[go: up one dir, main page]

JP2011174182A - Method for producing aluminum alloy ingot - Google Patents

Method for producing aluminum alloy ingot Download PDF

Info

Publication number
JP2011174182A
JP2011174182A JP2011046706A JP2011046706A JP2011174182A JP 2011174182 A JP2011174182 A JP 2011174182A JP 2011046706 A JP2011046706 A JP 2011046706A JP 2011046706 A JP2011046706 A JP 2011046706A JP 2011174182 A JP2011174182 A JP 2011174182A
Authority
JP
Japan
Prior art keywords
mass
molten metal
aluminum alloy
less
casting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011046706A
Other languages
Japanese (ja)
Other versions
JP5276133B2 (en
Inventor
Katsumi Murai
克己 村井
Masaru Kiryu
勝 桐生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP2011046706A priority Critical patent/JP5276133B2/en
Publication of JP2011174182A publication Critical patent/JP2011174182A/en
Application granted granted Critical
Publication of JP5276133B2 publication Critical patent/JP5276133B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Manufacture And Refinement Of Metals (AREA)
  • Conductive Materials (AREA)

Abstract

【課題】樅の木組織の発生を安定的に抑制したアルミニウム合金鋳塊の製造方法、アルミニウム合金鋳塊及びアルミニウム合金材を提供する。
【解決手段】Fe:0.03〜2.5質量%、Si:1.0質量%以下、Mg:5.5質量%以下、Cu:0.5質量%以下、Mn:1.0質量%以下、Cr:0.35質量%以下、Ca:0.0005〜0.05質量%、Ti:0.0005〜0.1質量%、B:0.0001〜0.02質量%を含有し、鋳塊内部にAl−Fe系金属間化合物が晶出しているアルミニウム合金鋳塊を、溶解工程、溶湯保持工程、鋳造工程を経て製造する方法である。前記溶湯保持工程においてCa、Ti及びBを溶湯ヘ添加するに際し、添加するときの溶湯温度が675〜740℃であるか、前記添加から鋳造終了までの時間を160分以内であるか、少なくともいずれかを満足するものとする。
【選択図】なし
An aluminum alloy ingot manufacturing method, an aluminum alloy ingot, and an aluminum alloy material in which generation of oak tree structure is stably suppressed are provided.
SOLUTION: Fe: 0.03-2.5 mass%, Si: 1.0 mass% or less, Mg: 5.5 mass% or less, Cu: 0.5 mass% or less, Mn: 1.0 mass% Hereinafter, Cr: 0.35 mass% or less, Ca: 0.0005-0.05 mass%, Ti: 0.0005-0.1 mass%, B: 0.0001-0.02 mass%, In this method, an aluminum alloy ingot in which an Al—Fe intermetallic compound is crystallized inside the ingot is manufactured through a melting step, a molten metal holding step, and a casting step. At the time of adding Ca, Ti, and B to the molten metal in the molten metal holding step, the molten metal temperature at the time of addition is 675 to 740 ° C., or the time from the addition to the end of casting is within 160 minutes, at least any of them It shall be satisfied.
[Selection figure] None

Description

この発明は、圧延等に用いられるアルミニウム合金鋳塊の製造方法に関する。   The present invention relates to a method for producing an aluminum alloy ingot used for rolling or the like.

良く知られているように、JIS1000系アルミニウム合金やJIS5000系アルミニウム合金は、合金溶湯を半連続鋳造法等によって鋳造した場合に、得られた鋳塊内にしばしば、図2に示すように樅の木組織と称される特有の鋳造組織(A)が発生する。   As is well known, when JIS 1000 series aluminum alloy or JIS 5000 series aluminum alloy is cast by molten alloy by a semi-continuous casting method or the like, it is often found in the resulting ingot as shown in FIG. A unique cast structure (A) called a tree structure is generated.

この樅の木組織とは、鋳造組織中に晶出するAl−Fe系金属間化合物の晶出状態の相違によって、鋳塊内に発生する組織ムラを指すものである。   This oak tree structure refers to the structure unevenness generated in the ingot due to the difference in the crystallization state of the Al—Fe intermetallic compound crystallized in the cast structure.

そして、鋳塊内に一旦発生した樅の木組織は、その後の展伸加工、熱処理等の諸工程を経ても消滅せず、化成処理や陽極酸化処理等を施した場合には、その部分の色合いが異なるものとなって表面に模様が発生する。このため、化成処理や陽極酸化処理等を必要とする製品には使用できず、著しい材料損失を発生させたり、納期トラブルを生じさせるという問題があった。   And the oak tree structure once generated in the ingot does not disappear even after various processes such as extension processing and heat treatment, and when it is subjected to chemical conversion treatment or anodizing treatment, Patterns are generated on the surface due to different colors. For this reason, it cannot be used for products that require chemical conversion treatment, anodization treatment, or the like, and there has been a problem in that significant material loss occurs or delivery time trouble occurs.

そこで、樅の木組織の発生防止対策として、下記特許文献1及び2に示すように、適量のCa、Ti及びBを添加することが、従来より行われている。   Therefore, as a countermeasure for preventing the occurrence of oak tree structure, as shown in Patent Documents 1 and 2 below, adding appropriate amounts of Ca, Ti, and B has been conventionally performed.

特公昭58−38502号公報Japanese Patent Publication No.58-38502 特公昭58−10455号公報Japanese Patent Publication No.58-10455

しかしながら、Ca、Ti及びBの添加によってもなお樅の木組織が発生する場合があり、さらなる対策が望まれている。   However, the addition of Ca, Ti and B may still cause oak tree texture, and further measures are desired.

この発明は、このような問題を解決するためになされたものであって、樅の木組織の発生を安定的に抑制したアルミニウム合金鋳塊の製造方法の提供を課題とする。   This invention is made in order to solve such a problem, Comprising: It aims at provision of the manufacturing method of the aluminum alloy ingot which suppressed generation | occurrence | production of the oak tree structure stably.

上記課題を解決するために、発明者は鋭意研究を重ねた結果、鋳塊の製造工程においてCa、Ti、Bを添加するときの操炉条件あるいは、添加から鋳造終了までの時間が、樅の木組織の発生に大きな影響を与えていることを知見し、この知見に基づいてこの発明を完成し得たものである。   In order to solve the above-mentioned problems, the inventor has conducted intensive research. As a result, the operating conditions when adding Ca, Ti, and B in the ingot manufacturing process, or the time from the addition to the end of casting, The present inventors have found that it has a great influence on the occurrence of the tree structure, and based on this knowledge, have completed the present invention.

すなわち、この発明は、下記に記載された構成を有する。
(1)Fe:0.03〜2.5質量%、Si:1.0質量%以下、Mg:5.5質量%以下、Cu:0.5質量%以下、Mn:1.0質量%以下、Cr:0.35質量%以下、Ca:0.0005〜0.05質量%、Ti:0.0005〜0.1質量%、B:0.0001〜0.02質量%を含有し、内部にAl−Fe系金属間化合物が晶出しているアルミニウム合金鋳塊を、溶解工程、溶湯保持工程、鋳造工程を経て製造する方法であって、前記溶湯保持工程においてCa、Ti及びBを溶湯ヘ添加するに際し、添加するときの溶湯温度が675〜740℃であることを特徴とするアルミニウム合金鋳塊の製造方法。
(2)Ca、Ti及びBを添加するときの溶湯温度が715〜740℃である前項1に記載のアルミニウム合金鋳塊の製造方法。
(3)Ca、Ti及びBを添加するときの溶湯温度が720〜730℃である前項1に記載のアルミニウム合金鋳塊の製造方法。
That is, this invention has the structure described below.
(1) Fe: 0.03-2.5 mass%, Si: 1.0 mass% or less, Mg: 5.5 mass% or less, Cu: 0.5 mass% or less, Mn: 1.0 mass% or less , Cr: 0.35 mass% or less, Ca: 0.0005-0.05 mass%, Ti: 0.0005-0.1 mass%, B: 0.0001-0.02 mass%, An aluminum ingot in which an Al—Fe intermetallic compound is crystallized is manufactured through a melting step, a molten metal holding step, and a casting step, and in the molten metal holding step, Ca, Ti, and B are mixed into the molten metal. A method for producing an aluminum alloy ingot, wherein the molten metal temperature at the time of addition is 675 to 740 ° C.
(2) The manufacturing method of the aluminum alloy ingot of the preceding clause 1 whose molten metal temperature when adding Ca, Ti, and B is 715-740 degreeC.
(3) The manufacturing method of the aluminum alloy ingot of the preceding clause 1 whose molten metal temperature when adding Ca, Ti, and B is 720-730 degreeC.

この発明の一実施形態に係る溶解鋳造工程を示す説明図である。It is explanatory drawing which shows the melt | dissolution casting process which concerns on one Embodiment of this invention. 従来のアルミニウム合金鋳塊の断面に現れる樅の木組織を示す説明図である。It is explanatory drawing which shows the oak tree structure which appears in the cross section of the conventional aluminum alloy ingot.

この実施形態において製造されるアルミニウム合金鋳塊は、樅の木組織が発生する恐れがある組成のもの、すなわち鋳塊内部にAl−Fe系金属間化合物を晶出するアルミニウム合金鋳塊であり、このような合金鋳塊は、Fe:0.03〜2.5質量%、Si:1.0質量%以下、Mg:5.5質量%以下、Cu:0.5質量%以下、Mn:1.0質量%以下、Cr:0.35質量%以下、Ca:0.0005〜0.05質量%、Ti:0.0005〜0.1質量%、B:0.0001〜0.02質量%を含有し、内部にAl−Fe系金属間化合物が晶出しているアルミニウム合金鋳塊である。   The aluminum alloy ingot produced in this embodiment is a composition having a risk of generating a oak tree structure, that is, an aluminum alloy ingot that crystallizes an Al-Fe intermetallic compound inside the ingot, Such alloy ingots are: Fe: 0.03-2.5 mass%, Si: 1.0 mass% or less, Mg: 5.5 mass% or less, Cu: 0.5 mass% or less, Mn: 1 0.0 mass% or less, Cr: 0.35 mass% or less, Ca: 0.0005-0.05 mass%, Ti: 0.0005-0.1 mass%, B: 0.0001-0.02 mass% And an aluminum alloy ingot in which an Al—Fe intermetallic compound is crystallized.

上記において、Feの含有量が0.03質量%未満であると、樅の木組織は事実上発生しないから、本発明の適用意義がない。また、2.5質量%を越えるとたとえばAl3FeのようなAl−Fe系金属間化合物の大きい一次結晶が晶出して、圧延等の加工性が劣化したり、あるいは圧延製品等の耐食性を損うことになるために圧延製品等を得る合金としては不適当となる。従って、鋳塊におけるFeの含有量は0.03〜2.5質量%、好ましくは0.05〜2.0質量%がよい。 In the above, when the Fe content is less than 0.03% by mass, the oak tree structure is practically not generated, so that the present invention is not meaningful. On the other hand, if the amount exceeds 2.5% by mass, a large primary crystal of an Al—Fe-based intermetallic compound such as Al 3 Fe crystallizes, and the workability such as rolling deteriorates, or the corrosion resistance of the rolled product or the like deteriorates. Therefore, it is not suitable as an alloy for obtaining a rolled product. Therefore, the Fe content in the ingot is 0.03 to 2.5 mass%, preferably 0.05 to 2.0 mass%.

Fe以外のSi、Mg、Cu、MnおよびCrの含有量は、製品の用途に合わせて、圧延性および深絞り性等の加工性、強度、耐食性、表面光輝度、陽極酸化皮膜の色調などを考慮して上記範囲内で決められる。   The contents of Si, Mg, Cu, Mn, and Cr other than Fe take into consideration the workability such as rollability and deep drawability, strength, corrosion resistance, surface light brightness, and color tone of the anodized film according to the application of the product. And determined within the above range.

上記組成を有する好適な合金として、99.0質量%以上99.9質量%未満のアルミニウム純度を有するJIS1000系合金及びJIS5005合金を挙げることができる。   Suitable alloys having the above composition include JIS 1000 series alloys and JIS 5005 alloys having an aluminum purity of 99.0% by mass or more and less than 99.9% by mass.

Caは、これを上記アルミニウム合金鋳塊中に含有せしめることにより、樅の木組織の外部領域(B)(図2参照)を著しく大きくしうるとともに、樅の木組織の内部領域(A)と外部領域(B)との色相のコントラストを小さくしうる性質を有する。外部領域が大きくなると、樅の木組織が消失するか、あるいは存在していたとしても圧延により表面に露出しないので、圧延後陽極酸化処理を施したとしても、陽極酸化模様は現われない。また、内部領域(A)と外部領域(B)との色相のコントラストが小さくなると、陽極酸化模様が現われたとしても、この模様が目立たなくなる。ところが、Caの含有量が0.0005質量%未満、あるいは0.05質量%を越えると、上記の効果は得られない。従って、Caの含有量を0.0005〜0.05質量%の範囲内で選ぶべきであるが、特に0.001〜0.01質量%の範囲が好ましい。   When Ca is contained in the aluminum alloy ingot, the outer area (B) of the oak tree structure (see FIG. 2) can be remarkably enlarged, and the inner area (A) of the oak tree structure The hue contrast with the external region (B) can be reduced. If the outer region becomes larger, the oak tree structure disappears or even if it exists, it is not exposed to the surface by rolling, so even if anodizing treatment is performed after rolling, an anodized pattern does not appear. In addition, when the hue contrast between the inner region (A) and the outer region (B) becomes small, even if an anodized pattern appears, this pattern becomes inconspicuous. However, when the Ca content is less than 0.0005 mass% or more than 0.05 mass%, the above effect cannot be obtained. Therefore, the content of Ca should be selected within the range of 0.0005 to 0.05% by mass, but the range of 0.001 to 0.01% by mass is particularly preferable.

TiおよびBは、これらを上記合金鋳塊に添加含有せしめることにより、鋳塊表面の粗大セル層の下層の結晶粒度を小さくする性質を有する。すなわち、結晶粒微細化材として機能する。この結晶粒度が小さくなって150μm以下となると、上記のCaを含有せしめることにより生じる効果が―層高まる。Tiの含有量が0.0005質量%未満、ならびにBの含有量が0.0001質量%未満であれば上記結晶粒度を150μm以下にすることが困難であり、Tiの含有量が0.1質量%、Bの含有量が0.02質量%をそれぞれ越えると、コストアップにつながるとともに、結晶粒の微細化効果も飽和し、しかも合金を陽極酸化処理する場合には陽極酸化性をも阻害する。したがって、Tiの含有量は0.0005〜0.1質量%、Bの含有量は0.0001〜0.02質量%とする必要がある。   Ti and B have the property of reducing the crystal grain size of the lower layer of the coarse cell layer on the surface of the ingot by adding them to the alloy ingot. That is, it functions as a crystal grain refining material. When this crystal grain size is reduced to 150 μm or less, the effect produced by the inclusion of Ca is increased. If the Ti content is less than 0.0005 mass% and the B content is less than 0.0001 mass%, it is difficult to make the crystal grain size 150 μm or less, and the Ti content is 0.1 mass%. % And B contents exceeding 0.02% by mass lead to an increase in cost, saturation of crystal grain refinement, and anodization when the alloy is anodized. . Therefore, the Ti content needs to be 0.0005 to 0.1 mass%, and the B content needs to be 0.0001 to 0.02 mass%.

上記のような組成を有するアルミニウム合金鋳塊は、図2に示すように、溶解炉1による溶解工程、保持炉3による溶湯の保持工程、鋳造機5による鋳造工程を経て製造される。   As shown in FIG. 2, the aluminum alloy ingot having the above composition is manufactured through a melting step by the melting furnace 1, a molten metal holding step by the holding furnace 3, and a casting step by the casting machine 5.

前記溶解工程では、アルミニウム合金を溶解して、Fe、Si、Mg、Cu、Mn、Crを上記組成範囲に有する溶湯を作製する。次いで、この溶湯を移送樋2を介して保持炉3に移送し、保持炉3で保持する。   In the melting step, the aluminum alloy is melted to produce a molten metal having Fe, Si, Mg, Cu, Mn, and Cr in the above composition range. Next, the molten metal is transferred to the holding furnace 3 through the transfer rod 2 and held in the holding furnace 3.

この保持炉3において、溶湯にCa、Ti、Bを添加する。これらCa、Ti、Bの溶湯への添加方法は任意であり、単体を添加しても良いし、Al−Ca母合金、Al−Ti母合金、Al−B母合金、Al−Ti−B母合金をワイヤー状その他の形状にして連続的に添加しても良い。好ましくは、Al−4〜6質量%Ca母合金、Al−4〜6質量%Ti母合金、Al−4〜6質量%Ti−0.5〜2質量%B母合金を用いるのが良い。   In the holding furnace 3, Ca, Ti, and B are added to the molten metal. The method of adding these Ca, Ti, and B to the molten metal is arbitrary, and a single element may be added, or an Al—Ca master alloy, an Al—Ti master alloy, an Al—B master alloy, and an Al—Ti—B master. The alloy may be continuously added in the form of a wire or the like. Preferably, an Al-4-6 mass% Ca master alloy, an Al-4-6 mass% Ti master alloy, and an Al-4-6 mass% Ti-0.5-2 mass% B master alloy are used.

Ca、Ti、Bの添加後、鋳造樋4を介して溶湯を鋳造機5に供給する。この実施形態では、鋳造樋4の途中に脱ガス槽6を設けて、溶湯に対し公知の脱ガス処理を実施する。   After the addition of Ca, Ti, and B, the molten metal is supplied to the casting machine 5 through the casting rod 4. In this embodiment, a degassing tank 6 is provided in the middle of the casting rod 4 to perform a known degassing process on the molten metal.

鋳造機5に移送された溶湯は、公知の半連続鋳造あるいは連続鋳造によって鋳造される。   The molten metal transferred to the casting machine 5 is cast by known semi-continuous casting or continuous casting.

而してこの実施形態では、前記保持炉3におけるCa、Ti、Bの溶湯への添加時の溶湯温度が675〜740℃であるか、前記Ca、Ti、Bの添加から鋳造終了までの時間を160分以内とするか、少なくともいずれかの条件を満足する必要がある。   Thus, in this embodiment, the molten metal temperature at the time of addition of Ca, Ti, B to the molten metal in the holding furnace 3 is 675-740 ° C., or the time from the addition of the Ca, Ti, B to the end of casting. Must be within 160 minutes, or at least one of the conditions must be satisfied.

保持炉3におけるCa、Ti、Bの溶湯への添加時の溶湯温度が675℃未満では、添加したCa、Ti、B、特にAl−4〜6質量%Ca母合金、Al−4〜6質量%Ti母合金、Al−4〜6質量%Ti−0.5〜2質量%B母合金が溶けにくくなるため溶湯の組成ひいては鋳塊の組成が不均一になり、その結果、Ca、Ti、Bが有効に作用しにくくなり、樅の木組織が発生しやすくなる。また、Ca等添加時の溶湯温度が740℃を超えると、Caの酸化が激しくなり、有効な固溶Ca量が減少するだけでなく、高温によりTi、Bの結晶粒微細化能力自体も減少するため、樅の木組織が発生しやすくなる。Ca、Ti、Bの添加時の好ましい溶湯温度の下限値は680、より好ましくは715℃であり、最も好ましくは720℃であり、好ましい溶湯温度の上限値は730℃である。特に720〜730℃の溶湯温度範囲が好ましい。   When the molten metal temperature at the time of addition of Ca, Ti, B to the molten metal in the holding furnace 3 is less than 675 ° C., the added Ca, Ti, B, especially Al-4-6 mass% Ca master alloy, Al-4-6 mass % Ti master alloy, Al-4-6 mass% Ti-0.5-2 mass% B master alloy becomes difficult to melt, so the composition of the molten metal and hence the composition of the ingot becomes non-uniform. As a result, Ca, Ti, B becomes difficult to act effectively, and the oak tree structure is likely to occur. Further, when the molten metal temperature at the time of addition of Ca or the like exceeds 740 ° C., the oxidation of Ca becomes intense, and not only the effective amount of solid solution Ca decreases, but also the crystal grain refining ability itself of Ti and B decreases at a high temperature. Therefore, an oak tree structure is likely to occur. The preferable lower limit of the molten metal temperature when adding Ca, Ti, and B is 680, more preferably 715 ° C, most preferably 720 ° C, and the preferable upper limit of the molten metal temperature is 730 ° C. A melt temperature range of 720 to 730 ° C. is particularly preferable.

一方、Ca、Ti、Bの添加から鋳造終了までの時間が160分を超えて長くなると、Ti、Bの結晶粒微細化能力が減少してCaが有効に作用しなくなり、樅の木組織が発生しやすくなる。好ましくは、Ca、Ti、Bの添加から鋳造終了までの時間を、130分以内とするのが良い。   On the other hand, when the time from the addition of Ca, Ti, B to the end of casting is longer than 160 minutes, the ability of refining Ti and B crystal grains decreases and Ca does not work effectively, and the oak tree structure becomes It tends to occur. Preferably, the time from the addition of Ca, Ti, B to the end of casting is within 130 minutes.

前述したように、Ca、Ti、Bの添加時の溶湯温度条件か、添加から鋳造終了までの時間条件のうち、いずれか一方を満足すれば、樅の木組織の発生抑止効果が得られるが、両方の条件を満足することにより、もっとも良好な樅の木組織の発生抑止効果を得ることができる。   As described above, if any one of the molten metal temperature condition at the time of addition of Ca, Ti, and B or the time condition from the addition to the end of casting is satisfied, the effect of suppressing the occurrence of oak tree structure can be obtained. By satisfying both conditions, the best oak tree structure generation suppression effect can be obtained.

鋳造機5により鋳造されたアルミニウム鋳塊は、圧延等の工程を経て所定の製品形状へと加工されたのち、必要に応じて陽極酸化処理等が実施される。圧延や陽極酸化処理等は、周知の条件にて行えば良い。   The aluminum ingot cast by the casting machine 5 is processed into a predetermined product shape through a process such as rolling, and then anodization is performed as necessary. The rolling and anodizing treatment may be performed under known conditions.

この実施形態によれば、アルミニウム合金鋳塊における樅の木組織の発生は抑制されているから、陽極酸化処理されても、樅の木組織に起因する陽極酸化模様の発生は抑制されたものとなる。   According to this embodiment, since the occurrence of oak tree structure in the aluminum alloy ingot is suppressed, the occurrence of an anodized pattern due to the oak tree structure is suppressed even when anodized. Become.

JIS1050アルミニウム合金を用い、この合金を溶解炉1で溶解した後、移送樋2で保持炉3に移送し、保持炉3で保持した。そして、保持炉3において、Ca、Ti、Bを添加した。この添加に際し、添加時の溶湯温度を表1の第1グループから第11グループのように設定した。なお、添加は、Al−5質量%Ca母合金及びAl−5質量%Ti−1質量%B母合金をワイヤー状に成形したものを用いて行い、鋳塊中のCa、Ti、Bの最終含有量がCa:0.006質量%、Ti:0.03質量%、B:0.002質量%となるように行った。   A JIS1050 aluminum alloy was used, and after melting this alloy in the melting furnace 1, it was transferred to the holding furnace 3 by the transfer rod 2 and held in the holding furnace 3. In the holding furnace 3, Ca, Ti, and B were added. At the time of this addition, the melt temperature at the time of addition was set as shown in Table 1 from Group 1 to Group 11. In addition, addition is performed using what shape | molded Al-5 mass% Ca master alloy and Al-5 mass% Ti-1 mass% B master alloy in the shape of a wire, and is the last of Ca, Ti, and B in an ingot. The content was Ca: 0.006% by mass, Ti: 0.03% by mass, and B: 0.002% by mass.

Ca等の添加後、溶湯を鋳造樋4で鋳造機5に供給し、鋳造機5により半連続鋳造を行った。なお、鋳造樋4を移送中に常法による脱ガス処理を行った。   After the addition of Ca or the like, the molten metal was supplied to the casting machine 5 with the casting rod 4, and semi-continuous casting was performed with the casting machine 5. In addition, the degassing process by the conventional method was performed during the transfer of the casting iron 4.

この処理において、保持炉3におけるCa、Ti、Bの添加から鋳造終了までの時間は、表1の第1グループから第11グループのように設定した。   In this process, the time from the addition of Ca, Ti, B to the end of casting in the holding furnace 3 was set as in the first group to the eleventh group in Table 1.

そして、表1の第1グループから第11グループのそれぞれにつき、鋳造回数を表1のように設定して鋳造を行った。   Then, casting was performed with the number of castings set as shown in Table 1 for each of the first group to the eleventh group in Table 1.

鋳造後に、鋳塊における樅の木組織の発生の有無を調べた。鋳造回数に対して樅の木組織の発生した割合(発生率)は、表1に示すとおりであった。   After casting, the presence or absence of oak tree structure in the ingot was examined. Table 1 shows the ratio (occurrence rate) at which the oak tree structure was generated relative to the number of castings.

Figure 2011174182
Figure 2011174182

表1の結果から理解されるように、保持炉3におけるCa、Ti、Bの溶湯への添加時の溶湯温度が675〜740℃であること、前記Ca、Ti、Bの添加から鋳造終了までの時間を160分以内であること、の少なくともいずれかの条件を満足するグループ1〜10は、いずれの条件をも逸脱するグループ11よりも、樅の木組織の発生率が明らかに低く、従って、樅の木組織を抑制できることを確認し得た。   As understood from the results in Table 1, the molten metal temperature at the time of addition of Ca, Ti, B to the molten metal in the holding furnace 3 is 675-740 ° C., from the addition of the Ca, Ti, B to the end of casting. Group 1 to 10 satisfying at least one of the following conditions is clearly lower in incidence of oak tree structure than Group 11 that deviates from any of the conditions. It was confirmed that the oak tree structure can be suppressed.

1 溶解炉
2 移送樋
3 保持炉
4 鋳造樋
5 鋳造機
6 脱ガス槽
10 アルミニウム合金鋳塊
DESCRIPTION OF SYMBOLS 1 Melting furnace 2 Transfer rod 3 Holding furnace 4 Casting rod 5 Casting machine 6 Degassing tank 10 Aluminum alloy ingot

Claims (3)

Fe:0.03〜2.5質量%、Si:1.0質量%以下、Mg:5.5質量%以下、Cu:0.5質量%以下、Mn:1.0質量%以下、Cr:0.35質量%以下、Ca:0.0005〜0.05質量%、Ti:0.0005〜0.1質量%、B:0.0001〜0.02質量%を含有し、内部にAl−Fe系金属間化合物が晶出しているアルミニウム合金鋳塊を、溶解工程、溶湯保持工程、鋳造工程を経て製造する方法であって、
前記溶湯保持工程においてCa、Ti及びBを溶湯ヘ添加するに際し、添加するときの溶湯温度が675〜740℃であることを特徴とするアルミニウム合金鋳塊の製造方法。
Fe: 0.03-2.5 mass%, Si: 1.0 mass% or less, Mg: 5.5 mass% or less, Cu: 0.5 mass% or less, Mn: 1.0 mass% or less, Cr: 0.35 mass% or less, Ca: 0.0005 to 0.05 mass%, Ti: 0.0005 to 0.1 mass%, B: 0.0001 to 0.02 mass%, and Al— A method for producing an aluminum alloy ingot from which an Fe-based intermetallic compound is crystallized, through a melting step, a molten metal holding step, and a casting step,
When adding Ca, Ti, and B to a molten metal in the molten metal holding step, the molten metal temperature when added is 675 to 740 ° C.
Ca、Ti及びBを添加するときの溶湯温度が715〜740℃である請求項1に記載のアルミニウム合金鋳塊の製造方法。   The manufacturing method of the aluminum alloy ingot of Claim 1 whose molten metal temperature when adding Ca, Ti, and B is 715-740 degreeC. Ca、Ti及びBを添加するときの溶湯温度が720〜730℃である請求項1に記載のアルミニウム合金鋳塊の製造方法。   The manufacturing method of the aluminum alloy ingot of Claim 1 whose molten metal temperature when adding Ca, Ti, and B is 720-730 degreeC.
JP2011046706A 2003-12-12 2011-03-03 Aluminum alloy ingot manufacturing method Expired - Fee Related JP5276133B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011046706A JP5276133B2 (en) 2003-12-12 2011-03-03 Aluminum alloy ingot manufacturing method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2003414892 2003-12-12
JP2003414892 2003-12-12
JP2011046706A JP5276133B2 (en) 2003-12-12 2011-03-03 Aluminum alloy ingot manufacturing method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2004351228A Division JP4801343B2 (en) 2003-12-12 2004-12-03 Aluminum alloy ingot manufacturing method, aluminum alloy ingot and aluminum alloy material

Publications (2)

Publication Number Publication Date
JP2011174182A true JP2011174182A (en) 2011-09-08
JP5276133B2 JP5276133B2 (en) 2013-08-28

Family

ID=44687286

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011046706A Expired - Fee Related JP5276133B2 (en) 2003-12-12 2011-03-03 Aluminum alloy ingot manufacturing method

Country Status (1)

Country Link
JP (1) JP5276133B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110157956A (en) * 2018-02-15 2019-08-23 昭和电工株式会社 The manufacturing method of Al alloy founding materials
JP2019141879A (en) * 2018-02-21 2019-08-29 Dowaメタルテック株式会社 Aluminum-ceramic bonded substrate and method for manufacturing same
CN110343881A (en) * 2019-08-29 2019-10-18 重庆丰禾铝业有限公司 A kind of processing method of superelevation width-thickness ratio cast aluminium alloy flat ingot

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5810455B2 (en) * 1979-11-20 1983-02-25 昭和軽金属株式会社 Aluminum alloy for rolling
JPH0920939A (en) * 1995-06-30 1997-01-21 Kobe Steel Ltd Method for adding refining agent to molten al and molten al alloy
JP2000220667A (en) * 1999-02-01 2000-08-08 Nippon Light Metal Co Ltd Aluminum integrated caliper body and method of manufacturing the same
JP2002194453A (en) * 2000-12-25 2002-07-10 Nippon Light Metal Co Ltd Aluminum melt treatment method to reduce Ti, V, B

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5810455B2 (en) * 1979-11-20 1983-02-25 昭和軽金属株式会社 Aluminum alloy for rolling
JPH0920939A (en) * 1995-06-30 1997-01-21 Kobe Steel Ltd Method for adding refining agent to molten al and molten al alloy
JP2000220667A (en) * 1999-02-01 2000-08-08 Nippon Light Metal Co Ltd Aluminum integrated caliper body and method of manufacturing the same
JP2002194453A (en) * 2000-12-25 2002-07-10 Nippon Light Metal Co Ltd Aluminum melt treatment method to reduce Ti, V, B

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110157956A (en) * 2018-02-15 2019-08-23 昭和电工株式会社 The manufacturing method of Al alloy founding materials
JP2019141879A (en) * 2018-02-21 2019-08-29 Dowaメタルテック株式会社 Aluminum-ceramic bonded substrate and method for manufacturing same
JP7062464B2 (en) 2018-02-21 2022-05-06 Dowaメタルテック株式会社 Aluminum-ceramic bonded substrate and its manufacturing method
CN110343881A (en) * 2019-08-29 2019-10-18 重庆丰禾铝业有限公司 A kind of processing method of superelevation width-thickness ratio cast aluminium alloy flat ingot

Also Published As

Publication number Publication date
JP5276133B2 (en) 2013-08-28

Similar Documents

Publication Publication Date Title
CN102676887A (en) Aluminum alloy for pressure casting and casting of the aluminum alloy
JP2002294383A (en) Aluminum alloy ingot for plastic working, method for producing aluminum alloy ingot for plastic working, method for producing aluminum alloy plastic worked product and aluminum alloy plastic worked product
JP2001220639A (en) Aluminum casting alloy
CN115198150B (en) Aluminium-silicon alloy and its preparation method and application
JP5276133B2 (en) Aluminum alloy ingot manufacturing method
JP3982849B2 (en) Aluminum alloy for forging
JP2004315938A (en) Forged material of aluminum alloy for structural material in transport aircraft, and manufacturing method therefor
JPS5810455B2 (en) Aluminum alloy for rolling
CN110408805B (en) Aluminum alloy bar and preparation method thereof
JP4801343B2 (en) Aluminum alloy ingot manufacturing method, aluminum alloy ingot and aluminum alloy material
JP3852915B2 (en) Method for producing semi-melt molded billet of aluminum alloy for transportation equipment
JP2011063884A (en) Heat-resistant aluminum alloy wire
JP5562749B2 (en) Cu-Mn brazing wire fine wire and method for producing the same
JP5689669B2 (en) Continuous casting method of Al-Si aluminum alloy
JP4820572B2 (en) Manufacturing method of heat-resistant aluminum alloy wire
CN100510135C (en) Aluminum alloy billet for heat roll, and heat roll
JPH03126834A (en) High strength aluminum alloy having excellent elastic modulus and low thermal expansibility
EP3192883B1 (en) Ai alloy containing cu and c and its manufacturing method
JP2008156715A (en) Aluminum foil for wrinkled foil container
JP4152095B2 (en) Method for producing semi-molten billet of aluminum alloy for transportation equipment
JP2007500784A (en) High strength alloy for heat exchanger
JPS6158546B2 (en)
JPH08165539A (en) Heat-treated thin aluminum extruded shape member and method for producing the same
JPH0699770B2 (en) Aluminum alloy for wrought
JPS594496B2 (en) Aluminum alloy for casting

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130325

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130423

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130516

R150 Certificate of patent or registration of utility model

Ref document number: 5276133

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees