[go: up one dir, main page]

JP2011174639A - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP2011174639A
JP2011174639A JP2010038111A JP2010038111A JP2011174639A JP 2011174639 A JP2011174639 A JP 2011174639A JP 2010038111 A JP2010038111 A JP 2010038111A JP 2010038111 A JP2010038111 A JP 2010038111A JP 2011174639 A JP2011174639 A JP 2011174639A
Authority
JP
Japan
Prior art keywords
heat exchanger
compressor
outdoor heat
outdoor
bypass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010038111A
Other languages
Japanese (ja)
Inventor
Katsuhiro Maekawa
勝宏 前川
Yoshiaki Kurita
佳明 栗田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Global Life Solutions Inc
Original Assignee
Hitachi Appliances Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Appliances Inc filed Critical Hitachi Appliances Inc
Priority to JP2010038111A priority Critical patent/JP2011174639A/en
Priority to CN201110040098XA priority patent/CN102162657A/en
Publication of JP2011174639A publication Critical patent/JP2011174639A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

【課題】本発明は、着霜防止運転終了後においても、継続的な暖房運転を可能とすることを目的とする。
【解決手段】上記目的を達成するため本発明は、圧縮機の吐出側と室外熱交換器の暖房運転時入口側とを連結するバイパス回路と、前記バイパス回路を連通・遮断を行うバイパス電磁弁と、前記圧縮機の回転数を制御するとともに、前記バイパス電磁弁を制御する制御装置と、を備え、前記制御装置にて、暖房運転時に前記室外熱交換器に着霜のおそれがあるか否かを判定する場合において、着霜のおそれがあった状態から着霜のおそれが無い状態になったとき、前記圧縮機の回転数を下降させ、回転数が所定値に達した後、前記バイパス回路を遮断する。
【選択図】 図1
An object of the present invention is to enable continuous heating operation even after completion of frost prevention operation.
In order to achieve the above object, the present invention provides a bypass circuit that connects a discharge side of a compressor and an inlet side during heating operation of an outdoor heat exchanger, and a bypass solenoid valve that connects and disconnects the bypass circuit. And a control device for controlling the bypass solenoid valve and controlling the number of rotations of the compressor. In the control device, the outdoor heat exchanger may be frosted during heating operation. In the case of determining whether or not there is a risk of frost formation from a state where there is a risk of frost formation, the rotation speed of the compressor is decreased, and after the rotation speed reaches a predetermined value, the bypass Shut off the circuit.
[Selection] Figure 1

Description

本発明は、空気調和機に係り、特に暖房運転可能な冷凍サイクルを備えた空気調和機に好適なものである。   The present invention relates to an air conditioner, and is particularly suitable for an air conditioner having a refrigeration cycle capable of heating operation.

暖房運転可能な冷凍サイクルを備えた従来の空気調和機では、暖房運転時に、外気温度の低下に伴い、室外熱交換器の温度が0℃以下となり、外気中の水分が霜となり室外熱交換器に付着する。この状態で暖房運転を続けた場合、霜が徐々に成長して室外熱交換器の熱交換性能を阻害し、暖房能力が低下する問題が生じる。   In a conventional air conditioner equipped with a refrigeration cycle capable of heating operation, during the heating operation, the temperature of the outdoor heat exchanger becomes 0 ° C. or less as the outside air temperature decreases, and the moisture in the outside air becomes frost and the outdoor heat exchanger. Adhere to. When the heating operation is continued in this state, frost grows gradually, hindering the heat exchange performance of the outdoor heat exchanger, resulting in a problem that the heating capacity is lowered.

それを防止するため、室外熱交換器の着霜を検出し、霜を融かすための運転(以下、除霜運転と呼ぶ)を実施することが行われている。除霜運転には、逆サイクル方式とバイパス方式とが知られている。   In order to prevent this, an operation for detecting frost formation on the outdoor heat exchanger and melting the frost (hereinafter referred to as defrosting operation) is performed. For the defrosting operation, a reverse cycle method and a bypass method are known.

逆サイクル方式は、切換え弁を切換えることで冷凍サイクルを冷房サイクルに切換えて、室内機及び室外機の送風機の運転を停止し、圧縮機から吐出される高温高圧のガス冷媒を室外熱交換器に流すことにより室外熱交換器に付着した霜を融かすものである。従って、この除霜運転の間は、暖房能力がゼロになると共に、室内熱交換器が蒸発器として動作してその温度が低下することから、室内空間の快適性の低下を招き、ユーザーにとって空気調和機に対する不満の一つとなっていた。   In the reverse cycle method, the refrigeration cycle is switched to the cooling cycle by switching the switching valve, the operation of the blower of the indoor unit and the outdoor unit is stopped, and the high-temperature and high-pressure gas refrigerant discharged from the compressor is transferred to the outdoor heat exchanger. The frost attached to the outdoor heat exchanger is melted by flowing it. Therefore, during this defrosting operation, the heating capacity becomes zero and the temperature of the indoor heat exchanger operates as an evaporator to lower its temperature. It was one of the complaints about the machine.

一方のバイパス方式では、暖房を継続したまま除霜することができる。従って、この除霜運転を着霜防止運転と称することとする。室内に放出する熱量の一部を除霜に利用するため、除霜のための時間を要するとともに暖房能力が低下し、室温が低下してしまう。   In one bypass system, defrosting can be performed while heating is continued. Therefore, this defrosting operation is referred to as a frost prevention operation. Since a part of the amount of heat released into the room is used for defrosting, it takes time for defrosting, heating capacity is lowered, and room temperature is lowered.

どちらの方式でも、除霜運転中は暖房能力が低下または暖房運転が停止して室内温度が低下するため、除霜運転は極力短時間で終わらせることが望ましい。   In either method, during the defrosting operation, the heating capacity is lowered or the heating operation is stopped and the room temperature is lowered. Therefore, it is desirable to finish the defrosting operation in a short time as much as possible.

このような除霜期間を短縮するため、除霜運転中は圧縮機駆動モータに損失熱を発生させて冷媒や圧縮機を加熱する、特許文献1のような技術が知られている。   In order to shorten such a defrost period, the technique like patent document 1 which heats a refrigerant | coolant and a compressor by generating loss heat to a compressor drive motor during a defrost operation is known.

特開2010−8003号公報JP 2010-8003 A

しかし、特許文献1の空気調和機では、除霜運転終了後暖房運転準備期間に移り、当該期間には圧縮機を停止させてしまう。従って、この間は暖房運転を行うことができない。   However, in the air conditioner of patent document 1, it moves to the heating operation preparation period after completion | finish of a defrost operation, and will stop a compressor in the said period. Therefore, heating operation cannot be performed during this period.

また、除霜運転終了後に、バイパス回路を直ちに遮断すると、圧縮機の吐出圧力が上昇すると共に、圧縮機運転電流が上昇し、圧力保護制御または電流保護制御が作動して空調機を停止せざるを得ない場合もあり、この間は暖房運転を行うことができなくなる。   Further, if the bypass circuit is immediately shut off after the defrosting operation, the discharge pressure of the compressor increases, the compressor operating current increases, and the pressure protection control or current protection control is activated to stop the air conditioner. In some cases, heating operation cannot be performed during this period.

本発明は、着霜防止運転終了後においても、継続的な暖房運転を可能とすることを目的とする。   An object of the present invention is to enable continuous heating operation even after completion of the frost prevention operation.

上記目的を達成するため本発明は、
圧縮機の吐出側と室外熱交換器の暖房運転時入口側とを連結するバイパス回路と、
前記バイパス回路の連通・遮断を行うバイパス電磁弁と、
前記圧縮機の回転数を制御するとともに、前記バイパス電磁弁を制御する制御装置と、
を備え、
前記制御装置にて、
暖房運転時に前記室外熱交換器に着霜のおそれがあるか否かを判定する場合において、着霜のおそれがあった状態から着霜のおそれがない状態になったとき、
前記圧縮機の回転数を下降させ、
回転数が所定値に達した後、前記バイパス回路を遮断する。
In order to achieve the above object, the present invention
A bypass circuit connecting the discharge side of the compressor and the inlet side of the outdoor heat exchanger during heating operation;
A bypass solenoid valve for communicating / blocking the bypass circuit;
A control device for controlling the number of revolutions of the compressor and controlling the bypass solenoid valve;
With
In the control device,
When determining whether there is a risk of frost formation on the outdoor heat exchanger during heating operation, when the state where there is no risk of frost formation from a state where there is a risk of frost formation,
Decreasing the rotation speed of the compressor,
After the rotational speed reaches a predetermined value, the bypass circuit is shut off.

本発明によれば、着霜防止運転終了後においても、継続的な暖房運転をすることができる。   According to the present invention, a continuous heating operation can be performed even after the frosting prevention operation is completed.

本発明の第1実施形態の空気調和機の全体構成図である。It is a whole block diagram of the air conditioner of 1st Embodiment of this invention. 図1の空気調和機の制御方法を示すフローチャートである。It is a flowchart which shows the control method of the air conditioner of FIG. 従来の制御方法を示すタイミングチャートである。It is a timing chart which shows the conventional control method. 本発明の空気調和機の制御方法を示すタイミングチャートである。It is a timing chart which shows the control method of the air conditioner of this invention.

以下、本発明の複数の実施形態について図を用いて説明する。各実施形態の図における同一符号は同一物または相当物を示す。   Hereinafter, a plurality of embodiments of the present invention will be described with reference to the drawings. The same reference numerals in the drawings of the respective embodiments indicate the same or equivalent.

(第1実施形態)
本発明の第1実施形態の空気調和機を図1及び図2,図3,図4を用いて説明する。
(First embodiment)
The air conditioner of 1st Embodiment of this invention is demonstrated using FIG.1 and FIG.2, FIG.3, FIG.4.

まず、第1実施形態の空気調和機50の全体構成,機能等に関して図1を参照しながら説明する。図1は本発明の第1実施形態の空気調和機50の全体構成図である。   First, the overall configuration, functions, and the like of the air conditioner 50 of the first embodiment will be described with reference to FIG. FIG. 1 is an overall configuration diagram of an air conditioner 50 according to a first embodiment of the present invention.

空気調和機50は、室外機51と、複数台(第1実施形態では、2台)の室内機52と、室外機51と室内機52とを接続するガス接続配管53及び液接続配管54とから構成されている。ガス接続配管53は、室外機51のガス阻止弁11と室内機52の室内熱交換器7との間を連通するように設けられている。液接続配管54は、室外機51の液阻止弁12と室内機52の室内膨張弁8との間を連通するように設けられている。室内機52は、ガス接続配管53及び液接続配管54を介して並列に接続されている。   The air conditioner 50 includes an outdoor unit 51, a plurality of (in the first embodiment, two) indoor units 52, a gas connection pipe 53 and a liquid connection pipe 54 that connect the outdoor unit 51 and the indoor unit 52. It is composed of The gas connection pipe 53 is provided so as to communicate between the gas blocking valve 11 of the outdoor unit 51 and the indoor heat exchanger 7 of the indoor unit 52. The liquid connection pipe 54 is provided so as to communicate between the liquid blocking valve 12 of the outdoor unit 51 and the indoor expansion valve 8 of the indoor unit 52. The indoor units 52 are connected in parallel via a gas connection pipe 53 and a liquid connection pipe 54.

なお、ガス阻止弁11及び液阻止弁12は、空気調和機50の据付け前に室外機51の冷凍サイクル中に充填した冷媒を封止するためのものであり、空気調和機50を据付けてガス接続配管53及び液接続配管54を接続した後には常時開いた状態とされる。   The gas blocking valve 11 and the liquid blocking valve 12 are for sealing the refrigerant charged in the refrigeration cycle of the outdoor unit 51 before the air conditioner 50 is installed. After the connection pipe 53 and the liquid connection pipe 54 are connected, they are always open.

室外機51は、圧縮機1,切換え弁2,室外熱交換器3,室外膨張弁4,バイパス回路17(バイパス減圧機構5及びバイパス電磁弁6を含む),図示しない室外ファン,室外熱交換器温度検出器13,外気温度検出器14及び室外制御装置16a等を具備している。   The outdoor unit 51 includes a compressor 1, a switching valve 2, an outdoor heat exchanger 3, an outdoor expansion valve 4, a bypass circuit 17 (including a bypass pressure reducing mechanism 5 and a bypass electromagnetic valve 6), an outdoor fan (not shown), and an outdoor heat exchanger. A temperature detector 13, an outside air temperature detector 14, an outdoor control device 16a and the like are provided.

圧縮機1は、その運転周波数をインバータで可変して制御される容量可変式圧縮機で構成されている。切換え弁2は、この圧縮機1から吐出された冷媒の流れ方向及び圧縮機1へ吸い込まれる冷媒の流れ方向を切換える弁であり、第1実施形態では切換え弁で構成されている。この切換え弁2は、制御装置16により、暖房運転時に実線に示す流路を形成し、冷房運転時に点線で示す流路を形成するように制御される。   The compressor 1 is composed of a variable capacity compressor that is controlled by changing its operating frequency with an inverter. The switching valve 2 is a valve that switches the flow direction of the refrigerant discharged from the compressor 1 and the flow direction of the refrigerant sucked into the compressor 1, and is configured by a switching valve in the first embodiment. The switching valve 2 is controlled by the control device 16 so as to form a flow path indicated by a solid line during heating operation and to form a flow path indicated by a dotted line during cooling operation.

室外熱交換器3は、狭い間隔で並置された多数枚のプレート状フィンと、これらのフィンを貫通する蛇行状の冷媒パイプとからなるプレートフィン型熱交換器で構成されている。この冷媒パイプ内を流れる冷媒と室外ファンにより通風される外気(室外空気)とが熱交換される。   The outdoor heat exchanger 3 is composed of a plate fin type heat exchanger composed of a large number of plate-like fins juxtaposed at narrow intervals and a meandering refrigerant pipe passing through these fins. Heat is exchanged between the refrigerant flowing through the refrigerant pipe and the outside air (outdoor air) ventilated by the outdoor fan.

室外膨張弁4は、冷凍サイクルの主回路を流れる冷媒の減圧を行うための電子式膨張弁であり、室外熱交換器3と液阻止弁12(液接続配管54)との間に設置されている。   The outdoor expansion valve 4 is an electronic expansion valve for reducing the pressure of the refrigerant flowing through the main circuit of the refrigeration cycle, and is installed between the outdoor heat exchanger 3 and the liquid blocking valve 12 (liquid connection pipe 54). Yes.

バイパス回路17は、暖房運転時に圧縮機1から吐出される高温高圧のガス冷媒をバイパスして室外熱交換器3に供給するためのものであり、圧縮機1の吐出側冷媒配管と室外熱交換器3の暖房運転時入口側冷媒配管との間に接続されている。バイパス回路17は、バイパス減圧機構5及びバイパス電磁弁6からなるバイパス減圧装置18を有している。バイパス電磁弁6はバイパス回路17を開閉するためのものであり、バイパス電磁弁6はバイパス回路17を流れる冷媒を減圧するためのものである。   The bypass circuit 17 bypasses the high-temperature and high-pressure gas refrigerant discharged from the compressor 1 during the heating operation and supplies the refrigerant to the outdoor heat exchanger 3. The bypass circuit 17 exchanges outdoor heat with the discharge-side refrigerant pipe of the compressor 1. The heater 3 is connected to the inlet side refrigerant pipe during heating operation. The bypass circuit 17 includes a bypass pressure reducing device 18 including a bypass pressure reducing mechanism 5 and a bypass electromagnetic valve 6. The bypass solenoid valve 6 is for opening and closing the bypass circuit 17, and the bypass solenoid valve 6 is for decompressing the refrigerant flowing through the bypass circuit 17.

室外熱交換器温度検出器13は、室外温度の一つである室外熱交換器3の温度を検出するためのものであり、第1実施形態では、暖房運転時における室外熱交換器3の入口側部分に設置されている。外気温度検出器14は、室外温度の一つである外気温度を検出するためのものであり、第1実施形態では、室外熱交換器3へ吸込まれる外気の温度を検出するように室外熱交換器3の外気吸込み側に設置されている。   The outdoor heat exchanger temperature detector 13 is for detecting the temperature of the outdoor heat exchanger 3 that is one of the outdoor temperatures. In the first embodiment, the inlet of the outdoor heat exchanger 3 during the heating operation is used. It is installed on the side part. The outdoor temperature detector 14 is for detecting an outdoor temperature that is one of outdoor temperatures. In the first embodiment, the outdoor heat detector 14 detects the temperature of the outdoor air sucked into the outdoor heat exchanger 3. It is installed on the outside air suction side of the exchanger 3.

室外制御装置16aは、図示しない室外操作スイッチ等と共に室外制御基板上に搭載され、室内制御装置16bと共に制御装置16を構成する。室外操作スイッチは図示しない室内操作スイッチと共に操作スイッチを構成する。室外制御基板は室内制御基板と共に制御基板を構成する。   The outdoor control device 16a is mounted on the outdoor control board together with an outdoor operation switch (not shown) and the like, and constitutes the control device 16 together with the indoor control device 16b. The outdoor operation switch constitutes an operation switch together with an indoor operation switch (not shown). The outdoor control board constitutes a control board together with the indoor control board.

制御装置16は、室外熱交換器温度検出器13,外気温度検出器14,室内温度検出器15等のセンサで検出した信号や、操作スイッチで設定された信号等に基づいて、空気調和機50を構成する機器の制御を行う。   The control device 16 uses the air conditioner 50 based on signals detected by sensors such as the outdoor heat exchanger temperature detector 13, the outdoor air temperature detector 14, and the indoor temperature detector 15, signals set by operation switches, and the like. It controls the equipment that constitutes.

各室内機52は、室内熱交換器7,室内膨張弁8,室内ファン及び室内温度検出器15等を具備している。室内熱交換器7と室内膨張弁8とは、ガス接続配管53と液接続配管54との間に、直列に接続して設けられている。   Each indoor unit 52 includes an indoor heat exchanger 7, an indoor expansion valve 8, an indoor fan, an indoor temperature detector 15, and the like. The indoor heat exchanger 7 and the indoor expansion valve 8 are connected in series between the gas connection pipe 53 and the liquid connection pipe 54.

室内熱交換器7は、狭い間隔で並置された多数枚のプレート状フィンと、これらを貫通する蛇行状の冷媒パイプとからなるプレートフィン型熱交換器で構成されている。この冷媒パイプ内を流れる冷媒と室内ファンにより通風される室内空気とが熱交換される。   The indoor heat exchanger 7 is composed of a plate fin type heat exchanger composed of a large number of plate-like fins juxtaposed at narrow intervals and a meandering refrigerant pipe passing through them. Heat is exchanged between the refrigerant flowing through the refrigerant pipe and the indoor air ventilated by the indoor fan.

室内膨張弁8は、冷凍サイクルの主回路を流れる冷媒の減圧を行うための電子式膨張弁であり、室内熱交換器7と液接続配管54との間に設置されている。   The indoor expansion valve 8 is an electronic expansion valve for reducing the pressure of the refrigerant flowing through the main circuit of the refrigeration cycle, and is installed between the indoor heat exchanger 7 and the liquid connection pipe 54.

室内温度検出器15は、室内温度を検出するためのものであり、第1実施形態では、室内熱交換器7に吸い込まれる室内空気の温度を検出するように室内熱交換器7の室内空気吸込み側に設置されている。   The indoor temperature detector 15 is for detecting the indoor temperature. In the first embodiment, the indoor air intake of the indoor heat exchanger 7 is detected so as to detect the temperature of the indoor air sucked into the indoor heat exchanger 7. It is installed on the side.

室内制御装置16bは、室内操作スイッチ等と共に室内制御基板上に搭載されている。   The indoor control device 16b is mounted on the indoor control board together with the indoor operation switch and the like.

次に、係る空気調和機50の冷凍サイクルの基本動作について、図1を参照しながら説明する。   Next, the basic operation of the refrigeration cycle of the air conditioner 50 will be described with reference to FIG.

暖房運転について説明する。圧縮機1から吐出される高温高圧のガス冷媒は、実線矢印に示すように、切換え弁2を経由して、ガス阻止弁11,ガス接続配管53を通り、各室内機52の室内熱交換器7に至り、室内熱交換器7で凝縮されて液冷媒となる。この液冷媒は、全開の室内膨張弁8,液接続配管54及び液阻止弁12を通って室外膨張弁4に至り、室外膨張弁4により減圧されて低温低圧のガス液混合冷媒となる。この減圧された冷媒は、室外熱交換器3により蒸発され、ガス冷媒となって切換え弁2を通り、圧縮機1に戻される。   The heating operation will be described. The high-temperature and high-pressure gas refrigerant discharged from the compressor 1 passes through the switching valve 2, passes through the gas blocking valve 11 and the gas connection pipe 53, as indicated by the solid line arrow, and passes through the indoor heat exchanger of each indoor unit 52. 7 is condensed in the indoor heat exchanger 7 to become a liquid refrigerant. This liquid refrigerant reaches the outdoor expansion valve 4 through the fully opened indoor expansion valve 8, the liquid connection pipe 54 and the liquid blocking valve 12, and is decompressed by the outdoor expansion valve 4 to become a low-temperature low-pressure gas-liquid mixed refrigerant. The decompressed refrigerant is evaporated by the outdoor heat exchanger 3, becomes a gas refrigerant, passes through the switching valve 2, and is returned to the compressor 1.

係る暖房運転中に、バイパス電磁弁6を開とすることにより、圧縮機1から吐出されたガス冷媒は、上述の切換え弁2を経由した流れとは分岐し、バイパス減圧機構5にて減圧され、バイパス電磁弁6を通った後に、室外膨張弁4を通って室外熱交換器3に流入される冷媒と合流されて室外熱交換器3に流入される。これによって、冷媒をバイパスしない場合に比較して、室外熱交換器3の温度を上昇させることができる。なお、バイパス減圧機構5により流量は一定であることから、第1実施形態では、室外熱交換器3への循環量は圧縮機1の吐出循環量に比例する。   During the heating operation, by opening the bypass electromagnetic valve 6, the gas refrigerant discharged from the compressor 1 branches from the flow through the switching valve 2 described above and is depressurized by the bypass depressurization mechanism 5. After passing through the bypass electromagnetic valve 6, the refrigerant is combined with the refrigerant flowing into the outdoor heat exchanger 3 through the outdoor expansion valve 4 and flows into the outdoor heat exchanger 3. Thereby, the temperature of the outdoor heat exchanger 3 can be raised compared with the case where the refrigerant is not bypassed. Since the flow rate is constant by the bypass pressure reducing mechanism 5, the circulation amount to the outdoor heat exchanger 3 is proportional to the discharge circulation amount of the compressor 1 in the first embodiment.

冷房運転について説明する。圧縮機1から吐出されるガス冷媒は、点線矢印に示すように、切換え弁2を経由して室外熱交換器3に至り、室外熱交換器3により凝縮されて液冷媒となる。この液冷媒は、全開の室外膨張弁4,液阻止弁12及び液接続配管54を通って室内膨張弁8に至り、室内膨張弁8で減圧されて低圧のガス液混合冷媒となる。この減圧された冷媒は、室内熱交換器7で蒸発され、ガス冷媒となってガス接続配管53,ガス阻止弁11及び切換え弁2を通って圧縮機1に戻される。なお、冷房運転中には、バイパス電磁弁6は常に閉じられ、バイパス回路17は使用されない。   The cooling operation will be described. The gas refrigerant discharged from the compressor 1 reaches the outdoor heat exchanger 3 via the switching valve 2 and is condensed by the outdoor heat exchanger 3 to become a liquid refrigerant as indicated by the dotted arrow. This liquid refrigerant reaches the indoor expansion valve 8 through the fully open outdoor expansion valve 4, the liquid blocking valve 12 and the liquid connection pipe 54, and is decompressed by the indoor expansion valve 8 to become a low-pressure gas-liquid mixed refrigerant. The decompressed refrigerant is evaporated in the indoor heat exchanger 7, becomes a gas refrigerant, returns to the compressor 1 through the gas connection pipe 53, the gas blocking valve 11, and the switching valve 2. During the cooling operation, the bypass solenoid valve 6 is always closed and the bypass circuit 17 is not used.

次に、暖房運転における具体的な制御方法について、図2及び図3,図4を参照しながら説明する。図2は図1の空気調和機50の制御方法を示すフローチャートである。図3は従来の制御タイミングチャート、図4は図2の空気調和機50の制御タイミングチャートである。この制御は制御装置16により行われる。   Next, a specific control method in the heating operation will be described with reference to FIGS. 2, 3, and 4. FIG. 2 is a flowchart showing a control method of the air conditioner 50 of FIG. 3 is a conventional control timing chart, and FIG. 4 is a control timing chart of the air conditioner 50 of FIG. This control is performed by the control device 16.

暖房運転が開始されると、バイパス電磁弁6が閉じた状態で、室外熱交換器温度検出器13により室外熱交換器温度を検出すると共に、外気温度検出器14により外気温度を検出する(ステップS1)。次いで、検出した室外熱交換器温度及び外気温度に基づいて、室外熱交換器3に着霜のおそれがあるか否かを判定する(ステップS2)。   When the heating operation is started, the outdoor heat exchanger temperature detector 13 detects the outdoor heat exchanger temperature while the bypass solenoid valve 6 is closed, and the outdoor air temperature detector 14 detects the outdoor air temperature (step). S1). Next, based on the detected outdoor heat exchanger temperature and outside air temperature, it is determined whether or not the outdoor heat exchanger 3 may be frosted (step S2).

ステップS2で、着霜のおそれがあると判定した場合には、バイパス電磁弁6を開く(ステップS3)。バイパス電磁弁6を開弁することで、圧縮機1から吐出される高温高圧のガス冷媒がバイパス回路17に分流され、バイパス減圧機構5で減圧されて室外熱交換器3へ流通される。   If it is determined in step S2 that there is a risk of frost formation, the bypass solenoid valve 6 is opened (step S3). By opening the bypass electromagnetic valve 6, the high-temperature and high-pressure gas refrigerant discharged from the compressor 1 is diverted to the bypass circuit 17, decompressed by the bypass decompression mechanism 5, and circulated to the outdoor heat exchanger 3.

これらの制御によれば、高温高圧のガス冷媒をバイパス回路17を通して分流しない場合に比較して室外膨張弁4の温度を上昇させることができるので、室外熱交換器3の着霜を防止することができ、除霜運転を不用とする暖房運転が可能となり、室内空間の快適性を確保することができる。   According to these controls, the temperature of the outdoor expansion valve 4 can be increased as compared with the case where high-temperature and high-pressure gas refrigerant is not divided through the bypass circuit 17, so that the outdoor heat exchanger 3 can be prevented from frosting. Thus, the heating operation that does not require the defrosting operation is possible, and the comfort of the indoor space can be ensured.

上述したようにバイパス電磁弁6を開いてバイパス回路17を通して冷媒を分流すると、室内機52への冷媒循環量が減少して暖房能力が低下し、室内空間の快適性を損なうおそれがある。そこで、圧縮機1の回転数を上昇させて総冷媒循環量の増加を図っている(ステップS4)。これによって、室内機52への冷媒循環量の減少を補うことができ、室内空間の快適性をより確実に確保できる。   As described above, when the bypass solenoid valve 6 is opened and the refrigerant is diverted through the bypass circuit 17, the refrigerant circulation amount to the indoor unit 52 is reduced, the heating capacity is lowered, and the comfort of the indoor space may be impaired. Therefore, the rotational speed of the compressor 1 is increased to increase the total refrigerant circulation amount (step S4). As a result, a decrease in the amount of refrigerant circulating to the indoor unit 52 can be compensated, and the comfort of the indoor space can be more reliably ensured.

そして、室内機52への冷媒循環量の減少を十分に補うことができない場合を想定して、ステップS4に続いて、室内熱交換器7への冷媒循環量がバイパス電磁弁6を開く前の室内熱交換器7への循環量と同じになったか否かを判定する(ステップS5)。この判定で、冷媒循環量が同じになった場合には、ステップS1に戻り、バイパス電磁弁6を開いた状態の暖房運転を継続する。   And assuming the case where the reduction | decrease of the refrigerant | coolant circulation amount to the indoor unit 52 cannot fully be compensated, following step S4, the refrigerant | coolant circulation amount to the indoor heat exchanger 7 is before opening the bypass solenoid valve 6. It is determined whether or not the circulation amount to the indoor heat exchanger 7 is the same (step S5). In this determination, when the refrigerant circulation amount becomes the same, the process returns to step S1 and the heating operation with the bypass electromagnetic valve 6 opened is continued.

ステップS5で、室内熱交換器7への冷媒循環量が同じになっていないと判定した場合には、室内温度検出器15で室内温度を検出し、この検出した室内温度と操作スイッチ等で設定された室内設定温度との差を演算し、この差に基づいて各室内機52の室内膨張弁8の絞り開度を演算する(ステップS6)。   If it is determined in step S5 that the refrigerant circulation amount to the indoor heat exchanger 7 is not the same, the indoor temperature is detected by the indoor temperature detector 15, and the detected indoor temperature and the operation switch are set. The difference between the set indoor temperature and the indoor expansion valve 8 of each indoor unit 52 is calculated based on the difference (step S6).

この演算結果に基づいて、室内膨張弁8の絞り開度を閉方向に調整して室内機52を流れる冷媒循環量を減少させ、その減少量の総和がバイパス回路に流れる冷媒循環量と同じ循環量になるようにし(ステップS7)、ステップS1へ戻り、処理を継続させる。   Based on the calculation result, the throttle opening degree of the indoor expansion valve 8 is adjusted in the closing direction to reduce the refrigerant circulation amount flowing through the indoor unit 52, and the sum of the reduction amounts is the same as the refrigerant circulation amount flowing through the bypass circuit. (Step S7), the process returns to Step S1 to continue the process.

これらによって、バイパス回路17からの冷媒による室外熱交換器3の温度上昇と、各室内機52の室内熱交換器7暖房能力の確保とを調和させることができる。   By these, the temperature rise of the outdoor heat exchanger 3 by the refrigerant from the bypass circuit 17 and the securing of the heating capacity of the indoor heat exchanger 7 of each indoor unit 52 can be harmonized.

ステップS2で、着霜のおそれがないと判定し、且つ、ステップS8で、着霜防止制御中でない場合には、ステップS1に戻り、バイパス電磁弁6が閉じた状態の暖房運転を継続する。   If it is determined in step S2 that there is no possibility of frost formation, and if frost prevention control is not being performed in step S8, the process returns to step S1 and the heating operation with the bypass solenoid valve 6 closed is continued.

ステップS2で、着霜のおそれがないと判定し、且つ、ステップS8で、着霜防止制御中でありと判定した場合には、圧縮機の回転数をバイパス回路開通前の回転数にまで降下させ、その後にバイパス回路を遮断し、ステップ1に戻り、処理を継続する。   If it is determined in step S2 that there is no possibility of frost formation and if it is determined in step S8 that frost prevention control is being performed, the rotational speed of the compressor is reduced to the rotational speed before the bypass circuit is opened. After that, the bypass circuit is shut off, and the process returns to step 1 to continue the processing.

これらの制御により、図3及び図4に示すように、圧縮機の回転数をバイパス回路開通前の回転数にまで降下させた後にバイパス回路を遮断すると、圧縮機の吐出圧力の上昇を防ぎ、圧縮機運転電流の上昇を抑え、圧力保護制御、または電流保護制御による異常停止を防止することができ、暖房運転を継続することでの室内空間の快適性を確保することができる。   With these controls, as shown in FIGS. 3 and 4, when the bypass circuit is shut off after the compressor speed is lowered to the speed before the bypass circuit is opened, the discharge pressure of the compressor is prevented from increasing. An increase in compressor operating current can be suppressed, abnormal stop due to pressure protection control or current protection control can be prevented, and comfort in the indoor space can be ensured by continuing heating operation.

つまり、着霜のおそれが無くなったら、圧縮機回転数を下げ、所定値に達したらバイパス電磁弁6を閉じてバイパス回路を遮断することによって、着霜防止運転終了後においても継続的な暖房運転を行うことができる。   In other words, when there is no risk of frost formation, the compressor rotation speed is decreased, and when the predetermined value is reached, the bypass solenoid valve 6 is closed and the bypass circuit is shut off, so that the continuous heating operation is performed even after the frost prevention operation is completed. It can be performed.

上述したように、第1実施形態によれば、暖房能力を低下させつつも、最低限の快適性を確保したまま除霜運転を不要とした暖房運転とすることができる。   As described above, according to the first embodiment, it is possible to achieve a heating operation in which the defrosting operation is unnecessary while ensuring the minimum comfort while reducing the heating capacity.

即ち、第1実施形態は、一つの室外機51からのガス接続配管53と液接続配管54とから分岐して複数の室内機52が並列に接続して構成され、室外機51において、圧縮機1の吐出側から室外熱交換器3と室外膨張弁4との間に連結するバイパス回路17に減圧装置18が設けられ、暖房運転時に室外機51が有する温度センサ13,14から各要素の温度を制御装置16が取込み、これらの温度に基づいて減圧装置18を開閉するものである。そして、室外機51の室外熱交換器3の温度が低下し、室外熱交換器3に着霜のおそれがある場合に、減圧装置18を開とし、圧縮機1からの高温高圧の冷媒を減圧装置18にて減圧し、室外熱交換器3に流通させることで、室外熱交換器3の温度の低下を防ぐ。   That is, the first embodiment is configured by branching from a gas connection pipe 53 and a liquid connection pipe 54 from one outdoor unit 51 and connecting a plurality of indoor units 52 in parallel. 1 is provided with a pressure reducing device 18 in a bypass circuit 17 connected between the outdoor heat exchanger 3 and the outdoor expansion valve 4 from the discharge side, and the temperature of each element from the temperature sensors 13 and 14 of the outdoor unit 51 during heating operation. The control device 16 takes in and opens and closes the decompression device 18 based on these temperatures. Then, when the temperature of the outdoor heat exchanger 3 of the outdoor unit 51 decreases and the outdoor heat exchanger 3 may be frosted, the decompression device 18 is opened and the high-temperature and high-pressure refrigerant from the compressor 1 is decompressed. By reducing the pressure in the apparatus 18 and allowing it to flow through the outdoor heat exchanger 3, a decrease in the temperature of the outdoor heat exchanger 3 is prevented.

ここで減圧装置18を開くことにより室内機52への循環量が低下し、暖房能力の低下、室内空間の快適性を損なうおそれがある。そこで、室内機52と室外機51との組合せにおいて、インバータ駆動により圧縮機1の回転数を上げ、時間当りの吐出循環量を増加させることにより、室内機52への循環量減少分を補うようにしている。   When the decompression device 18 is opened here, the circulation amount to the indoor unit 52 is lowered, and there is a possibility that the heating capacity is lowered and the comfort of the indoor space is impaired. Therefore, in the combination of the indoor unit 52 and the outdoor unit 51, the rotational speed of the compressor 1 is increased by driving the inverter and the discharge circulation amount per time is increased so as to compensate for the decrease in the circulation amount to the indoor unit 52. I have to.

ここで十分に補えない場合は、各々の室内機52に設定された室内設定温度と室内温度検出器15で検知された実際の室内温度との差から、室内機52が具備する室内膨張弁8の絞り開度を、快適性が確保できる必要最低限分を算出し、閉方向に調整する。これによって室内機52への必要冷媒循環量を調整し、圧縮機1の回転数調整で補えなかったバイパス循環量分を補填することができる。   If this cannot be sufficiently compensated, the indoor expansion valve 8 provided in the indoor unit 52 is determined from the difference between the indoor set temperature set in each indoor unit 52 and the actual indoor temperature detected by the indoor temperature detector 15. Calculate the minimum necessary amount of the aperture for ensuring comfort and adjust it in the closing direction. Accordingly, the necessary refrigerant circulation amount to the indoor unit 52 can be adjusted, and the amount of bypass circulation that cannot be compensated by adjusting the rotation speed of the compressor 1 can be compensated.

暖房運転における室外熱交換器3の着霜を予防するために、圧縮機1の吐出側と切換え弁2との間から室外熱交換器3へ冷媒を循環させたときに、室内機52への冷媒循環量が低下し、暖房能力が低下するが、室内設定温度,室内温度を勘案して制御することにより、室内空間の快適性を保ったまま連続的な暖房運転を実施することが可能である。   In order to prevent frost formation of the outdoor heat exchanger 3 in the heating operation, when the refrigerant is circulated to the outdoor heat exchanger 3 from between the discharge side of the compressor 1 and the switching valve 2, Although the refrigerant circulation rate is reduced and the heating capacity is reduced, it is possible to carry out continuous heating operation while maintaining the comfort of the indoor space by controlling the indoor set temperature and the indoor temperature. is there.

また、着霜防止制御中に着霜のおそれがないと判定した場合には、圧縮機1の回転数をバイパス回路17開通前の回転数に下降し、その後にバイパス回路17を遮断することで、圧縮機1の吐出圧力上昇を防ぎ、圧縮機運転電流の上昇を抑えることで、圧力保護制御、または電流保護制御による異常停止を防止でき、暖房運転を継続することでの室内空間の快適性を確保することができる。   Further, when it is determined that there is no possibility of frost formation during the frost prevention control, the rotation speed of the compressor 1 is lowered to the rotation speed before the bypass circuit 17 is opened, and then the bypass circuit 17 is shut off. By preventing the compressor 1 from increasing discharge pressure and suppressing the increase in compressor operating current, it is possible to prevent abnormal stoppage due to pressure protection control or current protection control, and comfort in the indoor space by continuing heating operation. Can be secured.

1 圧縮機
2 切換え弁
3 室外熱交換器
4 室外膨張弁
5 バイパス減圧機構
6 バイパス電磁弁
7 室内熱交換器
8 室内膨張弁
11 ガス阻止弁、
12 液阻止弁
13 室外熱交換器温度検出器
14 外気温度検出器
15 室内温度検出器
16 制御装置
16a 室外制御装置
16b 室内制御装置
17 バイパス回路
18 バイパス減圧装置
50 空気調和機
51 室外機
52 室内機
53 ガス接続配管
54 液接続配管
DESCRIPTION OF SYMBOLS 1 Compressor 2 Switching valve 3 Outdoor heat exchanger 4 Outdoor expansion valve 5 Bypass pressure reduction mechanism 6 Bypass solenoid valve 7 Indoor heat exchanger 8 Indoor expansion valve 11 Gas check valve,
12 liquid blocking valve 13 outdoor heat exchanger temperature detector 14 outdoor air temperature detector 15 indoor temperature detector 16 control device 16a outdoor control device 16b indoor control device 17 bypass circuit 18 bypass decompression device 50 air conditioner 51 outdoor unit 52 indoor unit 53 Gas connection piping 54 Liquid connection piping

Claims (9)

圧縮機の吐出側と室外熱交換器の暖房運転時入口側とを連結するバイパス回路と、
前記バイパス回路の連通・遮断を行うバイパス電磁弁と、
前記圧縮機の回転数を制御するとともに、前記バイパス電磁弁を制御する制御装置と、
を備え、
前記制御装置にて、
暖房運転時に前記室外熱交換器に着霜のおそれがあるか否かを判定する場合において、着霜のおそれがあった状態から着霜のおそれが無い状態になったとき、
前記圧縮機の回転数を下降させ、
回転数が所定値に達した後、前記バイパス回路を遮断する
ことを特徴とする空気調和機。
A bypass circuit connecting the discharge side of the compressor and the inlet side of the outdoor heat exchanger during heating operation;
A bypass solenoid valve for communicating / blocking the bypass circuit;
A control device for controlling the number of revolutions of the compressor and controlling the bypass solenoid valve;
With
In the control device,
When determining whether or not there is a risk of frost formation on the outdoor heat exchanger during heating operation, when a state where there is no risk of frost formation from a state where there is a risk of frost formation,
Decreasing the rotation speed of the compressor,
An air conditioner characterized in that the bypass circuit is shut off after the rotational speed reaches a predetermined value.
請求項1において、
前記空気調和機は、前記室外熱交換器は、室外熱交換器温度検出器を備え、
前記制御装置にて、前記室外熱交換器に着霜のおそれがあるか否かの判定を、前記室外熱交換器温度検出器で検出される温度にて制御を行うことを特徴とする空気調和機。
In claim 1,
The air conditioner, the outdoor heat exchanger includes an outdoor heat exchanger temperature detector,
The air conditioner characterized in that the control device determines whether or not the outdoor heat exchanger may be frosted at a temperature detected by the outdoor heat exchanger temperature detector. Machine.
請求項1において、
前記空気調和機は、前記室外熱交換器は、外気温度検出器を備え、
前記制御装置にて、前記室外熱交換器に着霜のおそれがあるか否かの判定を、前記外気温度検出器で検出される温度にて制御を行うことを特徴とする空気調和機。
In claim 1,
In the air conditioner, the outdoor heat exchanger includes an outdoor temperature detector,
The air conditioner characterized in that the controller controls whether or not the outdoor heat exchanger has a possibility of frost formation based on a temperature detected by the outside air temperature detector.
請求項1において、
前記制御装置の判定条件を設定する操作スイッチを備えていることを特徴とする空気調和機。
In claim 1,
An air conditioner comprising an operation switch for setting a determination condition of the control device.
圧縮機,切換え弁,室外膨張弁,室外熱交換器,外気温度を検出する外気温度検出器または前記室外熱交換器の温度を検出する室外熱交換器温度検出器を有する室外機と、室内熱交換器及び室内膨張弁を有する室内機と、制御装置と、を備え、
前記圧縮機、前記切換え弁、前記室内熱交換器、前記室内膨張弁、前記室外膨張弁、前記室外熱交換器、前記切換え弁、前記圧縮機を順に接続して冷凍サイクルを構成して暖房運転が可能な空気調和機において、
前記冷凍サイクルは前記圧縮機の吐出側と前記室外側熱交換器の暖房運転時入口側とを連結するバイパス回路を有し、
前記バイパス回路はバイパス電磁弁とバイパス減圧機構を備え、
前記制御装置にて、暖房運転時に、前記室外熱交換器に着霜のおそれがあるか否かを判定し、着霜のおそれがある場合に、前記バイパス電磁弁を開通状態とし、前記圧縮機の吐出側から冷媒を前記バイパス減圧装置を通して前記室外熱交換器に供給する着霜防止制御と共に、前記圧縮機の回転数を上昇させる制御を行い、着霜防止制御中に着霜のおそれがないと判定した場合に、前記圧縮機の回転数を下降させた後に前記バイパス回路を遮断する制御を行うことを特徴とする空気調和機。
An outdoor unit having a compressor, a switching valve, an outdoor expansion valve, an outdoor heat exchanger, an outdoor temperature detector for detecting an outdoor air temperature, or an outdoor heat exchanger temperature detector for detecting the temperature of the outdoor heat exchanger, and an indoor heat An indoor unit having an exchanger and an indoor expansion valve, and a control device,
The compressor, the switching valve, the indoor heat exchanger, the indoor expansion valve, the outdoor expansion valve, the outdoor heat exchanger, the switching valve, and the compressor are connected in order to form a refrigeration cycle and perform heating operation In an air conditioner capable of
The refrigeration cycle has a bypass circuit that connects a discharge side of the compressor and an inlet side during heating operation of the outdoor heat exchanger,
The bypass circuit includes a bypass solenoid valve and a bypass pressure reducing mechanism,
In the control device, during heating operation, it is determined whether or not there is a risk of frost formation on the outdoor heat exchanger, and when there is a risk of frost formation, the bypass electromagnetic valve is opened, and the compressor In addition to frost prevention control for supplying refrigerant from the discharge side to the outdoor heat exchanger through the bypass pressure reducing device, control is performed to increase the rotation speed of the compressor, and there is no risk of frost formation during frost prevention control. If it is determined, the air conditioner is controlled to cut off the bypass circuit after the rotation speed of the compressor is lowered.
請求項5において、
前記制御装置にて、着霜防止制御中に着霜のおそれがないと判定した場合に、前記圧縮機の回転数を前記バイパス回路開通前の回転数に移行し、その後に前記バイパス回路を遮断する制御を行うことを特徴とする空気調和機。
In claim 5,
When it is determined by the control device that there is no possibility of frost formation during frost prevention control, the rotation speed of the compressor is shifted to the rotation speed before the bypass circuit is opened, and then the bypass circuit is shut off. An air conditioner characterized by performing control.
請求項5において、
前記制御装置にて、前記室外熱交換器に着霜のおそれがあるか否かの判定を、前記外気温度検出器または前記室外熱交換器温度検出器で検出される温度にて制御を行うことを特徴とする空気調和機。
In claim 5,
The control device determines whether or not the outdoor heat exchanger is likely to be frosted by controlling the temperature detected by the outdoor air temperature detector or the outdoor heat exchanger temperature detector. Air conditioner characterized by.
請求項5において、
前記制御装置にて、着霜のおそれがある場合に、前記バイパス電磁弁を開通状態とし、前記圧縮機の吐出側から冷媒を前記バイパス減圧機構を通して分流して前記室外熱交換器に供給すると共に、前記圧縮機の回転数を上昇させる制御を行い、所定時間経過後に前記圧縮機の回転数を下降させた後に前記バイパス回路を遮断する制御を行うことを特徴とする空気調和機。
In claim 5,
In the control device, when there is a risk of frost formation, the bypass solenoid valve is opened, and refrigerant is diverted from the discharge side of the compressor through the bypass pressure reducing mechanism and supplied to the outdoor heat exchanger. An air conditioner that performs control to increase the rotational speed of the compressor, and performs control to shut off the bypass circuit after decreasing the rotational speed of the compressor after a predetermined time has elapsed.
請求項5において、
前記制御装置の判定条件を設定する操作スイッチを備えていることを特徴とする空気調和機。
In claim 5,
An air conditioner comprising an operation switch for setting a determination condition of the control device.
JP2010038111A 2010-02-24 2010-02-24 Air conditioner Pending JP2011174639A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010038111A JP2011174639A (en) 2010-02-24 2010-02-24 Air conditioner
CN201110040098XA CN102162657A (en) 2010-02-24 2011-02-16 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010038111A JP2011174639A (en) 2010-02-24 2010-02-24 Air conditioner

Publications (1)

Publication Number Publication Date
JP2011174639A true JP2011174639A (en) 2011-09-08

Family

ID=44464013

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010038111A Pending JP2011174639A (en) 2010-02-24 2010-02-24 Air conditioner

Country Status (2)

Country Link
JP (1) JP2011174639A (en)
CN (1) CN102162657A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014181866A (en) * 2013-03-21 2014-09-29 Hitachi Appliances Inc Air conditioner
WO2014201828A1 (en) * 2013-06-19 2014-12-24 珠海格力电器股份有限公司 Air-conditioning system
CN105222285A (en) * 2015-11-03 2016-01-06 珠海格力电器股份有限公司 Control system and control method for heating and frosting of air conditioner
JP2017101868A (en) * 2015-12-01 2017-06-08 三菱電機株式会社 Refrigeration equipment
JP2022020605A (en) * 2020-07-20 2022-02-01 エルジー エレクトロニクス インコーポレイティド Air conditioning multi air conditioner
CN114608144A (en) * 2022-03-04 2022-06-10 宁波奥克斯电气股份有限公司 Outdoor unit defrosting detection method and device and air conditioner
US20240353164A1 (en) * 2021-03-03 2024-10-24 Addison Hvac Llc No-frost heat pump

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103090507A (en) * 2013-01-19 2013-05-08 德州亚太集团有限公司 Defrosting control method of air cooled heat pump air conditioning unit
JP6611958B2 (en) * 2016-10-17 2019-11-27 三菱電機株式会社 Indoor unit of heat pump using device and heat pump using device equipped with the same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62233658A (en) * 1986-04-01 1987-10-14 松下電器産業株式会社 Defrostation controller for heat pump type air conditioner
JPS62255749A (en) * 1986-04-28 1987-11-07 Toshiba Corp Defrosting operation control device for air conditioner
JPS6315021A (en) * 1986-07-04 1988-01-22 Hitachi Ltd Defrosting method of air conditioner
JPS63273750A (en) * 1987-04-30 1988-11-10 Mitsubishi Electric Corp Defrosting control device of air conditioner
JP2001012829A (en) * 1999-06-30 2001-01-19 Sanyo Electric Co Ltd Heat pump type air conditioner
JP2005098660A (en) * 2003-09-26 2005-04-14 Calsonic Kansei Corp Heat pump type air conditioner
JP2007285614A (en) * 2006-04-18 2007-11-01 Matsushita Electric Ind Co Ltd Air conditioner

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006170528A (en) * 2004-12-16 2006-06-29 Matsushita Electric Ind Co Ltd Air conditioner
JP2007051825A (en) * 2005-08-18 2007-03-01 Matsushita Electric Ind Co Ltd Air conditioner

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62233658A (en) * 1986-04-01 1987-10-14 松下電器産業株式会社 Defrostation controller for heat pump type air conditioner
JPS62255749A (en) * 1986-04-28 1987-11-07 Toshiba Corp Defrosting operation control device for air conditioner
JPS6315021A (en) * 1986-07-04 1988-01-22 Hitachi Ltd Defrosting method of air conditioner
JPS63273750A (en) * 1987-04-30 1988-11-10 Mitsubishi Electric Corp Defrosting control device of air conditioner
JP2001012829A (en) * 1999-06-30 2001-01-19 Sanyo Electric Co Ltd Heat pump type air conditioner
JP2005098660A (en) * 2003-09-26 2005-04-14 Calsonic Kansei Corp Heat pump type air conditioner
JP2007285614A (en) * 2006-04-18 2007-11-01 Matsushita Electric Ind Co Ltd Air conditioner

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014181866A (en) * 2013-03-21 2014-09-29 Hitachi Appliances Inc Air conditioner
WO2014201828A1 (en) * 2013-06-19 2014-12-24 珠海格力电器股份有限公司 Air-conditioning system
CN105222285A (en) * 2015-11-03 2016-01-06 珠海格力电器股份有限公司 Control system and control method for heating and frosting of air conditioner
CN105222285B (en) * 2015-11-03 2018-01-23 珠海格力电器股份有限公司 Control system and control method for heating and frosting of air conditioner
JP2017101868A (en) * 2015-12-01 2017-06-08 三菱電機株式会社 Refrigeration equipment
JP2022020605A (en) * 2020-07-20 2022-02-01 エルジー エレクトロニクス インコーポレイティド Air conditioning multi air conditioner
US12078396B2 (en) 2020-07-20 2024-09-03 Lg Electronics Inc. Multi-air conditioner for heating and cooling
US20240353164A1 (en) * 2021-03-03 2024-10-24 Addison Hvac Llc No-frost heat pump
CN114608144A (en) * 2022-03-04 2022-06-10 宁波奥克斯电气股份有限公司 Outdoor unit defrosting detection method and device and air conditioner

Also Published As

Publication number Publication date
CN102162657A (en) 2011-08-24

Similar Documents

Publication Publication Date Title
JP5341622B2 (en) Air conditioner
US9506674B2 (en) Air conditioner including a bypass pipeline for a defrosting operation
JP2011174639A (en) Air conditioner
KR101479458B1 (en) Refrigeration device
JP6138711B2 (en) Air conditioner
JP5634071B2 (en) Air conditioner and defrosting operation method of air conditioner
JP2723953B2 (en) Air conditioner
JP5472391B2 (en) Container refrigeration equipment
EP3859244B1 (en) Air-conditioner
CN103154621B (en) Air conditioner
JP2004340470A (en) Refrigeration equipment
JP6545252B2 (en) Refrigeration cycle device
WO2007139010A1 (en) Freezing device
WO2015045685A1 (en) Air conditioner device
JP2017009269A5 (en)
JP2017009269A (en) Air conditioning system
US20210048216A1 (en) Air-conditioning apparatus
JP5313774B2 (en) Air conditioner
JPH043865A (en) Refrigeration cycle equipment
JP2019138486A (en) Refrigerant circuit system and control method of defrosting operation
WO2019008742A1 (en) Refrigeration cycle device
KR101100009B1 (en) Air conditioning system
JP7512639B2 (en) Air Conditioning Equipment
JP2004286253A (en) Refrigerant high-pressure avoidance method and air-conditioning system using it
JP7408942B2 (en) air conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111228

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111228

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120411

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120417

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120828