金属化合物等が挙げられる。具体的には、アルカリ土類金属としては、Ca、Sr又はBa等が挙げられる。アルカリ土類金属の酸化物としては、CaO、SrO又はBaO等が挙げられる。その他にZr−Al−BaOやアルミニウム金属錯体等も挙げられる。具体的な商品名を挙げると、例えば、OleDry(双葉電子社製)等が挙げられる。
酸素を吸収する物質としては、活性炭、シリカゲル、活性アルミナ、モレキュラーシーブ、酸化マグネシウム又は酸化鉄等が挙げられる。またFe、Mn、Zn、及びこれら金属の硫酸塩・塩化物塩・硝酸塩等の無機塩も挙げられる。
なお、ゲッター材フィルム4は1種の材料で形成されていてもよく、2種以上の材料で形成されていてもよい。また、ゲッター材フィルム4は単層フィルムにより形成されていてもよいが、2層以上のフィルムを備えた積層フィルムであってもよい。
ゲッター材フィルム4の厚みは特に規定されないが、通常5μm以上、好ましくは10μm以上、より好ましくは15μm以上であり、また、通常200μm以下、好ましくは180μm以下、より好ましくは150μm以下である。厚みを厚くすることで機械的強度が高まる傾向にあり、薄くすることで柔軟性が高まる傾向にある。
ゲッター材フィルム4は、ガスバリアフィルム3、9及びシール材11で形成される空間内であればその形成位置に制限は無いが、太陽電池素子6の正面(受光面側の面。図2では下側の面)及び背面(受光面とは反対側の面。図2では上側の面)を覆うことが好ましい。薄膜太陽電池14においてはその正面及び背面が他の面よりも大面積に形成されることが多いため、これらの面を介して水分及び酸素が浸入する傾向があるからである。この観点から、ゲッター材フィルム4はガスバリアフィルム3と太陽電池素子6との間に設けることが好ましい。本実施形態ではゲッター材フィルム4が太陽電池素子6の正面を覆い、後述するゲッター材フィルム8が太陽電池素子6の背面を覆い、ゲッター材フィルム4、8がそれぞれ太陽電池素子6とガスバリアフィルム3、9との間に位置するようにな
っている。なお、後述するバックシート10としてアルミ箔の両面にフッ素系樹脂フィルムを接着したシート等防水性の高いシートを用いる場合は、用途によりゲッター材フィルム8及び/又はガスバリアフィルム9を用いなくてもよい。
ゲッター材フィルム4は吸水剤又は乾燥剤の種類に応じて任意の方法で形成することができるが、例えば、吸水剤又は乾燥剤を分散したフィルムを粘着剤で添付する方法、吸水剤又は乾燥剤の溶液をスピンコート法、インクジェット法又はディスペンサー法等で塗布する方法等を用いることができる。また真空蒸着法やスパッタリング法等の成膜法を使用してもよい。
吸水剤又は乾燥剤のためのフィルムとしては、例えば、ポリエチレン系樹脂、ポリプロピレン系樹脂、環状ポリオレフィン系樹脂、ポリスチレン系樹脂、アクリロニトリル−スチレン共重合体(AS樹脂)、アクリロニトリル−ブタジエン−スチレン共重合体(ABS樹脂)、ポリ塩化ビニル系樹脂、フッ素系樹脂、ポリ(メタ)アクリル系樹脂又はポリカーボネート系樹脂等を用いることができる。中でも、ポリエチレン系樹脂、フッ素系樹脂、環状ポリオレフィン系樹脂又はポリカーボネート系樹脂のフィルムが好ましい。なお、前記樹脂は1種を用いてもよく、2種以上を任意の組み合わせ及び比率で併用しても良い。
[封止材5]
封止材5は、太陽電池素子6を補強するフィルムである。太陽電池素子6は薄いため通常は強度が弱く、ひいては薄膜太陽電池の強度が弱くなる傾向があるが、封止材5により強度を高く維持することが可能である。
また、封止材5は、薄膜太陽電池14の強度保持の観点から強度が高いことが好ましい。
具体的強度については、封止材5以外の耐候性保護フィルム1やバックシート10の強度とも関係することになり一概には規定しにくいが、薄膜太陽電池14全体が良好な曲げ加工性を有し、折り曲げ部分の剥離を生じないような強度を有するのが望ましい。
また、封止材5は、太陽電池素子6の光吸収を妨げない観点から可視光を透過させるものが好ましい。例えば、可視光(波長360〜830nm)の光の透過率は、通常60%以上、好ましくは70%以上、より好ましくは75%以上、更に好ましくは80%以上、中でも好ましくは85%以上、とりわけ好ましくは90%以上、特に好ましくは95%以上、その中でも特に好ましくは97%以上である。太陽光をより多く電気エネルギーに変換するためである。
さらに、薄膜太陽電池14は光を受けて熱せられることが多いため、封止材5も熱に対する耐性を有することが好ましい。この観点から、封止材5の構成材料の融点は、通常100℃以上、好ましくは120℃以上、より好ましくは130℃以上であり、また、通常350℃以下、好ましくは320℃以下、より好ましくは300℃以下である。融点を高くすることで薄膜太陽電池14の使用時に封止材5が融解・劣化する可能性を低減できる。
封止材5の厚みは特に規定されないが、通常100μm以上、好ましくは150μm以上、より好ましくは200μm以上であり、また、通常700μm以下、好ましくは600μm以下、より好ましくは500μm以下である。厚みを厚くすることで薄膜太陽電池14全体の強度が高まる傾向にあり、薄くすることで柔軟性が高まりまた可視光の透過率が向上する傾向にある。
封止材5を構成する材料としては、例えば、エチレン−酢酸ビニル共重合体(EVA)
樹脂組成物をフィルムにしたもの(EVAフィルム)等を用いることができる。EVAフィルムには通常は耐候性の向上のために架橋剤を配合して架橋構造を構成させる。この架橋剤としては、一般に、100℃以上でラジカルを発生する有機過酸化物が用いられる。このような有機過酸化物としては、例えば、2,5−ジメチルヘキサン、2,5−ジハイドロパーオキサイド、2,5−ジメチル−2,5−ジ(t−ブチルパーオキシ)ヘキサン又は3−ジ−t−ブチルパーオキサイド等を用いることができる。これらの有機過酸化物の配合量は、EVA樹脂100重量部に対して、通常5重量部以下、好ましくは3重量部以下であり、通常1重量部以上である。なお、架橋剤は1種を用いてもよく、2種以上を任意の組み合わせ及び比率で併用しても良い。
このEVA樹脂組成物には、接着力向上の目的で、シランカップリング剤を含有させてもよい。この目的に供されるシランカップリング剤としては、例えば、γ−クロロプロピルトリメトキシシラン、ビニルトリクロロシラン、ビニルトリエトキシシラン、ビニル−トリス−(β−メトキシエトキシ)シラン、γ−メタクリロキシプロピルトリメトキシシラン又はβ−(3,4−エトキシシクロヘキシル)エチルトリメトキシシラン等を挙げることができる。これらのシランカップリング剤の配合量は、EVA樹脂100重量部に対して、通常5重量部以下、好ましくは2重量部以下であり、通常0.1重量部以上である。なお、シランカップリング剤は1種を用いてもよく、2種以上を任意の組み合わせ及び比率で併用しても良い。
更に、EVA樹脂のゲル分率を向上させ、耐久性を向上するために、EVA樹脂組成物に架橋助剤を含有させてもよい。この目的に供される架橋助剤としては、例えば、トリアリルイソシアヌレート又はトリアリルイソシアネート等の3官能の架橋助剤等の単官能の架橋助剤等が挙げられる。これらの架橋助剤の配合量は、EVA樹脂100重量部に対して、通常10重量部以下、好ましくは5重量部以下であり、また、通常1重量部以上である。なお、架橋助剤は1種を用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
更に、EVA樹脂の安定性を向上する目的で、EVA樹脂組成物に、例えばハイドロキノン、ハイドロキノンモノメチルエーテル、p−ベンゾキノン又はメチルハイドロキノンなどを含有させてもよい。これらの配合量は、EVA樹脂100重量部に対して、通常5重量部以下である。
しかし、EVA樹脂の架橋処理には1〜2時間程度の比較的長時間を要するため、薄膜太陽電池14の生産速度及び生産効率を低下させる原因となる場合がある。また、長期間使用の際には、EVA樹脂組成物の分解ガス(酢酸ガス)又はEVA樹脂自体が有する酢酸ビニル基が、太陽電池素子6に悪影響を与えて発電効率が低下させる場合がある。
そこで、封止材5としては、EVAフィルムの他に、プロピレン・エチレン・α−オレフィン共重合体からなる共重合体のフィルムを用いることもできる。この共重合体としては、例えば、下記成分1及び成分2が配合された熱可塑性樹脂組成物が挙げられる。
・成分1:プロピレン系重合体が、通常0重量部以上、好ましくは10重量部以上であり、また、通常70重量部以下、好ましくは50重量部以下である。
・成分2:軟質プロピレン系共重合体が、30重量部以上、好ましくは50重量部以上であり、また、通常100重量部以下、好ましくは90重量部以下である。
なお、成分1及び成分2の合計量は100重量部である。上記のように、成分1および成分2が好ましい範囲にあると、封止材5のシートへの成形性が良好であるとともに、得られる封止材5の耐熱性、透明性及び柔軟性が良好となり、薄膜太陽電池14に好適である。
上記の成分1及び成分2が配合された熱可塑性樹脂組成物は、メルトフローレート(A
STM D 1238、230度、荷重2.16kg)が、通常0.0001g/10分以上であり、また、通常1000g/10分以下、好ましくは900g/10分以下、より好ましくは800g/10分以下である。
成分1及び成分2が配合された熱可塑性樹脂組成物の融点は、通常100℃以上、好ましくは110℃以上である。また通常140℃以下、好ましくは135℃以下である。
また成分1及び成分2が配合された熱可塑性樹脂組成物の密度は、0.98g/cm以下が好ましく、0.95g/cm以下がより好ましく、0.94g/cm以下がさらに好ましい。
この封止材5においては、上記成分1及び成分2に、プラスチック等に対する接着促進剤としてカップリング剤を配合することが可能である。カップリング剤は、シラン系、チタネート系、クロム系の各カップリング剤が好ましく用いられ、特にシラン系のカップリング剤(シランカップリング剤)が好適に用いられる。
上記シランカップリング剤としては公知のものが使用でき、特に制限はないが、例えば、ビニルトリエトキシシラン、ビニルトリメトキシシラン、ビニルトリス(β−メトキシーエトキシシラン)、γ−グリシドキシプロピルートリピルトリーメトキシシラン又はγ−アミノプロピルトリエトキシシラン等が挙げられる。なお、カップリング剤は1種を用いてもよく、2種以上を任意の組み合わせ及び比率で併用しても良い。
また、これらは熱可塑性樹脂組成物(成分1及び成分2の合計量)100重量部に対して、上記シランカップリング剤を通常0.1重量部以上含み、また、通常5重量部以下、好ましくは3重量部以下含むことが望ましい。
また、上記カップリング剤は、有機過酸化物を用いて、当該熱可塑性樹脂組成物にグラフト反応させてもよい。この場合、熱可塑性樹脂組成物(成分1及び成分2の合計量)100重量部に対して、上記カップリング剤を0.1〜5重量部含むことが望ましい。シラングラフト化された熱可塑性樹脂組成物を用いても、ガラスやプラスチックに対して、シランカップリング剤ブレンドと同等以上の接着性が得られる。
有機過酸化物を用いる場合、有機過酸化物は、熱可塑性樹脂組成物(成分1及び成分2の合計量)100重量部に対して、通常0.001重量部以上、好ましくは0.01重量部以上であり、また、通常5重量部以下、好ましくは3重量部以下である。
また、封止材5としてエチレン・α−オレフィン共重合体からなる共重合体を用いることもできる。この共重合体としては、下記に示す成分A及び成分Bからなる封止材用樹脂組成物と基材とを積層してなる、ホットタック性が5〜25℃のラミネートフィルムが例示される。
・成分A:エチレン系樹脂。
・成分B:以下の(a)〜(d)の性状を有するエチレンとα−オレフィンとの共重合体。
(a)密度が0.86〜0.935g/cm
(b)メルトフローレート(MFR)が1〜50g/10分。
(c)温度上昇溶離分別(TREF)によって得られる溶出曲線のピークが1つであり、かつ該ピーク温度が100℃以下である。
(d)温度上昇溶離分別(TREF)による積分溶出量が、90℃のとき90%以上である。
成分Aと成分Bとの配合割合(成分A/成分B)は、重量比で、通常50/50以上、好ましくは55/45以上、より好ましくは60/40以上であり、また、通常99/1以下、好ましくは90/10以下、より好ましくは85/15以下である。成分Bの配合
量を多くすることで透明性やヒートシール性が高まる傾向にあり、成分Bの配合量を少なくすることでフィルムの作業性が高まる傾向にある。
成分Aと成分Bを配合して生成される封止材用樹脂組成物のメルトフローレート(MFR)は、通常2g/10分以上、好ましくは3g/10分以上であり、通常50g/10分以下、好ましくは40g/10分以下である。なおMFRの測定と評価は、JIS K7210(190℃、2.16kg荷重)に準拠する方法によって実施することができる。
封止材用樹脂組成物の融点は、好ましくは50℃以上、より好ましくは55℃以上であり、また、通常300℃以下、好ましくは250℃以下、さらに好ましくは200℃以下である。融点を高くすることで薄膜太陽電池14の使用時に融解・劣化する可能性を低減できる。
封止材用樹脂組成物の密度は、0.80g/cm以上が好ましく、0.85g/cm以上がより好ましく、また、0.98g/cm以下が好ましく、0.95g/cm以下がより好ましく、0.94g/cm以下がさらに好ましい。なお、密度の測定と評価は、JIS K7112に準拠する方法によって実施することができる。
さらに、エチレン・α−オレフィン共重合体を用いた封止材5において、前記プロピレン・エチレン・α−オレフィン共重合体を用いた場合と同様に、カップリング剤を用いることが可能である。
上述した封止材5は、材料由来の分解ガスを発生することがないため、太陽電池素子6への悪影響がなく、良好な耐熱性、機械強度、柔軟性(太陽電池封止性)及び透明性を有する。また、材料の架橋工程を必要としないため、シート成形時及び薄膜太陽電池100の製造時間が大きく短縮できるとともに、使用後の薄膜太陽電池14のリサイクルも容易となる。
なお、封止材5は1種の材料で形成されていてもよく、2種以上の材料で形成されていてもよい。また、封止材5は単層フィルムにより形成されていてもよいが、2層以上のフィルムを備えた積層フィルムであってもよい。
封止材5の厚みは、通常2μm以上、好ましくは5μm以上、より好ましくは10μm以上であり、また、通常500μm以下、好ましくは300μm以下、より好ましくは100μm以下である。厚みを厚くすることで機械的強度が高まる傾向にあり、薄くすることで柔軟性が高まりまた光線透過率が高まる傾向にある。
封止材5を設ける位置に制限は無いが、通常は太陽電池素子6を挟み込むように設ける。太陽電池素子6を確実に保護するためである。本実施形態では、太陽電池素子6の正面及び背面にそれぞれ封止材5及び封止材7を設けるようにしている。
[太陽電池素子6]
太陽電池素子6は、前述の光電変換素子と同様である。
・太陽電池素子同士の接続
太陽電池素子6は、薄膜太陽電池14の1個あたり1個だけを設けてもよいが、通常は2個以上の太陽電池素子6を設ける。具体的な太陽電池素子6の個数は任意に設定すればよい。太陽電池素子6を複数設ける場合、太陽電池素子6はアレイ状に並べて設けられていることが多い。
太陽電池素子6を複数設ける場合、通常は、太陽電池素子6同士は電気的に接続され、接続された一群の太陽電池素子6から生じた電気を端子(図示せず)から取り出すようになっていて、この際、電圧を高めるため通常は太陽電池素子は直列に接続される。
このように太陽電池素子6同士を接続する場合には、太陽電池素子6間の距離は小さいことが好ましく、ひいては、太陽電池素子6と太陽電池素子6との間の隙間は狭いことが好ましい。太陽電池素子6の受光面積を広くして受光量を増加させ、薄膜太陽電池14の発電量を増加させるためである。
[封止材7]
封止材7は、上述した封止材5と同様のフィルムであり、配設位置が異なる他は封止材7と同様のものを同様に用いることができる。
また、太陽電池素子6よりも背面側の構成部材は必ずしも可視光を透過させる必要が無いため、可視光を透過させないものを用いることもできる。
[ゲッター材フィルム8]
ゲッター材フィルム8は、上述したゲッター材フィルム4と同様のフィルムであり、配設位置が異なる他はゲッター材フィルム4と同様のものを同様に必要に応じて用いることができる。
また、太陽電池素子6よりも背面側の構成部材は必ずしも可視光を透過させる必要が無いため、可視光を透過させないものを用いることもできる。また使用する水分あるいは酸素吸収剤をゲッター材フィルム4よりも多く含有するフィルムを用いることも可能となる。このような吸収剤としては、水分吸収剤としてCaO、BaO又はZr−Al−BaO等が挙げられ、酸素の吸収剤として活性炭やモレキュラーシーブ等が挙げられる。
[ガスバリアフィルム9]
ガスバリアフィルム9は、上述したガスバリアフィルム3と同様のフィルムであり、配設位置が異なる他はガスバリアフィルム9と同様のものを同様に必要に応じて用いることができる。
また、太陽電池素子6よりも背面側の構成部材は必ずしも可視光を透過させる必要が無いため、可視光を透過させないものを用いることもできる。
[バックシート10]
バックシート10は、上述した耐候性保護フィルム1と同様のフィルムであり、配設位置が異なる他は耐候性保護フィルム1と同様のものを同様に用いることができる。また、このバックシート10が水及び酸素を透過させ難いものであれば、バックシート10をガスバリア層として機能させることも可能である。
また、太陽電池素子6よりも背面側の構成部材は必ずしも可視光を透過させる必要が無いため、可視光を透過させないものを用いることもできる。このため、バックシート10としては、以下に説明するもの(i)〜(iv)を用いることが特に好ましい。
(i)バックシート10としては、強度に優れ、耐候性、耐熱性、耐水性及び/又は耐光性に優れた各種の樹脂のフィルム又はシートを使用することができる。例えば、ポリエチレン系樹脂、ポリプロピレン系樹脂、環状ポリオレフィン系樹脂、ポリスチレン系樹脂、アクリロニトリルースチレン共重合体(AS樹脂)、アクリロニトリルーブタジエンースチレン共重合体(ABS樹脂)、ポリ塩化ビニル系樹脂、フッ素系樹脂、ポリ(メタ)アクリル系樹脂、ポリカーボネート系樹脂、ポリエチレンテレフタレート若しくはポリエチレンナフタレート等のポリエステル系樹脂、各種のナイロン等のポリアミド系樹脂、ポリイミド系樹脂、ポリアミドイミド系樹脂、ポリアリールフタレート系樹脂、シリコーン系樹脂、ポリスルホン系樹脂、ポリフェニレンスルフィド系樹脂、ポリエーテルスルホン系樹脂、ポリウレタン系樹脂、アセタール系樹脂、セルロース系樹脂又はその他等の各種の樹脂のシートを使用することができる。これらの樹脂のシートの中でも、フッ素系樹脂、環状ポリオレフィン系樹脂、ポリカーボネート系樹脂、ポリ(メタ)アクリル系樹脂、ポリアミド系樹脂又はポリエステル系樹脂のシートを使用することが好ましい。なお、こ
れらは1種を用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
(ii)バックシート10としては、金属薄膜を用いることもできる。例えば、腐蝕防止したアルミニウム金属箔、ステンレス製薄膜等が挙げられる。なお、前記の金属は1種を用いてもよく、2種以上を任意の組み合わせ及び比率で併用しても良い。
(iii)バックシート10としては、例えばアルミ箔の両面にフッ素系樹脂フイルムを接着した防水性の高いシートを用いてもよい。フッ素系樹脂としては、例えば、一弗化エチレン(商品名:テドラー、デュポン社製)、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレンとエチレン若しくはプロピレンとのコポリマー(ETFE)、フッ化ビニリデン系樹脂(PVDF)又はフッ化ビニル系樹脂(PVF)等が挙げられる。なお、フッ素系樹脂は1種を用いてもよく、2種以上を任意の組み合わせ及び比率で併用して
も良い。
(iv)バックシート10としては、例えば、基材フィルムの片面又は両面に、無機酸化物の蒸着膜を設け、更に、上記の無機酸化物の蒸着膜を設けた基材フィルムの両面に、耐熱性のポリプロピレン系樹脂フィルムを積層したものを用いてもよい。なお、通常は、基材フィルムにポリプロピレン系樹脂フィルムを積層する場合には、ラミネート用接着剤で張り合わせることで積層する。無機酸化物の蒸着膜を設けることで、水分及び/又は酸素等の侵入を防止する防湿性に優れたバックシート10として使用できる。
・基材フィルム
基材フィルムとしては、基本的には、無機酸化物の蒸着膜等との密接着性に優れ、強度に優れ、耐候性、耐熱性、耐水性、耐光性に優れた各種の樹脂のフィルムを使用することができる。例えば、ポリエチレン系樹脂、ポリプロピレン系樹脂、環状ポリオレフィン系樹脂、ポリスチレン系樹脂、アクリロニトリルースチレン共重合体(AS樹脂)、アクリロニトリルーブタジエンースチレン共重合体(ABS樹脂)、ポリ塩化ビニル系樹脂、フッ素系樹脂、ポリ(メタ)アクリル系樹脂、ポリカーボネート系樹脂、ポリエチレンテレフタレート若しくはポリエチレンナフタレート等のポリエステル系樹脂、各種のナイロン等のポリアミド系樹脂、ポリイミド系樹脂、ポリアミドイミド系樹脂、ポリアリールフタレート系樹脂、シリコーン系樹脂、ポリスルホン系樹脂、ポリフェニレンスルフィド系樹脂、ポリエーテルスルホン系樹脂、ポリウレタン系樹脂、アセタール系樹脂、セルロース系樹脂又はその他等の各種の樹脂のフィルムを使用することができる。中でも、フッ素系樹脂、環状ポリオレフィン系樹脂、ポリカーボネート系樹脂、ポリ(メタ)アクリル系樹脂、ポリアミド系樹脂又はポリエステル系樹脂のフィルムを使用することが好ましい。
上記のような各種の樹脂のフィルムのなかでも、例えば、ポリテトラフルオロエチレン(PTFE)、フッ化ビニリデン系樹脂(PVDF)又はフッ化ビニル系樹脂(PVF)等のフッ素系樹脂のフィルムを使用することがより好ましい。更に、このフッ素系樹脂のフィルムの中でも、特に、ポリフッ化ビニル系樹脂(PVF)又はテトラフルオロエチレンとエチレン若しくはプロピレンとのコポリマー(ETFE)からなるフッ素系樹脂のフィルムが、強度等の観点から特に好ましい。なお、前記樹脂は1種を用いてもよく、2種以上を任意の組み合わせ及び比率で併用しても良い。
また、上記のような各種の樹脂のフィルムのなかでも、シクロペンタジエン及びその誘導体又はシクロヘキサジエン及びその誘導体等の環状ポリオレフィン系樹脂のフィルムを使用することもより好ましい。
基材フィルムの膜厚としては、通常12μm以上、好ましくは20μm以上であり、また、通常300μm以下、好ましくは200μm以下である。
・無機酸化物の蒸着膜
無機酸化物の蒸着膜としては、基本的に金属の酸化物を蒸着した薄膜であれば使用可能である。例えば、ケイ素(Si)やアルミニウム(Al)の酸化物の蒸着膜を使用することができる。この際、酸化ケイ素としては例えばSiO(x=1.0〜2.0)を用いることができ、酸化アルミニウムとしては例えばAlO(x=0.5〜1.5)を用いることができる。
なお、使用する金属及び無機酸化物の種類は1種でもよく、2種以上を任意の組み合わせ及び比率で併用しても良い。
無機酸化物の蒸着膜の膜厚としては、通常50Å以上、好ましくは100Å以上であり、また、通常4000Å以下、好ましくは1000Å以下である。
蒸着膜の作製方法としては、プラズマ化学気相成長法、熱化学気相成長法、光化学気相成長法等の化学気相成長法(Chemical Vapor Deposition法、CVD法)等を用いることができる。具体例を挙げると、基材フィルムの一方の面に、有機珪素化合物等の蒸着用モノマーガスを原料とし、キャリヤーガスとして、アルゴンガス、ヘリウムガス等の不活性ガスを使用し、更に、酸素供給ガスとして、酸素ガス等を使用し、低温プラズマ発生装置等を利用する低温プラズマ化学気相成長法を用いて酸化珪素等の無機酸化物の蒸着膜を形成することができる。
・ポリプロピレン系樹脂フィルム
ポリプロピレン系樹脂としては、例えば、プロピレンの単独重合体又はプロピレンと他のモノマー(例えばα−オレフィン等)との共重合体を使用することができる。また、ポリプロピレン系樹脂としては、アイソタクチック重合体を用いることもできる。
ポリプロピレン系樹脂の融点は通常164℃以上であり、一方、通常170℃以下である。ポリプロピレン系樹脂の比重は通常0.90以上であり、一方、通常0.91以下である。ポリプロピレン系樹脂の分子量は通常10万以上であり、一方、通常20万以下である。
ポリプロピレン系樹脂は、その結晶性により性質が大きく支配されるが、アイソタクチックの高いポリマーは、引っ張り強さ、衝撃強度に優れ、耐熱性、耐屈曲疲労強度を良好であり、かつ、加工性は極めて良好なものである。
・接着剤
基材フィルムにポリプロピレン系樹脂フィルムを積層する場合には、通常はラミネート用接着剤を用いる。これにより、基材フィルムとポリプロピレン系樹脂フィルムとはラミネート用接着剤層を介して積層されることになる。
ラミネート用接着剤層を構成する接着剤としては、例えば、ポリ酢酸ビニル系接着剤、ポリアクリル酸エステル系接着剤、シアノアクリレート系接着剤、エチレン共重合体系接着剤、セルロース系接着剤、ポリエステル系接着剤、ポリアミド系接着剤、ポリイミド系接着剤、アミノ樹脂系接着剤、フェノール樹脂系接着剤、エポキシ系接着剤、ポリウレタン系接着剤、反応型(メタ)アクリル系接着剤又はシリコーン系接着剤等が挙げられる。なお、接着剤は1種を用いてもよく、2種以上を任意の組み合わせ及び比率で併用しても良い。
上記の接着剤の組成系は、水性型、溶液型、エマルジョン型又は分散型等のいずれの組成物形態でもよい。また、その性状は、フィルム・シート状、粉末状、固形状等のいずれの形態でもよい。さらに、接着機構については、化学反応型、溶剤揮発型、熱溶融型又は熱圧型等のいずれの形態でもよいものである。
上記の接着剤は、例えば、ロールコート法、グラビアロールコート法、キスコート法又はその他等のコート法あるいは印刷法等によって施すことができる。そのコーティング量
としては、乾燥状態で通常0.1g/m以上が望ましく、一方、通常10g/m以下が望ましい。
[シール材11]
シール材11は、上述した耐候性保護フィルム1、紫外線カットフィルム2、ガスバリアフィルム3、ゲッター材フィルム4、封止材5、封止材7、ゲッター材フィルム8、ガスバリアフィルム9及びバックシート10の縁部をシールして、これらのフィルムで被覆された空間内に湿気及び酸素が浸入しないようにシールする部材である。
シール材11に要求される防湿能力の程度は、単位面積(1m)の1日あたりの水蒸気透過率が0.1g/m/day以下であることが好ましく、0.05g/m/day以下であることがより好ましい。従来はこのように高い防湿能力を有するシール材11の実装が困難であったため、化合物半導体系太陽電池素子及び有機太陽電池素子のように優れた太陽電池素子を備えた太陽電池を実現することが困難であったが、このようなシール材11を適用することにより化合物半導体系太陽電池素子及び有機太陽電池素子の優れた性質を活かした薄膜太陽電池14の実施が容易となる。
さらに、薄膜太陽電池14は光を受けて熱せされることが多いため、シール材11も熱に対する耐性を有することが好ましい。この観点から、シール材11の構成材料の融点は、通常100℃以上、好ましくは120℃以上、より好ましくは130℃以上であり、また、通常250℃以下、好ましくは200℃以下、より好ましくは180℃以下である。融点が低すぎると薄膜太陽電池14の使用時にシール材11が融解する可能性がある。
シール材11を構成する材料としては、例えば、フッ素系樹脂、シリコーン樹脂、アクリル系樹脂等のポリマーが挙げられる。
なお、シール材11は1種の材料で形成されていてもよく、2種以上の材料で形成されていてもよい。
シール材11は、少なくともガスバリアフィルム3、9の縁部をシールできる位置に設ける。これにより、少なくともガスバリアフィルム3、9及びシール材11で囲まれた空間を密閉し、この空間内に湿気及び酸素が侵入しないようにすることができる。
このシール材11を形成する方法に制限は無いが、例えば、材料を耐候性保護フィルム1とバックシート10との間に注入することにより形成できる。形成方法の具体例を挙げると、以下の方法が挙げられる。
即ち、例えば封止材5の硬化が進行する途中で、半硬化状態の薄膜太陽電池14を前記ラミネート装置から取り出し、太陽電池素子6の外周部であって耐候性保護シート1とバックシート10との間の部分に液状のポリマーを注入し、このポリマーを封止材5と共に硬化させればよい。また、封止材5の硬化が終了した後にラミネート装置から取り出して単独で硬化させてもよい。なお、前記のポリマーを架橋・硬化させるための温度範囲は通常130℃以上、好ましくは140℃以上であり、通常180℃以下、好ましくは170℃以下である。
[寸法等]
本実施形態の薄膜太陽電池14は、通常、膜状の薄い部材である。このように膜状の部材として薄膜太陽電池14を形成することにより、薄膜太陽電池14を建材、自動車又はインテリア等に容易に設置できるようになっている。薄膜太陽電池14は、軽く、割れにくく、従って安全性の高い太陽電池が得られ、また曲面にも適用可能であるため更に多くの用途に使用しうる。薄くて軽いため輸送や保管等流通面でも好ましい。更に、膜状であるためロール・トゥ・ロール式の製造が可能であり大幅なコストカットが可能である。
薄膜太陽電池14の具体的な寸法に制限は無いが、その厚みは、通常300μm以上、好ましくは500μm以上、より好ましくは700μm以上であり、また、通常3000μm以下、好ましくは2000μm以下、より好ましくは1500μm以下である。
[製造方法]
本実施形態の薄膜太陽電池14の製造方法に制限は無いが、例えば、耐候性保護フィルム1とバックシート10との間に、1個又は2個以上の太陽電池素子6を直列又は並列接続したものを、紫外線カットフィルム2、ガスバリアフィルム3、9、ゲッター材フィルム4、8及び封止材5、7と共に一般的な真空ラミネート装置でラミネートすることで製造できる。この際、加熱温度は通常130℃以上、好ましくは140℃以上であり、通常180℃以下、好ましくは170℃以下である。また、加熱時間は通常10分以上、好ましくは20分以上であり、通常100分以下、好ましくは90分以下である。圧力は通常0.001MPa以上、好ましくは0.01MPa以上であり、通常0.2MPa以下、好ましくは0.1MPa以下である。圧力をこの範囲とすることで封止を確実に行い、かつ、端部からの封止材5、7がはみ出しや過加圧による膜厚低減を抑え、寸法安定性を確保しうる。
[用途]
上述した薄膜太陽電池14の用途に制限はなく任意である。例えば、図3に模式的に示すように、何らかの基材12上に薄膜太陽電池14を設けた太陽電池モジュール13を用意し、これを使用場所に設置して用いればよい。具定例を挙げると、基材12として建材用板材を使用した場合、この板材の表面に薄膜太陽電池14を設けて太陽電池モジュール13として太陽電池パネルを作製し、この太陽電池パネルを建物の外壁等に設置して使用すればよい。
基材12は太陽電池素子6を支持する支持部材である。基材12を形成する材料としては、例えば、ガラス、サファイア又はチタニア等の無機材料;ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリエーテルスルホン、ポリイミド、ナイロン、ポリスチレン、ポリビニルアルコール、エチレンビニルアルコール共重合体、フッ素樹脂フィルム、塩化ビニル、ポリエチレン、セルロース、ポリ塩化ビニリデン、アラミド、ポリフェニレンスルフィド、ポリウレタン、ポリカーボネート、ポリアリレート、ポリノルボルネン等の有機材料;紙又は合成紙等の紙材料;ステンレス、チタン又はアルミニウム等の金属に絶縁性を付与するために表面をコート又はラミネートしたもの等の複合材料等が挙げられる。なお、基材の材料は、1種を用いてもよく、2種以上を任意の組み合わせ及び比率で併用しても良い。また、これら有機材料あるいは紙材料に炭素繊維を含ませ、機械的強度を補強させても良い。
本発明の薄膜太陽電池を適用する分野の例を挙げると、建材用太陽電池、自動車用太陽電池、インテリア用太陽電池、鉄道用太陽電池、船舶用太陽電池、飛行機用太陽電池、宇宙機用太陽電池、家電用太陽電池、携帯電話用太陽電池又は玩具用太陽電池等に用いて好適である。具体例として以下のようなものを挙げることができる。
1.建築用途
1.1ハウス屋根材として太陽電池
基材として屋根用板材等を使用した場合、この板材の表面に薄膜太陽電池を設けて太陽電池ユニットとして太陽電池パネルを作製し、この太陽電池パネルをハウスの屋根の上に設置して使用すればよい。また、基材として瓦を直接用いることもできる。本発明の太陽電池が柔軟性を有するという特性を生かし、瓦の曲線に密着させることができるので好適である。
1.2屋上
ビルの屋上に取り付けることもできる。基材上に薄膜太陽電池を設けた太陽電池ユニッ
トを用意し、これをビルの屋上に設置することもできる。この時基材とともに防水シートを併用し、防水作用を有するのが望ましい。さらに、本発明の薄膜太陽電池が柔軟性を有するという特性を生かし、平面ではない屋根、例えば折半屋根に密着させることもできる。この場合も防水シートを併用するのが望ましい。
1.3トップライト
エントランスや吹き抜け部分に外装として本発明の薄膜太陽電池を用いることもできる。何らかのデザイン処理を施されたエントランス等は曲線が用いられている場合が多く、そのような場合において本発明の薄膜太陽電池の柔軟性が生かされる。またエントランス等ではシースルーである場合があり、このような場合には、有機太陽電池の緑色系の色合いが、環境対策が重要視される時代において意匠的な美観も得られるので好適である。
1.4壁
基材として建材用板材を使用した場合、この板材の表面に薄膜太陽電池を設けて太陽電池ユニットとして太陽電池パネルを作製し、この太陽電池パネルを建物の外壁等に設置して使用すればよい。また、カーテンウオールに設置することもできる。その他、スパンドレルや方立等への取り付けも可能である。
この場合、基材の形状に制限はないが、通常は板材を使用する。また、基材の材料、寸法等は、その使用環境に応じて任意に設定すればよい。このような基材の例を挙げると、アルポリック(登録商標;三菱樹脂製)等が挙げられる。
1.5窓
また、シースルーの窓に使用することもできる。有機太陽電池の緑色系の色合いが、環境対策が重要視される時代において意匠的な美観も得られるので好適である。
1.6その他
その他建築の外装としてひさし、ルーバー、手摺等にも使用できる。このような場合においても、本発明の薄膜太陽電池の柔軟性が、これら用途にとり好適である。
2.内装
本発明の薄膜太陽電池はブラインドのスラットに取り付けることもできる。本発明の薄膜太陽電池は軽量であり、柔軟性に富むことから、このような用途が可能となる。また、内容用窓についても有機太陽電池素子がシースルーである特性を生かし使用することができる。
3.野菜工場
蛍光灯等の照明光を活用する植物工場の設置件数は増えているが、照明に掛かる電気代や光源の交換費用等によって栽培コストを引き下げにくいというのが現状である。そこで本発明の薄膜太陽電池を野菜工場に設置し、LED又は蛍光灯と組み合わせた照明システムを作製することができる。
このとき蛍光灯よりも寿命が長いLEDと本発明の太陽電池を組み合わせた照明システムを用いることで、照明に要するコストを現状に比べて30%程度減らせることができるので好適である。
また、野菜等を一定温度で輸送するリーファー・コンテナ (reefer container)の屋根や側壁に本発明の太陽電池を用いることもできる。
4.道路資材・土木
本発明の薄膜太陽電池は、駐車場の外壁や高速道路の遮音壁や浄水場の外壁等にも用いることができる。
5.自動車
本発明の薄膜太陽電池は、自動車のボンネット、ルーフ、トランクリッド、ドア、フロントフェンダー、リアフェンダー、ピラー、バンパー又はバックミラー等の表面に用いることができる。なおルーフとしてはトラック車輌の荷台のルーフも含まれる。得られた電力は走行用モータ、モータ駆動用バッテリー、電装品及び電装品用バッテリーのいずれに供給することができる。太陽電池パネルにおける発電状況と該走行用モータ、該モータ駆動用バッテリー、該電装品及び該電装品用バッテリーにおける電力使用状況とに合わせて選択する制御手段とを備えることで、得られた電力が適正にかつ効率的に使用することができる
前記の場合、基材12の形状に制限はないが、通常は板材を使用する。また、基材12の材料、寸法等は、その使用環境に応じて任意に設定すればよい。
このような基材12の例を挙げると、アルポリック(登録商標;三菱樹脂製)等が挙げられる。
以下に実施例により本発明をさらに具体的に説明するが、本発明はその要旨を超えない限り、以下の例に限定されるものではない。
<合成例1>
POPyの合成
窒素雰囲気下、1−ブロモピレン(東京化成:14g、50mmol)を脱水THF(関東化学:200mL)に溶かし、−78℃に冷却した後、n−BuLi(関東化学:33mL、1.6M)をゆっくり滴下し、−78℃を保持したまま、30min攪拌した。つづいて、ジクロロフェニルホスフィン(東京化成:4.3g、9.0mmol)を滴下し、十分攪拌した後、室温まで昇温し、1.5時間攪拌した。得られた反応溶液にメタノール(純正化学)30mLを加え、得られた粗精製物を、ろ過し、ベンゼンを用いて再結晶することにより、10.7gの目的物を得た。ここで得られた化合物をTHF(純正化学)350mL、CH2Cl2(関東化学)300mL、アセトン(関東化学)100mLに溶かし、過酸化水素水(和光純薬:30%溶液10mL)を加え、室温で30分間攪拌した。反応溶液に水30mLを加え600mLまで濃縮後、ろ過することにより、目的物POPyを7.5g得た。
<合成例2>
F−POPyの合成
窒素雰囲気下、1−ブロモピレン(東京化成:5.6g、20mmol)を脱水THF(関東化学:100mL)に溶かし、−78℃に冷却した後、n−BuLi(関東化学:13mL、1.6M)をゆっくり滴下し、−78℃を保持したまま、45分間攪拌した。つづいて、亜リン酸トリフェニル(和光純薬:3.1g、10mmol)を滴下し、十分攪拌した後、室温まで昇温し、1.5時間攪拌し、再度−78℃まで冷却した。一方、別の反応容器に4−フルオロブロモベンゼン(東京化成:3.5g、20mmol)を脱水THF(50mL)に溶解し、窒素雰囲気下、―78℃の状態で、n−BuLi(関東化学:13mL、1.6M)を加え、30分間攪拌をおこなったのち、最初の容器に滴下し、室温まで昇温し、1時間攪拌した。得られた反応溶液に水20mLを加え、THFを減圧留去し、塩化メチレンを用いて抽出をおこなった。有機層を硫酸マグネシウムを加えて乾燥後、ろ過濃縮し、カラムクロマトグラフィー(展開溶媒:Hexane)を用いて精製することにより、3.7gの目的物を得た。ここで得られた化合物をアセトン(関東化学:150mL)に溶かし、過酸化水素水(和光純薬:30%溶液2mL)を加え、室温で攪拌した。反応溶液に水20mLを加え濃縮後、アセトニトリルで洗浄することにより、目的物F−POPyを1.9g得た。
<合成例3>
60(Ind)の合成
60(Ind)の合成は、特許文献(国際公報第2008/018931号)を参考にして行い、異性体混合物として取得した。GPCで異性体の分離を行い、C60(Ind)を分取精製し、質量分析(APCI法、 negative)により、目的物の質量と一致するm/z:952[M−]を検出した。
<電子取り出し層用有機化合物のガラス転移温度測定>
試料を約4mgアルミニウム製試料容器に入れ、エスアイアイ・ナノテクノロジー株式会社製の示差熱走査熱量分析装置を用いて、Nガス50ml/min、昇温速度10℃/minの条件で測定することにより求めた。電子取り出し層用有機化合物のガラス転移温度(Tg)を表1に記載した。
<実施例1>
電子供与性分子構造を有するレジオレギュラーポリ−3−ヘキシルチオフェン(P3HT、Rieke Metals社製)及び電子受容性分子構造を有する1−(3−メトキシカルボニル)プロピル−1−フェニル(6,6)−C61)(PCBM、フロンティアカーボン社製)を重量比1:0.8で、2.1重量%の濃度でo−ジクロロベンゼンに溶解させた。得られた溶液を、40℃で窒素雰囲気中、4時間スターラーで攪拌混合した。0.45μmのポリテトラフルオロエチレン(PTFE)フィルターで濾過し、活性層塗布液を作製した。
155nmの厚みでインジウム・スズ酸化物(ITO)透明導電膜を堆積したガラス基板を界面活性剤による超音波洗浄、超純水による水洗、超純水による超音波洗浄の順で洗浄後、窒素ブローで乾燥させ、120℃で大気中5分間加熱乾燥した。最後に紫外線オゾン洗浄を行なった。
この透明基板上に、0.45μmのポリフッ化ビニリデン(PVDF)フィルターで濾過したポリ(3,4−エチレンジオキシチオフェン)ポリ(スチレンスルホン酸)水性分散液(エイチ・シー・スタルク社製 商品名「CLEVIOSTM PVP AI4083」)をスピンコートした後、120℃で大気中10分間加熱乾燥した。更に窒素雰囲気下で上記基板を180℃で3分間加熱処理を施した。その膜厚は60nmであった。
窒素雰囲気下でガラス基板上に、前記活性層塗布液をスピンコートで塗布することにより、200nmの厚みの活性層を形成させた。窒素雰囲気中150℃で10分アニーリング処理を行った。その後、抵抗加熱型真空蒸着法により、電子取り出し層として6nmの膜厚のPOPy(合成例1)、次に0.2nmの膜厚のLiF(フルウチ社製)、更に80nmの膜厚のアルミニウムを順次成膜させ、5mm角のバルクヘテロ接合型有機薄膜太陽電池を作製した。
照射光源としてエアマス(AM)1.5G、放射照度100mW/cmのソーラシミュレータを用い、ソースメーター(ケイスレー社製、2400型)により、作製した太陽電池の電流電圧特性を4mm角のメタルマスクを付けて測定した。耐久性試験は基板温度85℃に設定した英弘精機株式会社製屋内太陽電池耐久性試験装置ECL−350で擬似太陽光を連続照射することにより評価した。シャープカットフィルター(シグマ光機製、SCF−39L)ガラスを太陽電池の上に置くことにより、390nm以下の紫外線をカットした。光電変換効率(%)ならびに初期を100%としたときの36時間後の変換効率の維持率を耐久性(%)とし、表2に記載した。
<実施例2>
実施例1において、n型半導体にPCBMの代わりに、合成例3で得られたC60(Ind)を用いた以外は、同様にして、太陽電池を作製し、耐久性試験を行った。光電変換効率(%)及び耐久性(%)を表2に記載した。
<実施例3>
実施例2において、電子取り出し層にPOPy+LiFの代わりに、合成例2で得られたF−POPy(膜厚6nm)および0.2nmの膜厚のLiFを用いた以外は、同様にして、太陽電池を作製し、耐久性試験を行った。光電変換効率(%)及び耐久性(%)を表2に記載した。
<比較例1>
実施例1において、電子取り出し層にPOPy2及びLiFの代わりに6nmの膜厚の2,9−ジメチル−4,7−ジフェニル−1,10−フェナントロリン(BCP、東京化成社製)を用いた以外は、同様にして、太陽電池を作製し、耐久性試験を行った。変換効率(%)及び耐久性(%)を表2に記載した。
<比較例2>
実施例1において、電子取り出し層にPOPyの代わりにBCPを用いた以外は、同様にして、太陽電池を作製し、耐久性試験を行った。光電変換効率(%)及び耐久性(%)を表2に記載した。
以上より、電子取り出し層が無機化合物層と、DSC法によるガラス転移温度が80℃以上である、又はガラス転移温度が観測されない有機化合物層を含有した光電変換素子は、電池特性に優れ、かつ85℃での擬似太陽光連続照射下という過酷な条件において優れた耐久性を所持する太陽電池用途の光電変換素子として好適である。
100 基板
101 電極(カソード)
102 無機化合物層
103 有機化合物層
104 活性層(p型半導体化合物とn型半導体化合物混合層)
105 正孔取り出し層
106 電極(アノード)
107 電子取り出し層
108 光電変換素子
1 耐候性保護フィルム
2 紫外線カットフィルム
3,9 ガスバリアフィルム
4,8 ゲッター材フィルム
5,7 封止材
6 太陽電池素子
10 バックシート
11 シール材
12 基材
13 太陽電池モジュール
14 薄膜太陽電池

Claims (7)

  1. 少なくとも活性層、電子取り出し層及び一対の電極を有する光電変換素子において、該電子取り出し層が無機化合物層及び有機化合物層を有してなり、該有機化合物層はDSC法によるガラス転移温度が80℃以上であるか又は観測されないことを特徴とする光電変換素子。
  2. 該無機化合物層がアルカリ金属塩及び金属酸化物からなる群より選ばれる1つ以上の化合物からなる、請求項1に記載の光電変換素子。
  3. 該有機化合物層が下記一般式(1)で表される化合物からなる、請求項1又は2に記載の光電変換素子。
    式中、R及びRは各々独立して置換基を有していても良い芳香族基を表し、nは1以上5以下の整数を表す。Rは置換基を有していても良いn価の芳香族基を表す。Uは第16族元素を表す。
  4. 一対の電極はカソード及びアノードからなり、
    該光電変換素子は、カソード、無機化合物層、有機化合物層、活性層、及びアノードがこの順に積層されてなる、請求項1から3のいずれか1項に記載の光電変換素子。
  5. 該光電変換素子は、更に、スルホン酸基含有化合物を含む正孔取り出し層を有する、請求項1から4のいずれか1項に記載の光電変換素子。
  6. 請求項1から5のいずれか1項に記載の光電変換素子を含むことを特徴とする太陽電池。
  7. 請求項6に記載の太陽電池を含むことを特徴とする太陽電池モジュール。
JP2011016942A 2010-01-29 2011-01-28 光電変換素子、太陽電池及び太陽電池モジュール Pending JP2011176305A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011016942A JP2011176305A (ja) 2010-01-29 2011-01-28 光電変換素子、太陽電池及び太陽電池モジュール

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010019218 2010-01-29
JP2010019218 2010-01-29
JP2011016942A JP2011176305A (ja) 2010-01-29 2011-01-28 光電変換素子、太陽電池及び太陽電池モジュール

Publications (1)

Publication Number Publication Date
JP2011176305A true JP2011176305A (ja) 2011-09-08

Family

ID=44688841

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011016942A Pending JP2011176305A (ja) 2010-01-29 2011-01-28 光電変換素子、太陽電池及び太陽電池モジュール

Country Status (1)

Country Link
JP (1) JP2011176305A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015537370A (ja) * 2012-09-27 2015-12-24 ヘレウス プレシャス メタルズ ゲーエムベーハー ウント コンパニー カーゲー コンデンサおよび太陽電池を製造するための高pedot含有量のpedot/pss分散液の使用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006073583A (ja) * 2004-08-31 2006-03-16 Toray Ind Inc 光電変換素子用材料およびこれを用いた光電変換素子
JP2006148134A (ja) * 2004-11-23 2006-06-08 Au Optronics Corp 有機光電変換素子、有機光電変換素子に用いる電極構造及び有機光電変換素子の動作効率向上方法
JP2008072090A (ja) * 2006-08-14 2008-03-27 Fujifilm Corp 光電変換素子及び固体撮像素子
JP2010003901A (ja) * 2008-06-20 2010-01-07 Fujifilm Corp 光電変換素子及び固体撮像素子
JP2010183060A (ja) * 2008-10-15 2010-08-19 Fujifilm Corp 光電変換素子及び撮像素子
WO2010134432A1 (ja) * 2009-05-22 2010-11-25 コニカミノルタホールディングス株式会社 有機光電変換素子

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006073583A (ja) * 2004-08-31 2006-03-16 Toray Ind Inc 光電変換素子用材料およびこれを用いた光電変換素子
JP2006148134A (ja) * 2004-11-23 2006-06-08 Au Optronics Corp 有機光電変換素子、有機光電変換素子に用いる電極構造及び有機光電変換素子の動作効率向上方法
JP2008072090A (ja) * 2006-08-14 2008-03-27 Fujifilm Corp 光電変換素子及び固体撮像素子
JP2010003901A (ja) * 2008-06-20 2010-01-07 Fujifilm Corp 光電変換素子及び固体撮像素子
JP2010183060A (ja) * 2008-10-15 2010-08-19 Fujifilm Corp 光電変換素子及び撮像素子
WO2010134432A1 (ja) * 2009-05-22 2010-11-25 コニカミノルタホールディングス株式会社 有機光電変換素子

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015537370A (ja) * 2012-09-27 2015-12-24 ヘレウス プレシャス メタルズ ゲーエムベーハー ウント コンパニー カーゲー コンデンサおよび太陽電池を製造するための高pedot含有量のpedot/pss分散液の使用
US10026521B2 (en) 2012-09-27 2018-07-17 Heraeus Precious Metals Gmbh & Co. Kg Use of PEDOT/PSS dispersions of high PEDOT content for the production of capacitors and solar cells

Similar Documents

Publication Publication Date Title
JP5920676B2 (ja) 新規コポリマー、有機半導体材料、及びこれを用いた有機電子デバイス、光電変換素子並びに太陽電池モジュール
JP5622181B2 (ja) コポリマー、有機半導体材料、並びにこれを用いた有機電子デバイス、光電変換素子及び太陽電池モジュール
JP2011119648A (ja) 光電変換素子及びこれを用いた太陽電池
JP5743301B2 (ja) ポリマー、有機半導体材料、並びにこれを用いた有機電子デバイス、光電変換素子及び太陽電池モジュール
JPWO2012102390A1 (ja) 光電変換素子、太陽電池及び太陽電池モジュール
JP2012216832A (ja) 光電変換素子、太陽電池、太陽電池モジュール及びインク
JP2012199541A (ja) 有機薄膜太陽電池素子、太陽電池及び太陽電池モジュール
JP5652712B2 (ja) 光電変換素子及びその製造方法、並びにインク
JP5633184B2 (ja) 光電変換素子
JP5822117B2 (ja) 光電変換素子、フラーレン化合物の製造方法、及びフラーレン化合物
JP5601039B2 (ja) チアジアゾール含有高分子
JP2012191194A (ja) 光電変換素子、太陽電池及び太陽電池モジュール並びにこれらの製造方法
JP2013065722A (ja) 光電変換素子及び太陽電池モジュール
JP5605299B2 (ja) 新規コポリマー、有機半導体材料、及びこれを用いた有機電子デバイス並びに太陽電池モジュール
JP2013055322A (ja) 光電変換素子、太陽電池及び太陽電池モジュール
JP5445200B2 (ja) ビシクロポルフィリン化合物及び溶媒を含有する光電変換素子半導体層形成用組成物、それを用いて得られる光電変換素子。
JP5747706B2 (ja) 新規コポリマー、有機半導体材料、及びこれを用いた有機電子デバイス、光電変換素子並びに太陽電池モジュール
JP5569021B2 (ja) 光電変換素子の製造方法
JP2011192916A (ja) 光電変換素子およびその素子の製造方法
JP2013110224A (ja) 光電変換素子、太陽電池、及び太陽電池モジュール
JP2012207104A (ja) ヨウ素化縮合チオフェン化合物を用いたコポリマーの製造方法、及びヨウ素化ジオキソピロロチオフェン化合物
JP5742204B2 (ja) 光電変換素子、太陽電池及び太陽電池モジュール
JP2012248766A (ja) フラーレン化合物、並びにこれを用いた光電変換素子、太陽電池及び太陽電池モジュール
JP2011176305A (ja) 光電変換素子、太陽電池及び太陽電池モジュール
JP2011054947A (ja) 光電変換素子用電極バッファー材料ならびにこれを用いた光電変換素子

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141028

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141224

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150519