[go: up one dir, main page]

JP2011170372A - Light amplifier using raman amplification and raman excitation light source - Google Patents

Light amplifier using raman amplification and raman excitation light source Download PDF

Info

Publication number
JP2011170372A
JP2011170372A JP2011085937A JP2011085937A JP2011170372A JP 2011170372 A JP2011170372 A JP 2011170372A JP 2011085937 A JP2011085937 A JP 2011085937A JP 2011085937 A JP2011085937 A JP 2011085937A JP 2011170372 A JP2011170372 A JP 2011170372A
Authority
JP
Japan
Prior art keywords
wavelength
excitation light
light source
output
raman
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011085937A
Other languages
Japanese (ja)
Inventor
Etsuko Hayashi
悦子 林
Tomoto Tanaka
智登 田中
Yasushi Sugaya
靖 菅谷
Yoshinori Onaka
美紀 尾中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2011085937A priority Critical patent/JP2011170372A/en
Publication of JP2011170372A publication Critical patent/JP2011170372A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for making Raman amplifier a wide band, and a method for controlling excitation light sources of three or more when excitation light sources are increased to plural in order to flat wavelength characteristics of output and gain, and when a result in which gain is obtained by the excitation light is monitored. <P>SOLUTION: An excitation light generating means is made a block state, a wavelength band of input/output monitor of a signal light is monitored classifying the number of block of the excitation light generating means or more and the number of signal channels or less. On the basis of the result, output power of the excitation light of each wavelength band is adjusted by using a control algorithm. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は各種光通信システムで信号光の増幅に使うことが出来るラマン増幅器であり、特に波長分割多重光の増幅に適するものである。 The present invention is a Raman amplifier that can be used for amplification of signal light in various optical communication systems, and is particularly suitable for amplification of wavelength division multiplexed light.

現在の光通信システムで使用される光増幅器のほとんどは、
希土類添加光ファイバ増幅器である。特にErを添加した光ファイバ増幅器(EDFAと略する)が広く用いられている。EDFAの広い利得帯域を活用した波長多重(WDM)光伝送方式は、複数の波長の光信号を1本の光ファイバで伝送することにより、通信容量を増大させることが可能な伝送方式である。
このWDM光伝送方式は既存の光ファイバを利用できるため導入コストが低く、また、光増幅器等を用いることで伝送路はビットレートフリーとなり、将来のアップブレードが容易であるなどの利点を有する。
光ファイバ伝送路の損失の小さい帯域(約0.3dB/km以下)は、1450nmから1650nmであるが、EDFAの実用的な増幅帯域は1530nmから1610nmである。EDFAはこのうちの一部への適用に過ぎない。その中で、一本の光ファイバで伝送可能容量を増やす技術の研究・開発が精力的に進められている。
一方、WDM光通信システムにおいて、所定の伝送特性を得るには、各チャンネル間の光パワーのバラツキを各光中継段において、1dB以下に抑える必要がある。
これは、光パワーの上限が非線型効果により制限され、下限が受信SNRにより制限されるためである。
ここで、WDM光通信システムを構成する伝送路や分散補償ファイバ等の損失波長特性を小さくする必要がある。実際のWDM光通信システムでは、次に挙げる事柄などにより各チャンネル間の光伝送パワーに波長特性が生じる。
(1)レイリー散乱による伝送路の損失波長特性
(2)分散補償器の波長特性
(3)誘導ラマン散乱による伝送路の損失波長特性
(4)光増幅器の利得の波長特性
(5)伝送路、分散補償器および光増幅器の温度特性
具体的には、例えば信号の波長帯域を1530〜1610nmとした場合に長さ100kmの1.3μmゼロ分散シングルモードファイバを光伝送路に用いたときに上記(1)及び(3)に起因して発生する光伝送パワーの偏差は7dBとなる。
また、上記(2)に起因する偏差は一般的な分散補償ファイバを分散補償器として用いたとき約0.5dBとなり、上記(4)に起因する偏差は、一般的なEDFAを用いたときに1dBとなる。更に上記(5)に起因する偏差は、該各光デバイスを用いたとき約0.3dBと見積もることができる。
以上みてきたように、信号の波長特性に尤も大きく影響するのは、誘導ラマン散乱による伝送路の損失の波長特性であることが分かる。
現在の波長多重伝送システムのキーコンポーネントは多波長の信号を一括増幅できるEDFAであり、このEDFAは低雑音、所定の出力を送出すること、所定の利得を補償すること、チャンネル間の出力バラツキを小さくできる特性を有していた。
今後更に、伝送容量の増大、超長距離伝送を可能にするには、EDFAのこれらの特性を有しつつ帯域の異なる光増幅器が求められている。伝送容量増大のための帯域拡大として、ラマン増幅器が注目を集めている。ラマン増幅器は、励起光周波数より増幅媒体のラマンシフト量だけストークスシフトした周波数で増幅することができ、任意の波長の励起光源さえ用意できれば、任意の波長で増幅することが可能となる。
例えば、J.Kani等はElectronics Letter、 vol. 34 pp.1745で励起波長1420nmを用いてEDFA適用帯域外の1505〜1522nmの利得を報告している。
また、M.Takeda等のOSA TOPS vol.30 pp.101−105 (1999)での報告や特開2000−98433では、ラマン増幅器をEDFAの出力偏差の補正として用いている他、ラマン増幅器は、誘導ラマン散乱による伝送路の損失波長特性補正として、伝送路に励起光を導入し、伝送路をラマン増幅媒体とした出力劣化補正に用いることができる等の理由からラマン増幅器に注目が集まっている。
ラマン増幅器として主に以下の3つの応用が考えられ、(a)EDFAの適用波長帯域外での使用、(b)EDFAの出力偏差補正と光SNR改善、(c)伝送路の誘導ラマン散乱補償である。波長多重伝送方式において、これらの全ての応用で最初に求められる特性は広帯域と平坦な波長特性である。
Most of the optical amplifiers used in current optical communication systems
This is a rare earth doped optical fiber amplifier. In particular, an optical fiber amplifier (abbreviated as EDFA) doped with Er is widely used. The wavelength division multiplexing (WDM) optical transmission system utilizing the wide gain band of EDFA is a transmission system capable of increasing communication capacity by transmitting optical signals of a plurality of wavelengths through one optical fiber.
This WDM optical transmission system has the advantages that the existing optical fiber can be used and the introduction cost is low, and the use of an optical amplifier or the like makes the transmission line bit-rate free and facilitates future upblade.
The band with a small loss (about 0.3 dB / km or less) of the optical fiber transmission line is 1450 nm to 1650 nm, but the practical amplification band of EDFA is 1530 nm to 1610 nm. EDFA is only applied to some of these. In this context, research and development of technologies that increase the transmission capacity with a single optical fiber are being actively pursued.
On the other hand, in a WDM optical communication system, in order to obtain a predetermined transmission characteristic, it is necessary to suppress variations in optical power between channels to 1 dB or less in each optical repeater stage.
This is because the upper limit of optical power is limited by the nonlinear effect, and the lower limit is limited by the received SNR.
Here, it is necessary to reduce loss wavelength characteristics of a transmission line, a dispersion compensating fiber, and the like constituting the WDM optical communication system. In an actual WDM optical communication system, wavelength characteristics occur in the optical transmission power between channels due to the following matters.
(1) Loss wavelength characteristics of transmission path due to Rayleigh scattering (2) Wavelength characteristics of dispersion compensator (3) Loss wavelength characteristics of transmission path due to stimulated Raman scattering (4) Wavelength characteristics of gain of optical amplifier (5) Transmission path, Specifically, the temperature characteristics of the dispersion compensator and the optical amplifier are as described above when, for example, a 1.3 μm zero-dispersion single mode fiber having a length of 100 km is used for the optical transmission line when the wavelength band of the signal is 1530 to 1610 nm. The deviation of the optical transmission power generated due to 1) and (3) is 7 dB.
The deviation due to the above (2) is about 0.5 dB when a general dispersion compensating fiber is used as a dispersion compensator, and the deviation due to the above (4) is when the general EDFA is used. 1 dB. Furthermore, the deviation due to the above (5) can be estimated to be about 0.3 dB when each optical device is used.
As described above, it is understood that the wavelength characteristic of the loss of the transmission line due to stimulated Raman scattering has the greatest influence on the wavelength characteristic of the signal.
The key component of the current wavelength division multiplexing transmission system is an EDFA that can amplify multi-wavelength signals at once. This EDFA transmits low noise, outputs a predetermined output, compensates for a predetermined gain, and outputs variations between channels. It had a characteristic that can be reduced.
In the future, in order to increase transmission capacity and enable ultra-long distance transmission, optical amplifiers having different characteristics while having these characteristics of EDFA are required. As an expansion of the band for increasing the transmission capacity, a Raman amplifier has attracted attention. The Raman amplifier can amplify at a frequency that is Stokes-shifted by the Raman shift amount of the amplification medium from the pumping light frequency. If a pumping light source having an arbitrary wavelength can be prepared, it can be amplified at an arbitrary wavelength.
For example, J. et al. Kani et al., Electronics Letter, vol. 34 pp. 1745 reports a gain of 1505-1522 nm outside the EDFA band using an excitation wavelength of 1420 nm.
In addition, M.M. Takeda et al., OSA TOPS vol. 30 pp. In 101-105 (1999) and Japanese Patent Laid-Open No. 2000-98433, a Raman amplifier is used as a correction for the output deviation of the EDFA, and the Raman amplifier is used as a transmission wavelength loss correction for the transmission line due to stimulated Raman scattering. Attention has been focused on Raman amplifiers for the reason that pump light can be introduced into the channel and the transmission channel can be used for output deterioration correction using a Raman amplification medium.
The following three applications can be considered as Raman amplifiers: (a) Use of EDFA outside the applicable wavelength band, (b) EDFA output deviation correction and optical SNR improvement, (c) Stimulated Raman scattering compensation of transmission line It is. In the wavelength division multiplexing transmission system, the characteristics first required for all of these applications are a wide band and a flat wavelength characteristic.

特開2000−098433号公報JP 2000-098433 A 特開平09−211507号公報JP 09-211507 A

ラマン増幅器の広帯域のために、特開2000−98433にあるように波長の異なる複数の励起光を利用することが考えられている。特開2000−98433やM.Takeda et al.、 OSA TOPS vol.30、 pp.101−105 (1999)には、ラマン増幅出力をモニタまたは、ラマン増幅器の後にインラインアンプを挿入後の出力をモニタし、利得偏差若しくは出力偏差が小さくなるようにラマン増幅器の帯域確保のために用いた複数の励起LDの出力を制御するとある。
しかしながら、特開2000−98433の実施例では2つのグループに分けた励起光源に対する制御の場合について示しているだけであり、また同様にM.Takeda等も励起光源を2つにした場合について示している。励起光源が3つ以上になった場合は、出力パワー一定制御若しくは利得一定制御、波長特性平坦化制御のアルゴリズムが非常に煩雑となる。
つまり、広帯域化、波長特性平坦化のために励起波長数若しくは励起光源数が増えるに従い、複雑な制御アルゴリズムを必要とするが適当なアルゴリズムがなく、多波長励起光源を用いたラマン増幅器の光システムへの実用レベルでの適用を阻む要因となっている。
In order to widen the bandwidth of the Raman amplifier, it is considered to use a plurality of pumping lights having different wavelengths as disclosed in JP-A-2000-98433. JP 2000-98433 and M.K. Takeda et al. OSA TOPS vol. 30, pp. In 101-105 (1999), the Raman amplification output is monitored or the output after the inline amplifier is inserted after the Raman amplifier is used to secure the band of the Raman amplifier so that the gain deviation or the output deviation is reduced. The output of a plurality of excitation LDs is controlled.
However, the embodiment of Japanese Patent Application Laid-Open No. 2000-98433 only shows the case of controlling the excitation light sources divided into two groups. Takeda et al. Also shows a case where two excitation light sources are used. When there are three or more excitation light sources, algorithms for constant output power control, constant gain control, and wavelength characteristic flattening control become very complicated.
In other words, as the number of excitation wavelengths or the number of excitation light sources increases in order to broaden the bandwidth and flatten the wavelength characteristics, a complex control algorithm is required but there is no appropriate algorithm, and an optical system of a Raman amplifier using a multi-wavelength excitation light source. This is a factor that hinders the practical application of the system.

本発明はラマン増幅を行なう場合に、複数励起光波長若しくは励起光源を用いて広帯域化を行い、尚且つ、波長特性を平坦化または特定の傾斜を持つ特性をとるように、出力パワー一定制御、利得一定制御、波長特性平坦化制御を簡便に行なう制御アルゴリズムを提供するものである。
第一の手段は、複数のチャンネルのいずれかに配置された複数の信号光が波長多重された波長多重光を入力しラマン増幅を行う光増幅媒体と、波長の異なる複数の励起光をそれぞれ出力する複数の励起光源と、該複数の励起光を該光増幅媒体に出力する励起光供給手段と、該増幅媒体から出力された該波長多重光の、複数の波長帯域ごとのパワーをモニタする出力モニタ手段と、該出力モニタ手段のモニタ結果と、該複数の励起光の各々の励起により該光増幅媒体で生じる利得の波長特性を基に、該複数の励起光源をそれぞれ制御する励起光制御手段とを備えた光増幅器であって、該複数の波長帯域は、少なくとも1つの該チャンネルをそれぞれ含み、該複数の励起光のいずれかにより該光増幅媒体においてラマン増幅される波長帯域であることを特徴とする。
第二の手段は、複数のチャンネルのいずれかに配置された複数の信号光が波長多重された波長多重光を入力し、ラマン増幅を行う光増幅媒体と、波長の異なる複数の励起光をそれぞれ出力する複数の励起光源と、該複数の励起光を該光増幅媒体に出力する励起光供給手段と、該光増幅媒体に入力される該波長多重光の、複数の波長帯域ごとのパワーをモニタする入力モニタ手段と、該光増幅媒体より出力された該波長多重光の、該複数の波長帯域ごとのパワーをモニタする出力モニタ手段と、
該入力モニタ手段及び該出力モニタ手段のモニタ結果と、該複数の励起光の各々の励起により該光増幅媒体で生じる利得の波長特性に基づき該複数の励起光源を制御する励起光制御手段とを備えた光増幅器であって、該複数の波長帯域は、少なくとも1つの該チャンネルをそれぞれ含み、該複数の励起光のいずれかにより該光増幅媒体においてラマン増幅される波長帯域であることを特徴とする。
第三の手段は、複数のチャンネルのいずれかに配置された複数の信号光が波長多重された波長多重光を入力しラマン増幅を行う光増幅媒体と、波長の異なる複数の励起光をそれぞれ出力する複数の励起光源と、該複数の励起光を該光増幅媒体に出力する励起光供給手段と、該増幅媒体から出力された該波長多重光を、第一の波長帯域と第二の波長帯域に分離する帯域分離手段と、該分離された第一の波長帯域の光を増幅する第一の希土類元素ドープファイバと、該分離された第二の波長帯域の光を増幅する第二の希土類元素ドープファイバと、該第一の希土類元素ドープファイバの出力光をモニタする第一モニタ手段と、該第二の希土類元素ドープファイバの出力光をモニタする第二モニタ手段と、該第一モニタ手段および第二モニタ手段のモニタ結果と、該複数の励起光の各々の励起により該光増幅媒体で生じる利得の波長特性を基に、該複数の励起光源をそれぞれ制御する励起光制御手段とを備えた光増幅器であって、該複数の波長帯域は、少なくとも1つの該チャンネルをそれぞれ含み、該複数の励起光のいずれかにより該光増幅媒体においてラマン増幅される波長帯域であることを特徴とする。
第四の手段は、複数のチャンネルに配置された信号光が波長多重された波長多重光が入力され、ラマン増幅を行う光増幅媒体を励起するラマン励起光源であって、異なる波長の複数の励起光をそれぞれ出力する複数の励起光源と、該複数の励起光を合該光増幅媒体に出力する励起光供給手段と、該増幅媒体から出力された該波長多重光の、少なくとも1つの該チャネルが含まれる複数の波長帯域ごとのパワーをモニタするモニタ手段と、該モニタ手段のモニタ結果と、該複数の励起光の各々の励起により該光増幅媒体で生じる利得の波長特性を基に、該複数の励起光の出力パワーをそれぞれ制御する励起光制御手段とを備えたことを特徴とする。
In the present invention, when performing Raman amplification, the output power is constantly controlled so as to widen the band using a plurality of pumping light wavelengths or pumping light sources, and to flatten the wavelength characteristics or to have characteristics having a specific inclination. A control algorithm for easily performing constant gain control and wavelength characteristic flattening control is provided.
The first means is to input a wavelength-multiplexed light in which a plurality of signal lights arranged in any of a plurality of channels are wavelength-multiplexed and to perform Raman amplification, and to output a plurality of pump lights having different wavelengths, respectively. A plurality of pumping light sources, pumping light supply means for outputting the plurality of pumping lights to the optical amplifying medium, and an output for monitoring the power of the wavelength multiplexed light output from the amplifying medium for each of a plurality of wavelength bands Excitation light control means for controlling the plurality of excitation light sources based on the monitoring means, the monitoring result of the output monitoring means, and the wavelength characteristics of the gain generated in the optical amplification medium by the excitation of each of the plurality of excitation lights The plurality of wavelength bands each include at least one of the channels, and are wavelength bands that are Raman-amplified in the optical amplification medium by any of the plurality of pump lights. And wherein the door.
The second means is to input a wavelength-multiplexed light in which a plurality of signal lights arranged in any of a plurality of channels are wavelength-multiplexed, an optical amplifying medium for performing Raman amplification, and a plurality of pumping lights having different wavelengths, respectively. A plurality of pumping light sources for outputting, a pumping light supplying means for outputting the plurality of pumping lights to the optical amplifying medium, and monitoring the power of the wavelength multiplexed light input to the optical amplifying medium for each of a plurality of wavelength bands; Input monitoring means, and output monitoring means for monitoring the power of each of the plurality of wavelength bands of the wavelength multiplexed light output from the optical amplification medium;
A monitoring result of the input monitoring means and the output monitoring means, and a pumping light control means for controlling the plurality of pumping light sources based on a wavelength characteristic of a gain generated in the optical amplifying medium by each pumping of the plurality of pumping lights. The plurality of wavelength bands each include at least one of the channels, and are wavelength bands that are Raman-amplified in the optical amplification medium by any of the plurality of pump lights. To do.
The third means is to input a wavelength-multiplexed light in which a plurality of signal lights arranged in any one of a plurality of channels are wavelength-multiplexed to perform Raman amplification, and to output a plurality of pumping lights having different wavelengths, respectively. A plurality of pumping light sources, pumping light supply means for outputting the plurality of pumping lights to the optical amplifying medium, and the wavelength multiplexed light output from the amplifying medium, the first wavelength band and the second wavelength band A band separation means for separating the first wavelength band, a first rare earth element doped fiber for amplifying the separated first wavelength band light, and a second rare earth element for amplifying the separated second wavelength band light. A doped fiber, a first monitor means for monitoring the output light of the first rare earth element doped fiber, a second monitor means for monitoring the output light of the second rare earth element doped fiber, the first monitor means, Of the second monitoring means And an excitation light control means for controlling each of the plurality of excitation light sources on the basis of the result of the detection and the wavelength characteristic of the gain generated in the optical amplification medium by the excitation of each of the plurality of excitation lights. The plurality of wavelength bands each include at least one of the channels, and are wavelength bands that are Raman-amplified in the optical amplification medium by any of the plurality of excitation lights.
A fourth means is a Raman pumping light source that pumps an optical amplifying medium that performs Raman amplification by inputting wavelength-multiplexed light in which signal light arranged in a plurality of channels is wavelength-multiplexed, and a plurality of pumps having different wavelengths. A plurality of pumping light sources that respectively output light, a pumping light supply unit that outputs the plurality of pumping lights to the optical amplification medium, and at least one channel of the wavelength-multiplexed light output from the amplification medium. Monitoring means for monitoring the power for each of a plurality of wavelength bands included, the monitoring result of the monitoring means, and the wavelength characteristics of the gain generated in the optical amplifying medium due to the excitation of each of the plurality of excitation lights. And pumping light control means for controlling the output power of each pumping light.

ラマン増幅器の広帯域化及び、出力と利得の波長特性を平坦にするために、励起光源を複数化し、励起光により利得が生じた結果をモニタする際に、励起光源を3個以上にした場合の制御に関する。
本発明では、励起光発生手段をブロック化し、信号光の入出力モニタの波長帯域を励起光発生手段のブロック化数以上及び信号チャンネル数以下に分けてモニタすることで、簡便な制御アルゴリズムを用いて出力パワーと利得の波長特性偏差の制御及び、出力一定制御、利得一定制御を可能とするものである。
In order to increase the bandwidth of the Raman amplifier and to flatten the wavelength characteristics of the output and gain, when multiple pumping light sources are used and the result of gain generated by the pumping light is monitored, the number of pumping light sources is three or more. Regarding control.
In the present invention, a simple control algorithm is used by blocking the pumping light generating means and monitoring the wavelength band of the input / output monitor of the signal light by dividing it into the number of blocks of the pumping light generating means and the number of signal channels. Thus, it is possible to control the wavelength characteristic deviation of the output power and the gain, the constant output control, and the constant gain control.

ラマン増幅時の励起光と利得波長の関係を示す図Diagram showing the relationship between pump light and gain wavelength during Raman amplification 励起光源を波長多重化することで、ラマン増幅の帯域拡大を示す図Diagram showing band expansion of Raman amplification by wavelength multiplexing of excitation light source 第1の実施構成を示す図The figure which shows the 1st implementation structure 単独の励起光源ブロックの波長特性を示す図The figure which shows the wavelength characteristic of the single excitation light source block 単独の励起光源ブロックの波長特性を示す図The figure which shows the wavelength characteristic of the single excitation light source block 波長特性を一定にするための制御を説明する図The figure explaining the control to make the wavelength characteristic constant 第1の実施構成の励起光制御部の制御フローチャートControl flow chart of excitation light control unit of first embodiment configuration 第1の実施構成に於いて励起光源ブロック数とモニタブロック数を任意にした場合の構成図Configuration diagram when the number of excitation light source blocks and the number of monitor blocks are arbitrary in the first embodiment configuration モニタブロック数を任意にした場合の波長特性を示す図Diagram showing wavelength characteristics when the number of monitor blocks is arbitrary 図3及び図8の構成の励起光源ブロックと波長合波カプラの具体的構成を示す図The figure which shows the specific structure of the excitation light source block of the structure of FIG.3 and FIG.8, and a wavelength multiplexing coupler 第1の実施構成に於いて重み付けした場合の構成を示す図The figure which shows the structure at the time of weighting in 1st implementation structure 第2の実施構成を示す図The figure which shows 2nd implementation structure 第2の実施構成の励起光制御部の制御フローチャートControl flow chart of excitation light control unit of second embodiment 第2の実施構成の変形例を示す図The figure which shows the modification of 2nd implementation structure 第3の実施構成を示す図The figure which shows the 3rd implementation structure

以下に本発明の詳細な説明を記す。ラマン増幅は図1に示すように、励起光波長から増幅媒体のラマンシフト量だけシフトされた信号波長に利得を生じるものであり、ラマンシフト量、ラマン帯域は物質(増幅媒体)固有に与えられるものである。
HYPERLINK "JavaScript:void(0)"図1は、励起波長を長波長側にシフトさせると、利得の中心波長及び利得帯域がほぼ励起波長のシフト量と同じだけ長波長側にシフトする様子が示されている。従って、ラマン増幅は、任意の波長をもつ励起光源さえ揃えられれば、任意の波長で利得を得ることができる光増幅技術である。励起波長が僅かずつ異なる励起光源を一括して増幅媒体に入射することで、図2に示すように広帯域な光増幅を可能とする。
本発明の第1の実施構成を図3に示す。0は入力ポート、1はラマン増幅媒体、2は合波カプラ、3は分岐カプラ、4は合波カプラ、5は波長分離カプラ、6−1乃至6−3は励起光源ブロック、7−1乃至7−3は受光素子、8は励起光制御部をそれぞれ示す。
複数の信号光が波長多重された波長多重光がラマン増幅器の入力ポートから、後方励起されたラマン増幅媒体1に入射される。合波カプラ4は中心波長の異なる励起光源ブロック6−1乃至6−3からの平均波長λp1乃至λp3の励起光を合波する波長多重カプラである。合波カプラ2は合波カプラ4からの波長λp1乃至λp3の励起光と複数の信号光を波長多重した波長多重光とをラマン増幅媒体1の中で波長多重する波長多重カプラである。
分岐カプラ3はラマン増幅媒体1で増幅された波長多重光を10対1で分岐するビームスプリッタである。波長分離カプラ5は励起光源ブロック6−1乃至6−3からの励起光により生じるラマン利得波長帯域を、3つの波長帯域ブロック(モニタブロック)に分割する波長帯域分岐カプラである。
受光素子7−1乃至7−3は波長分離カプラ5で分離した3つの帯域各々を受光し光/電変換する。励起光制御回路8は受光素子からの出力を用いて励起光源ブロック6−1乃至6−3の平均波長λp1乃至λp3の出力パワーを制御する。
以下に励起光制御回路8の制御原理について説明をする。
励起光源ブロック6−1の平均励起波長をlp1、励起光源ブロック6−1の出力パワーをPp1、励起光源ブロック6−2の平均励起波長をlp2、励起光源ブロック6−2の出力パワーをPp2、励起光源ブロック6−3の平均励起波長をlp3、励起光源ブロック6−3の出力パワーをPp3とする。
受光素子7−1で受信する波長帯域ブロック(モニタブロック1;平均波長ls1)の平均出力パワーをPs1とし、受光素子7−2で受信する波長帯域ブロック(モニタブロック2;平均波長ls2)の平均出力パワーをPs2とし、受光素子7−3で受信する波長帯域ブロック(モニタブロック3;平均波長ls3)の平均出力パワーをPs3とする。
励起光源ブロック6−1のみを稼動させ、平均励起波長λp1、平均励起出力パワーPp1で動作した場合の、波長多重光の出力を図4(a)に示す。細い実線は、波長帯域ブロック1(平均波長ls1)における出力スペクトルを示し、太い実線は波長帯域ブロック1の平均出力パワーPp1を示している。
励起光源ブロック6−2のみを稼動させ平均励起波長λp2、平均励起出力パワーPp2で動作した場合の、波長多重光の出力を図4(b)に示す。細い実線は、波長帯域ブロック2(平均波長ls2)における出力スペクトルを示し、太い実線は波長帯域ブロック2の平均出力パワーPp2を示している。
励起光源ブロック6−3のみを稼動させ平均励起波長λp3、平均励起出力パワーPp3で動作した場合の、波長多重光の出力を図4(c)示す。細い実線は、波長帯域ブロック3(平均波長ls3)における出力スペクトルを示し、太い実線は波長帯域ブロック3の平均出力パワーPp3を示している。
励起光源ブロック6−1が最も寄与する信号光出力モニタブロックはブロック1であり、励起光源ブロック6−2が最も寄与する信号光出力モニタブロックはブロック2であり、励起光源ブロック6−3が最も寄与する信号光出力モニタブロックはブロック3であることが分かる。
同時に、励起光源ブロック6−1は信号光出力モニタブロックls2と信号光出力モニタブロックls3にも寄与し、励起光源ブロック6−2は信号光出力モニタブロックls1と信号光出力モニタブロックls3にも寄与し、励起光源ブロック6−3は信号光出力モニタブロックls1と信号光出力モニタブロックls2にも寄与している。
従って、広帯域な光アンプを作るために複数波長の励起光を用いた場合には、一つの励起光源ブロックのパワーを制御すると、励起光により利得が生じる波長帯域は広い範囲に及び、モニタする波長帯域ブロックの複数に影響を及ぼしていることが判る。
所定の増幅信号パワーを得るためには励起光源のパワーに利得係数を掛ければ良いので、励起光源ブロック6−1乃至6−3の励起光出力の平均パワー変動量をΔP、受光素子7−1乃至7−3からの得た励起光により利得が生じる帯域の平均出力パワーの変動量をΔPs、平均利得係数をAとすると、
The detailed description of the present invention will be described below. As shown in FIG. 1, the Raman amplification produces a gain at the signal wavelength shifted from the pumping light wavelength by the Raman shift amount of the amplification medium, and the Raman shift amount and the Raman band are given uniquely to the substance (amplification medium). Is.
HYPERLINK "JavaScript: void (0)" Figure 1 shows that when the excitation wavelength is shifted to the longer wavelength side, the center wavelength and gain band of the gain are shifted to the longer wavelength side by the same amount as the shift amount of the excitation wavelength. Has been. Therefore, Raman amplification is an optical amplification technique that can obtain a gain at an arbitrary wavelength as long as an excitation light source having an arbitrary wavelength is prepared. By making the excitation light sources having slightly different excitation wavelengths incident on the amplification medium at once, broadband optical amplification can be performed as shown in FIG.
A first embodiment of the present invention is shown in FIG. 0 is an input port, 1 is a Raman amplification medium, 2 is a multiplexing coupler, 3 is a branching coupler, 4 is a multiplexing coupler, 5 is a wavelength separation coupler, 6-1 to 6-3 are excitation light source blocks, 7-1 to 7-3 is a light receiving element, and 8 is an excitation light control unit.
Wavelength multiplexed light obtained by wavelength multiplexing a plurality of signal lights is incident on the Raman amplification medium 1 which is pumped backward from the input port of the Raman amplifier. The multiplexing coupler 4 is a wavelength multiplexing coupler that multiplexes pumping lights having average wavelengths λp1 to λp3 from pumping light source blocks 6-1 to 6-3 having different center wavelengths. The multiplexing coupler 2 is a wavelength multiplexing coupler that wavelength-multiplexes the pumping light of wavelengths λp1 to λp3 from the multiplexing coupler 4 and wavelength multiplexed light obtained by wavelength multiplexing a plurality of signal lights in the Raman amplification medium 1.
The branching coupler 3 is a beam splitter that branches the wavelength multiplexed light amplified by the Raman amplifying medium 1 on a one-to-one basis. The wavelength separation coupler 5 is a wavelength band branching coupler that divides the Raman gain wavelength band generated by the pumping light from the pumping light source blocks 6-1 to 6-3 into three wavelength band blocks (monitor blocks).
The light receiving elements 7-1 to 7-3 receive each of the three bands separated by the wavelength separation coupler 5 and perform optical / electrical conversion. The excitation light control circuit 8 controls the output power of the average wavelengths λp1 to λp3 of the excitation light source blocks 6-1 to 6-3 using the output from the light receiving element.
The control principle of the excitation light control circuit 8 will be described below.
The average excitation wavelength of the excitation light source block 6-1 is lp1, the output power of the excitation light source block 6-1 is Pp1, the average excitation wavelength of the excitation light source block 6-2 is lp2, and the output power of the excitation light source block 6-2 is Pp2. The average excitation wavelength of the excitation light source block 6-3 is lp3, and the output power of the excitation light source block 6-3 is Pp3.
The average output power of the wavelength band block (monitor block 1; average wavelength ls1) received by the light receiving element 7-1 is Ps1, and the average of the wavelength band block (monitor block 2; average wavelength ls2) received by the light receiving element 7-2. The output power is Ps2, and the average output power of the wavelength band block (monitor block 3; average wavelength ls3) received by the light receiving element 7-3 is Ps3.
FIG. 4A shows the output of the wavelength multiplexed light when only the pumping light source block 6-1 is operated and operated with the average pumping wavelength λp1 and the average pumping output power Pp1. The thin solid line indicates the output spectrum in the wavelength band block 1 (average wavelength ls1), and the thick solid line indicates the average output power Pp1 of the wavelength band block 1.
FIG. 4B shows the output of wavelength multiplexed light when only the pumping light source block 6-2 is operated and operated with the average pumping wavelength λp2 and the average pumping output power Pp2. The thin solid line indicates the output spectrum in the wavelength band block 2 (average wavelength ls2), and the thick solid line indicates the average output power Pp2 of the wavelength band block 2.
FIG. 4C shows the output of wavelength multiplexed light when only the pumping light source block 6-3 is operated and operated with the average pumping wavelength λp3 and the average pumping output power Pp3. The thin solid line indicates the output spectrum in the wavelength band block 3 (average wavelength ls3), and the thick solid line indicates the average output power Pp3 of the wavelength band block 3.
The signal light output monitor block to which the excitation light source block 6-1 contributes most is the block 1, the signal light output monitor block to which the excitation light source block 6-2 contributes most is the block 2, and the excitation light source block 6-3 is the most. It can be seen that the contributing signal light output monitor block is block 3.
At the same time, the excitation light source block 6-1 contributes to the signal light output monitor block ls2 and the signal light output monitor block ls3, and the excitation light source block 6-2 also contributes to the signal light output monitor block ls1 and the signal light output monitor block ls3. The excitation light source block 6-3 also contributes to the signal light output monitor block ls1 and the signal light output monitor block ls2.
Therefore, when using multiple wavelengths of pumping light to make a broadband optical amplifier, controlling the power of one pumping light source block results in a wide range of wavelength bands where gain is generated by the pumping light. It can be seen that multiple band blocks are affected.
In order to obtain a predetermined amplified signal power, it is sufficient to multiply the power of the excitation light source by a gain coefficient. Therefore, the average power fluctuation amount of the excitation light output of the excitation light source blocks 6-1 to 6-3 is ΔP, and the light receiving element 7-1. To 7-3, ΔPs is the amount of fluctuation in the average output power in the band where the gain is generated by the excitation light obtained from 7-3, and A is the average gain coefficient.

Figure 2011170372
Figure 2011170372

となる。
従って、各波長帯域ブロックの出力パワーの波長特性偏差をなくすためには、波長分離カプラ5で3つに分離した各波長帯域の波長多重光のパワーレベルを同じになるようにΔPpを調整すれば良い。
ΔPpは、励起光源の光出力パワーを変動させることで調整でき、また励起波長を変動させ重心波長をシフトさせることでも調整でき、また励起光波長幅を変動することでも調整することができる。ここでは、光出力パワーを変動する調整の例を示す。
図4に示したように、一つの励起光源ブロックにより生じる利得波長帯域は広く、各モニタブロック間に跨がり利得を有しているため、一つの励起光源ブロックを変化させた場合に他のモニタブロックの波長に与える影響を考慮して式1を計算する必要がある。言い換えると、各モニタブロックのパワーを各励起光源ブロックごとの光増幅媒体で生じる利得の波長特性を基に各励起光ブロックの出力パワーの制御をおこなう必要がある。
ここで、励起光ブロック6−1の平均励起波長lp1の平均出力パワー変動ΔPp1がモニタブロックのブロック1の平均出力パワー変動ΔPs1に及ぼす平均利得係数をA11、励起光源ブロック6−1の励起光波長lp1の平均出力パワー変動ΔPp1がモニタブロックのブロック2の平均出力パワー変動ΔPs2に及ぼす平均利得係数をA12、励起光源ブロック6−1の励起波長lp1の平均出力パワー変動ΔPp1がモニタブロックのブロック3の平均出力パワー変動ΔPs3に及ぼす平均利得係数をA13、励起光源ブロック6−2の励起波長lp2の平均出力パワー変動ΔPp2がモニタブロックのブロック1の平均出力パワー変動ΔPs1に及ぼす平均利得係数をA21、励起光源ブロック6−2の励起波長lp2の平均出力パワー変動ΔPp2が信モニタブロックのブロック2の平均出力パワー変動ΔPs2に及ぼす平均利得係数をA22、励起光源ブロック6−2の励起波長lp2の平均出力パワー変動ΔPp2がモニタブロックのブロック3の平均出力パワー変動ΔPs3に及ぼす平均利得係数をA23、励起光源ブロック6−3の励起波長lp3の平均出力パワー変動ΔPp3がモニタブロックのブロック1の平均出力パワー変動ΔPs1に及ぼす平均利得係数をA31、励起光源ブロック6−3の励起波長lp3の平均出力パワー変動ΔPp2がモニタブロックのブロック2の平均出力パワー変動ΔPs2に及ぼす平均利得係数をA32、励起光源ブロック6−3の励起波長lp3の平均出力パワー変動ΔPp3がモニタブロックのブロック3の平均出力パワー変動ΔPs3に及ぼす平均利得係数をA33と定義する。
図5(a)に励起光源ブロック6−1のみを稼動させた場合の、励起光出力パワー差分に対する、モニタブロックのブロック1、モニタブロックのブロック2、モニタブロックのブロック3の平均出力パワー差分を示している。それぞれの傾きがA11、A12、A13に相当する。
また、図5(b)に励起光源ブロック6−2のみを稼動させた場合の、励起光出力パワー差分に対する、出力モニタブロックのブロック1、出力モニタブロックのブロック2、出力モニタブロックのブロック3の平均出力パワー差分を示している。それぞれの傾きがA21、A22、A23に相当する。
図5(c)に励起光源ブロック6−3のみを稼動させた場合の、励起光出力パワー差分に対する、出力モニタブロックのブロック1、出力モニタブロックのブロック2、出力モニタブロックのブロック3の平均出力パワー差分を示している。それぞれの傾きがA31、A32、A33に相当する。
それらを要素とする平均利得係数行列[A]を求めることが出来る。
It becomes.
Therefore, in order to eliminate the wavelength characteristic deviation of the output power of each wavelength band block, if ΔPp is adjusted so that the power level of the wavelength multiplexed light in each wavelength band separated into three by the wavelength separation coupler 5 becomes the same. good.
ΔPp can be adjusted by changing the optical output power of the pumping light source, can be adjusted by changing the pumping wavelength and shifting the center-of-gravity wavelength, and can also be adjusted by changing the pumping light wavelength width. Here, an example of adjustment for varying the optical output power is shown.
As shown in FIG. 4, since the gain wavelength band generated by one excitation light source block is wide and has a gain across each monitor block, when one excitation light source block is changed, another monitor It is necessary to calculate Equation 1 in consideration of the influence on the wavelength of the block. In other words, it is necessary to control the output power of each pumping light block based on the wavelength characteristic of the gain generated in the optical amplifying medium for each pumping light source block.
Here, the average gain coefficient that the average output power fluctuation ΔPp1 of the average pumping wavelength lp1 of the pumping light block 6-1 has on the average output power fluctuation ΔPs1 of the block 1 of the monitoring block is A11, and the pumping light wavelength of the pumping light source block 6-1 The average output power fluctuation ΔPp1 of lp1 affects the average gain coefficient A12 on the average output power fluctuation ΔPs2 of the block 2 of the monitor block, and the average output power fluctuation ΔPp1 of the excitation wavelength lp1 of the pump light source block 6-1 is that of the block 3 of the monitor block. The average gain coefficient that affects the average output power fluctuation ΔPs3 is A13, and the average gain coefficient that the average output power fluctuation ΔPp2 of the excitation wavelength lp2 of the excitation light source block 6-2 has on the average output power fluctuation ΔPs1 of the monitor block block 1 is A21. The average output power fluctuation ΔPp2 of the excitation wavelength lp2 of the light source block 6-2 is equal to the level of the block 2 of the communication monitor block. The average gain coefficient that affects the output power fluctuation ΔPs2 is A22, the average gain coefficient that the average output power fluctuation ΔPp2 of the excitation wavelength lp2 of the excitation light source block 6-2 has on the average output power fluctuation ΔPs3 of the block 3 of the monitor block is A23, and the excitation light source The average gain coefficient that the average output power fluctuation ΔPp3 of the pump wavelength lp3 of the block 6-3 has on the average output power fluctuation ΔPs1 of the block 1 of the monitor block is A31, and the average output power fluctuation ΔPp2 of the pump light source block 6-3 of the pump wavelength lp3 A32 has an average gain coefficient affecting the average output power fluctuation ΔPs2 of the monitor block block 2, and the average output power fluctuation ΔPp3 of the pumping light source block 6-3 of the pumping light source block 6-3 has an influence on the average output power fluctuation ΔPs3 of the block 3 of the monitor block. The average gain coefficient is defined as A33.
FIG. 5A shows the average output power difference between the block 1 of the monitor block, the block 2 of the monitor block, and the block 3 of the monitor block with respect to the pump light output power difference when only the pump light source block 6-1 is operated. Show. The respective inclinations correspond to A11, A12, and A13.
In addition, when only the pumping light source block 6-2 is operated in FIG. 5B, the output monitor block block 1, the output monitor block block 2, and the output monitor block block 3 with respect to the pumping light output power difference. The average output power difference is shown. The respective inclinations correspond to A21, A22, and A23.
The average output of block 1 of the output monitor block, block 2 of the output monitor block, and block 3 of the output monitor block with respect to the pumping light output power difference when only the pumping light source block 6-3 is operated in FIG. The power difference is shown. The respective inclinations correspond to A31, A32, and A33.
An average gain coefficient matrix [A] having them as elements can be obtained.

Figure 2011170372
Figure 2011170372

図6(a)に示すように信号光出力の波長特性が大きな信号光スペクトルの場合の出力モニタブロックのブロック1、ブロック2、ブロック3の平均出力は図中の太い実線で、全波長帯域の平均出力をPfとして破線で示している。
波長多重光出力の波長特性偏差を小さくすることは、図6(b)に示すように出力モニタブロックのブロック1、ブロック2、ブロック3の平均出力Ps1乃至Ps3を目的とするラマン増幅された波長多重光出力Pf(全波長帯域の平均出力)に一致させることを意味している。
As shown in FIG. 6 (a), the average output of the block 1, block 2 and block 3 of the output monitor block in the case of the signal light spectrum having a large wavelength characteristic of the signal light output is a thick solid line in the figure, and is in the entire wavelength band. The average output is indicated by a broken line as Pf.
As shown in FIG. 6B, the wavelength characteristic deviation of the wavelength multiplexed optical output is reduced by the Raman-amplified wavelength for the average outputs Ps1 to Ps3 of the block 1, block 2 and block 3 of the output monitor block. This means matching with the multiplexed light output Pf (average output of all wavelength bands).

Figure 2011170372
Figure 2011170372

Figure 2011170372
Figure 2011170372

ラマン増幅媒体1でラマン利得が生じる全波長帯域で出力差分(チルト)を小さく抑えるには、上式を満たすように励起光源ブロック6−1乃至6−3の励起光の出力Pp1乃至Pp3の補正量をΔPp1、ΔPp2、ΔPp3を下式から算出すればよい。 In order to keep the output difference (tilt) small in the entire wavelength band where the Raman gain occurs in the Raman amplifying medium 1, the pumping light output Pp1 to Pp3 of the pumping light source blocks 6-1 to 6-3 is corrected so as to satisfy the above equation. The amounts may be calculated from the following equations as ΔPp1, ΔPp2, and ΔPp3.

Figure 2011170372
Figure 2011170372

すなわち、HYPERLINK "JavaScript:void(0)"図3中の励起光制御部8は複数の信号光が波長多重された波長多重光を所定の波長帯域のモニタブロックに分けて出力パワーをモニタし、各波長帯域のモニタブロックの全出力をチャンネル数で割った平均値化処理を行い、全波長帯域での出力パワー差分を小さくするために必要な各励起光源ブロックの励起波長が各モニタブロックの波長に対して及ぼす影響の重み付けを励起光の平均出力パワー差分を上記の式5により計算し、各励起光源ブロックより出力される励起光のパワーを制御すれば良い。
そして、所定の波長特性偏差が得られるまで、1回〜10回程度のフィードバック制御を行う。このような制御処理を行なうことで、励起光により生じるラマン利得波長帯域の平均パワーを一定のパワーPfの値にすることができる。
図3の構成に於いて、励起光制御部8はCPU等のプロセッサにより図7のフローにより制御することで実現できる。
ステップ1として:制御処理を開始する。
ステップ2として:受光素子7−1乃至7−3の出力よりモニタブロック内の平均出力パワーPs1乃至Ps3を求める。
ステップ3として:モニタブロック内の平均波長出力パワーPs1乃至Ps3を目的とする波長多重光出力値Pfと比較し、ΔPs1乃至ΔPs3を求める。
ステップ4として:ΔPs1乃至ΔPs3とPfの差分が、許容範囲内の場合は動作を止めステップ7に、許容範囲該の場合は次のステップ5に行く。
ステップ5として:ΔPs1乃至ΔPs3より各励起光が各モニタブロックに及ぼす平均利得係数A11乃至A33の逆行列を用いて励起光源ブロックのλp1乃至λp3のパワーレベルPp1乃至Pp3の制御量ΔPp1乃至ΔPp3を求める。
ステップ6として:現在のPp1乃至Pp3に制御量ΔPp1乃至ΔPp3を加え励起光源ブロック6−1乃至6−3の出力パワーPp1乃至Pp3、を制御する。
ステップ7として:制御処理を終了する。
図3では一例として、励起光源ブロックを3つブロックとし、励起光源ブロックからの励起光により生じる利得を生じる波長帯域のモニタブロックは3つに分けているが、これらの数は必要に応じて任意に設定することができる。
励起光源ブロックとモニタブロックの数を任意の数に設定した場合をHYPERLINK "JavaScript:void(0)"図8に示す。図中、励起源ブロックの数をn個(6−1乃至6−n)、波長多重光のモニタブロックm個で構成したとする。
ここでの励起光により生じるラマン増幅利得の波長帯域を図9に示し、波長分離カプラ5の波長多重光のm個のモニタブロックに分ける。励起光パワー制御の変動量ΔPpはn×1の行列となり、モニタブロック内の.波長多重光パワーの平均値と目的とする制御の値との差分ΔPsはm×1の行列となり、Aはn×mの行列となる。
That is, the HYPERLINK “JavaScript: void (0)” excitation light control unit 8 in FIG. 3 monitors the output power by dividing the wavelength multiplexed light in which a plurality of signal lights are wavelength-multiplexed into monitor blocks of a predetermined wavelength band, Averaging is performed by dividing the total output of the monitor block in each wavelength band by the number of channels, and the excitation wavelength of each excitation light source block required to reduce the output power difference in the entire wavelength band is the wavelength of each monitor block. The average output power difference of the pumping light is calculated by the above equation 5 to control the power of the pumping light output from each pumping light source block.
Then, feedback control is performed about 1 to 10 times until a predetermined wavelength characteristic deviation is obtained. By performing such control processing, the average power in the Raman gain wavelength band generated by the pump light can be set to a constant value of power Pf.
In the configuration of FIG. 3, the excitation light control unit 8 can be realized by being controlled by a processor such as a CPU according to the flow of FIG. 7.
As step 1: Control processing is started.
As Step 2: Average output powers Ps1 to Ps3 in the monitor block are obtained from outputs of the light receiving elements 7-1 to 7-3.
As Step 3, the average wavelength output powers Ps1 to Ps3 in the monitor block are compared with the target wavelength multiplexed light output value Pf to obtain ΔPs1 to ΔPs3.
As Step 4: When the difference between ΔPs1 to ΔPs3 and Pf is within the allowable range, the operation is stopped, and when it is within the allowable range, the process goes to Step 5.
As step 5, the control amounts ΔPp1 to ΔPp3 of the power levels Pp1 to Pp3 of λp1 to λp3 of the pump light source block are obtained from ΔPs1 to ΔPs3 using the inverse matrix of the average gain coefficients A11 to A33 that each pump light exerts on each monitor block. .
As Step 6, the control amounts ΔPp1 to ΔPp3 are added to the current Pp1 to Pp3 to control the output powers Pp1 to Pp3 of the excitation light source blocks 6-1 to 6-3.
Step 7: The control process is terminated.
In FIG. 3, as an example, there are three pump light source blocks, and the wavelength band monitor blocks that generate the gain generated by the pump light from the pump light source block are divided into three, but these numbers are arbitrary as required. Can be set to
A case where the number of excitation light source blocks and monitor blocks is set to an arbitrary number is shown in FIG. 8 for HYPERLINK “JavaScript: void (0)”. In the figure, it is assumed that the number of excitation source blocks is n (6-1 to 6-n) and m is a monitor block of wavelength multiplexed light.
The wavelength band of the Raman amplification gain generated by the pumping light here is shown in FIG. 9 and divided into m monitor blocks of the wavelength multiplexed light of the wavelength separation coupler 5. The fluctuation amount ΔPp of the pumping light power control is an n × 1 matrix, and the. The difference ΔPs between the average value of the wavelength multiplexed optical power and the target control value is an m × 1 matrix, and A is an n × m matrix.

Figure 2011170372
Figure 2011170372

この場合のΔPpiは励起源のブロックの平均出力パワーの変動量、またΔPsjは信号光モニタブロックの平均出力パワーの変動量である。変動量を用いているので、モニタ出力パワーを主信号出力パワーに変換する必要はない。ΔPsjに伴うΔPpiを求めるには[A]の逆行列[A]-1を求めればよいことが分かる。従って、 In this case, ΔPpi is the fluctuation amount of the average output power of the block of the excitation source, and ΔPsj is the fluctuation amount of the average output power of the signal light monitor block. Since the fluctuation amount is used, it is not necessary to convert the monitor output power to the main signal output power. It can be seen that the inverse matrix [A] -1 of [A] may be obtained in order to obtain ΔPpi associated with ΔPsj. Therefore,

Figure 2011170372
Figure 2011170372

となり各ブロック間の平均出力パワーの偏差を小さくすることは、信号光出力パワーの波長特性の平坦化を行うことになる。
第1の実施構成では励起光源ブロックとモニタブロック数は任意に構成できるが、モニタブロックの数は波長多重光に多重されている信号光チャンネル数以下にし、励起光源ブロック化数以上にすることが望ましい。
図3の構成における、具体的な構成をHYPERLINK "JavaScript:void(0)"図10に示す。
図中24、25はWDMカプラ、61乃至63は偏光合成カプラ、51乃至56はファイバグレーティングフィルタ、81乃至86は半導体レーザをそれぞれ示す。
励起光源ブロック6−1乃至6−3は2つの僅かに波長の異なる半導体レーザ81、82の組み合わせ83、84の組み合わせ85、86の組み合わせでそれぞれ構成される。(この例では半導体レーザの波長間隔は約4nm)
半導体レーザ81乃至86からの光はファイバグレーティンクフィルタ51乃至56でそれぞれ特定の波長(この例では1429.7nm、1433.7nm、1454.0nm、1480.0nm、1484.5nm、1488.5nmの各波長)で半導体レーザ81乃至86にそれぞれ反射して半導体レーザ81乃至86とファイハグレーティングフィルタ51乃至56で共振構造を取り特定の波長の励起光を出力する。
各励起光源ブロックの2つの励起光は偏波構成カプラ61乃至63でそれぞれ偏波合成され励起光源ブロックの出力となる。偏波合成を行うのは、ラマン増幅の偏光依存性を解消するためである。合波カプラ4はWDMカプラ24、25で構成されている。
WDMカプラ25は励起光源ブロック6−2からの波長の光を反射して、励起光源ブロック6−3からの波長を通過する特性を有している。WDMカプラ24は励起光源ブロック6−1からの波長の光を反射して、励起光源ブロック6−2、励起光源ブロック6−3からの波長を通過する特性を有している。
図10に於いては励起光源ブロック内の半導体レーザとファイバグレーティングの中心は僅かに波長が異なる光を出力しているが、同じ波長の光としても良い。また、励起光源ブロックの光は必ずしも複数半導体レーザで構成する必要はなく、偏光無依存の励起光源等を用いる場合は単一の光源で有っても良い。
第1実施例では目標となる波長多重光出力値をPfとして、全ての波長帯域の平均パワーがPfに揃うように制御しているため、全ての波長帯域にて出力一定制御を行なうことができる。この出力一定制御の変形例として、モニタブロックの波長帯域毎にPfをPf1、Pf2、Pf3と定めて、比較することにより、波長ブロック単位で個別に出力一定制御を行なうことができる。
この場合図7のフローチャートのステップ4でPfの代わりに、各モニタブロックに対応して、Pf1、Pf2、Pf3をさだめる。そして、Pf1、Pf2、Pf3より、それぞれ対応するPs1、Ps2、Ps3を引くことで励起光制御部8の制御を行なうことができる。
またPfを変える変わり図11に示すように図3の受光素子7−1乃至7−3の前段に可変または固定の減衰器71乃至73を設けることで、任意にモニタブロック単位で重み付けを行ない、波長ブロック単位で個別に出力一定制御を行なうことができる。
また、第1の実施例はラマン増幅媒体としては、通常の1.3ゼロミクロンファイバはもちろん、実効断面積が小さく非線形が大きい分散補償ファイバ(DCF)、分散シフトファイバ(DSF)、ノンゼロ分散シフトファイバ(NZDSF)を用いることも可能である。これらの非線形が大きいファイバを用いると必要な利得をえるためのラマン増幅媒体となるファイバは短くて済み、集中増幅を可能にすることができる。
第1の実施構成ではモニタブロックは波長分離カプラ5、10と受光素子7−1乃至11−1で構成しているが、これらはスペクトルアナライザで代用することが可能である。
第2の実施構成を図12に示す。図12に於いて図3と同じ構成は同じ番号で示す。図中9は分岐カプラ、10は波長分離カプラ、11−1乃至11−3は受光素子をそれぞれ示す。分岐カプラ9はラマン増幅器の入力ポートに設け、入力ポートに入力される複数の信号光波長多重された波長多重光を、分岐比10:1で分岐するビームスプリッタである。
波長分離カプラ10は分岐カプラ9の1/10側のポートからの波長多重光を、波長分離カプラ5と同じように、励起光源ブロック6−1乃至6−3からの励起光により生じるラマン利得波長帯域を、3つの波長帯域ブロック(モニタブロック)に分離する波長分離カプラである。受光素子11−1乃至11−3は3つのモニタブロックにそれぞれ対応して設けられ、各モニタブロックの光パワーを電気信号に変換する。
波長分離カプラ10で分離したモニタブロック1の平均波長をls1、平均出力パワーをPin_s1、モニタブロック2の平均波長をls2、平均出力パワーをPin_s2、モニタブロック3の平均波長をls3、平均出力パワーをPin_s3とする。
その後、信号光は後方励起されたラマン増幅媒体1に入射される。励起光源ブロック6−1乃至6−3は図10のように構成されても良いし、第1の実施例と同様のさまざまな構成で実現可能である。
増幅媒体1で増幅された信号はその後、10対1の分岐カプラ3で分岐され、その1/10ポートから出力された信号光は、図3と同様に波長分離カプラ5で、入力ポート側に設けた波長分離カプラ10と同じ3つの波長帯域ブロックに分けられる。波長分離カプラ5の波長帯域ブロックは波長分離カプラ10のモニタブロックの平均波長ls1、ls2、ls3にそれぞれ対応している。受光素子7−1乃至7−3にて波長多重光出力パワーを光電変換する。
図3と同様に波長分離カプラ5のモニタブロックの平均波長ls1の平均出力パワーをPs1、モニタブロックの平均波長ls2の平均出力パワーをPs2、モニタブロックの平均波長ls3の平均出力パワーをPs3とする。励起光制御部8では受光素子7−1乃至7−3及び11−1乃至11−3からのモニタ入力により利得が所定の値となるように制御する。
図12における具体的な制御部8の動作の説明を以下に述べる。各モニタブロックの平均利得G1、G2、G3は増幅媒体1で増幅された波長多重光を波長分離カプラで分離して受光素子7−1乃至7−3で得たPs1、Ps2、Ps3、より入力ポート側の波長分離カプラ10で分離して受光素子11−1乃至11−3で得たPin_s1、Pin_s2、Pin_s3を引くことにより得られる。
In order to reduce the deviation of the average output power between the blocks, the wavelength characteristic of the signal light output power is flattened.
In the first embodiment, the number of pumping light source blocks and the number of monitor blocks can be arbitrarily configured, but the number of monitor blocks should be less than or equal to the number of signal light channels multiplexed in the wavelength multiplexed light and more than the number of pumping light source blocks. desirable.
A specific configuration in the configuration of FIG. 3 is shown in FIG. 10 of HYPERLINK “JavaScript: void (0)”.
In the figure, 24 and 25 are WDM couplers, 61 to 63 are polarization combining couplers, 51 to 56 are fiber grating filters, and 81 to 86 are semiconductor lasers.
The excitation light source blocks 6-1 to 6-3 are respectively composed of combinations of two combinations 83 and 84 of semiconductor lasers 81 and 82 having slightly different wavelengths. (In this example, the wavelength interval of the semiconductor laser is about 4 nm)
Light from the semiconductor lasers 81 to 86 is transmitted through the fiber grating filters 51 to 56 at specific wavelengths (in this example, 1429.7 nm, 1433.7 nm, 1454.0 nm, 1480.0 nm, 1484.5 nm, and 1488.5 nm, respectively). Wavelength) to be reflected by the semiconductor lasers 81 to 86, respectively, and the semiconductor lasers 81 to 86 and the phi-hagrating filters 51 to 56 take a resonant structure and output excitation light of a specific wavelength.
The two pumping lights of each pumping light source block are respectively subjected to polarization synthesis by the polarization constituting couplers 61 to 63, and become the output of the pumping light source block. The reason for performing polarization synthesis is to eliminate the polarization dependence of Raman amplification. The multiplexing coupler 4 is composed of WDM couplers 24 and 25.
The WDM coupler 25 has a characteristic of reflecting light having a wavelength from the excitation light source block 6-2 and passing the wavelength from the excitation light source block 6-3. The WDM coupler 24 has a characteristic of reflecting light having a wavelength from the excitation light source block 6-1 and passing the wavelengths from the excitation light source block 6-2 and the excitation light source block 6-3.
In FIG. 10, the center of the semiconductor laser and the fiber grating in the excitation light source block outputs light having slightly different wavelengths, but light of the same wavelength may be used. In addition, the light of the excitation light source block is not necessarily constituted by a plurality of semiconductor lasers, and when a polarization-independent excitation light source or the like is used, it may be a single light source.
In the first embodiment, the target wavelength-multiplexed light output value is set to Pf, and the average power of all wavelength bands is controlled to be equal to Pf. Therefore, constant output control can be performed in all wavelength bands. . As a modified example of this constant output control, the constant output control can be performed individually for each wavelength block by defining Pf as Pf1, Pf2, and Pf3 for each wavelength band of the monitor block and comparing them.
In this case, Pf1, Pf2, and Pf3 are determined corresponding to each monitor block instead of Pf in step 4 of the flowchart of FIG. The excitation light control unit 8 can be controlled by subtracting the corresponding Ps1, Ps2, and Ps3 from Pf1, Pf2, and Pf3, respectively.
Further, as shown in FIG. 11 in which Pf is changed, variable or fixed attenuators 71 to 73 are provided in front of the light receiving elements 7-1 to 7-3 in FIG. 3 to arbitrarily weight each monitor block, Output constant control can be performed individually for each wavelength block.
In the first embodiment, as a Raman amplifying medium, not only a normal 1.3 zero micron fiber, but also a dispersion compensating fiber (DCF), a dispersion shifted fiber (DSF), a non-zero dispersion shift, which has a small effective area and a large nonlinearity. It is also possible to use a fiber (NZDSF). If these non-linear fibers are used, the fiber serving as the Raman amplifying medium for obtaining the necessary gain can be short, and concentrated amplification can be realized.
In the first embodiment, the monitor block is constituted by the wavelength demultiplexing couplers 5 and 10 and the light receiving elements 7-1 to 11-1, but these can be replaced by a spectrum analyzer.
A second implementation configuration is shown in FIG. In FIG. 12, the same components as those of FIG. In the figure, 9 is a branching coupler, 10 is a wavelength separation coupler, and 11-1 to 11-3 are light receiving elements. The branch coupler 9 is a beam splitter that is provided at the input port of the Raman amplifier and branches a plurality of wavelength-multiplexed light signals that are input to the input port at a branch ratio of 10: 1.
The wavelength demultiplexing coupler 10 generates wavelength-multiplexed light from the 1 / 10-side port of the branching coupler 9 by the Raman gain wavelength generated by the pumping light from the pumping light source blocks 6-1 to 6-3, like the wavelength demultiplexing coupler 5. This is a wavelength separation coupler that separates a band into three wavelength band blocks (monitor blocks). The light receiving elements 11-1 to 11-3 are provided corresponding to the three monitor blocks, respectively, and convert the optical power of each monitor block into an electrical signal.
The average wavelength of the monitor block 1 separated by the wavelength separation coupler 10 is ls1, the average output power is Pin_s1, the average wavelength of the monitor block 2 is ls2, the average output power is Pin_s2, the average wavelength of the monitor block 3 is s3, and the average output power is Pin_s3.
Thereafter, the signal light is incident on the Raman amplification medium 1 which is pumped backward. The excitation light source blocks 6-1 to 6-3 may be configured as shown in FIG. 10, and can be realized with various configurations similar to those in the first embodiment.
The signal amplified by the amplification medium 1 is then branched by a 10 to 1 branch coupler 3, and the signal light output from the 1/10 port is sent to the input port side by the wavelength separation coupler 5 as in FIG. It is divided into the same three wavelength band blocks as the provided wavelength separation coupler 10. The wavelength band block of the wavelength separation coupler 5 corresponds to the average wavelengths ls1, ls2, and ls3 of the monitor block of the wavelength separation coupler 10, respectively. The wavelength multiplexed optical output power is photoelectrically converted by the light receiving elements 7-1 to 7-3.
As in FIG. 3, the average output power of the monitor block average wavelength ls1 of the wavelength separation coupler 5 is Ps1, the average output power of the monitor block average wavelength ls2 is Ps2, and the average output power of the monitor block average wavelength ls3 is Ps3. . The excitation light controller 8 controls the gain to be a predetermined value by monitor inputs from the light receiving elements 7-1 to 7-3 and 11-1 to 11-3.
The specific operation of the control unit 8 in FIG. 12 will be described below. The average gains G1, G2, and G3 of each monitor block are input from Ps1, Ps2, and Ps3 obtained by the light receiving elements 7-1 to 7-3 after the wavelength multiplexed light amplified by the amplification medium 1 is separated by the wavelength separation coupler. It is obtained by subtracting Pin_s1, Pin_s2, and Pin_s3 obtained by the light receiving elements 11-1 to 11-3 after being separated by the port side wavelength separation coupler 10.

Figure 2011170372
Figure 2011170372

各モニタブロックの励起光平均出力パワーと各モニタブロックの波長光平均利得は各モニタブロックの平均利得係数で結び付けることができ、励起光平均出力パワー変動量をΔPp、信号光平均出力パワーの変動量をΔG、平均利得係数をAとすると、 The pump light average output power of each monitor block and the wavelength light average gain of each monitor block can be linked by the average gain coefficient of each monitor block, the pump light average output power fluctuation amount is ΔPp, and the signal light average output power fluctuation amount Is ΔG and the average gain coefficient is A,

Figure 2011170372
Figure 2011170372

となる。
実施例1で使用した[A]は励起光平均出力パワーの信号光平均出力パワーの傾きを示しているので、ここで定義する利得Aに対しても同様に下記の関係が成り立つ。
It becomes.
[A] used in Example 1 indicates the slope of the signal light average output power of the pumping light average output power, and the following relationship holds similarly for the gain A defined here.

Figure 2011170372
Figure 2011170372

目的とする利得レベルを全波長帯域の平均利得Gfとし、各モニタブロックの平均利得をG1、G2、G3とし、GfとG1の差分をΔG1、GfとG2の差分をΔG2、GfとG3の差分をΔG3とする。 The target gain level is the average gain Gf of all wavelength bands, the average gain of each monitor block is G1, G2, G3, the difference between Gf and G1 is ΔG1, the difference between Gf and G2 is ΔG2, and the difference between Gf and G3 Is ΔG3.

Figure 2011170372
Figure 2011170372

全波長帯域で利得波長偏差(チルト)を小さく抑えるには、各モニタブロック間の平均利得を揃えて全波長帯域の平均利得Gfと一致するように制御すれば良い。
ここで、Gfは利得を一定にするための予め定めた値とすることで、全ての波長が定めた利得に一定に制御できる。
In order to suppress the gain wavelength deviation (tilt) to be small in the entire wavelength band, the average gain between the monitor blocks may be adjusted so as to match the average gain Gf of the entire wavelength band.
Here, by setting Gf to a predetermined value for making the gain constant, all wavelengths can be controlled to a constant gain.

Figure 2011170372
Figure 2011170372

従って、式11を用いて式13からΔPp1、ΔPp2、ΔPp3を算出すればよい。 Therefore, ΔPp1, ΔPp2, and ΔPp3 may be calculated from Expression 13 using Expression 11.

Figure 2011170372
Figure 2011170372

すなわち、励起光制御部8は波長多重光のモニタブロックの全出力を取得し、モニタブロックの全出力をチャンネル数で割った平均値化処理を行い、全波長帯域での利得差分を小さくするために、各励起光源ブロックによる利得が各モニタブロックの波長に及ぼす影響を考慮して、必要な励起光の平均出力差分を計算し、モニタブロックの励起光発生手段を制御する働きをしている。ラマン光増幅器の各モニタブロックの利得の波長特性偏差がなくなるまで、1回〜10回程度のフードバック制御を行う。
図13に励起光制御部8の動作フローチャートの一例を示す。
ステップ1として:制御開始する。
ステップ2として:光増幅媒体の出力側に設けた波長分離カプラ5の各モニタブロックのパワーPs1乃至Ps3より入力側に設けた波長分離カプラ5の各モニタブロックのパワーPin_s1乃至Pin_s3を引き各モニタブロックの利得G1乃至G3を求める。
ステップ3として:目標とする利得Gfとモニタブロック内の利得G1乃至G3fと比較し、差分ΔG1乃至ΔG3を求める。
ステップ4として:ΔG1乃至ΔG3とGfとの差分が、許容範囲内の場合は動作を止めステップ7に、許容範囲該の場合は次のステップ5に行く。
ステップ5として:ΔG1乃至ΔG3より各励起光が各モニタブロックに及ぼす平均利得係数A11乃至A33を用いて励起光源ブロックのλp1乃至λp3のパワーレベルp1乃至Pp3の制御量ΔPp1乃至ΔPp3を求める。
ステップ6として:現在のPp1乃至Pp3に制御量ΔPp1乃至ΔPp3を加え励起光源ブロック6−1乃至6−3の出力パワーPp1乃至Pp、3を制御する。
ステップ6として:制御処理を終了する。
以上の様な流れで励起光制御部8は励起光源ブロックを制御する。
第2の実施例においても第1の実施例同様に、励起光源ブロックとモニタブロックの数は任意の数にすることができる。即ち、励起光源ブロックをn個とし、モニタブロックの数をm個とした場合は、式10乃至式13を式14乃至式18と書き換えることができる。
That is, in order to reduce the gain difference in the entire wavelength band, the pumping light control unit 8 obtains all the outputs of the wavelength multiplexed light monitor block and performs an averaging process by dividing the total output of the monitor block by the number of channels. In addition, in consideration of the influence of the gain of each pumping light source block on the wavelength of each monitor block, the average output difference of necessary pumping light is calculated, and the pumping light generating means of the monitor block is controlled. Until the wavelength characteristic deviation of the gain of each monitor block of the Raman optical amplifier is eliminated, food back control is performed about once to ten times.
FIG. 13 shows an example of an operation flowchart of the excitation light controller 8.
As Step 1: Control is started.
As Step 2, each monitor block is obtained by subtracting the power Pin_s1 to Pin_s3 of each monitor block of the wavelength separation coupler 5 provided on the input side from the power Ps1 to Ps3 of the monitor block of the wavelength separation coupler 5 provided on the output side of the optical amplification medium. Gains G1 to G3 are obtained.
As Step 3, the target gain Gf is compared with the gains G1 to G3f in the monitor block to obtain the differences ΔG1 to ΔG3.
As Step 4: When the difference between ΔG1 to ΔG3 and Gf is within the allowable range, the operation is stopped, and when it is within the allowable range, the process goes to Step 5.
As step 5, the control amounts ΔPp1 to ΔPp3 of the power levels p1 to Pp3 of λp1 to λp3 of the pumping light source block are obtained using the average gain coefficients A11 to A33 that each pumping light has on each monitor block from ΔG1 to ΔG3.
Step 6: Control amounts ΔPp1 to ΔPp3 are added to the current Pp1 to Pp3 to control the output powers Pp1 to Pp, 3 of the excitation light source blocks 6-1 to 6-3.
Step 6: The control process is terminated.
The excitation light control unit 8 controls the excitation light source block in the flow as described above.
Also in the second embodiment, as in the first embodiment, the number of excitation light source blocks and monitor blocks can be arbitrarily set. That is, when the number of excitation light source blocks is n and the number of monitor blocks is m, Expressions 10 to 13 can be rewritten as Expressions 14 to 18.

Figure 2011170372
Figure 2011170372

Figure 2011170372
Figure 2011170372

Figure 2011170372
Figure 2011170372

Figure 2011170372
Figure 2011170372

Figure 2011170372
Figure 2011170372

これらの式に対応させて、励起光制御部8を操作すれば良い。
第2の実施構成でも第1の実施構成と同様に励起光源ブロックとモニタブロック数は任意に構成できるが、モニタブロックの数は波長多重光に多重されている信号光チャネル数以下にし、励起光源ブロック化数以上にすることが望ましい。
また、第二の実施例では第1の実施例と同様に、ラマン増幅媒体を通常の1.3ゼロミクロンファイバはもちろん、実効断面積が小さく非線形が大きい分散補償ファイバ(DCF)、分散シフトファイバ(DSF)、ノンゼロ分散シフトファイバ(NZDSF)を用いることも可能である。これらの非線形が大きいファイバを用いると必要な利得を得るためのラマン増幅媒体となるファイバは短くて済み、集中増幅をすることができる。
ラマン増幅媒体1となる光ファイバの実効断面積が小さく非線形が強いファイバの場合はラマン増幅媒体1を短く構成できるが、通常の1.3μmゼロ分散ファイバの場合は励起パワーにもよるが約40Km以上必要な場合もある。そこで、図14に図12ラマン増幅器の波長多重光入力の通知を実際の伝送路を用いて行なう例を示す。
図14では監視制御部12で各モニタブロックのパワーを検出し、その結果を情報化して波長λOSCの波長で合波カプラ13を介して、ラマン増幅媒体1となる伝送路に送信する。この波長λOSCの信号は波長分離カプラ5により分離され監視制御部14で検出され励起光制御部8に供給される。図14では波長λOSCを波長分離カプラ5で分離したが、伝送路より分岐カプラを別途設け、監視制御信号を分離して監視制御部14に入力しても良い。
図13の説明ではGfを全てのモニタブロックにて同じ値を用いることにより、励起光源ブロックからの励起光により、増幅媒体1で生じる利得波長帯域で、このような構成にすることでラマン増幅媒体1が伝送路を用いた場合でも利得を一定に制御することができるが、ここで、Gfを各モニタブロックごとに別の利得を設定することで、各モニタブックの波長帯域毎重み付けした利得による利得一定制御を行なうことができる。
また、第2の実施例でも第1の実施例同様に、上記の重み付けの処理は全ての波長ブロックでGfに一定にし、モニタブロックの単位に受光素子の前段に可変または固定の光減衰器71乃至73を設けることで重み付けを行なう処理を行なっても良い。
第2の実施構成ではモニタブロックは波長分離カプラ5、10と受光素子7−1乃至11−1で構成しているが、これらはスペクトルアナライザで代用することが可能である。
第3の実施構成として、第1の実施例と第2の実施例を希土類元素ドープファイバ(例えばエルビウプドープファイバ)を用いた光増幅器との組み合わせについて図15を用いて説明する。図中13−1は第1の希土類元素ドープファイバ増幅器、13−2は第2の希土類元素ドープファイバ増幅器、5−1は波長帯域分離カプラ、5−2乃至5−5は分岐カプラ、5−6は第1の波長帯域モニタ、5−7は第2の波長帯域モニタ、5−8は第1のスペクトルアナライザ、5−9は第2のスペクトルアナライザをそれぞれ示す。図3および図12と同一機能のブロックと同一の機能のブロックは同一符号で示す。
波長帯域分離カプラ5−1はラマン増幅媒体1で増幅された波長多重光を第一の波長帯域(C−band帯域1530nm乃至1557nm)と第2の波長帯域(Lband帯域1570nm乃至1610nm)に分割して出力する。
第1の希土類元素ドープファイバ増幅器13−1は第1の波長帯域に対して利得を有するエルビウムドープファイバ(EDF)からなる光増幅器である。第2の希土類元素ドープファイバ増幅器13−2は第2の波長帯域に対して利得を有するエルビウムドープファイバ(EDF)からなる光増幅器である。波長帯域分離カプラ5−1で分岐された光は第1の希土類元素ドープファイバ増幅器と第2の希土類元素ドープファイバ増幅器にてそれぞれの波長帯域の光が増幅される。
分岐カプラ5−2、5−3は第1の波長帯域の光を10対1程度で分岐する分岐カプラである。分岐カプラ5−4、5−5は第2の波長帯域の光を10対1程度で分岐する分岐カプラである。
第1の波長帯域モニタ5−6は分岐カプラ5−2で分岐された第1の波長帯域の光のパワーをモニタする。第2の波長帯域モニタ5−7は分岐カプラ5−4で分岐された第2の波長帯域の光のパワーをモニタする。
励起光制御回路8は第1及び第2の波長モニタ5−6、5−7の出力をもとに第1のスペクトラルアナライザ5−8及び第2のスペクトラルアナライザ5−9の出力パワーの校正を行う。
5−8、5−9の出力を1528.773〜1552.122nm、1552.524〜1563.455nm、1570.416〜1581.601nm、1582.018〜1607.035nmの3つの波長帯域ブロックに分けて、各モニタブロックの平均出力を求め励起光6−1乃至6−3を制御する。
第2の実施構成との組み合わせの場合は図12及び図14の波長分離カプラ10からの出力を用いる場合と監視制御波長信号OSCを用い監視制御部14からのラマン増幅される前の信号を検出して制御を行なう方法を用いることもできる。
[付記1]複数の信号光を波長多重した波長多重光をラマン増幅するための光増幅媒体と、複数の波長の異なる励起光を発生する複数の励起光源と、該複数の励起光を合波する第1光合波手段と、複数の信号光と該励起光を合波する第2光合波手段と、該増幅媒体で増幅された該波長多重光を複数の波長帯域に分割してパワーを検出するモニタ手段と、該モニタ手段の各波長帯域のパワーと該各励起光ごとに該光増幅媒体で生じる利得の波長特性を基に該各励起光の出力パワーを制御する励起光制御手段を設けたことを特徴とする光増幅器。
[付記2]該励起光制御手段は該モニタの該各波長帯域間のパワーの波長特性偏差が小さくなるように該各励起光の出力を制御する事を特徴とする付記1記載の光増幅器。
[付記3]該励起光制御手段は該各波長帯域の出力パワーが各々特定の値になるように該各励起光の出力を制御する事を特徴とする付記1記載の光増幅器。
[付記4]該励起光制御手段は該各波長帯域の出力パワーが全て特定の値になるように該各励起光の出力を制御する事を特徴とする付記1記載の光増幅器。
[付記5]該励起光制御手段は該各波長帯域の出力パワーが全て特定の値になるように該各励起光の出力を制御する事を特徴とする付記1記載の光増幅器。
[付記6]複数の信号光を波長多重した光をラマン増幅するための光増幅媒体と、複数の波長の異なる励起光を発生する複数の励起光源と、該複数の励起光を合波する第1光合波手段と、複数の信号光と該励起光を合波する第2光合波手段と、該増幅媒体に入射されるパワーを検出する入力モニタ手段と、該増幅媒体で増幅したパワーを検出する出力モニタ手段と、該入力モニタ手段及び該出力モニタ手段に基づき該各励起光の出力パワーを制御する励起光制御手段を設けたことを特徴とする光増幅器。
[付記7]該入力モニタ手段は該増幅媒体に入射される該波長多重光を複数の波長帯域に分割してパワーを検出し、該出力モニタ手段は該増幅媒体で増幅した該波長多重光を複数の波長帯域に分割してパワーを検出することを特徴とする付記6記載の光増幅器。
[付記8]該制御手段は該入出力モニタ手段の同じ波長帯域のパワーを比較して得た該各波長帯域ごとの利得と該各励起光ごとの該光増幅媒体で生じる利得の波長特性を基に該各励起光の出力を制御する付記7記載の光増幅器。
[付記9]該励起光制御手段は該モニタの該各波長帯域間の利得の波長特性偏差が小さくなるように該各励起光の出力を制御する事を特徴とする付記8記載の光増幅器。
[付記10]該励起光制御手段は該各波長帯域の利得が各々特定の値になるように該各励起光の出力パワーを制御する事を特徴とする付記8記載の光増幅器。
[付記11]該励起光制御手段は該各波長帯域の利得が全て特定の値になるように該各励起光の出力を制御する事を特徴とする付記8記載の光増幅器。
The excitation light controller 8 may be operated in correspondence with these equations.
In the second embodiment, the number of pumping light source blocks and the number of monitor blocks can be arbitrarily configured as in the first embodiment, but the number of monitor blocks is set to be equal to or less than the number of signal light channels multiplexed in wavelength multiplexed light. It is desirable to make it more than the number of blocks.
In the second embodiment, as in the first embodiment, the Raman amplification medium is not only a normal 1.3 zero micron fiber, but also a dispersion compensating fiber (DCF) and dispersion shifted fiber having a small effective area and a large nonlinearity. (DSF) and non-zero dispersion shifted fiber (NZDSF) can also be used. If these non-linear fibers are used, the fiber serving as the Raman amplification medium for obtaining the necessary gain can be short, and concentrated amplification can be performed.
In the case of a fiber having a small effective cross-section and a strong nonlinearity, the Raman amplification medium 1 can be made short. However, in the case of a normal 1.3 μm zero dispersion fiber, although it depends on the pumping power, it is about 40 km. Sometimes it is necessary. FIG. 14 shows an example in which the wavelength multiplexed optical input notification of the Raman amplifier shown in FIG. 12 is performed using an actual transmission line.
In FIG. 14, the power of each monitor block is detected by the monitoring control unit 12, and the result is converted into information and transmitted to the transmission path serving as the Raman amplification medium 1 via the multiplexing coupler 13 at the wavelength λOSC. The signal of wavelength λOSC is separated by the wavelength separation coupler 5, detected by the monitoring controller 14, and supplied to the excitation light controller 8. Although the wavelength λ OSC is separated by the wavelength separation coupler 5 in FIG. 14, a branch coupler may be separately provided from the transmission line, and the monitoring control signal may be separated and input to the monitoring control unit 14.
In the description of FIG. 13, by using the same value for Gf in all the monitor blocks, the Raman amplification medium is configured in such a configuration in the gain wavelength band generated in the amplification medium 1 by the excitation light from the excitation light source block. Even when 1 uses a transmission line, the gain can be controlled to be constant. Here, by setting a different gain for Gf for each monitor block, the gain is weighted for each wavelength band of each monitor book. Gain constant control can be performed.
Also in the second embodiment, as in the first embodiment, the above weighting process is made constant at Gf in all wavelength blocks, and the variable or fixed optical attenuator 71 is provided at the front stage of the light receiving element in units of monitor blocks. Alternatively, a process of weighting may be performed by providing.
In the second embodiment, the monitor block is composed of the wavelength separation couplers 5 and 10 and the light receiving elements 7-1 to 11-1, but these can be replaced by a spectrum analyzer.
As a third embodiment, a combination of the first and second embodiments with an optical amplifier using a rare earth element doped fiber (for example, an erboop doped fiber) will be described with reference to FIG. In the figure, 13-1 is a first rare earth element doped fiber amplifier, 13-2 is a second rare earth element doped fiber amplifier, 5-1 is a wavelength band separation coupler, 5-2 to 5-5 are branch couplers, Reference numeral 6 denotes a first wavelength band monitor, 5-7 denotes a second wavelength band monitor, 5-8 denotes a first spectrum analyzer, and 5-9 denotes a second spectrum analyzer. Blocks having the same functions as those having the same functions as those in FIGS. 3 and 12 are denoted by the same reference numerals.
The wavelength band separation coupler 5-1 divides the wavelength multiplexed light amplified by the Raman amplification medium 1 into a first wavelength band (C-band band 1530 nm to 1557 nm) and a second wavelength band (Lband band 1570 nm to 1610 nm). Output.
The first rare earth element doped fiber amplifier 13-1 is an optical amplifier composed of an erbium doped fiber (EDF) having a gain with respect to the first wavelength band. The second rare earth element doped fiber amplifier 13-2 is an optical amplifier composed of an erbium doped fiber (EDF) having a gain with respect to the second wavelength band. The light branched by the wavelength band separation coupler 5-1 is amplified by the first rare earth element doped fiber amplifier and the second rare earth element doped fiber amplifier.
The branch couplers 5-2 and 5-3 are branch couplers that branch the light in the first wavelength band about 10 to 1. Branch couplers 5-4 and 5-5 are branch couplers that branch the light in the second wavelength band about 10 to 1.
The first wavelength band monitor 5-6 monitors the power of the light in the first wavelength band branched by the branch coupler 5-2. The second wavelength band monitor 5-7 monitors the power of the light in the second wavelength band branched by the branch coupler 5-4.
The excitation light control circuit 8 calibrates the output power of the first spectral analyzer 5-8 and the second spectral analyzer 5-9 based on the outputs of the first and second wavelength monitors 5-6 and 5-7. Do.
The outputs of 5-8 and 5-9 are divided into three wavelength band blocks of 1528.773 to 1552.122 nm, 1552.524 to 1563.455 nm, 1570.416 to 1581.601 nm, and 1582.018 to 1607.035 nm. Then, the average output of each monitor block is obtained and the excitation lights 6-1 to 6-3 are controlled.
In the case of the combination with the second embodiment, the output from the wavelength demultiplexing coupler 10 of FIGS. 12 and 14 is used, and the signal before the Raman amplification from the monitoring control unit 14 is detected using the monitoring control wavelength signal OSC. Thus, a method for performing control can be used.
[Appendix 1] An optical amplifying medium for Raman-amplifying wavelength-multiplexed light obtained by wavelength-multiplexing a plurality of signal lights, a plurality of pumping light sources for generating pumping lights having different wavelengths, and a combination of the pumping lights First optical multiplexing means, second optical multiplexing means for multiplexing a plurality of signal lights and the excitation light, and detecting the power by dividing the wavelength multiplexed light amplified by the amplification medium into a plurality of wavelength bands And pumping light control means for controlling the output power of each pumping light based on the wavelength characteristics of the gain generated in the optical amplifying medium for each pumping light and the power of each wavelength band of the monitoring means An optical amplifier characterized by that.
[Appendix 2] The optical amplifier according to Appendix 1, wherein the pumping light control means controls the output of the pumping light so that the wavelength characteristic deviation of the power between the wavelength bands of the monitor is small.
[Supplementary note 3] The optical amplifier according to Supplementary note 1, wherein the pumping light control means controls the output of each pumping light so that the output power of each wavelength band becomes a specific value.
[Supplementary note 4] The optical amplifier according to Supplementary note 1, wherein the pumping light control means controls the output of each pumping light so that the output powers of the respective wavelength bands are all specified values.
[Supplementary Note 5] The optical amplifier according to Supplementary Note 1, wherein the pumping light control means controls the output of each pumping light so that the output power of each wavelength band becomes a specific value.
[Appendix 6] An optical amplifying medium for Raman-amplifying light obtained by wavelength-multiplexing a plurality of signal lights, a plurality of pumping light sources for generating pumping lights having different wavelengths, and a plurality of pumping lights for combining the pumping lights 1 optical multiplexing means, second optical multiplexing means for multiplexing a plurality of signal lights and the excitation light, input monitoring means for detecting power incident on the amplification medium, and detection of power amplified by the amplification medium An optical amplifier comprising: an output monitor means for controlling the output power of each pump light based on the input monitor means and the output monitor means.
[Supplementary Note 7] The input monitor means detects the power by dividing the wavelength multiplexed light incident on the amplification medium into a plurality of wavelength bands, and the output monitor means detects the wavelength multiplexed light amplified by the amplification medium. The optical amplifier according to appendix 6, wherein the power is detected by dividing it into a plurality of wavelength bands.
[Supplementary Note 8] The control means obtains the wavelength characteristic of the gain for each wavelength band obtained by comparing the powers of the same wavelength band of the input / output monitoring means and the gain generated in the optical amplifying medium for each pumping light. The optical amplifier according to appendix 7, which controls the output of each pumping light based on the above.
[Appendix 9] The optical amplifier according to appendix 8, wherein the pumping light control means controls the output of the pumping light so that the wavelength characteristic deviation of the gain between the wavelength bands of the monitor is reduced.
[Appendix 10] The optical amplifier according to appendix 8, wherein the pumping light control means controls the output power of each pumping light so that the gain of each wavelength band becomes a specific value.
[Supplementary note 11] The optical amplifier according to supplementary note 8, wherein the pumping light control means controls the output of the pumping light so that the gains of the wavelength bands are all set to specific values.

0:入力ポート、
1:ラマン増幅媒体
2:合波カプラ、
3:分岐カプラ、
4:合波カプラ、
5:波長分離カプラ、
6−1乃至6−3:励起光源ブロック、
7−1乃至7−3:受光素子、
8:励起光制御部
0: Input port
1: Raman amplification medium 2: multiplexing coupler,
3: Branch coupler,
4: multiplexing coupler,
5: Wavelength separation coupler,
6-1 to 6-3: excitation light source block,
7-1 to 7-3: light receiving elements,
8: Excitation light control unit

Claims (7)

複数のチャンネルに配置された信号光が波長多重された波長多重光が入力され、ラマン増幅を行う光増幅媒体を励起するラマン励起光源であって、
異なる波長の励起光をそれぞれ出力する少なくとも3つ以上の励起光源と、
該励起光を合該光増幅媒体に出力する励起光供給手段と、
該増幅媒体から出力された該波長多重光の、少なくとも1つの該チャネルが含まれる複数の波長帯域ごとのパワーをモニタするモニタ手段と、
該モニタ手段のモニタ結果から得られる複数の波長帯域ごとの出力パワーと、該励起光源をそれぞれ個別に稼動させたときの波長帯域ごとの出力パワーを基に、該モニタ結果から得られる複数の波長帯域の各々における出力パワーが各々の目標出力パワーと等しくなるよう、該複数の励起光の出力パワーをそれぞれ制御する励起光制御手段とを備えたラマン励起光源。
A Raman pumping light source that pumps an optical amplifying medium that performs Raman amplification by inputting wavelength-multiplexed light in which signal lights arranged in a plurality of channels are wavelength-multiplexed,
At least three excitation light sources that respectively output excitation light of different wavelengths;
Excitation light supply means for outputting the excitation light to the optical amplification medium;
Monitoring means for monitoring the power of each of a plurality of wavelength bands including at least one channel of the wavelength multiplexed light output from the amplification medium;
Based on the output power for each of a plurality of wavelength bands obtained from the monitoring result of the monitoring means and the output power for each wavelength band when the excitation light source is individually operated, a plurality of wavelengths obtained from the monitoring result A Raman pumping light source comprising pumping light control means for controlling the output power of the plurality of pumping lights so that the output power in each of the bands becomes equal to the respective target output power.
請求項1に記載のラマン励起光源であって、該複数の波長帯域の数は、該複数の励起光源の数よりも多く、該チャンネルの数よりも少ないことを特徴とするラマン励起光源。   2. The Raman excitation light source according to claim 1, wherein the number of the plurality of wavelength bands is larger than the number of the plurality of excitation light sources and smaller than the number of the channels. 請求項1に記載のラマン励起光源であって、該複数の励起光源は、それぞれ、複数の半導体レーザの出力を偏波合成し該複数の励起光としてそれぞれ出力することを特徴とするラマン励起光源。   2. The Raman pumping light source according to claim 1, wherein the plurality of pumping light sources respectively combine the outputs of the plurality of semiconductor lasers and output the plurality of pumping lights as the plurality of pumping lights. . 請求項1に記載のラマン励起光源であって、該複数の励起光源は、それぞれ、半導体レーザとファイバグレーティングフィルタによる共振構造を構成することを特徴とするラマン励起光源。   2. The Raman excitation light source according to claim 1, wherein each of the plurality of excitation light sources constitutes a resonance structure composed of a semiconductor laser and a fiber grating filter. 請求項4記載のラマン励起光源であって、該複数の励起光源の該ファイバグレーティングフィルタは、それぞれ、反射波長が異なることを特徴とするラマン励起光源。   5. The Raman excitation light source according to claim 4, wherein the fiber grating filters of the plurality of excitation light sources have different reflection wavelengths. 請求項1に記載のラマン励起光源であって、該励起光供給手段は、該複数の励起光を合波する第一光合波手段と、該第一光合波手段で合波された該複数の励起光を該光増幅媒体に供給する第二光合波手段とを有することを特徴とするラマン励起光源。   2. The Raman excitation light source according to claim 1, wherein the excitation light supply unit includes a first optical multiplexing unit that combines the plurality of excitation lights, and the plurality of the optical components combined by the first optical multiplexing unit. A Raman excitation light source comprising: second optical multiplexing means for supplying excitation light to the optical amplification medium. 請求項1に記載の光増幅器であって、該出力モニタ手段は、該増幅媒体から出力された該波長多重光を分岐する分岐手段と、該分岐手段からの出力光を該複数の波長帯域に分離する波長帯域分離カプラを有することを特徴とするラマン励起光源。

2. The optical amplifier according to claim 1, wherein the output monitor means branches the wavelength multiplexed light output from the amplification medium, and outputs light from the branch means to the plurality of wavelength bands. 3. A Raman excitation light source comprising a wavelength band separation coupler for separation.

JP2011085937A 2011-04-08 2011-04-08 Light amplifier using raman amplification and raman excitation light source Pending JP2011170372A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011085937A JP2011170372A (en) 2011-04-08 2011-04-08 Light amplifier using raman amplification and raman excitation light source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011085937A JP2011170372A (en) 2011-04-08 2011-04-08 Light amplifier using raman amplification and raman excitation light source

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2000255291A Division JP4821037B2 (en) 2000-08-25 2000-08-25 Optical amplifier and Raman pump light source using Raman amplification

Publications (1)

Publication Number Publication Date
JP2011170372A true JP2011170372A (en) 2011-09-01

Family

ID=44684480

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011085937A Pending JP2011170372A (en) 2011-04-08 2011-04-08 Light amplifier using raman amplification and raman excitation light source

Country Status (1)

Country Link
JP (1) JP2011170372A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002072262A (en) * 2000-08-25 2002-03-12 Fujitsu Ltd Optical amplifier

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002072262A (en) * 2000-08-25 2002-03-12 Fujitsu Ltd Optical amplifier

Similar Documents

Publication Publication Date Title
JP4821037B2 (en) Optical amplifier and Raman pump light source using Raman amplification
US6510000B1 (en) Optical amplifier for wide band raman amplification of wavelength division multiplexed (WDM) signal lights
JP4626918B2 (en) Raman optical repeater
US6741389B2 (en) Optical transmission system and optical transmission method utilizing Raman amplification
US6690504B1 (en) System and method for controlling spectral distribution of output power in a Raman amplifier
JP4173720B2 (en) OPTICAL AMPLIFIER, METHOD FOR CONTROLLING WAVELENGTH CHARACTERISTICS IN OPTICAL AMPLIFIER, AND OPTICAL TRANSMISSION SYSTEM
WO2018097074A1 (en) Optical communication device, and device supplying excitation light for optical amplification
JP4725951B2 (en) Wavelength multiplexed signal light amplification method and optical amplifier
US7075711B2 (en) Optical communication system having dynamic gain equalization
JP4541574B2 (en) Optical repeater transmission system and optical repeater transmission method
US6580549B1 (en) Wavelength-multiplexed light amplifying apparatus, optical amplifier and optical add-and-drop apparatus using wavelength-multiplexed light amplifying basic unit
US6426832B1 (en) Wavelength-multiplexed light amplifying apparatus, optical amplifier and optical add-and-drop apparatus using wavelength-multiplexed light amplifying basic unit
JP2002344054A (en) Optical amplifier and optical transmission system
JP4175051B2 (en) Optical transmission system and optical amplification method for optical transmission system
US6728028B1 (en) Low noise figure optical amplifier for DWDM systems with per sub-band power control
JP2011170372A (en) Light amplifier using raman amplification and raman excitation light source
JP2010177346A (en) Optical amplifier and method of amplifying light
JP2009055058A (en) Optical amplifier, optical amplification method, and optical amplification system
JP2010200361A (en) Optical relay transmission system and optical relay transmission method
JP2003124891A (en) Optical amplifier
JP2003195373A (en) Raman amplifier, Raman amplification method, and wavelength division multiplexing optical communication system using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110408

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20111220

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121225