JP2011174133A - Method for manufacturing surface-roughened stainless steel sheet, composite formed of stainless steel sheet joined with molding of thermoplastic resin composition, and method for manufacturing the same - Google Patents
Method for manufacturing surface-roughened stainless steel sheet, composite formed of stainless steel sheet joined with molding of thermoplastic resin composition, and method for manufacturing the same Download PDFInfo
- Publication number
- JP2011174133A JP2011174133A JP2010038909A JP2010038909A JP2011174133A JP 2011174133 A JP2011174133 A JP 2011174133A JP 2010038909 A JP2010038909 A JP 2010038909A JP 2010038909 A JP2010038909 A JP 2010038909A JP 2011174133 A JP2011174133 A JP 2011174133A
- Authority
- JP
- Japan
- Prior art keywords
- stainless steel
- steel plate
- resin
- pits
- particles
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 229910001220 stainless steel Inorganic materials 0.000 title claims abstract description 128
- 239000010935 stainless steel Substances 0.000 title claims abstract description 127
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 34
- 229920005992 thermoplastic resin Polymers 0.000 title claims description 60
- 239000011342 resin composition Substances 0.000 title claims description 50
- 239000002131 composite material Substances 0.000 title claims description 33
- 238000000465 moulding Methods 0.000 title claims description 12
- 238000000034 method Methods 0.000 title abstract description 26
- 239000002245 particle Substances 0.000 claims abstract description 107
- 150000002484 inorganic compounds Chemical class 0.000 claims abstract description 35
- 229910010272 inorganic material Inorganic materials 0.000 claims abstract description 35
- 229910021578 Iron(III) chloride Inorganic materials 0.000 claims abstract description 29
- RBTARNINKXHZNM-UHFFFAOYSA-K iron trichloride Chemical compound Cl[Fe](Cl)Cl RBTARNINKXHZNM-UHFFFAOYSA-K 0.000 claims abstract description 29
- 239000007788 liquid Substances 0.000 claims abstract description 25
- 239000007864 aqueous solution Substances 0.000 claims abstract description 22
- 229920005989 resin Polymers 0.000 claims description 51
- 239000011347 resin Substances 0.000 claims description 51
- -1 polypropylene Polymers 0.000 claims description 23
- 238000002347 injection Methods 0.000 claims description 16
- 239000007924 injection Substances 0.000 claims description 16
- 229910052751 metal Inorganic materials 0.000 claims description 12
- 239000002184 metal Substances 0.000 claims description 12
- 229920006324 polyoxymethylene Polymers 0.000 claims description 8
- 229930182556 Polyacetal Natural products 0.000 claims description 7
- 239000004743 Polypropylene Substances 0.000 claims description 7
- 229920001155 polypropylene Polymers 0.000 claims description 7
- 239000004734 Polyphenylene sulfide Substances 0.000 claims description 6
- XECAHXYUAAWDEL-UHFFFAOYSA-N acrylonitrile butadiene styrene Chemical compound C=CC=C.C=CC#N.C=CC1=CC=CC=C1 XECAHXYUAAWDEL-UHFFFAOYSA-N 0.000 claims description 6
- 239000004676 acrylonitrile butadiene styrene Substances 0.000 claims description 6
- 229920000122 acrylonitrile butadiene styrene Polymers 0.000 claims description 6
- 229910052799 carbon Inorganic materials 0.000 claims description 6
- 229920001707 polybutylene terephthalate Polymers 0.000 claims description 6
- 239000005020 polyethylene terephthalate Substances 0.000 claims description 6
- 229920000139 polyethylene terephthalate Polymers 0.000 claims description 6
- 229920000069 polyphenylene sulfide Polymers 0.000 claims description 6
- 239000004925 Acrylic resin Substances 0.000 claims description 5
- 229920000178 Acrylic resin Polymers 0.000 claims description 5
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 5
- 229910000000 metal hydroxide Inorganic materials 0.000 claims description 5
- 150000004692 metal hydroxides Chemical class 0.000 claims description 5
- 229910044991 metal oxide Inorganic materials 0.000 claims description 5
- 150000004706 metal oxides Chemical class 0.000 claims description 5
- 229910001463 metal phosphate Inorganic materials 0.000 claims description 5
- 150000004767 nitrides Chemical class 0.000 claims description 5
- 239000005011 phenolic resin Substances 0.000 claims description 5
- 229920006122 polyamide resin Polymers 0.000 claims description 5
- 229920013716 polyethylene resin Polymers 0.000 claims description 5
- 229920000915 polyvinyl chloride Polymers 0.000 claims description 5
- 239000004800 polyvinyl chloride Substances 0.000 claims description 5
- 238000005304 joining Methods 0.000 claims description 4
- 239000004431 polycarbonate resin Substances 0.000 claims description 4
- 229920005668 polycarbonate resin Polymers 0.000 claims description 4
- 239000000243 solution Substances 0.000 abstract description 6
- 230000007797 corrosion Effects 0.000 abstract description 3
- 238000005260 corrosion Methods 0.000 abstract description 3
- 238000007654 immersion Methods 0.000 description 24
- 229910000831 Steel Inorganic materials 0.000 description 18
- 239000010959 steel Substances 0.000 description 18
- 230000000052 comparative effect Effects 0.000 description 15
- 238000002844 melting Methods 0.000 description 11
- 230000008018 melting Effects 0.000 description 11
- 230000000694 effects Effects 0.000 description 9
- 238000001746 injection moulding Methods 0.000 description 7
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 6
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 5
- 235000010724 Wisteria floribunda Nutrition 0.000 description 5
- 239000000945 filler Substances 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 229910000838 Al alloy Inorganic materials 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- 229920006127 amorphous resin Polymers 0.000 description 3
- 238000004090 dissolution Methods 0.000 description 3
- 238000000635 electron micrograph Methods 0.000 description 3
- 238000001878 scanning electron micrograph Methods 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- 229920000049 Carbon (fiber) Polymers 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 239000004917 carbon fiber Substances 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 229920006038 crystalline resin Polymers 0.000 description 2
- 238000005868 electrolysis reaction Methods 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 238000007788 roughening Methods 0.000 description 2
- 230000035939 shock Effects 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 229920001342 Bakelite® Polymers 0.000 description 1
- 229920006358 Fluon Polymers 0.000 description 1
- 229920013633 Fortron Polymers 0.000 description 1
- 239000004738 Fortron® Substances 0.000 description 1
- 239000004420 Iupilon Substances 0.000 description 1
- 229920003355 Novatec® Polymers 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 229910010413 TiO 2 Inorganic materials 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- QYKIQEUNHZKYBP-UHFFFAOYSA-N Vinyl ether Chemical compound C=COC=C QYKIQEUNHZKYBP-UHFFFAOYSA-N 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 238000004873 anchoring Methods 0.000 description 1
- 239000004760 aramid Substances 0.000 description 1
- 229920006231 aramid fiber Polymers 0.000 description 1
- 229920003235 aromatic polyamide Polymers 0.000 description 1
- 229910001566 austenite Inorganic materials 0.000 description 1
- 239000004566 building material Substances 0.000 description 1
- QHIWVLPBUQWDMQ-UHFFFAOYSA-N butyl prop-2-enoate;methyl 2-methylprop-2-enoate;prop-2-enoic acid Chemical compound OC(=O)C=C.COC(=O)C(C)=C.CCCCOC(=O)C=C QHIWVLPBUQWDMQ-UHFFFAOYSA-N 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- 239000000378 calcium silicate Substances 0.000 description 1
- 229910052918 calcium silicate Inorganic materials 0.000 description 1
- OYACROKNLOSFPA-UHFFFAOYSA-N calcium;dioxido(oxo)silane Chemical compound [Ca+2].[O-][Si]([O-])=O OYACROKNLOSFPA-UHFFFAOYSA-N 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000005238 degreasing Methods 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 229920006351 engineering plastic Polymers 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 238000000445 field-emission scanning electron microscopy Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 229920005610 lignin Polymers 0.000 description 1
- RLAWWYSOJDYHDC-BZSNNMDCSA-N lisinopril Chemical compound C([C@H](N[C@@H](CCCCN)C(=O)N1[C@@H](CCC1)C(O)=O)C(O)=O)CC1=CC=CC=C1 RLAWWYSOJDYHDC-BZSNNMDCSA-N 0.000 description 1
- ZLNQQNXFFQJAID-UHFFFAOYSA-L magnesium carbonate Chemical compound [Mg+2].[O-]C([O-])=O ZLNQQNXFFQJAID-UHFFFAOYSA-L 0.000 description 1
- 239000001095 magnesium carbonate Substances 0.000 description 1
- 229910000021 magnesium carbonate Inorganic materials 0.000 description 1
- 229910000734 martensite Inorganic materials 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000010445 mica Substances 0.000 description 1
- 229910052618 mica group Inorganic materials 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 229920001568 phenolic resin Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 239000005060 rubber Substances 0.000 description 1
- 238000000790 scattering method Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 239000002436 steel type Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- 238000009864 tensile test Methods 0.000 description 1
- 229920001169 thermoplastic Polymers 0.000 description 1
- 239000004416 thermosoftening plastic Substances 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 229910000859 α-Fe Inorganic materials 0.000 description 1
Landscapes
- Injection Moulding Of Plastics Or The Like (AREA)
- ing And Chemical Polishing (AREA)
Abstract
Description
本発明は、粗面化ステンレス鋼板の製造方法、ならびにステンレス鋼板と熱可塑性樹脂組成物の成形体とが接合された複合体およびその製造方法に関する。 The present invention relates to a method for producing a roughened stainless steel plate, a composite in which a stainless steel plate and a molded body of a thermoplastic resin composition are joined, and a method for producing the same.
金属と樹脂とを一体化する技術として、接着剤によって接着させる方法が知られている。また、近年、アルミニウム合金を挿入した射出成形金型に熱可塑性樹脂を射出することで、アルミニウム合金と熱可塑性樹脂とを接合させる方法(インサート射出成形接着法)が提案されている(例えば、特許文献1〜3参照)。特許文献1〜3の方法では、アルミニウム合金の表面を所定の水溶液などで処理して、アルミニウム合金の表面に微細な凹凸を形成することで、密着性を向上させている。 As a technique for integrating a metal and a resin, a method of bonding with an adhesive is known. In recent years, a method (insert injection molding bonding method) has been proposed in which an aluminum alloy and a thermoplastic resin are joined by injecting a thermoplastic resin into an injection mold in which an aluminum alloy is inserted (for example, a patent). References 1-3). In the methods of Patent Documents 1 to 3, adhesion is improved by treating the surface of the aluminum alloy with a predetermined aqueous solution to form fine irregularities on the surface of the aluminum alloy.
一方、ステンレス鋼板の表面を粗面化して、ステンレス鋼板と被覆材(塗膜やゴム層など)との密着性を向上させる方法が提案されている(例えば、特許文献4,5参照)。特許文献4,5の方法では、ステンレス鋼板を塩化第二鉄水溶液中で交番電解することで、ステンレス鋼板の表面を粗面化している(例えば、特許文献5)。 On the other hand, a method has been proposed in which the surface of a stainless steel plate is roughened to improve the adhesion between the stainless steel plate and a coating material (such as a coating film or a rubber layer) (see, for example, Patent Documents 4 and 5). In the methods of Patent Documents 4 and 5, the surface of the stainless steel sheet is roughened by alternating electrolysis of the stainless steel sheet in a ferric chloride aqueous solution (for example, Patent Document 5).
ステンレス鋼板と熱可塑性樹脂とを接合させるために、前述のインサート射出成形接着法を適用しても、十分な密着性が得られず、特に経時的に熱可塑性樹脂の密着性が低下していく場合があった。そのため、例えば、インサート射出成形接着法で製造した容器に内容物を封入して長期保存すると、内容物が漏洩することがあった。 Even if the above-mentioned insert injection molding bonding method is applied to join the stainless steel plate and the thermoplastic resin, sufficient adhesion cannot be obtained, and the adhesiveness of the thermoplastic resin particularly deteriorates with time. There was a case. Therefore, for example, when the contents are sealed in a container manufactured by the insert injection molding bonding method and stored for a long time, the contents may leak.
ステンレス鋼板と熱可塑性樹脂との密着性を向上させる手段としては、特許文献4,5に記載されているように、ステンレス鋼板を塩化第二鉄水溶液中で交番電解して、ステンレス鋼板の表面にアンカー効果を発揮できるピットを形成することが考えられる。特許文献5に記載されているように、優れたアンカー効果を発揮させるためには、オーバーハング部を有するピットを形成することが好ましい。しかしながら、電解粗面化処理による方法は、整流器や、ステンレス鋼板の形状に対応する電極などを準備しなければならず、コストなどの観点から誰しもが容易に実施できる方法ではなかった。 As a means for improving the adhesion between the stainless steel plate and the thermoplastic resin, as described in Patent Documents 4 and 5, the stainless steel plate is subjected to alternating electrolysis in a ferric chloride aqueous solution and applied to the surface of the stainless steel plate. It is conceivable to form pits that can exhibit the anchor effect. As described in Patent Document 5, in order to exert an excellent anchor effect, it is preferable to form a pit having an overhang portion. However, the method using electrolytic surface roughening treatment has to prepare a rectifier, an electrode corresponding to the shape of the stainless steel plate, and the like, and is not a method that anyone can easily implement from the viewpoint of cost and the like.
そこで、本発明者は、ステンレス鋼板を塩化第二鉄水溶液に浸漬することで、ステンレス鋼板の表面にオーバーハング部を有するピットを形成することを試みた。しかしながら、塩化第二鉄水溶液による浸漬処理では、ステンレス鋼板の種類や表面仕上げの種類によっては、オーバーハング部を有するピットを形成できないことがあった。 Then, this inventor tried to form the pit which has an overhang part on the surface of a stainless steel plate by immersing a stainless steel plate in ferric chloride aqueous solution. However, in the immersion treatment with the ferric chloride aqueous solution, pits having an overhang portion may not be formed depending on the type of stainless steel plate and the type of surface finish.
本発明は、かかる点に鑑みてなされたものであり、ステンレス鋼板の表面に樹脂を接触させた場合に、良好な密着性を付与することができる粗面化ステンレス鋼板の製造方法であって、ステンレス鋼板の種類や表面仕上げの種類を問わずにオーバーハング部を有するピットを容易に形成することができる方法を提供することを目的とする。 The present invention has been made in view of such points, and is a method for producing a roughened stainless steel sheet that can impart good adhesion when a resin is brought into contact with the surface of the stainless steel sheet, It is an object of the present invention to provide a method capable of easily forming a pit having an overhang portion regardless of the type of stainless steel plate or the type of surface finish.
また、本発明は、ステンレス鋼板と熱可塑性樹脂組成物の成形体とが接合された複合体であって、熱可塑性樹脂組成物の密着性に優れた複合体を提供することを目的とする。 Another object of the present invention is to provide a composite in which a stainless steel plate and a molded body of a thermoplastic resin composition are joined, and the composite having excellent adhesiveness of the thermoplastic resin composition.
本発明者は、ステンレス鋼板の表面を、無機化合物粒子を含む塩化第二鉄水溶液で処理することで、上記課題を解決できることを見出し、さらに検討を加えて本発明を完成させた。 The present inventor has found that the above problem can be solved by treating the surface of the stainless steel plate with a ferric chloride aqueous solution containing inorganic compound particles, and has further studied and completed the present invention.
すなわち、本発明の第一は、以下の粗面化ステンレス鋼板の製造方法に関する。
[1]ステンレス鋼板を準備するステップと;平均粒子径が0.01〜40μmの範囲内の無機化合物粒子を、0.1〜25g/Lの濃度で塩化第二鉄水溶液中に分散させた処理液に、前記ステンレス鋼板を浸漬して、前記ステンレス鋼板表面に複数のピットを形成するステップとを含む、粗面化ステンレス鋼板の製造方法。
[2]前記無機化合物粒子は、前記塩化第二鉄水溶液に溶解しない、炭素粒子、金属酸化物粒子、金属水酸化物粒子、金属炭化物粒子、金属窒化物粒子および金属リン酸塩からなる群から選択される1または2以上の粒子を含む、[1]に記載の粗面化ステンレス鋼板の製造方法。
[3]前記複数のピットのうち60個数%以上のピットは、ピット開口部の径D2に対するピット内部の最大径D1の比率D1/D2が1.05以上である、[1]または[2]に記載の粗面化ステンレス鋼板の製造方法。
That is, the first of the present invention relates to the following method for producing a roughened stainless steel sheet.
[1] A step of preparing a stainless steel plate, and a treatment in which inorganic compound particles having an average particle diameter of 0.01 to 40 μm are dispersed in an aqueous ferric chloride solution at a concentration of 0.1 to 25 g / L. A step of immersing the stainless steel plate in a liquid to form a plurality of pits on the surface of the stainless steel plate.
[2] The inorganic compound particles are selected from the group consisting of carbon particles, metal oxide particles, metal hydroxide particles, metal carbide particles, metal nitride particles, and metal phosphates that do not dissolve in the ferric chloride aqueous solution. The method for producing a roughened stainless steel sheet according to [1], comprising one or more selected particles.
[3] Among the plurality of pits, 60% or more of pits have a ratio D 1 / D 2 of the maximum diameter D 1 inside the pit to the diameter D 2 of the pit opening is 1.05 or more. [1] Or the manufacturing method of the roughened stainless steel plate as described in [2].
また、本発明の第二は、以下の複合体に関する。
[4]ステンレス鋼板と熱可塑性樹脂組成物の成形体とが接合された複合体であって:前記ステンレス鋼板は、前記熱可塑性樹脂組成物の成形体との接合面の60面積%以上にピットが形成されており;前記接合面に形成されたピットのうち60個数%以上のピットは、ピット開口部の径D2に対するピット内部の最大径D1の比率D1/D2が1.05以上であり;前記熱可塑性樹脂組成物の成形収縮率は、1.0%以下である、複合体。
[5]前記熱可塑性樹脂組成物は、ポリエチレン系樹脂、ポリプロピレン系樹脂、ポリエチレンテレフタレート系樹脂、ポリブチレンテレフタレート系樹脂、ポリアミド系樹脂、ポリアセタール系樹脂、ポリフェニレンサルファイド樹脂、アクリロニトリル−ブタジエン−スチレン系樹脂、アクリル系樹脂、ポリ塩化ビニル系樹脂、ポリカーボネート系樹脂、フェノール系樹脂およびパーフルオロ系樹脂からなる群から選択される1種以上を含む、[4]に記載の複合体。
The second aspect of the present invention relates to the following complex.
[4] A composite in which a stainless steel plate and a molded body of a thermoplastic resin composition are joined: the stainless steel plate has pits in 60% by area or more of the joint surface with the molded body of the thermoplastic resin composition Among the pits formed on the joint surface, 60% or more of pits have a ratio D 1 / D 2 of the maximum diameter D 1 inside the pit to the diameter D 2 of the pit opening of 1.05 The composite shrinkage ratio of the thermoplastic resin composition is 1.0% or less.
[5] The thermoplastic resin composition includes a polyethylene resin, a polypropylene resin, a polyethylene terephthalate resin, a polybutylene terephthalate resin, a polyamide resin, a polyacetal resin, a polyphenylene sulfide resin, an acrylonitrile-butadiene-styrene resin, The composite according to [4], including one or more selected from the group consisting of an acrylic resin, a polyvinyl chloride resin, a polycarbonate resin, a phenol resin, and a perfluoro resin.
また、本発明の第三は、以下の複合体の製造方法に関する。
[6]ステンレス鋼板と熱可塑性樹脂組成物の成形体とが接合された複合体の製造方法であって:粗面化ステンレス鋼板を射出成形金型に挿入するステップと、前記射出成形金型に成形収縮率が1.0%以下の熱可塑性樹脂組成物を射出して、前記粗面化ステンレス鋼板の表面に前記熱可塑性樹脂組成物の成形体を接合するステップとを有し;前記粗面化ステンレス鋼板は、その表面の60面積%以上にピットが形成されており;前記ピットのうち60個数%以上のピットは、ピット開口部の径D2に対するピット内部の最大径D1の比率D1/D2が1.05以上である、複合体の製造方法。
[7]平均粒子径が0.01〜40μmの範囲内の無機化合物粒子を、0.1〜25g/Lの濃度で塩化第二鉄水溶液中に分散させた処理液に、ステンレス鋼板を浸漬して、前記粗面化ステンレス鋼板を得るステップをさらに有する、[6]に記載の複合体の製造方法。
[8]前記無機化合物粒子は、前記塩化第二鉄水溶液に溶解しない、炭素粒子、金属酸化物粒子、金属水酸化物粒子、金属炭化物粒子、金属窒化物粒子および金属リン酸塩からなる群から選択される1または2以上の粒子を含む、[7]に記載の複合体の製造方法。
[9]前記熱可塑性樹脂組成物は、ポリエチレン系樹脂、ポリプロピレン系樹脂、ポリエチレンテレフタレート系樹脂、ポリブチレンテレフタレート系樹脂、ポリアミド系樹脂、ポリアセタール系樹脂、ポリフェニレンサルファイド樹脂、アクリロニトリル−ブタジエン−スチレン系樹脂、アクリル系樹脂、ポリ塩化ビニル系樹脂、ポリカーボネート系樹脂、フェノール系樹脂およびパーフルオロ系樹脂からなる群から選択される1種以上を含む、[6]〜[8]のいずれかに記載の複合体の製造方法。
The third aspect of the present invention relates to a method for producing the following composite.
[6] A method for producing a composite in which a stainless steel plate and a molded body of a thermoplastic resin composition are joined: a step of inserting a roughened stainless steel plate into an injection mold; Injecting a thermoplastic resin composition having a molding shrinkage rate of 1.0% or less and joining the molded body of the thermoplastic resin composition to the surface of the roughened stainless steel sheet; of stainless steel sheet has pits formed in more than 60 area% of its surface; 60% by number or more pits of the pit, the ratio D of the maximum diameter D 1 of the inner pit to the diameter D 2 of the pit openings 1 / D 2 is 1.05 or more, a manufacturing method of the composite.
[7] A stainless steel plate is immersed in a treatment liquid in which inorganic compound particles having an average particle diameter of 0.01 to 40 μm are dispersed in a ferric chloride aqueous solution at a concentration of 0.1 to 25 g / L. The method for producing a composite according to [6], further comprising the step of obtaining the roughened stainless steel plate.
[8] The inorganic compound particles are selected from the group consisting of carbon particles, metal oxide particles, metal hydroxide particles, metal carbide particles, metal nitride particles, and metal phosphates that do not dissolve in the ferric chloride aqueous solution. The manufacturing method of the composite_body | complex as described in [7] containing the particle | grains of 1 or 2 or more selected.
[9] The thermoplastic resin composition comprises a polyethylene resin, a polypropylene resin, a polyethylene terephthalate resin, a polybutylene terephthalate resin, a polyamide resin, a polyacetal resin, a polyphenylene sulfide resin, an acrylonitrile-butadiene-styrene resin, The composite according to any one of [6] to [8], including one or more selected from the group consisting of acrylic resins, polyvinyl chloride resins, polycarbonate resins, phenol resins, and perfluoro resins. Manufacturing method.
本発明によれば、ステンレス鋼板の種類や表面仕上げの種類を問わずに、ステンレス鋼板の表面にオーバーハング部を有するピットを容易に形成することができる。したがって、本発明によれば、その表面に樹脂を接触させた場合に、良好な密着性を付与することができる粗面化ステンレス鋼板を提供することができる。さらに、本発明によれば、ステンレス鋼板と熱可塑性樹脂組成物の成形体とが接合された複合体であって、熱可塑性樹脂組成物の密着性に優れた複合体を提供することができる。 According to the present invention, a pit having an overhang portion can be easily formed on the surface of a stainless steel plate regardless of the type of stainless steel plate or the type of surface finish. Therefore, according to the present invention, it is possible to provide a roughened stainless steel sheet capable of imparting good adhesion when a resin is brought into contact with the surface thereof. Furthermore, according to this invention, it is the composite_body | complex with which the stainless steel plate and the molded object of the thermoplastic resin composition were joined, Comprising: The composite_body | complex excellent in the adhesiveness of a thermoplastic resin composition can be provided.
1.粗面化ステンレス鋼板の製造方法
本発明の粗面化ステンレス鋼板の製造方法は、1)基材となるステンレス鋼板を準備する第1のステップと、2)準備したステンレス鋼板を処理液に浸漬する第2のステップとを有する。
1. Method for Producing Roughened Stainless Steel Plate The method for producing a roughened stainless steel plate according to the present invention includes 1) a first step of preparing a stainless steel plate as a base material, and 2) immersing the prepared stainless steel plate in a treatment liquid. A second step.
第1のステップでは、基材となるステンレス鋼板を準備する。 In the first step, a stainless steel plate as a base material is prepared.
基材となるステンレス鋼板は、オーステナイト系、フェライト系、マルテンサイト系など、特に限定されない。ステンレス鋼板の鋼種の例には、SUS304、SUS430、SUS316などが含まれる。また、ステンレス鋼板の表面仕上げの種類も、特に限定されない。表面仕上げの種類の例には、BA、2B、2D、No.4、HLなどが含まれる。 The stainless steel plate used as a base material is not particularly limited, such as austenite, ferrite, and martensite. Examples of the steel type of the stainless steel plate include SUS304, SUS430, and SUS316. Further, the type of surface finish of the stainless steel plate is not particularly limited. Examples of types of surface finish include BA, 2B, 2D, No. 4, HL, and the like.
第2のステップでは、第1のステップで準備したステンレス鋼板を処理液に浸漬する。この工程により、ステンレス鋼板の表面においてオーバーハング部を有する複数のピットが形成される。本明細書において、「オーバーハング部を有するピット」とは、ピット内部の最大径をD1とし、ピット開口部の径をD2としたとき、D1がD2よりも大きいピットを意味し、好ましくはD1/D2が1.05以上のピットを意味する(図1参照)。 In the second step, the stainless steel plate prepared in the first step is immersed in the treatment liquid. By this step, a plurality of pits having an overhang portion are formed on the surface of the stainless steel plate. In the present specification, "pits having an overhang portion", the maximum diameter of the inner pit and D 1, the diameter of the pit openings when the D 2, D 1 is meant greater pits than D 2 Preferably, it means a pit having D 1 / D 2 of 1.05 or more (see FIG. 1).
ステンレス鋼板を浸漬する処理液としては、塩化第二鉄水溶液に無機化合物粒子を分散させた懸濁液が使用される。 As the treatment liquid for immersing the stainless steel plate, a suspension in which inorganic compound particles are dispersed in a ferric chloride aqueous solution is used.
処理液中の塩化第二鉄(FeCl3)は、Cl−イオンの吸着部を起点とする孔食作用により、ステンレス鋼板表面にピットを形成する。処理液中の塩化第二鉄の濃度は、0.1〜3.0mol/Lの範囲内が好ましい。塩化第二鉄の濃度が0.1mol/L未満の場合、ステンレス鋼板の表面に十分な深さのピットを形成することができない。一方、塩化第二鉄の濃度を3.0mol/L超としても、塩化第二鉄の濃度上昇に見合うだけのピット数の増加を認められない。 Ferric chloride (FeCl 3 ) in the treatment liquid forms pits on the surface of the stainless steel plate by a pitting corrosion action starting from the adsorption portion of Cl − ions. The concentration of ferric chloride in the treatment liquid is preferably within the range of 0.1 to 3.0 mol / L. When the ferric chloride concentration is less than 0.1 mol / L, pits having a sufficient depth cannot be formed on the surface of the stainless steel plate. On the other hand, even if the ferric chloride concentration exceeds 3.0 mol / L, an increase in the number of pits corresponding to the increase in the ferric chloride concentration is not observed.
無機化合物粒子の種類は、塩化第二鉄水溶液に溶解しないものであれば特に限定されない。無機化合物粒子の例には、炭素粒子、金属酸化物粒子、金属水酸化物粒子、金属炭化物粒子、金属窒化物粒子、金属リン酸塩粒子などのセラミックス粒子が含まれる。ここで、「金属」にはケイ素(Si)が含まれる。これらの粒子は、単独で使用されてもよいし、2種類以上で組み合わせて使用されてもよい。 The kind of inorganic compound particle | grains will not be specifically limited if it does not melt | dissolve in ferric chloride aqueous solution. Examples of the inorganic compound particles include ceramic particles such as carbon particles, metal oxide particles, metal hydroxide particles, metal carbide particles, metal nitride particles, and metal phosphate particles. Here, “metal” includes silicon (Si). These particles may be used alone or in combination of two or more.
無機化合物粒子の平均粒径は、0.01〜40μmの範囲内が好ましい。平均粒径が0.01未満の場合、粒子の凝集力が過剰に強くなり、粒子が溶液中に均一に分散しなくなるため、処理液の安定性が低下してしまう。一方、平均粒径が40μm超の場合、オーバーハング部を有するピットを効率的に形成することができない。無機化合物粒子の平均粒径は、レーザ回折散乱法により測定される。 The average particle diameter of the inorganic compound particles is preferably in the range of 0.01 to 40 μm. When the average particle size is less than 0.01, the cohesive force of the particles becomes excessively strong, and the particles are not uniformly dispersed in the solution, so that the stability of the treatment liquid is lowered. On the other hand, when the average particle diameter exceeds 40 μm, pits having an overhang portion cannot be formed efficiently. The average particle diameter of the inorganic compound particles is measured by a laser diffraction scattering method.
処理液中の無機化合物粒子の濃度は、0.1〜25.0g/Lの範囲内が好ましい。無機化合物粒子の濃度が0.1g/L未満の場合、オーバーハング部を有するピットの形成について無機化合物粒子の効果がほとんど認められない。一方、無機化合物粒子の濃度が25.0g/L超の場合、過剰量の無機化合物粒子が沈殿するため、処理液の安定性が低下してしまう。 The concentration of the inorganic compound particles in the treatment liquid is preferably within the range of 0.1 to 25.0 g / L. When the concentration of the inorganic compound particles is less than 0.1 g / L, the effect of the inorganic compound particles is hardly recognized for the formation of pits having an overhang portion. On the other hand, when the concentration of the inorganic compound particles is more than 25.0 g / L, an excessive amount of inorganic compound particles is precipitated, so that the stability of the treatment liquid is lowered.
処理液の液温は、室温〜95℃の範囲内が好ましく、室温〜60℃の範囲内がより好ましい。液温が高いと、処理液の蒸発が顕著となるからである。 The liquid temperature of the treatment liquid is preferably in the range of room temperature to 95 ° C, and more preferably in the range of room temperature to 60 ° C. This is because when the liquid temperature is high, the evaporation of the treatment liquid becomes remarkable.
処理液にステンレス鋼板を浸漬させる時間は、150秒以下が好ましい。浸漬時間が150秒を超えると、形成されるピットの径が過剰に大きくなり、アンカー効果が低下してしまう。また、60秒を超える時間処理してもアンカー効果の顕著な向上は認められないため、浸漬時間を60秒以下とすることがより好ましい。一方、1秒以下の浸漬処理は制御するのが困難なため、浸漬時間は2秒以上が好ましい。 The time for immersing the stainless steel plate in the treatment liquid is preferably 150 seconds or less. When the immersion time exceeds 150 seconds, the diameter of the formed pits becomes excessively large and the anchor effect is lowered. Moreover, since the remarkable improvement of an anchor effect is not recognized even if it processes for 60 seconds or more, it is more preferable that immersion time shall be 60 seconds or less. On the other hand, since the immersion treatment for 1 second or less is difficult to control, the immersion time is preferably 2 seconds or more.
第2のステップでは、ステンレス鋼板を処理液に浸漬する代わりに、ステンレス鋼板の表面に処理液を塗布しても同様の効果を得られる。しかしながら、ステンレス鋼板の形状によっては、鋼板表面に処理液を均一に塗布するのが困難であるため、浸漬処理によりピットを形成することが好ましい。また、浸漬処理を行う場合は、処理液の飛散や空気の巻き込みによる接液不良を防止する観点から、攪拌速度をできるだけ低速とすることが好ましい。 In the second step, the same effect can be obtained by applying the treatment liquid to the surface of the stainless steel plate instead of immersing the stainless steel plate in the treatment liquid. However, depending on the shape of the stainless steel plate, it is difficult to uniformly apply the treatment liquid to the surface of the steel plate, so it is preferable to form pits by dipping treatment. Moreover, when performing an immersion process, it is preferable to make stirring speed as low as possible from a viewpoint of preventing the liquid-contact defect by scattering of a process liquid or entrainment of air.
前述の通り、ステンレス鋼板を塩化第二鉄水溶液に浸漬すると、塩化第二鉄(FeCl3)に由来するCl−イオンの孔食作用により、ステンレス鋼板表面にオーバーハング部を有する複数のピットが形成される。しかしながら、ステンレス鋼板の種類や表面仕上げの種類によっては、ステンレス鋼板表面の溶解が起こり、ピット開口部(オーバーハング部)も溶解してしまうため、オーバーハング部を有するピットを形成できないことがある。たとえば、SUS430は、SUS304に比べて塩化第二鉄水溶液中の浸漬電位が低く、鋼板表面が全体的に溶解されやすい。したがって、SUS430を塩化第二鉄水溶液に浸漬しても、ピットの形成と並行してピット開口部の溶解も進行してしまうため、形成されたピットのうちオーバーハング部を有するピットの割合が60個数%未満となってしまうことがある(図2参照)。 As described above, when a stainless steel plate is immersed in a ferric chloride aqueous solution, a plurality of pits having an overhang portion are formed on the surface of the stainless steel plate by the pitting action of Cl − ions derived from ferric chloride (FeCl 3 ). Is done. However, depending on the type of the stainless steel plate and the type of surface finish, the surface of the stainless steel plate is melted and the pit opening (overhang portion) is also melted, so that a pit having an overhang portion may not be formed. For example, SUS430 has a lower immersion potential in a ferric chloride aqueous solution than SUS304, and the steel plate surface is easily dissolved as a whole. Therefore, even if SUS430 is immersed in a ferric chloride aqueous solution, the dissolution of the pit opening also proceeds in parallel with the formation of the pits. Therefore, the ratio of pits having an overhang portion among the formed pits is 60. It may be less than the number% (see FIG. 2).
この問題点を、本発明の製造方法では、塩化第二鉄水溶液に無機化合物粒子を分散させることで解決している。無機化合物粒子を分散させることで、オーバーハング部を有するピットの割合を増加させうるメカニズムは不明であるが、以下の(1)〜(3)のメカニズムが推察される。 In the production method of the present invention, this problem is solved by dispersing inorganic compound particles in a ferric chloride aqueous solution. Although the mechanism by which the proportion of pits having an overhang portion can be increased by dispersing inorganic compound particles is unknown, the following mechanisms (1) to (3) are presumed.
(1)無機化合物粒子がステンレス鋼板の表面にわずかな隙間を隔てて存在する場合、隙間部分には、外部から酸素が拡散しにくい状態となる。したがって、隙間部分ではステンレス鋼板表面における不動態の形成または維持が困難となるとともに、隙間部分の中心部を陽極とする酸素濃淡電池が形成される。その結果、隙間部分の中心部を基点として局部的にピットが形成され、オーバーハング部を有するピットが形成される。 (1) When the inorganic compound particles are present on the surface of the stainless steel plate with a slight gap, oxygen hardly diffuses from the outside into the gap portion. Therefore, it becomes difficult to form or maintain a passive state on the surface of the stainless steel plate at the gap portion, and an oxygen concentration cell having the anode at the center of the gap portion is formed. As a result, pits are locally formed starting from the center of the gap portion, and pits having overhang portions are formed.
(2)ピット開口部(オーバーハング部)などのステンレス鋼板表面の孔食が生じていない部位に無機化合物粒子が吸着して、当該部位の溶解を抑制する。その結果、局部的にピットが形成され、オーバーハング部を有するピットが形成される。 (2) The inorganic compound particles are adsorbed on a portion of the stainless steel plate surface where pitting corrosion does not occur, such as a pit opening (overhang portion), and the dissolution of the portion is suppressed. As a result, pits are locally formed and pits having an overhang portion are formed.
(3)無機化合物粒子がステンレス鋼板表面に衝突し、酸化皮膜(不動態皮膜)を損傷する。酸化皮膜が破壊された部位は、他の部位よりも溶解が速く進行する。その結果、局部的にピットが形成され、オーバーハング部を有するピットが形成される。 (3) The inorganic compound particles collide with the stainless steel plate surface and damage the oxide film (passive film). The dissolution of the portion where the oxide film is broken proceeds faster than the other portions. As a result, pits are locally formed and pits having an overhang portion are formed.
本発明の製造方法で製造された粗面化ステンレス鋼板の表面には、ピットが多数形成されている(図1参照)。浸漬処理を行った領域の面積に対するピット形成部の面積の割合(以下「ピット形成部の面積率」ともいう)は、60面積%以上である。ピット形成部の面積率は、浸漬処理を行った鋼板表面を上から撮像した電子顕微鏡(SEM)写真を画像解析することによって測定することができる。 Many pits are formed on the surface of the roughened stainless steel plate produced by the production method of the present invention (see FIG. 1). The ratio of the area of the pit forming portion to the area of the region subjected to the immersion treatment (hereinafter also referred to as “area ratio of the pit forming portion”) is 60 area% or more. The area ratio of a pit formation part can be measured by image-analyzing the electron microscope (SEM) photograph which imaged the steel plate surface which performed the immersion process from the top.
また、本発明の製造方法で粗面化ステンレス鋼板を製造した場合、鋼板表面に形成された複数のピットのうち60個数%以上のピットは、ピット開口部の径D2に対するピット内部の最大径D1の比率D1/D2が1.05以上である(実施例参照)。すなわち、鋼板表面に形成されたピットの大半は、オーバーハング部を有する。このようにオーバーハング部を有するピットは、アンカー効果により熱可塑性樹脂組成物との密着性を向上させる。すなわち、本発明の製造方法で製造された粗面化ステンレス鋼板の表面に熱可塑性樹脂組成物を接触させた場合、熱可塑性樹脂組成物の一部がこれらのピット内に入り込むため、アンカー効果により熱可塑性樹脂組成物との密着性が向上する。ピットの径は、鋼板断面を撮像した電子顕微鏡(SEM)写真を用いて測定することができる。 Also, if you produce a roughened stainless steel plate in the production process of the present invention, 60% by number or more of the pit of the plurality of pits formed on the steel sheet surface, the maximum diameter of the inner pit to the diameter D 2 of the pit openings the ratio D 1 / D 2 of D 1 is 1.05 or more (see examples). That is, most of the pits formed on the steel plate surface have an overhang portion. Thus, the pit which has an overhang part improves adhesiveness with a thermoplastic resin composition by an anchor effect. That is, when the thermoplastic resin composition is brought into contact with the surface of the roughened stainless steel plate produced by the production method of the present invention, since a part of the thermoplastic resin composition enters these pits, Adhesion with the thermoplastic resin composition is improved. The diameter of the pit can be measured using an electron microscope (SEM) photograph obtained by imaging a cross section of the steel plate.
2.ステンレス鋼板と熱可塑性樹脂組成物との複合体
本発明の複合体は、ステンレス鋼板と熱可塑性樹脂組成物の成形体とが接合されている複合体である。本明細書では、ステンレス鋼板の表面のうち、熱可塑性樹脂組成物の成形体と接合している領域を「接合面」という。
2. Composite of Stainless Steel Plate and Thermoplastic Resin Composition The composite of the present invention is a composite in which a stainless steel plate and a molded body of a thermoplastic resin composition are joined. In this specification, the area | region joined with the molded object of a thermoplastic resin composition among the surfaces of a stainless steel plate is called "joint surface."
熱可塑性樹脂組成物に接合されるステンレス鋼板は、上述の本発明の製造方法で製造された粗面化ステンレス鋼板(以下「本発明の粗面化ステンレス鋼板」ともいう)である。前述の通り、本発明の粗面化ステンレス鋼板は、1)その接合面(表面)の60面積%以上にピットが形成されており、かつ2)接合面(表面)に形成されたピットのうち60個数%以上のピットは、ピット開口部の径D2に対するピット内部の最大径D1の比率D1/D2が1.05以上である。 The stainless steel plate joined to the thermoplastic resin composition is a roughened stainless steel plate produced by the production method of the present invention described above (hereinafter also referred to as “roughened stainless steel plate of the present invention”). As described above, the roughened stainless steel plate of the present invention has 1) pits formed in 60% by area or more of the joint surface (surface), and 2) of the pits formed on the joint surface (surface). In the pits of 60% by number or more, the ratio D 1 / D 2 of the maximum diameter D 1 inside the pit to the diameter D 2 of the pit opening is 1.05 or more.
熱可塑性樹脂組成物は、結晶性の熱可塑性樹脂および非結晶性の熱可塑性樹脂のどちらを含んでいてもよい。結晶性の熱可塑性樹脂の例には、ポリエチレン樹脂、ポリプロピレン樹脂、ポリエチレンテレフタレート樹脂、ポリブチレンテレフタレート樹脂、ポリアミド樹脂、ポリアセタール樹脂、ポリフェニレンサルファイド樹脂などが含まれる。非結晶性の熱可塑性樹脂の例には、アクリロニトリル−ブタジエン−スチレン樹脂、アクリル系樹脂、ポリ塩化ビニル樹脂、ポリカーボネート樹脂、ポリアセタール樹脂、フェノール系樹脂およびパーフルオロ系樹脂(テトラフルオロエチレン−パーフルオロアルキルビニルエーテルなど)などが含まれる。 The thermoplastic resin composition may contain either a crystalline thermoplastic resin or an amorphous thermoplastic resin. Examples of the crystalline thermoplastic resin include polyethylene resin, polypropylene resin, polyethylene terephthalate resin, polybutylene terephthalate resin, polyamide resin, polyacetal resin, polyphenylene sulfide resin, and the like. Examples of non-crystalline thermoplastic resins include acrylonitrile-butadiene-styrene resins, acrylic resins, polyvinyl chloride resins, polycarbonate resins, polyacetal resins, phenolic resins and perfluoro resins (tetrafluoroethylene-perfluoroalkyl). Vinyl ether, etc.).
熱可塑樹脂組成物の成形収縮率は、1.0%以下であることが好ましい。成形収縮率は、射出成形時に使用した金型の樹脂流入部の容積Aに対し、射出成形後に固化した樹脂組成物の容積Bを測定し、「(A−B)/A×100(%)」として求めることができる。 The molding shrinkage of the thermoplastic resin composition is preferably 1.0% or less. The molding shrinkage ratio was determined by measuring the volume B of the resin composition solidified after injection molding with respect to the volume A of the resin inflow portion of the mold used at the time of injection molding, and “(A−B) / A × 100 (%) ".
熱可塑樹脂組成物の成形収縮率は、樹脂の種類によっても調整されうるが、例えばフィラーを添加することによっても調整されうる。フィラーの例には、ガラス繊維、炭素繊維、アラミド樹脂などの繊維系フィラー;カーボンブラック、炭酸カルシウム、ケイ酸カルシウム、炭酸マグネシウム、シリカ、タルク、ガラス、粘土、リグニン、雲母、石英粉、ガラス球などの粉フィラー;炭素繊維やアラミド繊維の粉砕物などが含まれるが、特に限定されない。熱可塑性樹脂組成物におけるフィラーの含有量は、5〜60質量%の範囲内が好ましく、10〜40質量%の範囲内がより好ましい。 The molding shrinkage of the thermoplastic resin composition can be adjusted depending on the type of resin, but can also be adjusted by adding a filler, for example. Examples of fillers include fiber fillers such as glass fiber, carbon fiber, and aramid resin; carbon black, calcium carbonate, calcium silicate, magnesium carbonate, silica, talc, glass, clay, lignin, mica, quartz powder, glass sphere Powder fillers such as: carbon fiber and aramid fiber pulverized material are included, but are not particularly limited. The filler content in the thermoplastic resin composition is preferably in the range of 5 to 60% by mass, more preferably in the range of 10 to 40% by mass.
熱可塑樹脂組成物の成形収縮率は、結晶性樹脂と非結晶性樹脂とを混合することによっても調整されうる。一般的に、結晶性樹脂の方が、非結晶性樹脂よりも成形収縮率が大きいので、非結晶性樹脂の混合比率を高めれば、成形収縮率も低減されうる。 The molding shrinkage rate of the thermoplastic resin composition can also be adjusted by mixing a crystalline resin and an amorphous resin. In general, a crystalline resin has a larger molding shrinkage ratio than an amorphous resin. Therefore, if the mixing ratio of the amorphous resin is increased, the molding shrinkage ratio can be reduced.
本発明の複合体では、ステンレス鋼板表面の接合面にオーバーハング部を有するピットが複数形成されている。本発明の複合体では、接合面において熱可塑性樹脂組成物がステンレス鋼板のピット内に入り込むため、ステンレス鋼板と熱可塑性樹脂組成物の成形体とが強固に接合される。 In the composite of the present invention, a plurality of pits having an overhang portion are formed on the joining surface of the stainless steel plate surface. In the composite of the present invention, since the thermoplastic resin composition enters the pits of the stainless steel plate at the joining surface, the stainless steel plate and the molded body of the thermoplastic resin composition are firmly joined.
本発明の複合体は、特に限定されないが、例えば以下の方法により製造されうる。 Although the composite_body | complex of this invention is not specifically limited, For example, it can be manufactured with the following method.
3.ステンレス鋼板と熱可塑性樹脂の成形体との複合体の製造方法
本発明の複合体は、本発明の粗面化ステンレス鋼板を射出成形金型に挿入した後、熱可塑性樹脂組成物を射出成形金型内に射出することで製造されうる。
3. Manufacturing method of composite of stainless steel plate and thermoplastic resin molded body The composite of the present invention is obtained by inserting the roughened stainless steel plate of the present invention into an injection mold and then applying the thermoplastic resin composition to the injection mold. It can be manufactured by injection into a mold.
まず、本発明の粗面化ステンレス鋼板を射出成形金型に挿入する。次いで、射出成形金型内に、高温の熱可塑性樹脂組成物を高圧で射出する。このとき、射出成形金型にガス抜きを設けて、熱可塑性樹脂組成物が円滑に流れるようにすることが好ましい。前述の通り、本発明の粗面化ステンレス鋼板の表面には複数のピットが形成されており、高温の熱可塑性樹脂組成物はピットが形成された表面に接触する。射出成形金型の温度は、使用する樹脂の融点近傍であることが好ましい。射出された熱可塑性樹脂が、粗面化ステンレス鋼板のピットの内部に侵入しやすくするためである。 First, the roughened stainless steel plate of the present invention is inserted into an injection mold. Next, a high-temperature thermoplastic resin composition is injected into the injection mold at high pressure. At this time, it is preferable to provide a gas vent in the injection mold so that the thermoplastic resin composition flows smoothly. As described above, a plurality of pits are formed on the surface of the roughened stainless steel sheet of the present invention, and the high-temperature thermoplastic resin composition contacts the surface on which the pits are formed. The temperature of the injection mold is preferably near the melting point of the resin used. This is because the injected thermoplastic resin easily enters the pits of the roughened stainless steel plate.
射出終了後、金型を開き離型して複合体を得る。射出成形により得られた複合体は、成形後にアニール処理をして、成形収縮による内部歪みを解消することが好ましい。 After completion of injection, the mold is opened and released to obtain a composite. The composite obtained by injection molding is preferably annealed after molding to eliminate internal distortion due to molding shrinkage.
以上の手順により、粗面化ステンレス鋼板の表面に熱可塑性樹脂組成物の成形体を接合させて、本発明の複合体を製造することができる。このようにして製造された本発明の複合体は、熱可塑性樹脂組成物が鋼板表面のピットに入り込むため、優れた接合性を発揮することができる。 By the above procedure, the composite of the present invention can be produced by bonding the molded body of the thermoplastic resin composition to the surface of the roughened stainless steel plate. The composite of the present invention thus produced can exhibit excellent bondability because the thermoplastic resin composition enters the pits on the steel sheet surface.
以下、本発明を実施例を参照して詳細に説明するが、本発明はこれらの実施例により限定されない。 EXAMPLES Hereinafter, although this invention is demonstrated in detail with reference to an Example, this invention is not limited by these Examples.
1.粗面化ステンレス鋼板の作製
供試ステンレス鋼板として、以下の2種類のステンレス鋼板を準備した。
ステンレス鋼板A:SUS304、2B仕上げ材、板厚0.8mm
ステンレス鋼板B:SUS430、2B仕上げ材、板厚0.8mm
1. Production of Roughened Stainless Steel Sheet The following two types of stainless steel sheets were prepared as test stainless steel sheets.
Stainless steel plate A: SUS304, 2B finish, plate thickness 0.8mm
Stainless steel plate B: SUS430, 2B finish, plate thickness 0.8mm
各ステンレス鋼板(ステンレス鋼板Aまたはステンレス鋼板B)をアルカリ脱脂(pH12、液温60℃、浸漬時間1分間)した後、表1に示す組成の処理液に表1に示す条件(液温、時間)で浸漬して、各ステンレス鋼板の表面にピットを形成した。各処理液は、ビーカーに所定量のFeCl3・6H2O(n=270.2)または塩酸と無機化合物粒子とを入れ、合計量が1Lとなるように上水を加え、ホットスターラー上で攪拌することで調製した。浸漬処理を終えた各ステンレス鋼板は、流水で洗浄した後、熱風乾燥機で乾燥させた。
表1に示される各無機化合物粒子について、Al2O3粒子(平均粒径57μm)は、A−13−H(昭和電工株式会社)を使用した。Al2O3粒子(平均粒径40μm)は、フジランダムWA 320(株式会社不二製作所)を使用した。Al2O3粒子(平均粒径20μm)は、フジランダムWA 600(株式会社不二製作所)を使用した。Al2O3粒子(平均粒径9.5μm)は、フジランダムWA 1200(株式会社不二製作所)を使用した。Al2O3粒子(平均粒径1.2μm)は、フジランダムWA 800(株式会社不二製作所)を使用した。SiO2粒子(平均粒径0.01μm)は、レオロシールQS−30(株式会社トクヤマ)を使用した。TiO2粒子(平均粒径0.4μm)は、TA−100(富士チタン工業株式会社)を使用した。ZrO2粒子(平均粒径0.5μm)は、TZ−8YS(東ソー株式会社)を使用した。C粒子(平均粒径0.15μm)は、Aqua-Black001(東海カーボン株式会社)を使用した。AlN粒子(平均粒径1.2μm)は、トーヤルナイト・スーパーJC(東洋アルミニウム株式会社)を使用した。SiC粒子(平均粒径0.8μm)は、GMF−6S(太平洋ランダム株式会社)を使用した。無機化合物粒子の平均粒径は、レーザ回折式粒度分布測定装置(SALD−1100;株式会社島津製作所)を用いて測定した。平均粒径を測定する際には、50mLの純水に0.1gの無機化合物粒子を分散させた。 For each inorganic compound particles shown in Table 1, Al 2 O 3 particles (mean particle size 57 .mu.m) was used the A-13-H (manufactured by Showa Denko Co., Ltd.). As the Al 2 O 3 particles (average particle size 40 μm), Fuji Random WA 320 (Fuji Seisakusho Co., Ltd.) was used. As the Al 2 O 3 particles (average particle size 20 μm), Fuji Random WA 600 (Fuji Seisakusho Co., Ltd.) was used. As the Al 2 O 3 particles (average particle size 9.5 μm), Fuji Random WA 1200 (Fuji Seisakusho Co., Ltd.) was used. As the Al 2 O 3 particles (average particle diameter 1.2 μm), Fuji Random WA 800 (Fuji Seisakusho Co., Ltd.) was used. As the SiO 2 particles (average particle size 0.01 μm), Leorosil QS-30 (Tokuyama Corporation) was used. TiO 2 particles (average particle size 0.4 μm) were TA-100 (Fuji Titanium Industry Co., Ltd.). TZ-8YS (Tosoh Corporation) was used as ZrO 2 particles (average particle size 0.5 μm). Aqua-Black001 (Tokai Carbon Co., Ltd.) was used as C particles (average particle size 0.15 μm). As the AlN particles (average particle size 1.2 μm), Toyalnite Super JC (Toyo Aluminum Co., Ltd.) was used. As the SiC particles (average particle size 0.8 μm), GMF-6S (Pacific Random Co., Ltd.) was used. The average particle diameter of the inorganic compound particles was measured using a laser diffraction particle size distribution measuring device (SALD-1100; Shimadzu Corporation). When measuring the average particle size, 0.1 g of inorganic compound particles were dispersed in 50 mL of pure water.
浸漬処理を終えた各ステンレス鋼板(実施例1〜25、比較例1〜11;表2参照)について、ピットの面積率、ピット開口部の径D2に対するピット内部の最大径D1の比率D1/D2が1.05以上のピットの比率を求めた。 Each stainless steel plate having been subjected to the immersion treatment (Examples 1 to 25 and Comparative Examples 1 to 11; see Table 2), the area ratio of the pit, the ratio D of the maximum diameter D 1 of the inner pit to the diameter D 2 of the pit openings The ratio of pits with 1 / D 2 of 1.05 or more was determined.
ピットの面積率は、レーザー形状測定顕微鏡(OLS1200;オリンパス光学工業株式会社)を用いて鋼板表面を500倍の視野で観察し、0.5μm以上の深さがある部位と、その他の部位とで二値化処理して、0.5μm以上の深さがある部位を着色し、その他の部位を無着色とする。そして、着色された部分の面積率を求めて、ピット形成部の面積率とした。 The area ratio of the pits is determined by observing the steel plate surface with a 500 × field of view using a laser shape measurement microscope (OLS1200; Olympus Optical Co., Ltd.) and other parts having a depth of 0.5 μm or more. The binarization process is performed so that the portion having a depth of 0.5 μm or more is colored and the other portions are not colored. And the area ratio of the colored part was calculated | required and it was set as the area ratio of a pit formation part.
ピット開口部の径D2およびピット内部の最大径D1は、FE−SEM(S−4000;株式会社日立ハイテクノロジーズ)を用いて鋼板の断面(幅200μm分)を5000倍で観察して測定した(図1参照)。 Maximum diameter D 1 of the inner diameter D 2 and pits of the pit openings, FE-SEM; measured by observing at 5000 times the steel sheet section (width 200μm fraction) by using (S-4000 Hitachi High-Technologies Corporation) (See FIG. 1).
表2に、浸漬処理を終えた各ステンレス鋼板(実施例1〜25、比較例1〜11)についての、浸漬処理の条件、ステンレス鋼板の種類、ピットの面積率、およびピット径の比率D1/D2が1.05以上のピットの比率を示す。なお、比較例10、11は、浸漬処理を行っておらず、未処理の鋼板である。
図1は、実施例14のステンレス鋼板の、浸漬処理後の鋼板表面(図1A)および鋼板断面(図1B)を示す写真(SEM像)である。これらの写真に示されるように、平均粒子径が0.01〜40μmの無機化合物粒子を0.1〜25g/Lの濃度で含む塩化第二鉄水溶液で浸漬処理をすることにより、オーバーハング部を有する多数のピットを形成することができた(実施例1〜25)。 FIG. 1 is a photograph (SEM image) showing a steel plate surface (FIG. 1A) and a cross section (FIG. 1B) after immersion treatment of the stainless steel plate of Example 14. As shown in these photographs, the overhanging portion is obtained by immersing with an aqueous ferric chloride solution containing inorganic compound particles having an average particle size of 0.01 to 40 μm at a concentration of 0.1 to 25 g / L. It was possible to form a large number of pits having (Examples 1 to 25).
図2は、比較例6のステンレス鋼板の、浸漬処理後の鋼板表面(図2A)および鋼板断面(図2B)を示す写真(SEM像)である。これらの写真に示されるように、塩化第二鉄水溶液のみで浸漬処理をした場合は、複数のピットが形成されるが、ピット開口部が溶解してしまうため、オーバーハング部を有するピットの割合は60個数%未満であった(比較例5、6)。 FIG. 2 is a photograph (SEM image) showing a steel plate surface (FIG. 2A) and a cross section (FIG. 2B) after immersion treatment of the stainless steel plate of Comparative Example 6. As shown in these photographs, when immersion treatment is performed only with a ferric chloride aqueous solution, a plurality of pits are formed, but since the pit openings are dissolved, the ratio of pits having an overhang portion Was less than 60% by number (Comparative Examples 5 and 6).
図3は、比較例7のステンレス鋼板の、浸漬処理後の鋼板表面(図3A)および鋼板断面(図3B)を示す写真(SEM像)である。これらの写真に示されるように、無機化合物粒子を含む塩酸または無機化合物粒子を含まない塩酸で浸漬処理をした場合は、鋼板表面が全体的に溶解してしまうため、オーバーハング部を有するピットを形成できなかった(比較例7〜9)。 3 is a photograph (SEM image) showing a steel plate surface (FIG. 3A) and a cross section (FIG. 3B) after immersion treatment of the stainless steel plate of Comparative Example 7. FIG. As shown in these photographs, when the immersion treatment is performed with hydrochloric acid containing inorganic compound particles or hydrochloric acid not containing inorganic compound particles, the steel sheet surface is totally dissolved, so that pits having overhang portions are formed. It could not be formed (Comparative Examples 7 to 9).
表2に示されるように、平均粒子径が0.01〜40μmの無機化合物粒子を0.1〜25g/Lの濃度で含む塩化第二鉄水溶液で浸漬処理をした実施例1〜25のステンレス鋼板は、ピットの面積率が60面積%以上であり、かつピット径の比率D1/D2が1.05以上のピットの比率が60個数%以上であり、アンカー効果を期待できる形状のピットが多数形成されていた。 As shown in Table 2, the stainless steels of Examples 1 to 25 were immersed in a ferric chloride aqueous solution containing inorganic compound particles having an average particle diameter of 0.01 to 40 μm at a concentration of 0.1 to 25 g / L. steel is the area ratio of the pits 60 area% or more, and the ratio the ratio D 1 / D 2 is 1.05 or more pits of the pit diameter is 60% by number or more, the pit shape can expect an anchoring effect Many were formed.
これに対し、無機化合物粒子の濃度が0.1g/L未満の処理液で浸漬処理をした比較例1、4のステンレス鋼板、無機化合物粒子の平均粒子径が40μm超の処理液で浸漬処理をした比較例2、3のステンレス鋼板、および粒子を含まない処理液で浸漬処理をした比較例10、11のステンレス鋼板では、ピットは形成されたものの、ピット径の比率D1/D2が1.05以上のピットの比率が60個数%未満であり、アンカー効果を期待できる形状のピットはあまり形成されていなかった。 On the other hand, the immersion treatment was performed using the stainless steel plate of Comparative Examples 1 and 4 in which the concentration of the inorganic compound particles was less than 0.1 g / L, and the treatment solution having an average particle diameter of the inorganic compound particles of more than 40 μm. In the stainless steel plates of Comparative Examples 2 and 3 and the stainless steel plates of Comparative Examples 10 and 11 that were immersed in the treatment liquid not containing particles, although the pits were formed, the pit diameter ratio D 1 / D 2 was 1. The ratio of pits of 0.05 or higher was less than 60% by number, and pits having a shape that could be expected to have an anchor effect were not formed.
2.接合性試験
粗面化処理を終えた各ステンレス鋼板(実施例1〜25、比較例1〜11)から、幅30mm×長さ100mmの試験片を切り出した。また、表3に示す組成の熱可塑性樹脂組成物を射出成形装置に充填し、溶融させた。
表3に示される各樹脂について、ポリエチレンは、ニポロンハード1000(融点134℃;東ソー株式会社)を使用した。また、ポリプロピレンは、ノバテックPP MA1B(融点170℃;日本ポリプロ株式会社)を使用した。アクリロニトリル−ブタジエン−スチレンは、テクノABS130(融点91℃;テクノポリマー株式会社)を使用した。ポリエチレンテレフタレートは、ライナイト530(融点230℃;デュポン株式会社)を使用した。ポリブチレンテレフタレートは、ジュラネックス2002(融点228℃;ポリプラスチックス株式会社)を使用した。ポリカーボネートは、ユーピロンGS−2030MR2(融点250℃;三菱エンジニアリングプラスチックス株式会社)を使用した。ポリアセタールは、TPS−POM NC(融点163℃;東洋プラスチック精工株式会社)を使用した。テトラフルオロエチレン−パーフルオロアルキルビニルエーテルは、フルオンPFA P−65P(融点310℃、旭硝子株式会社)を使用した。フェノール樹脂は、スミコンM9640(融点100℃;住友ベークライト株式会社)を使用した。ポリフェニレンサルファイドは、フォートロン0220A9(融点280℃;ポリプラスチックス株式会社)を使用した。 For each resin shown in Table 3, Nipolon Hard 1000 (melting point 134 ° C .; Tosoh Corporation) was used as the polyethylene. As the polypropylene, Novatec PP MA1B (melting point: 170 ° C .; Nippon Polypro Co., Ltd.) was used. For acrylonitrile-butadiene-styrene, Techno ABS130 (melting point: 91 ° C .; Technopolymer Co., Ltd.) was used. As the polyethylene terephthalate, Rynite 530 (melting point: 230 ° C .; DuPont) was used. As the polybutylene terephthalate, Duranex 2002 (melting point: 228 ° C .; Polyplastics Co., Ltd.) was used. As the polycarbonate, Iupilon GS-2030MR2 (melting point 250 ° C .; Mitsubishi Engineering Plastics Co., Ltd.) was used. As the polyacetal, TPS-POM NC (melting point: 163 ° C .; Toyo Plastic Seiko Co., Ltd.) was used. As the tetrafluoroethylene-perfluoroalkyl vinyl ether, Fluon PFA P-65P (melting point: 310 ° C., Asahi Glass Co., Ltd.) was used. Sumicon M9640 (melting point 100 ° C .; Sumitomo Bakelite Co., Ltd.) was used as the phenol resin. As the polyphenylene sulfide, Fortron 0220A9 (melting point: 280 ° C .; Polyplastics Co., Ltd.) was used.
射出成形金型に試験片(実施例1〜25、比較例1〜11)を挿入し、溶融状態の熱可塑性樹脂組成物を射出成形金型内に射出した。射出成形金型内の熱可塑性樹脂組成物を流入させる部分の容積は、幅30mm×長さ100mm×厚さ4mmであり、幅30mm×長さ30mmの領域で試験片(ステンレス鋼板)と熱可塑性樹脂組成物とが接触している。熱可塑性樹脂組成物を射出成形金型内に射出した後、熱可塑性樹脂組成物を固化させて、試験片と熱可塑性樹脂の成形体との複合体を得た。 Test pieces (Examples 1 to 25, Comparative Examples 1 to 11) were inserted into the injection mold, and the molten thermoplastic resin composition was injected into the injection mold. The volume of the portion into which the thermoplastic resin composition flows in the injection mold is 30 mm wide × 100 mm long × 4 mm thick, and the test piece (stainless steel plate) and thermoplastic in the region of 30 mm wide × 30 mm long. The resin composition is in contact. After injecting the thermoplastic resin composition into the injection mold, the thermoplastic resin composition was solidified to obtain a composite of the test piece and the thermoplastic resin molded body.
得られた各複合体について、熱衝撃試験を行った。具体的には、複合体を恒温恒湿試験機A(−30℃、相対湿度95%)内に30分間保管した後、速やかに恒温恒湿試験機B(70℃、相対湿度95%)内に移して30分間保管する工程を1サイクルとして10サイクル行った。熱衝撃試験を終えた後、各複合体について引張り試験を行い、引張り速度100mm/分で破断したときの強度を測定した。剥離強度が4.0kN以上の場合を「◎」、2.5kN以上4.0kN未満の場合を「○」、1.5kN以上2.5kN未満の場合を「△」、1.5kN未満の場合を「×」と評価した。接合性試験の結果を表4に示す。 Each obtained composite was subjected to a thermal shock test. Specifically, the composite is stored in a constant temperature and humidity tester A (−30 ° C., relative humidity 95%) for 30 minutes, and then immediately in the constant temperature and humidity tester B (70 ° C., relative humidity 95%). The process of transferring to and storing for 30 minutes was performed 10 cycles as 1 cycle. After finishing the thermal shock test, each composite was subjected to a tensile test, and the strength when it was broken at a pulling rate of 100 mm / min was measured. When the peel strength is 4.0 kN or more, “◎”, when it is 2.5 kN or more and less than 4.0 kN, “◯”, when it is 1.5 kN or more and less than 2.5 kN, “△”, or less than 1.5 kN Was evaluated as “×”. Table 4 shows the results of the bondability test.
実施例1〜25の複合体は、接合面におけるピット径の比率D1/D2が1.05以上のピットの割合が60個数%以上であるため、接合性について良好な評価が得られた。これに対し、比較例1〜11の複合体は、接合面におけるピット径の比率D1/D2が1.05以上のピットの割合が60個数%未満であるため、接合性について良好な評価が得られなかった。 In the composites of Examples 1 to 25, since the ratio of pits having a pit diameter ratio D 1 / D 2 of 1.05 or more on the joint surface was 60% by number or more, good evaluation was obtained regarding the bondability. . On the other hand, since the composites of Comparative Examples 1 to 11 have a ratio of pits having a pit diameter ratio D 1 / D 2 of 1.05 or more on the joint surface of less than 60% by number, good evaluation of the bondability is achieved. Was not obtained.
本発明の製造方法で製造される粗面化ステンレス鋼板は、樹脂との密着性に優れているため、例えば各種電子機器、家庭用電化製品、医療機器、自動車車体、車両搭載用品、建築資材などに好適に用いられる。 The roughened stainless steel plate produced by the production method of the present invention is excellent in adhesiveness with a resin. For example, various electronic devices, household appliances, medical devices, automobile bodies, vehicle-mounted products, building materials, etc. Is preferably used.
Claims (9)
平均粒子径が0.01〜40μmの範囲内の無機化合物粒子を、0.1〜25g/Lの濃度で塩化第二鉄水溶液中に分散させた処理液に、前記ステンレス鋼板を浸漬して、前記ステンレス鋼板表面に複数のピットを形成するステップと、
を含む、粗面化ステンレス鋼板の製造方法。 Preparing a stainless steel plate;
The stainless steel plate is immersed in a treatment liquid in which inorganic compound particles having an average particle diameter of 0.01 to 40 μm are dispersed in a ferric chloride aqueous solution at a concentration of 0.1 to 25 g / L, Forming a plurality of pits on the stainless steel plate surface;
A method for producing a roughened stainless steel sheet.
前記ステンレス鋼板は、前記熱可塑性樹脂組成物の成形体との接合面の60面積%以上にピットが形成されており、
前記接合面に形成されたピットのうち60個数%以上のピットは、ピット開口部の径D2に対するピット内部の最大径D1の比率D1/D2が1.05以上であり、
前記熱可塑性樹脂組成物の成形収縮率は、1.0%以下である、
複合体。 A composite in which a stainless steel plate and a molded body of a thermoplastic resin composition are joined,
In the stainless steel plate, pits are formed in 60% by area or more of the joint surface with the molded body of the thermoplastic resin composition,
60% by number or more pits of the pits formed in the joint surface is at a ratio D 1 / D 2 of the maximum diameter D 1 of the pit internal to the diameter D 2 of the pit openings 1.05 or more,
The molding shrinkage of the thermoplastic resin composition is 1.0% or less.
Complex.
粗面化ステンレス鋼板を射出成形金型に挿入するステップと、
前記射出成形金型に成形収縮率が1.0%以下の熱可塑性樹脂組成物を射出して、前記粗面化ステンレス鋼板の表面に前記熱可塑性樹脂組成物の成形体を接合するステップと、を有し、
前記粗面化ステンレス鋼板は、その表面の60面積%以上にピットが形成されており、
前記ピットのうち60個数%以上のピットは、ピット開口部の径D2に対するピット内部の最大径D1の比率D1/D2が1.05以上である、
複合体の製造方法。 A method for producing a composite in which a stainless steel plate and a molded body of a thermoplastic resin composition are joined,
Inserting a roughened stainless steel plate into an injection mold;
Injecting a thermoplastic resin composition having a molding shrinkage of 1.0% or less into the injection mold, and joining the molded body of the thermoplastic resin composition to the surface of the roughened stainless steel sheet; Have
The roughened stainless steel sheet has pits formed in 60% by area or more of its surface,
Of the pits, 60% or more of pits have a ratio D 1 / D 2 of the maximum diameter D 1 inside the pit to the diameter D 2 of the pit opening of 1.05 or more.
A method for producing a composite.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010038909A JP2011174133A (en) | 2010-02-24 | 2010-02-24 | Method for manufacturing surface-roughened stainless steel sheet, composite formed of stainless steel sheet joined with molding of thermoplastic resin composition, and method for manufacturing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010038909A JP2011174133A (en) | 2010-02-24 | 2010-02-24 | Method for manufacturing surface-roughened stainless steel sheet, composite formed of stainless steel sheet joined with molding of thermoplastic resin composition, and method for manufacturing the same |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2011174133A true JP2011174133A (en) | 2011-09-08 |
Family
ID=44687247
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010038909A Withdrawn JP2011174133A (en) | 2010-02-24 | 2010-02-24 | Method for manufacturing surface-roughened stainless steel sheet, composite formed of stainless steel sheet joined with molding of thermoplastic resin composition, and method for manufacturing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2011174133A (en) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014037104A (en) * | 2012-08-17 | 2014-02-27 | Tosoh Corp | Metallic component-polyethylene component complex and production method thereof |
WO2016117711A1 (en) * | 2015-01-23 | 2016-07-28 | 古河電気工業株式会社 | Composite of metal member and resin mold, and metal member for forming composite with resin mold |
CN106476209A (en) * | 2016-10-25 | 2017-03-08 | 深圳市宝元金实业有限公司 | A kind of method for forming nano aperture in magnetism-free stainless steel substrate surface |
US9770884B2 (en) | 2012-02-24 | 2017-09-26 | Shenzhen Byd Auto R&D Company Limited | Metal-resin composite and method for producing the same |
US9783894B2 (en) | 2012-05-28 | 2017-10-10 | Byd Company Limited | Metal composite and method of preparing the same, metal-resin composite and method of preparing the same |
US9802388B2 (en) | 2012-02-24 | 2017-10-31 | Shenzhen Byd Auto R&D Company Limited | Aluminum alloy resin composite and method of preparing the same |
US9809895B2 (en) | 2012-02-24 | 2017-11-07 | Shenzhen Byd Auto R&D Company Limited | Method of preparing aluminum alloy resin composite and aluminum alloy-resin composite obtainable by the same |
US9808974B2 (en) | 2012-02-24 | 2017-11-07 | Shenzhen Byd Auto R&D Company Limited | Method of preparing aluminum alloy resin composite and aluminum alloy-resin composite obtainable by the same |
US9862131B2 (en) | 2012-02-24 | 2018-01-09 | Byd Company Limited | Method for integrally molding metal and resin and metal-resin composite structure obtainable by the same |
US9889588B2 (en) | 2012-02-24 | 2018-02-13 | Shenzhen Byd Auto R&D Company Limited | Method for integrally molding metal and resin and metal-resin composite structure obtainable by the same |
JP2018164989A (en) * | 2017-03-28 | 2018-10-25 | 三井化学株式会社 | Metal/resin composite structure, and method of manufacturing metal/resin composite structure |
WO2020059128A1 (en) * | 2018-09-21 | 2020-03-26 | 三井化学株式会社 | Metal/resin composite structure, method for manufacturing metal/resin composite structure, and cooling device |
-
2010
- 2010-02-24 JP JP2010038909A patent/JP2011174133A/en not_active Withdrawn
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9809895B2 (en) | 2012-02-24 | 2017-11-07 | Shenzhen Byd Auto R&D Company Limited | Method of preparing aluminum alloy resin composite and aluminum alloy-resin composite obtainable by the same |
US9802388B2 (en) | 2012-02-24 | 2017-10-31 | Shenzhen Byd Auto R&D Company Limited | Aluminum alloy resin composite and method of preparing the same |
US9889588B2 (en) | 2012-02-24 | 2018-02-13 | Shenzhen Byd Auto R&D Company Limited | Method for integrally molding metal and resin and metal-resin composite structure obtainable by the same |
US9808974B2 (en) | 2012-02-24 | 2017-11-07 | Shenzhen Byd Auto R&D Company Limited | Method of preparing aluminum alloy resin composite and aluminum alloy-resin composite obtainable by the same |
US9770884B2 (en) | 2012-02-24 | 2017-09-26 | Shenzhen Byd Auto R&D Company Limited | Metal-resin composite and method for producing the same |
US9862131B2 (en) | 2012-02-24 | 2018-01-09 | Byd Company Limited | Method for integrally molding metal and resin and metal-resin composite structure obtainable by the same |
US9783894B2 (en) | 2012-05-28 | 2017-10-10 | Byd Company Limited | Metal composite and method of preparing the same, metal-resin composite and method of preparing the same |
JP2014037104A (en) * | 2012-08-17 | 2014-02-27 | Tosoh Corp | Metallic component-polyethylene component complex and production method thereof |
JPWO2016117711A1 (en) * | 2015-01-23 | 2017-11-02 | 古河電気工業株式会社 | Composite member of metal member and resin mold, and metal member for forming composite member of resin mold |
WO2016117711A1 (en) * | 2015-01-23 | 2016-07-28 | 古河電気工業株式会社 | Composite of metal member and resin mold, and metal member for forming composite with resin mold |
CN107135650A (en) * | 2015-01-23 | 2017-09-05 | 古河电气工业株式会社 | The complex of hardware and resin moulded parts and for the hardware with resin moulded parts formation complex |
CN106476209A (en) * | 2016-10-25 | 2017-03-08 | 深圳市宝元金实业有限公司 | A kind of method for forming nano aperture in magnetism-free stainless steel substrate surface |
JP2018164989A (en) * | 2017-03-28 | 2018-10-25 | 三井化学株式会社 | Metal/resin composite structure, and method of manufacturing metal/resin composite structure |
WO2020059128A1 (en) * | 2018-09-21 | 2020-03-26 | 三井化学株式会社 | Metal/resin composite structure, method for manufacturing metal/resin composite structure, and cooling device |
CN112639167A (en) * | 2018-09-21 | 2021-04-09 | 三井化学株式会社 | Metal/resin composite structure, method for producing metal/resin composite structure, and cooling device |
JPWO2020059128A1 (en) * | 2018-09-21 | 2021-08-30 | 三井化学株式会社 | Metal / resin composite structure, metal / resin composite structure manufacturing method and cooling device |
EP3854909A4 (en) * | 2018-09-21 | 2022-05-04 | Mitsui Chemicals, Inc. | Metal/resin composite structure, method for manufacturing metal/resin composite structure, and cooling device |
JP7074868B2 (en) | 2018-09-21 | 2022-05-24 | 三井化学株式会社 | Cooling system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2011174133A (en) | Method for manufacturing surface-roughened stainless steel sheet, composite formed of stainless steel sheet joined with molding of thermoplastic resin composition, and method for manufacturing the same | |
JP5501026B2 (en) | Composite in which stainless steel plate and thermoplastic resin composition are joined, and method for producing the same | |
JP2011157579A (en) | ROUGHENED HOT DIP Zn-Al-Mg ALLOY PLATED STEEL SHEET, METHOD FOR PRODUCING THE SAME, AND COMPOSITE OBTAINED BY JOINING HOT DIP Zn-Al-Mg ALLOY PLATED STEEL SHEET WITH THERMOPLASTIC RESIN MOLDED BODY, AND METHOD FOR PRODUCING THE SAME | |
JP6017675B2 (en) | Metal-resin bonded body and manufacturing method thereof | |
JP6387301B2 (en) | Aluminum resin bonded body and manufacturing method thereof | |
JP5055288B2 (en) | Metal-resin composite and method for producing the same | |
US20110111214A1 (en) | Integrally injection-molded aluminum/resin article and process for producing the same | |
JP4927871B2 (en) | Metal-resin composite and method for producing the composite | |
TWI464053B (en) | Composite of stainless steel and resin and method for making same | |
TWI581949B (en) | Method of preparing aluminum alloy-resin composite and aluminum alloy-resin composite obtainable by the same | |
JP6293062B2 (en) | Metal-resin composite and method for producing the same | |
JP5108904B2 (en) | Composite of metal and polyamide resin composition and method for producing the same | |
JP2015511188A (en) | Method of integrally molding metal and resin and metal-resin composite structure obtained by the method | |
JP7040988B2 (en) | Aluminum alloy and resin complex and its manufacturing method | |
WO2010016485A1 (en) | Composite of metal alloy with polyamide resin composition and process for producing the same | |
CN108284562A (en) | Zirconium-based amorphous alloy part and plastic part composite and preparation method thereof | |
JP2011174099A (en) | Roughened hot-dip galvannealed steel sheet and method for manufacturing the same, and compound object with hot-dip galvannealed steel sheet and formed body of thermoplastic resin composition joined to each other and method for manufacturing the compound object | |
JP2018111277A (en) | Jointed composite of metal and resin | |
TW201302423A (en) | Shaped aluminum object for manufacturing integrally injection-molded aluminum/resin article, integrally injection-molded aluminum/resin article using same, and method for manufacturing shaped aluminum object and article | |
JP6482417B2 (en) | Metal / resin composite structure and method for producing metal / resin composite structure | |
JP2011179047A (en) | Roughened hot-dip al-si alloy plated steel sheet and method for manufacturing the same, and composite material obtained by joining the roughened hot-dip al-si alloy plated steel sheet and thermoplastic resin composition molded body together, and method for manufacturing the composite | |
JP6519061B1 (en) | Integral molding, method for producing the same, and primer composition | |
JP7131986B2 (en) | METAL/RESIN COMPOSITE STRUCTURE AND METHOD FOR MANUFACTURING METAL/RESIN COMPOSITE STRUCTURE | |
JP6482416B2 (en) | Metal / resin composite structure and method for producing metal / resin composite structure | |
JP2019065101A (en) | Resin material for plating, plating resin member, method of manufacturing resin material for plating, and method of manufacturing plating resin member |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20130507 |