[go: up one dir, main page]

JP2011164209A - Liquid crystal display element - Google Patents

Liquid crystal display element Download PDF

Info

Publication number
JP2011164209A
JP2011164209A JP2010024530A JP2010024530A JP2011164209A JP 2011164209 A JP2011164209 A JP 2011164209A JP 2010024530 A JP2010024530 A JP 2010024530A JP 2010024530 A JP2010024530 A JP 2010024530A JP 2011164209 A JP2011164209 A JP 2011164209A
Authority
JP
Japan
Prior art keywords
liquid crystal
display element
crystal display
plate
refractive index
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010024530A
Other languages
Japanese (ja)
Other versions
JP2011164209A5 (en
Inventor
Toshiomi Ono
俊臣 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Casio Computer Co Ltd
Original Assignee
Casio Computer Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Casio Computer Co Ltd filed Critical Casio Computer Co Ltd
Priority to JP2010024530A priority Critical patent/JP2011164209A/en
Publication of JP2011164209A publication Critical patent/JP2011164209A/en
Publication of JP2011164209A5 publication Critical patent/JP2011164209A5/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Liquid Crystal (AREA)

Abstract

【課題】VAモード液晶表示素子において視野角を改善する。
【解決手段】共通電極14及び画素電極16に電圧を印加した状態では、液晶層11を形成する液晶分子111が、リブ12によって4方向に配向するVAモード液晶表示素子において、前側偏光板2と液晶セルの間に前側位相差板4を挿入する。液晶層11のリタデーションΔn・dLCDが360nmである場合、前側位相差板4の厚み方向位相差をRthと、面内位相差をR0としたときに、Rth+R0の値は150〜240nmとすることで、当該液晶表示素子の黒表示の特性及び中間調表示の特性ともに改善し、視野角を広げることができる。
【選択図】図4
A viewing angle is improved in a VA mode liquid crystal display element.
In a VA mode liquid crystal display element in which liquid crystal molecules forming a liquid crystal layer are aligned in four directions by ribs in a state where a voltage is applied to a common electrode and a pixel electrode, A front retardation plate 4 is inserted between the liquid crystal cells. When the retardation Δn · dLCD of the liquid crystal layer 11 is 360 nm, when the thickness direction retardation of the front phase difference plate 4 is Rth and the in-plane retardation is R0, the value of Rth + R0 is 150 to 240 nm. Thus, both the black display characteristic and the halftone display characteristic of the liquid crystal display element can be improved, and the viewing angle can be widened.
[Selection] Figure 4

Description

本発明は、液晶表示素子、特に垂直配向モード液晶表示素子に関する。   The present invention relates to a liquid crystal display element, and more particularly to a vertical alignment mode liquid crystal display element.

各々が平面電極を有する一対の基板間に挟持された液晶層を有し、当該液晶層中の液晶分子は前記基板に対して垂直(ホメオトロピック)配向させられている液晶表示素子が知られている。この様な液晶表示素子の1つである垂直配向(Vertical alignment;VA)モード液晶表示素子(VA−LCD)では、液晶層における光の出射側(即ち観察側)となる前側、及び光の入射側となる後側に、それぞれ偏光板が配設されている。そしてこの一対の偏光板は、その透過軸を互いに直交させて配置されている。また、後側の偏光板の更に後側には、光源であるバックライトが配設されている。この様な構成を有するVAモード液晶表示素子においては、液晶層の前側及び後側に配設された平面電極間の電位差によって、液晶層内の液晶分子の配向を制御できる。この液晶分子の配向の制御により、バックライトから出た光のうち2枚の偏光板を透過する光の量を制御し、当該液晶表示素子は画像の表示を行う。この様なVAモード液晶表示素子に依れば、ツイステッドネマティック(TN)型液晶表示素子よりも速い駆動速度と、高いコントラストが得られる。この様なVAモード液晶表示素子の技術が、例えば特許文献1に開示されている。   2. Description of the Related Art There is known a liquid crystal display element having a liquid crystal layer sandwiched between a pair of substrates each having a planar electrode, and liquid crystal molecules in the liquid crystal layer being vertically (homeotropic) aligned with respect to the substrate Yes. In such a vertical alignment (VA) mode liquid crystal display element (VA-LCD) which is one of such liquid crystal display elements, the front side which becomes the light emission side (that is, the observation side) in the liquid crystal layer and the light incidence A polarizing plate is disposed on each rear side. The pair of polarizing plates are arranged with their transmission axes orthogonal to each other. Further, a backlight, which is a light source, is disposed on the rear side of the rear polarizing plate. In the VA mode liquid crystal display device having such a configuration, the orientation of the liquid crystal molecules in the liquid crystal layer can be controlled by the potential difference between the planar electrodes disposed on the front side and the rear side of the liquid crystal layer. By controlling the orientation of the liquid crystal molecules, the amount of light transmitted through the two polarizing plates among the light emitted from the backlight is controlled, and the liquid crystal display element displays an image. According to such a VA mode liquid crystal display element, a higher driving speed and higher contrast can be obtained than a twisted nematic (TN) liquid crystal display element. The technology of such a VA mode liquid crystal display element is disclosed in Patent Document 1, for example.

一般に、VAモード液晶表示素子として、液晶分子を封止している基板に突起を形成し、前記平面電極間に所定以上の電位差がある場合の液晶分子の配向を、花弁状に様々な方向に向けるマルチドメインVAモード液晶表示素子(MVA−LCD)が知られている。しかし、液晶分子の配向方向の数を多くすると、白表示が暗く、また中間調の表示性能が悪くなる。このため、前記平面電極間に所定以上の電位差がある場合の液晶分子の配向の方向の数を少なく限定したVAモード液晶表示素子を用いて、白表示の明るさの向上と中間調の表示性能とを向上させている。   In general, as a VA mode liquid crystal display element, protrusions are formed on a substrate encapsulating liquid crystal molecules, and the liquid crystal molecules are aligned in various directions in a petal shape when there is a predetermined potential difference between the planar electrodes. A multi-domain VA mode liquid crystal display element (MVA-LCD) is known. However, when the number of alignment directions of the liquid crystal molecules is increased, white display becomes dark and halftone display performance deteriorates. Therefore, by using a VA mode liquid crystal display element in which the number of orientation directions of liquid crystal molecules is small when there is a predetermined potential difference between the planar electrodes, the brightness of white display is improved and the display performance of halftone And improve.

特開2008−249915号公報JP 2008-249915 A

前記の様な平面電極間に所定以上の電位差がある場合の液晶分子の配向の方向の数を少なく限定したVAモード液晶表示素子は、白表示の明るさや中間調の表示性能は良い。しかし乍、当該液晶表示素子の表示を、良好なコントラスト及び良好な階調で観察することができる観察角度範囲、即ち視野角が十分でないという課題が存在する。   A VA mode liquid crystal display element in which the number of orientation directions of liquid crystal molecules when there is a predetermined potential difference or more between the planar electrodes as described above is small and has good white display brightness and halftone display performance. However, there is a problem that the viewing angle range in which the display of the liquid crystal display element can be observed with good contrast and good gradation, that is, the viewing angle is not sufficient.

そこで本発明は、全方向の視野角を改善した良好な表示品質を有するVAモード液晶表示素子を提供することを目的とする。   Therefore, an object of the present invention is to provide a VA mode liquid crystal display element having good display quality with improved viewing angles in all directions.

前記目的を果たすため、本発明の液晶表示素子の一態様は、それぞれ互いに対向する面に平面電極が形成された前側透明基板及び後側透明基板に狭持された液晶層を有する液晶セルと、前記前側透明基板の前記液晶層が配されている面側に対して反対の面側に配設された前側偏光板と、前記後側透明基板の前記液晶層が配されている面側に対して反対の面側に配設された後側偏光板と、を具備し、前記液晶セルは、前記平面電極間に電位差がないときは前記液晶層を形成する液晶分子が前記前側透明基板の前記平面電極が形成された面及び前記後側透明基板の前記平面電極が形成された面に対して垂直に配向する、垂直配向型液晶セルである液晶表示素子において、前記前側偏光板の透過軸と前記後側偏光板の透過軸は直交しており、前記前側偏光板と前記液晶セルの間に配設された前側位相差板、及び前記後側偏光板と前記液晶セルの間に配設された後側位相差板、のうち少なくとも何れか一方を更に具備し、当該液晶表示素子が前記前側位相差板を具備するとき、該前側位相差板の屈折率が最大である一方向は前記前側偏光板の透過軸と平行であり、当該液晶表示素子が前記後側位相差板を具備するとき、該後側位相差板の屈折率が最大である一方向は前記後側偏光板の透過軸と平行である、ことを特徴とする。   In order to achieve the above object, one embodiment of the liquid crystal display element of the present invention includes a liquid crystal cell having a liquid crystal layer sandwiched between a front transparent substrate and a rear transparent substrate each having a planar electrode formed on surfaces facing each other; The front polarizing plate disposed on the opposite surface side of the front transparent substrate with respect to the surface on which the liquid crystal layer is disposed, and the surface side of the rear transparent substrate on which the liquid crystal layer is disposed. And a rear polarizing plate disposed on the opposite surface side, and when there is no potential difference between the planar electrodes, the liquid crystal cell has a liquid crystal molecule that forms the liquid crystal layer of the front transparent substrate. In a liquid crystal display element which is a vertical alignment type liquid crystal cell, which is aligned perpendicularly to the surface on which the planar electrode is formed and the surface on which the planar electrode of the rear transparent substrate is formed, the transmission axis of the front polarizing plate and The transmission axis of the rear polarizing plate is orthogonal, and the front At least one of a front retardation plate disposed between a polarizing plate and the liquid crystal cell and a rear retardation plate disposed between the rear polarizing plate and the liquid crystal cell are further provided. When the liquid crystal display element includes the front retardation plate, one direction in which the refractive index of the front retardation plate is maximum is parallel to the transmission axis of the front polarizing plate, and the liquid crystal display element is When the rear retardation plate is provided, one direction in which the refractive index of the rear retardation plate is maximum is parallel to the transmission axis of the rear polarizing plate.

さらに本発明の液晶表示素子の一態様は、互いに対向する面に平面電極が形成された一対の基板に狭持された液晶層を有する液晶セルと、前記液晶セルを挟持する一対の偏光板と、を具備し、前記液晶セルは、前記平面電極間に電位差がないときは前記液晶層を形成する液晶分子が前記一対の基板の前記平面電極が形成された面に対して垂直に配向する、垂直配向型液晶セルである液晶表示素子において、前記一対の偏光板を構成する第1の偏光板の透過軸と第2の偏光板の透過軸は直交しており、前記一対の偏光板と前記液晶セルの間に配設された位相差板を更に具備し、前記位相差板の屈折率が最大である一方向は前記位相差板に隣接する偏光板の透過軸と平行である、ことを特徴とする。   Furthermore, an embodiment of the liquid crystal display element of the present invention includes a liquid crystal cell having a liquid crystal layer sandwiched between a pair of substrates having planar electrodes formed on opposite surfaces, and a pair of polarizing plates sandwiching the liquid crystal cell. In the liquid crystal cell, when there is no potential difference between the planar electrodes, the liquid crystal molecules forming the liquid crystal layer are aligned perpendicular to the plane of the pair of substrates on which the planar electrodes are formed. In the liquid crystal display element which is a vertical alignment type liquid crystal cell, the transmission axis of the first polarizing plate and the transmission axis of the second polarizing plate constituting the pair of polarizing plates are orthogonal to each other, A retardation plate disposed between the liquid crystal cells, wherein a direction in which the refractive index of the retardation plate is maximum is parallel to a transmission axis of a polarizing plate adjacent to the retardation plate; Features.

本発明に依れば、全方向の視野角を改善した良好な表示品質を有するVAモード液晶表示素子を提供できる。   According to the present invention, it is possible to provide a VA mode liquid crystal display element having good display quality with improved viewing angles in all directions.

本発明の第1の実施形態に係る液晶表示素子の模式的断面図。1 is a schematic cross-sectional view of a liquid crystal display element according to a first embodiment of the present invention. 本発明の第1の実施形態に係るリブの形状と液晶分子の配向を説明するための模式図。The schematic diagram for demonstrating the shape of the rib which concerns on the 1st Embodiment of this invention, and the orientation of a liquid crystal molecule. 本発明の各実施形態に係るVAモード液晶表示素子の光学的な構成を説明するための模式的分解平面図。The typical exploded top view for explaining the optical composition of the VA mode liquid crystal display element concerning each embodiment of the present invention. 本発明の第1の実施形態に係るVAモード液晶表示素子の動作を説明するための模式的断面図。FIG. 5 is a schematic cross-sectional view for explaining the operation of the VA mode liquid crystal display element according to the first embodiment of the present invention. 本発明の第1の実施形態の第1の実施例に係る液晶表示素子の光学的な構成を説明するための模式的分解平面図。The typical exploded top view for demonstrating the optical structure of the liquid crystal display element which concerns on the 1st Example of the 1st Embodiment of this invention. 本発明の第1の実施形態に係る液晶表示素子において位相差板が存在しない場合の当該液晶表示素子の視野角特性を示す図であり、(a)黒表示特性を示す図、(b)水平方向から観察した場合の観察角度と輝度値の関係を示す図、(c)斜め方向から観察した場合の観察角度と輝度値の関係を示す図。FIG. 3 is a diagram illustrating viewing angle characteristics of the liquid crystal display element when the retardation plate is not present in the liquid crystal display element according to the first embodiment of the present invention, (a) a diagram illustrating black display characteristics, and (b) a horizontal diagram. The figure which shows the relationship between the observation angle at the time of observing from a direction, and a luminance value, (c) The figure which shows the relationship between the observation angle at the time of observing from an oblique direction. 本発明の第1の実施形態の第1の実施例に係る液晶表示素子に係る、(a)Rthと視野角(CR=10)の関係を示す図、(b)Rthと視野角(階調反転)の関係を示す図、及び(c)Rthと視野角の最小値の関係を示す図。FIG. 4A is a diagram showing the relationship between Rth and viewing angle (CR = 10), and FIG. 4B is a graph showing the relationship between Rth and viewing angle (gradation) for the liquid crystal display device according to the first example of the first embodiment of the present invention. The figure which shows the relationship of (inversion), and (c) The figure which shows the relationship between Rth and the minimum value of a viewing angle. 本発明の第1の実施形態の第1の実施例に係る液晶表示素子の視野角特性を示す図であり、Rth=180nmのときの、(a)黒表示特性を示す図、(b)水平方向から観察した場合の観察角度と輝度値の関係を示す図、及び(c)斜め方向から観察した場合の観察角度と輝度値の関係を示す図。It is a figure which shows the viewing angle characteristic of the liquid crystal display element which concerns on the 1st Example of the 1st Embodiment of this invention, and when Rth = 180nm, (a) A figure which shows a black display characteristic, (b) Horizontal The figure which shows the relationship between the observation angle at the time of observing from a direction, and a luminance value, and (c) The figure which shows the relationship between the observation angle at the time of observing from an oblique direction. 本発明の第1の実施形態の第1の実施例に係る液晶表示素子の視野角特性を示す図であり、Rth=240nmのときの、(a)黒表示特性を示す図、(b)水平方向から観察した場合の観察角度と輝度値の関係を示す図、及び(c)斜め方向から観察した場合の観察角度と輝度値の関係を示す図。It is a figure which shows the viewing angle characteristic of the liquid crystal display element which concerns on the 1st Example of the 1st Embodiment of this invention, (a) A figure which shows a black display characteristic at the time of Rth = 240nm, (b) Horizontal The figure which shows the relationship between the observation angle at the time of observing from a direction, and a luminance value, and (c) The figure which shows the relationship between the observation angle at the time of observing from an oblique direction. 本発明の第1の実施形態の第2及び第3の実施例に係る液晶表示素子の光学的な構成を説明するための模式的分解平面図。The typical exploded top view for demonstrating the optical structure of the liquid crystal display element which concerns on the 2nd and 3rd Example of the 1st Embodiment of this invention. 本発明の第1の実施形態の第2の実施例に係る液晶表示素子に係る、(a)Rthと視野角(CR=10)の関係を示す図、(b)Rthと視野角(階調反転)の関係を示す図、及び(c)Rthと視野角の最小値の関係を示す図。FIG. 7A is a diagram showing a relationship between Rth and viewing angle (CR = 10), and FIG. 7B is a diagram showing a relationship between Rth and viewing angle (gray scale) according to a second example of the first embodiment of the present invention. The figure which shows the relationship of (inversion), and (c) The figure which shows the relationship between Rth and the minimum value of a viewing angle. 本発明の第1の実施形態の第2の実施例に係る液晶表示素子の視野角特性を示す図であり、Rth=180nmのときの、(a)黒表示特性を示す図、(b)水平方向から観察した場合の観察角度と輝度値の関係を示す図、及び(c)斜め方向から観察した場合の観察角度と輝度値の関係を示す図。It is a figure which shows the viewing angle characteristic of the liquid crystal display element which concerns on the 2nd Example of the 1st Embodiment of this invention, and when Rth = 180nm, (a) A figure which shows a black display characteristic, (b) Horizontal The figure which shows the relationship between the observation angle at the time of observing from a direction, and a luminance value, and (c) The figure which shows the relationship between the observation angle at the time of observing from an oblique direction. 本発明の第1の実施形態の第2の実施例に係る液晶表示素子の視野角特性を示す図であり、Rth=240nmのときの、(a)黒表示特性を示す図、(b)水平方向から観察した場合の観察角度と輝度値の関係を示す図、及び(c)斜め方向から観察した場合の観察角度と輝度値の関係を示す図。It is a figure which shows the viewing angle characteristic of the liquid crystal display element which concerns on the 2nd Example of the 1st Embodiment of this invention, (a) A figure which shows a black display characteristic at the time of Rth = 240nm, (b) Horizontal The figure which shows the relationship between the observation angle at the time of observing from a direction, and a luminance value, and (c) The figure which shows the relationship between the observation angle at the time of observing from an oblique direction. 本発明の第1の実施形態の第3の実施例に係る液晶表示素子に係る、(a)Rthと視野角(CR=10)の関係を示す図、(b)Rthと視野角(階調反転)の関係を示す図、及び(c)Rthと視野角の最小値の関係を示す図。(A) A diagram showing a relationship between Rth and viewing angle (CR = 10), (b) Rth and viewing angle (gradation) for a liquid crystal display device according to a third example of the first embodiment of the present invention. The figure which shows the relationship of (inversion), and (c) The figure which shows the relationship between Rth and the minimum value of a viewing angle. 本発明の第1の実施形態の第3の実施例に係る液晶表示素子の視野角特性を示す図であり、Rth=180nmのときの、(a)黒表示特性を示す図、(b)水平方向から観察した場合の観察角度と輝度値の関係を示す図、及び(c)斜め方向から観察した場合の観察角度と輝度値の関係を示す図。It is a figure which shows the viewing angle characteristic of the liquid crystal display element which concerns on the 3rd Example of the 1st Embodiment of this invention, (a) A figure which shows a black display characteristic at the time of Rth = 180nm, (b) Horizontal The figure which shows the relationship between the observation angle at the time of observing from a direction, and a luminance value, and (c) The figure which shows the relationship between the observation angle at the time of observing from an oblique direction. 本発明の第1の実施形態の第3の実施例に係る液晶表示素子の視野角特性を示す図であり、Rth=240nmのときの、(a)黒表示特性を示す図、(b)水平方向から観察した場合の観察角度と輝度値の関係を示す図、及び(c)斜め方向から観察した場合の観察角度と輝度値の関係を示す図。It is a figure which shows the viewing angle characteristic of the liquid crystal display element which concerns on the 3rd Example of the 1st Embodiment of this invention, (a) A figure which shows a black display characteristic at the time of Rth = 240nm, (b) Horizontal The figure which shows the relationship between the observation angle at the time of observing from a direction, and a luminance value, and (c) The figure which shows the relationship between the observation angle at the time of observing from an oblique direction. 本発明の第1の実施形態の第4の実施例に係る液晶表示素子の模式的断面図。The typical sectional view of the liquid crystal display element concerning the 4th example of the 1st embodiment of the present invention. 本発明の第1の実施形態の第4の実施例に係る液晶表示素子の光学的な構成を説明するための模式的分解平面図。The typical exploded top view for demonstrating the optical structure of the liquid crystal display element which concerns on the 4th Example of the 1st Embodiment of this invention. 本発明の第1の実施形態の第4の実施例に係る液晶表示素子に係る、(a)Rthと視野角(CR=10)の関係を示す図、(b)Rthと視野角(階調反転)の関係を示す図、及び(c)Rthと視野角の最小値の関係を示す図。(A) A diagram showing a relationship between Rth and viewing angle (CR = 10), (b) Rth and viewing angle (gradation) for a liquid crystal display device according to a fourth example of the first embodiment of the present invention. The figure which shows the relationship of (inversion), and (c) The figure which shows the relationship between Rth and the minimum value of a viewing angle. 本発明の第1の実施形態の第4の実施例に係る液晶表示素子の視野角特性を示す図であり、Rth=180nmのときの、(a)黒表示特性を示す図、(b)水平方向から観察した場合の観察角度と輝度値の関係を示す図、及び(c)斜め方向から観察した場合の観察角度と輝度値の関係を示す図。It is a figure which shows the viewing angle characteristic of the liquid crystal display element which concerns on the 4th Example of the 1st Embodiment of this invention, (a) A figure which shows a black display characteristic when Rth = 180nm, (b) Horizontal The figure which shows the relationship between the observation angle at the time of observing from a direction, and a luminance value, and (c) The figure which shows the relationship between the observation angle at the time of observing from an oblique direction. 本発明の第1の実施形態の第4の実施例に係る液晶表示素子の視野角特性を示す図であり、Rth=240nmのときの、(a)黒表示特性を示す図、(b)水平方向から観察した場合の観察角度と輝度値の関係を示す図、及び(c)斜め方向から観察した場合の観察角度と輝度値の関係を示す図。It is a figure which shows the viewing angle characteristic of the liquid crystal display element which concerns on the 4th Example of the 1st Embodiment of this invention, (a) A figure which shows a black display characteristic at the time of Rth = 240nm, (b) Horizontal The figure which shows the relationship between the observation angle at the time of observing from a direction, and a luminance value, and (c) The figure which shows the relationship between the observation angle at the time of observing from an oblique direction. 本発明の第2の実施形態に係るリブの形状と液晶分子の配向を説明するための模式図。The schematic diagram for demonstrating the shape of the rib which concerns on the 2nd Embodiment of this invention, and the orientation of a liquid crystal molecule. 本発明の第2の実施形態の第1の実施例に係る液晶表示素子の光学的な構成を説明するための模式的分解平面図。The typical exploded top view for demonstrating the optical structure of the liquid crystal display element which concerns on the 1st Example of the 2nd Embodiment of this invention. 本発明の第2の実施形態に係る液晶表示素子において位相差板が存在しない場合の当該液晶表示素子の視野角特性を示す図であり、(a)黒表示特性を示す図、(b)水平方向から観察した場合の観察角度と輝度値の関係を示す図、(c)第1の斜め方向から観察した場合の観察角度と輝度値の関係を示す図、及び(d)第2の斜め方向から観察した場合の観察角度と輝度値の関係を示す図。FIG. 6 is a diagram illustrating viewing angle characteristics of a liquid crystal display element when a retardation plate is not present in the liquid crystal display element according to the second embodiment of the present invention, (a) a diagram illustrating black display characteristics, and (b) a horizontal display. The figure which shows the relationship between the observation angle at the time of observing from a direction, and a luminance value, (c) The figure which shows the relationship between the observation angle at the time of observing from a 1st diagonal direction, and (d) 2nd diagonal direction The figure which shows the relationship between the observation angle at the time of observing from, and a luminance value. 本発明の第2の実施形態の第1の実施例に係る液晶表示素子に係る、(a)Rthと視野角(CR=10)の関係を示す図、(b)Rthと視野角(階調反転)の関係を示す図、及び(c)Rthと視野角の最小値の関係を示す図。FIG. 7A is a diagram showing the relationship between Rth and viewing angle (CR = 10), and FIG. 7B is a diagram showing the relationship between Rth and viewing angle (gradation) for the liquid crystal display device according to the first example of the second embodiment of the present invention. The figure which shows the relationship of (inversion), and (c) The figure which shows the relationship between Rth and the minimum value of a viewing angle. 本発明の第2の実施形態の第1の実施例に係る液晶表示素子の視野角特性を示す図であり、Rth=210nmのときの、(a)黒表示特性を示す図、(b)水平方向から観察した場合の観察角度と輝度値の関係を示す図、(c)第1の斜め方向から観察した場合の観察角度と輝度値の関係を示す図、及び(d)第2の斜め方向から観察した場合の観察角度と輝度値の関係を示す図。It is a figure which shows the viewing angle characteristic of the liquid crystal display element which concerns on the 1st Example of the 2nd Embodiment of this invention, and when Rth = 210nm, (a) A figure which shows a black display characteristic, (b) Horizontal The figure which shows the relationship between the observation angle at the time of observing from a direction, and a luminance value, (c) The figure which shows the relationship between the observation angle at the time of observing from a 1st diagonal direction, and (d) 2nd diagonal direction The figure which shows the relationship between the observation angle at the time of observing from, and a luminance value. 本発明の第2の実施形態の第2及び第3の実施例に係る液晶表示素子の光学的な構成を説明するための模式的分解平面図。The typical exploded top view for demonstrating the optical structure of the liquid crystal display element which concerns on the 2nd and 3rd Example of the 2nd Embodiment of this invention. 本発明の第2の実施形態の第2の実施例に係る液晶表示素子に係る、(a)Rthと視野角(CR=10)の関係を示す図、(b)Rthと視野角(階調反転)の関係を示す図、及び(c)Rthと視野角の最小値の関係を示す図。(A) The figure which shows the relationship between Rth and a viewing angle (CR = 10) regarding the liquid crystal display element which concerns on 2nd Example of the 2nd Embodiment of this invention, (b) Rth and viewing angle (gradation) The figure which shows the relationship of (inversion), and (c) The figure which shows the relationship between Rth and the minimum value of a viewing angle. 本発明の第2の実施形態の第2の実施例に係る液晶表示素子の視野角特性を示す図であり、Rth=210nmのときの、(a)黒表示特性を示す図、(b)水平方向から観察した場合の観察角度と輝度値の関係を示す図、(c)第1の斜め方向から観察した場合の観察角度と輝度値の関係を示す図、及び(d)第2の斜め方向から観察した場合の観察角度と輝度値の関係を示す図。It is a figure which shows the viewing angle characteristic of the liquid crystal display element which concerns on the 2nd Example of the 2nd Embodiment of this invention, and when Rth = 210nm, (a) A figure which shows a black display characteristic, (b) Horizontal The figure which shows the relationship between the observation angle at the time of observing from a direction, and a luminance value, (c) The figure which shows the relationship between the observation angle at the time of observing from a 1st diagonal direction, and (d) 2nd diagonal direction The figure which shows the relationship between the observation angle at the time of observing from, and a luminance value. 本発明の第2の実施形態の第3の実施例に係る液晶表示素子に係る、(a)Rthと視野角(CR=10)の関係を示す図、(b)Rthと視野角(階調反転)の関係を示す図、及び(c)Rthと視野角の最小値の関係を示す図。(A) The figure which shows the relationship between Rth and viewing angle (CR = 10) regarding the liquid crystal display element which concerns on the 3rd Example of the 2nd Embodiment of this invention, (b) Rth and viewing angle (grayscale) The figure which shows the relationship of (inversion), and (c) The figure which shows the relationship between Rth and the minimum value of a viewing angle. 本発明の第2の実施形態の第3の実施例に係る液晶表示素子の視野角特性を示す図であり、Rth=210nmのときの、(a)黒表示特性を示す図、(b)水平方向から観察した場合の観察角度と輝度値の関係を示す図、(c)第1の斜め方向から観察した場合の観察角度と輝度値の関係を示す図、及び(d)第2の斜め方向から観察した場合の観察角度と輝度値の関係を示す図。It is a figure which shows the viewing angle characteristic of the liquid crystal display element which concerns on the 3rd Example of the 2nd Embodiment of this invention, (a) A figure which shows a black display characteristic when Rth = 210nm, (b) Horizontal The figure which shows the relationship between the observation angle at the time of observing from a direction, and a luminance value, (c) The figure which shows the relationship between the observation angle at the time of observing from a 1st diagonal direction, and (d) 2nd diagonal direction The figure which shows the relationship between the observation angle at the time of observing from, and a luminance value. 本発明の第2の実施形態の第4の実施例に係る液晶表示素子の光学的な構成を説明するための模式的分解平面図。The typical exploded top view for demonstrating the optical structure of the liquid crystal display element which concerns on the 4th Example of the 2nd Embodiment of this invention. 本発明の第2の実施形態の第4の実施例に係る液晶表示素子に係る、(a)Rthと視野角(CR=10)の関係を示す図、(b)Rthと視野角(階調反転)の関係を示す図、及び(c)Rthと視野角の最小値の関係を示す図。(A) The figure which shows the relationship between Rth and a viewing angle (CR = 10) regarding the liquid crystal display element which concerns on 4th Example of the 2nd Embodiment of this invention, (b) Rth and viewing angle (gradation) The figure which shows the relationship of (inversion), and (c) The figure which shows the relationship between Rth and the minimum value of a viewing angle. 本発明の第2の実施形態の第4の実施例に係る液晶表示素子の視野角特性を示す図であり、Rth=210nmのときの、(a)黒表示特性を示す図、(b)水平方向から観察した場合の観察角度と輝度値の関係を示す図、(c)第1の斜め方向から観察した場合の観察角度と輝度値の関係を示す図、及び(d)第2の斜め方向から観察した場合の観察角度と輝度値の関係を示す図。It is a figure which shows the viewing angle characteristic of the liquid crystal display element which concerns on the 4th Example of the 2nd Embodiment of this invention, and when Rth = 210nm, (a) A figure which shows a black display characteristic, (b) Horizontal The figure which shows the relationship between the observation angle at the time of observing from a direction, and a luminance value, (c) The figure which shows the relationship between the observation angle at the time of observing from a 1st diagonal direction, and (d) 2nd diagonal direction The figure which shows the relationship between the observation angle at the time of observing from, and a luminance value.

[第1の実施形態]
まず、本発明の第1の実施形態について図面を参照して説明する。本発明の第1の実施形態に係る液晶表示素子は、図1にその断面の概略を示す様に、液晶セル1と、前側偏光板2と、後側偏光板3と、前側位相差板4とを有する。前側偏光板2と後側偏光板3とは、その光の透過軸が互いに直交する様に配置されている。これら2枚の偏光板に挟まれている液晶セル1は、垂直配向(Vertical Alignment;VA)モード液晶セルであり、液晶シャッターとして働く。前側位相差板4は、液晶セル1と前側偏光板2の間に配設されている。
[First Embodiment]
First, a first embodiment of the present invention will be described with reference to the drawings. The liquid crystal display element according to the first embodiment of the present invention has a liquid crystal cell 1, a front polarizing plate 2, a rear polarizing plate 3, and a front retardation plate 4 as schematically shown in cross section in FIG. And have. The front polarizing plate 2 and the rear polarizing plate 3 are arranged so that their light transmission axes are orthogonal to each other. The liquid crystal cell 1 sandwiched between these two polarizing plates is a vertical alignment (VA) mode liquid crystal cell, and functions as a liquid crystal shutter. The front retardation plate 4 is disposed between the liquid crystal cell 1 and the front polarizing plate 2.

液晶セル1について更に説明する。液晶表示素子としての観察側(観察者が液晶表示素子に表示される画像を見る側。図1における上方向側)に配置される前側基板13上に共通電極14が形成されており、後側基板15上に画素電極16が形成されている。前側基板13及び後側基板15は、共通電極14及び画素電極16が形成されている面がそれぞれ対向するように配置されている。共通電極14と画素電極16との間には、負の誘電率異方性を備えたネマティック液晶分子である液晶分子111から成る液晶層11が形成されている。   The liquid crystal cell 1 will be further described. A common electrode 14 is formed on the front substrate 13 disposed on the observation side (the side on which an observer views an image displayed on the liquid crystal display element, the upward direction in FIG. 1) as a liquid crystal display element, and the rear side A pixel electrode 16 is formed on the substrate 15. The front substrate 13 and the rear substrate 15 are arranged so that the surfaces on which the common electrode 14 and the pixel electrode 16 are formed face each other. Between the common electrode 14 and the pixel electrode 16, a liquid crystal layer 11 composed of liquid crystal molecules 111 which are nematic liquid crystal molecules having negative dielectric anisotropy is formed.

本実施形態に係る液晶セル1は、例えば図2に模式的表面図を示す様に、液晶層を狭持する基板のうち一方(図1では前側基板13側)に、例えばピラミッド形状のリブ12を有している。このリブ12は、液晶層11内の液晶分子111を配向させるためのものである。リブ12の存在のため液晶分子111は、共通電極14及び画素電極16によって液晶層11に電場を形成した場合、図2に概略を示す通り4方向に配向する。前記リブ12の形状であるピラミッド形状は一例であり、液晶分子111を4方向に配向させる形状であれば良い。   The liquid crystal cell 1 according to the present embodiment has, for example, a pyramid-shaped rib 12 on one of the substrates sandwiching the liquid crystal layer (the front substrate 13 side in FIG. 1) as shown in a schematic surface view in FIG. have. The rib 12 is for aligning the liquid crystal molecules 111 in the liquid crystal layer 11. Due to the presence of the ribs 12, the liquid crystal molecules 111 are aligned in four directions as schematically shown in FIG. 2 when an electric field is formed in the liquid crystal layer 11 by the common electrode 14 and the pixel electrode 16. The pyramid shape that is the shape of the rib 12 is an example, and any shape that aligns the liquid crystal molecules 111 in four directions may be used.

後側偏光板3の更に後側(観察側と逆側。図1における下方向側)には、図示しない光源であるバックライトが配設されている。液晶セル1の液晶層を挟持する共通電極14及び画素電極16の間に電場を形成することで、バックライトから出た光のうち2枚の偏光板を透過する光の量を制御できる。この様にして当該液晶表示素子は、前側偏光板2の側から観察する観察者に対して、画像表示を行うことができる。   On the further rear side of the rear polarizing plate 3 (on the opposite side to the observation side, the lower side in FIG. 1), a backlight, which is a light source (not shown), is provided. By forming an electric field between the common electrode 14 and the pixel electrode 16 that sandwich the liquid crystal layer of the liquid crystal cell 1, it is possible to control the amount of light transmitted through the two polarizing plates out of the light emitted from the backlight. In this way, the liquid crystal display element can perform image display for an observer who observes from the front polarizing plate 2 side.

本液晶表示素子の液晶セル1と前側偏光板2と後側偏光板3の光学的構成を図3に示す。この図に示す通り、前側偏光板2の透過軸である前側偏光板透過軸2t及び後側偏光板3の透過軸である後側偏光板透過軸3tは直交している。言い換えると、前側偏光板2の吸収軸である前側偏光板吸収軸2a及び後側偏光板3の吸収軸である後側偏光板吸収軸3aも直交している。また、共通電極14及び画素電極16によって液晶層11に電場を形成した場合、液晶セル1内の液晶分子111は、前記の通り、リブ12の存在のため、図3の2段目に模式的に示す通り中心から4方向に配向し、その配向角度は前側偏光板2及び後側偏光板3の透過軸から45°回転させた方向となっている。   The optical configuration of the liquid crystal cell 1, the front polarizing plate 2 and the rear polarizing plate 3 of the present liquid crystal display element is shown in FIG. As shown in this figure, the front polarizing plate transmission axis 2t, which is the transmission axis of the front polarizing plate 2, and the rear polarizing plate transmission axis 3t, which is the transmission axis of the rear polarizing plate 3, are orthogonal to each other. In other words, the front polarizing plate absorption axis 2a that is the absorption axis of the front polarizing plate 2 and the rear polarizing plate absorption axis 3a that is the absorption axis of the rear polarizing plate 3 are also orthogonal to each other. In addition, when an electric field is formed in the liquid crystal layer 11 by the common electrode 14 and the pixel electrode 16, the liquid crystal molecules 111 in the liquid crystal cell 1 are schematically shown in the second stage of FIG. As shown in FIG. 4, the film is oriented in four directions from the center, and the orientation angle is a direction rotated by 45 ° from the transmission axes of the front polarizing plate 2 and the rear polarizing plate 3.

ここで、本液晶表示素子の動作について説明する。まず、共通電極14と画素電極16とで形成する電場と、液晶層11を形成する負の誘電率異方性を備えたネマティック液晶分子である液晶分子111の挙動について図4を参照して説明する。図4(a)に模式的に示す通り、共通電極14及び画素電極16の間に電場を形成していないとき、液晶層11の液晶分子111は、概ね基板面に対して垂直に配向している。但し、リブ12の近傍では、リブの面に垂直を向くように傾いて配向している。これに対して、図4(b)に模式的に示す通り、共通電極14及び画素電極16の間に電場を形成すると、液晶分子111は基板面に対して傾いて配向する。この際、電場の形成前に垂直配向していた液晶分子111は、リブ12の近傍の液晶分子111の配向に規定され、リブ12の近傍の液晶分子111と同方向に配向する。   Here, the operation of the present liquid crystal display element will be described. First, the behavior of the liquid crystal molecules 111, which are nematic liquid crystal molecules having negative dielectric anisotropy for forming the liquid crystal layer 11, and the electric field formed by the common electrode 14 and the pixel electrode 16 will be described with reference to FIG. To do. As schematically shown in FIG. 4A, when an electric field is not formed between the common electrode 14 and the pixel electrode 16, the liquid crystal molecules 111 of the liquid crystal layer 11 are aligned substantially perpendicular to the substrate surface. Yes. However, in the vicinity of the rib 12, the orientation is inclined so as to be perpendicular to the surface of the rib. On the other hand, when an electric field is formed between the common electrode 14 and the pixel electrode 16 as schematically shown in FIG. 4B, the liquid crystal molecules 111 are tilted with respect to the substrate surface. At this time, the liquid crystal molecules 111 that are vertically aligned before the formation of the electric field are defined by the alignment of the liquid crystal molecules 111 in the vicinity of the ribs 12 and are aligned in the same direction as the liquid crystal molecules 111 in the vicinity of the ribs 12.

従って、バックライトにより発せられ、後側偏光板3の後側から入射した光のうち、後側偏光板透過軸3tと平行な偏光面を有する偏光が、液晶層11に入射したとき以下の様になる。図4(a)に示す共通電極14及び画素電極16の間に電場が形成されていない場合は、前記偏光の偏光面は回転せず、当該偏光面は前側偏光板吸収軸2aと一致し、前側に光が透過しない。即ち、観察者から見た表示は黒表示となる。一方、図4(b)に示す共通電極14及び画素電極16の間に電場が形成されている場合は、前記偏光の偏光面は回転させられ、当該偏光面は前側偏光板透過軸2tと一致し、前側に光が透過する。即ち、観察者から見た表示は白表示となる。   Accordingly, among the light emitted from the backlight and incident from the rear side of the rear polarizing plate 3, the polarized light having a polarization plane parallel to the rear polarizing plate transmission axis 3 t is incident on the liquid crystal layer 11 as follows. become. When an electric field is not formed between the common electrode 14 and the pixel electrode 16 shown in FIG. 4A, the polarization plane of the polarized light does not rotate, and the polarization plane coincides with the front polarizing plate absorption axis 2a. No light is transmitted to the front side. That is, the display viewed from the observer is black. On the other hand, when an electric field is formed between the common electrode 14 and the pixel electrode 16 shown in FIG. 4B, the polarization plane of the polarized light is rotated, and the polarization plane is aligned with the front polarizing plate transmission axis 2t. And light is transmitted to the front side. That is, the display viewed from the observer is white display.

本実施形態に係る液晶表示素子は、液晶セル1と前側偏光板2との間に、前側位相差板4を有している。この前側位相差板4の存在により、斜めから当該液晶表示素子を観察した場合の、黒表示時における光漏れを低減させ、中間調の表示性能を向上させることができる。即ち、当該前側位相差板4の存在により、これがないときに比べて、視野角が改善される。   The liquid crystal display element according to the present embodiment has a front retardation plate 4 between the liquid crystal cell 1 and the front polarizing plate 2. Due to the presence of the front phase difference plate 4, light leakage during black display when the liquid crystal display element is observed from an oblique direction can be reduced, and halftone display performance can be improved. That is, the presence of the front phase difference plate 4 improves the viewing angle as compared with the case where it is not present.

本実施形態に係る液晶表示素子を設計するにあたっては、まず、液晶セル1の各種パラメータと、前側偏光板2及び後側偏光板3の透過軸の位置関係を決定する。次に、前記の液晶セル1、前側偏光板2及び後側偏光板3からなる液晶表示素子の視野角特性を改善するため、視野角特性の良否を確認しながら、前側位相差板4の特性を決定する。   In designing the liquid crystal display element according to the present embodiment, first, the positional relationship between various parameters of the liquid crystal cell 1 and the transmission axes of the front polarizing plate 2 and the rear polarizing plate 3 is determined. Next, in order to improve the viewing angle characteristics of the liquid crystal display element comprising the liquid crystal cell 1, the front polarizing plate 2 and the rear polarizing plate 3, the characteristics of the front retardation plate 4 are confirmed while confirming the quality of the viewing angle characteristics. To decide.

[第1の実施形態の第1の実施例]
次に、第1の実施形態に係る液晶表示素子の第1の実施例を、図面を参照して具体的に説明する。この液晶表示素子は、アクティブマトリクス方式の液晶表示素子である。図1に示す様に、当該液晶表示素子は、当該液晶表示素子の観察側から順に、前側偏光板2、前側位相差板4、液晶セル1、及び後側偏光板3を有する。
[First example of the first embodiment]
Next, a first example of the liquid crystal display element according to the first embodiment will be specifically described with reference to the drawings. This liquid crystal display element is an active matrix type liquid crystal display element. As shown in FIG. 1, the liquid crystal display element includes a front polarizing plate 2, a front retardation plate 4, a liquid crystal cell 1, and a rear polarizing plate 3 in order from the observation side of the liquid crystal display element.

液晶セル1は、前側基板13及び後側基板15が、図示しない枠状シール材によって所定の間隙を保ち接合されて構成されている。前側基板13の後側基板15と対向する面には、それぞれの画素領域に対応する開口を形成している図示しないブラックマトリクスと、当該ブラックマトリクスの開口に対応させて、図示しない赤色、緑色、青色のカラーフィルタとが所定の配置でそれぞれ設置されている。カラーフィルタの表面には、これらを覆う一枚の膜状の透明導電膜からなる共通電極14が被着されている。更に共通電極14は、図示しない配向膜に覆われている。   The liquid crystal cell 1 is configured by joining a front substrate 13 and a rear substrate 15 with a frame-shaped sealing material (not shown) with a predetermined gap. On the surface facing the rear substrate 15 of the front substrate 13, a black matrix (not shown) in which openings corresponding to the respective pixel regions are formed, and red, green, not shown, corresponding to the openings of the black matrix, A blue color filter is installed in a predetermined arrangement. On the surface of the color filter, a common electrode 14 made of a single film-like transparent conductive film is attached so as to cover them. Further, the common electrode 14 is covered with an alignment film (not shown).

後側基板15の前側基板13と対向する面には、前記ブラックマトリクスの開口に対応させて、透明導電膜からなる複数の画素電極16がマトリクス状に配置されている。各画素電極16には、図示しないスイッチング素子としての薄膜トランジスタが、それぞれ接続され、また、薄膜トランジスタには走査線や信号線が接続されている。これらは配向膜に覆われている。   A plurality of pixel electrodes 16 made of a transparent conductive film are arranged in a matrix on the surface of the rear substrate 15 facing the front substrate 13 so as to correspond to the openings of the black matrix. A thin film transistor as a switching element (not shown) is connected to each pixel electrode 16, and a scanning line and a signal line are connected to the thin film transistor. These are covered with an alignment film.

前側基板13上の配向膜と後側基板15上の配向膜の間隙には、負の誘電率異方性を備えたネマティック液晶分子である液晶分子111が封入され、液晶層11が形成されている。ここで、本実施例では、液晶分子の屈折率異方性Δnは0.090であり、液晶層厚dLCは4.0μmとしている。   Liquid crystal molecules 111, which are nematic liquid crystal molecules having negative dielectric anisotropy, are sealed in the gap between the alignment film on the front substrate 13 and the alignment film on the rear substrate 15, and the liquid crystal layer 11 is formed. Yes. In this example, the refractive index anisotropy Δn of the liquid crystal molecules is 0.090, and the liquid crystal layer thickness dLC is 4.0 μm.

前記の通り、画素電極16と共通電極14との間に電場が形成されていない状態においては、液晶分子111はそれぞれ基板面に対して垂直に配向する。一方、画素電極16と共通電極14との間に電場が形成されている状態においては、液晶分子111はそれぞれ基板面に対して傾いて配向する。   As described above, in the state where no electric field is formed between the pixel electrode 16 and the common electrode 14, the liquid crystal molecules 111 are each aligned perpendicular to the substrate surface. On the other hand, in a state where an electric field is formed between the pixel electrode 16 and the common electrode 14, the liquid crystal molecules 111 are each inclined with respect to the substrate surface.

ここで図5に示す当該液晶表示素子の光学構成を示す分解平面図を参照して、当該液晶表示素子の光学構成を説明する。まず、本実施例の説明における軸を次の様に定義する。矩形をなす液晶セル1の観察側(前側偏光板2側)から当該液晶表示素子を見て左右方向の辺と平行な軸(図5における水平方向)を水平軸hとする。また、角度については、図5において、水平軸の右側を0°とし、反時計回りの方向を+方向とする。以上の定義に依れば、本実施例に係る液晶表示素子の各光学軸は以下の通りである。即ち、図5の1段目に示す通り、前側偏光板透過軸2tは+90°の方向、前側偏光板吸収軸2aは0°の方向である。また、図5の3段目に示す通り、リブ12による液晶分子111の配向方向は+45°、+135°、+225°及び+315°である。また、図5の4段目に示す通り、後側偏光板透過軸3tは0°の方向、後側偏光板吸収軸3aは+90°の方向である。但し実際には、製造誤差等が含まれるため、角度についてはある程度の幅がある。   Here, the optical configuration of the liquid crystal display element will be described with reference to an exploded plan view showing the optical configuration of the liquid crystal display element shown in FIG. First, the axis in the description of this embodiment is defined as follows. A horizontal axis h is defined as an axis (horizontal direction in FIG. 5) parallel to the horizontal side when the liquid crystal display element is viewed from the observation side (front polarizing plate 2 side) of the rectangular liquid crystal cell 1. Regarding the angle, in FIG. 5, the right side of the horizontal axis is 0 °, and the counterclockwise direction is the + direction. According to the above definition, each optical axis of the liquid crystal display element according to the present embodiment is as follows. That is, as shown in the first row of FIG. 5, the front polarizing plate transmission axis 2t is in the + 90 ° direction, and the front polarizing plate absorption axis 2a is in the 0 ° direction. Further, as shown in the third row of FIG. 5, the alignment directions of the liquid crystal molecules 111 by the ribs 12 are + 45 °, + 135 °, + 225 °, and + 315 °. Further, as shown in the fourth row of FIG. 5, the rear polarizing plate transmission axis 3t is in the direction of 0 °, and the rear polarizing plate absorption axis 3a is in the direction of + 90 °. However, in practice, since there are manufacturing errors and the like, there is a certain range of angles.

本実施例においては、液晶セル1と前側偏光板2の間に、前側位相差板4が配設されている。本実施例に係る前側位相差板4は、その厚み方向に負の位相差を有する位相差板であり、面内方向に位相差はない。即ち、面内方向にx軸、y軸を定義し、厚み方向をz軸とし、x、y及びz方向の屈折率をそれぞれns1、nf1及びnz1とすると、ns1=nf1>nz1の関係を有する。言い換えると、面内位相差をR01=(ns1−nf1)d1とすると、R01=0である。ここでd1は当該位相差板の厚さである。また、厚み方向位相差をRth1とする。ここで、Rth1=((ns1+nf1)/2−nz1)d1である。   In this embodiment, a front phase difference plate 4 is disposed between the liquid crystal cell 1 and the front polarizing plate 2. The front phase difference plate 4 according to the present embodiment is a phase difference plate having a negative phase difference in the thickness direction, and has no phase difference in the in-plane direction. That is, if the x-axis and y-axis are defined in the in-plane direction, the thickness direction is the z-axis, and the refractive indexes in the x, y, and z directions are ns1, nf1, and nz1, respectively, the relationship is ns1 = nf1> nz1. . In other words, when the in-plane phase difference is R01 = (ns1-nf1) d1, R01 = 0. Here, d1 is the thickness of the retardation plate. The thickness direction retardation is Rth1. Here, Rth1 = ((ns1 + nf1) / 2−nz1) d1.

ここで、前側位相差板4を有しない、液晶セル1、前側偏光板2、後側偏光板3からなる液晶表示素子の視野角特性を図6に示す。図6(a)は黒表示時の光漏れの値を示す。この図において、円周方向に示した角度は当該液晶表示素子を観察する方向を示しており、その方向は図5に定義した角度に対応する。以後、この当該液晶表示素子を観察する方向、即ち、観察する方向を表示面へ投影した向きであり当該液晶表示素子の表示面内に定義される角度で表した向きを、「観察方位」と呼ぶ。   Here, FIG. 6 shows viewing angle characteristics of a liquid crystal display element including the liquid crystal cell 1, the front polarizing plate 2, and the rear polarizing plate 3 that does not have the front retardation plate 4. FIG. 6A shows the value of light leakage during black display. In this figure, the angle indicated in the circumferential direction indicates the direction in which the liquid crystal display element is observed, and the direction corresponds to the angle defined in FIG. Hereinafter, the direction in which the liquid crystal display element is observed, that is, the direction in which the observation direction is projected onto the display surface and the direction defined by the angle defined in the display surface of the liquid crystal display element is referred to as “observation direction”. Call.

また図6(a)において、中心からの距離で示されている軸は、観察する方向と当該液晶表示素子の表示面の法線との成す角度を表す。例えば、中心の0°は当該液晶表示素子の表示面に対して垂直方向、即ち真正面から当該液晶表示素子を観察する場合を示し、その周りの例えば20°、40°は、当該液晶表示素子の表示面の法線に対して20°、40°の角度を成す斜め方向から観察する場合を示す。以後、この観察する方向と当該液晶表示素子の表示面の法線との成す角を「観察角度」と呼ぶ。   In FIG. 6A, the axis indicated by the distance from the center represents the angle formed between the direction of observation and the normal line of the display surface of the liquid crystal display element. For example, the center 0 ° indicates a case where the liquid crystal display element is observed in a direction perpendicular to the display surface of the liquid crystal display element, that is, from the front, and the surroundings of 20 ° and 40 °, for example, are The case of observing from an oblique direction forming an angle of 20 ° or 40 ° with respect to the normal line of the display surface is shown. Hereinafter, an angle formed by the viewing direction and the normal line of the display surface of the liquid crystal display element is referred to as an “observation angle”.

光漏れの値は、光の透過がない真っ黒の状態を0とし、光が全て透過する状態(空気層の状態)を1とする。この場合、0に近いほど黒表示時の光漏れがなく、望ましい液晶表示素子であると言える。   The value of light leakage is 0 for a completely black state where no light is transmitted, and 1 for a state where all light is transmitted (air layer state). In this case, it can be said that the closer to 0, there is no light leakage during black display, and the liquid crystal display element is desirable.

図6(a)に示す通り、前側位相差板4を有しない本液晶表示素子は、当該液晶表示素子の水平方向(観察方位が0°及び180°の方向)及び垂直方向(観察方位が90°及び270°の方向)については、光漏れが殆ど無く、黒の表示に優れていることが分かる。   As shown in FIG. 6A, the present liquid crystal display element that does not have the front retardation plate 4 has a horizontal direction (observation directions of 0 ° and 180 °) and a vertical direction (observation direction of 90 °) of the liquid crystal display element. It can be seen that there are almost no light leaks in the directions (° and 270 °) and black display is excellent.

これに対して、当該液晶表示素子の斜め方向(観察方位が45°、135°、225°及び315°の方向)の傾いた観察角度から当該液晶表示素子を観察した場合は、光漏れが認められることが分かる。これは、前側偏光板透過軸2t及び後側偏光板透過軸3tから±45°ずれた方向である。即ち、当該液晶表示素子の斜め方向(観察方位が45°、135°、225°及び315°の方向)については、黒の表示特性に課題があることが分かる。   On the other hand, when the liquid crystal display element is observed from an oblique observation angle of the liquid crystal display element (observation directions are 45 °, 135 °, 225 °, and 315 ° directions), light leakage is recognized. You can see that This is a direction shifted by ± 45 ° from the front polarizing plate transmission axis 2t and the rear polarizing plate transmission axis 3t. That is, it can be seen that there is a problem in the black display characteristics in the oblique direction of the liquid crystal display element (directions in which the observation directions are 45 °, 135 °, 225 °, and 315 °).

また、白表示に対する黒表示の比であるCR(Contrast Ratio)が10を示す観察角度(以下この角度を「視野角(CR=10)」と表す)は、当該液晶表示素子の水平垂直方向(観察方位が0°、90°、180°及び270°の方向)の傾いた観察角度から観察した場合については80°以上であった。即ち、この方向についてはコントラストに係る視野角特性が優れていることが分かる。一方、当該液晶表示素子の斜め方向(観察方位が45°、135°、225°及び315°の方向)の傾いた観察角度から観察した場合には、視野角(CR=10)は、34°であった。即ち、この方向についてはコントラストに係る視野角特性に課題があることが分かる。   In addition, an observation angle where CR (Contrast Ratio) which is a ratio of black display to white display indicates 10 (hereinafter, this angle is referred to as “viewing angle (CR = 10)”) is a horizontal and vertical direction of the liquid crystal display element ( In the case of observation from an inclined observation angle (observation directions of 0 °, 90 °, 180 °, and 270 ° directions), it was 80 ° or more. That is, it can be seen that the viewing angle characteristic related to contrast is excellent in this direction. On the other hand, when the liquid crystal display element is observed from an oblique observation angle (directions where the observation directions are 45 °, 135 °, 225 °, and 315 °), the viewing angle (CR = 10) is 34 °. Met. That is, it can be seen that there is a problem with the viewing angle characteristics related to the contrast in this direction.

図6(b)は、当該液晶表示素子の水平方向(観察方位が0°の方向)の、当該液晶表示素子の面に対して傾いた観察角度から観察した場合の輝度を表している。横軸に観察角度を、縦軸に輝度を表している。この輝度は、各観察角度における白表示の輝度を1.0として規格化して表している。そして、図6(b)の各特性曲線は、当該液晶表示素子の表示面の法線方向(観察角度が0°、即ち真正面)から観察した場合の輝度(表示輝度)がそれぞれ0.00、0.14、0.29、0.43、0.57、0.71、0.86、1.00となる表示を、各観察角度から観察した場合に見える輝度(観察輝度)を表している。即ち、理想的には全ての線が横軸と平行に並ぶことが望まれる。図6(c)は、同様に、当該液晶表示素子の斜め方向(観察方位が45°の方向)の各観察角度から見た場合の観察輝度を、図6(b)と同様に表している。   FIG. 6B shows the luminance when observed from an observation angle inclined with respect to the surface of the liquid crystal display element in the horizontal direction of the liquid crystal display element (the direction in which the observation direction is 0 °). The horizontal axis represents the observation angle, and the vertical axis represents the luminance. This luminance is expressed by standardizing the luminance of white display at each observation angle as 1.0. Each characteristic curve in FIG. 6B has a luminance (display luminance) of 0.00, when observed from the normal direction of the display surface of the liquid crystal display element (observation angle is 0 °, that is, directly in front). It represents the luminance (observation luminance) that can be seen when the displays of 0.14, 0.29, 0.43, 0.57, 0.71, 0.86, and 1.00 are observed from each observation angle. . That is, ideally, it is desirable that all the lines are aligned in parallel with the horizontal axis. Similarly, FIG. 6C shows the observation luminance when viewed from the respective observation angles in the oblique direction (the direction in which the observation direction is 45 °) of the liquid crystal display element, as in FIG. 6B. .

図6(b)に示す通り、当該液晶表示素子の水平方向(当該液晶表示素子の面内に定義した0°の方向)で観察角度を増していくと、即ち観察する角度が斜めになる程、中間調の観察輝度(図においては表示輝度0.14〜0.86を表す各特性曲線)が、いずれも約0.5に近づいている。これより、当該液晶表示素子は、観察する角度が斜めになると、中間調の階調が圧縮されて階調が表現されず、表現性能に課題があることが分かる。そして、観察角度が65°のとき、表示輝度と観察輝度との逆転(グラフにおける特性曲線の交差)が起こっている。即ち、階調の反転が起こっている。この様に、観察輝度が表示輝度に対して反転する角度を「視野角(階調反転)」と定義する。   As shown in FIG. 6B, when the observation angle is increased in the horizontal direction of the liquid crystal display element (the direction of 0 ° defined in the plane of the liquid crystal display element), that is, as the observation angle becomes oblique. The halftone observation luminance (characteristic curves representing the display luminances 0.14 to 0.86 in the figure) are all close to about 0.5. From this, it can be seen that when the viewing angle becomes oblique, the halftone gradation is compressed and the gradation is not expressed, and the liquid crystal display element has a problem in expression performance. When the observation angle is 65 °, the display luminance and the observation luminance are reversed (intersection of characteristic curves in the graph). That is, gradation inversion occurs. In this way, the angle at which the observation luminance is inverted with respect to the display luminance is defined as “viewing angle (gradation inversion)”.

また、図6(c)に示す通り、当該液晶表示素子の斜め方向(観察方位が45°の方向)で観察角度を増していくと、即ち観察する角度が斜めになる程、黒表示の観察輝度(図においては輝度0.00を表す特性曲線)が、徐々に増加している。即ち、光漏れが起こっている。また、表示輝度0.14の観察輝度も、観察角度が増す程緩やかに増加している事がわかる。また、表示輝度0.43、0.57、0.71及び0.86の各観察輝度は、観察角度が増す程緩やかに減少している事がわかる。そして、観察角度が46°のとき、階調の反転(グラフにおける特性曲線の交差)が起こっている。即ち、当該液晶表示素子の斜め(観察方位45°)方向における視野角(階調反転)の角度は、46°である。   Further, as shown in FIG. 6C, when the observation angle is increased in the oblique direction of the liquid crystal display element (the direction in which the observation direction is 45 °), that is, as the observation angle becomes oblique, the black display is observed. The luminance (characteristic curve representing luminance 0.00 in the figure) gradually increases. That is, light leakage occurs. In addition, it can be seen that the observation luminance with a display luminance of 0.14 also increases gently as the observation angle increases. It can also be seen that the observation luminances of display luminances 0.43, 0.57, 0.71 and 0.86 are gradually decreased as the observation angle is increased. When the observation angle is 46 °, gradation inversion (intersection of characteristic curves in the graph) occurs. That is, the viewing angle (gradation inversion) in the oblique direction (viewing direction 45 °) of the liquid crystal display element is 46 °.

本実施例に係る液晶表示素子は、前記の様な表示特性を改善するために、液晶セル1と前側偏光板2の間に、前側位相差板4を有している。本実施例では、前側位相差板4の最適な条件を決定するため、前側位相差板4の厚み方向の位相差Rth1の値を様々に変更して、前記特性を検討した。   The liquid crystal display element according to the present embodiment includes a front retardation plate 4 between the liquid crystal cell 1 and the front polarizing plate 2 in order to improve the display characteristics as described above. In this example, in order to determine the optimum condition of the front phase difference plate 4, the value of the phase difference Rth1 in the thickness direction of the front phase difference plate 4 was changed variously, and the characteristics were examined.

得られたRth1と視野角(CR=10)の関係を、図7(a)に示す。この図に示す通り、当該液晶表示素子の水平方向(観察方位が0°の方向)における視野角(CR=10)の値は、Rth1に関わらず80°以上であり良好であった。一方、当該液晶表示素子の斜め方向(観察方位が45°の方向)における視野角(CR=10)の値は、Rth1の増加とともに増加し、Rth1=300nmのとき最大となり、その値は58°であった。   The relationship between the obtained Rth1 and the viewing angle (CR = 10) is shown in FIG. As shown in this figure, the value of the viewing angle (CR = 10) in the horizontal direction (the direction in which the observation direction is 0 °) of the liquid crystal display element was 80 ° or more and good regardless of Rth1. On the other hand, the value of the viewing angle (CR = 10) in the oblique direction of the liquid crystal display element (the direction in which the observation azimuth is 45 °) increases as Rth1 increases, and becomes maximum when Rth1 = 300 nm, and the value is 58 °. Met.

また、得られたRth1と視野角(階調反転)の関係を図7(b)に示す。この図に示す通り、当該液晶表示素子の水平方向(観察方位が0°の方向)における視野角(階調反転)の値は、Rth1に関わらず65°で一定であった。一方、当該液晶表示素子の斜め方向(観察方位が45°の方向)における視野角(階調反転)の値は、Rth1=150nmのときに最大値72°をとる、Rth1に依存するものであった。   FIG. 7B shows the relationship between the obtained Rth1 and the viewing angle (gradation inversion). As shown in this figure, the viewing angle (gradation inversion) in the horizontal direction (direction in which the viewing direction is 0 °) of the liquid crystal display element was constant at 65 ° regardless of Rth1. On the other hand, the viewing angle (gradation reversal) value in the oblique direction (direction where the viewing direction is 45 °) of the liquid crystal display element depends on Rth1, which takes a maximum value of 72 ° when Rth1 = 150 nm. It was.

また、視野角(CR=10)及び視野角(階調反転)のうち最小となる値(視野角(最小値))と、Rth1との関係を調べると、図7(c)の様になった。この様にRth1が240〜270nmのとき、視野角(最小値)が52°程度と最も大きくなり、良い結果が得られることが明らかになった。   Further, when the relationship between the minimum value (viewing angle (minimum value)) of viewing angle (CR = 10) and viewing angle (gradation inversion) and Rth1 is examined, it is as shown in FIG. 7C. It was. As described above, when Rth1 is 240 to 270 nm, the viewing angle (minimum value) is as large as about 52 °, and it is clear that good results can be obtained.

Rth1が240〜270nmのとき、視野角(最小値)が最大と成るものの、視野角(階調反転)は最大とは成らない。コントラストの低下よりも、階調反転の方が、見た目に与える影響が大きいことを考慮すると、視野角(最小値)よりも視野角(階調反転)を優先する方が良い場合もあると考えられる。このことを考慮すると、水平(観察方位0°)方向においても斜め(観察方位45°)方向においても、視野角(階調反転)が共に高い値となっており、視野角(CR=10)の値も比較的高いRth1が150〜210nmのときも、良い中間調特性が得られる液晶表示素子を実現できることが分かった。   When Rth1 is 240 to 270 nm, the viewing angle (minimum value) is maximized, but the viewing angle (gradation inversion) is not maximized. Considering that tone reversal has a greater effect on appearance than contrast reduction, it may be better to give priority to viewing angle (gradation reversal) over viewing angle (minimum value). It is done. Considering this, both the horizontal (observation azimuth 0 °) direction and the oblique (observation azimuth 45 °) direction have a high viewing angle (gradation inversion), and the viewing angle (CR = 10). It was found that a liquid crystal display element capable of obtaining good halftone characteristics can be realized even when Rth1 having a relatively high value is 150 to 210 nm.

以上示した様に、本実施例に係る液晶表示素子においては、前側位相差板4の厚み方向の位相差Rth1の値は、150〜270nmが良いことが明らかになった。   As described above, in the liquid crystal display element according to this example, it has been clarified that the value of the retardation Rth1 in the thickness direction of the front retardation plate 4 is preferably 150 to 270 nm.

Rth1=180nmのときの黒表示時の光漏れの値を図8(a)に、水平(観察方位0°)方向及び斜め(観察方位45°)方向の各観察角度に対する輝度の関係を図8(b)及び(c)にそれぞれ示す。また、Rth1=240nmのときの黒表示時の光漏れの値を図9(a)に、水平(観察方位0°)方向及び斜め(観察方位45°)方向の各観察角度に対する輝度の関係を図9(b)及び(c)にそれぞれ示す。何れの場合もこれらの図に示す通り、図6に示した前側位相差板4を導入していない場合と比較して、黒表示の特性、即ち光漏れの少なさ、及び中間調表示の特性、例えば階調反転の起こりにくさを含む階調の滑らかさ、ともに改善し、視野角が広がっていることが分かる。特に、図8に示す通り、Rth1=180nmのときは、斜め(観察方位45°)方向の光漏れがやや残るものの、中間調の表示特性良いことが分かる。例えば、図6(c)に示した場合と異なり、図8(c)においては、表示輝度0.0〜0.86を表す各特性曲線が平行に近くなっており、当該液晶表示素子は、観察角度が増した斜め方向からの観察に対しても、中間調の階調表現が優れていることがわかる。一方、図9に示す通り、Rth1=240nmのとき、Rth1=180nmのときに比べて中間調の表示特性はやや劣るものの、図9(a)に示す通り、斜め(観察方位45°)方向の光漏れが少なく、当該液晶表示素子のコントラストは良好であることが分かる。   FIG. 8A shows the value of light leakage during black display when Rth1 = 180 nm, and FIG. 8 shows the relationship of luminance with respect to each observation angle in the horizontal (observation azimuth 0 °) direction and oblique (observation azimuth 45 °) direction. Shown in (b) and (c), respectively. Further, FIG. 9A shows the light leakage value during black display when Rth1 = 240 nm, and shows the relationship of luminance with respect to each observation angle in the horizontal (observation azimuth 0 °) direction and the oblique (observation azimuth 45 °) direction. It shows to FIG.9 (b) and (c), respectively. In any case, as shown in these drawings, compared with the case where the front phase difference plate 4 shown in FIG. 6 is not introduced, the black display characteristics, that is, the light leakage characteristics and the halftone display characteristics. It can be seen that, for example, the smoothness of the gradation including the difficulty of the gradation inversion is improved, and the viewing angle is widened. In particular, as shown in FIG. 8, when Rth1 = 180 nm, light leakage in an oblique (observation azimuth 45 °) direction remains somewhat, but it is understood that halftone display characteristics are good. For example, unlike the case shown in FIG. 6C, in FIG. 8C, the characteristic curves representing the display brightness of 0.0 to 0.86 are nearly parallel, and the liquid crystal display element is It can be seen that halftone gradation expression is excellent even for observation from an oblique direction with an increased observation angle. On the other hand, as shown in FIG. 9, when Rth1 = 240 nm, the halftone display characteristics are slightly inferior to those when Rth1 = 180 nm, but as shown in FIG. It can be seen that there is little light leakage and the contrast of the liquid crystal display element is good.

以上の通り、本実施例では、以下の特性を有する前側位相差板4を導入した。即ち、前側位相差板4は、その厚み方向に負の位相差を有し、面内方向には位相差を有さない。また、前側位相差板4の厚み方向位相差Rth1の値は、例えば180nmや240nm等、150〜270nmである。そして、前側位相差板4は、液晶セル1と前側偏光板2の間に導入されている。以上の様な特性を有する前側位相差板4の導入の結果、黒表示の特性及び中間調表示の特性ともに改善し、視野角を広げることができた。   As described above, in this embodiment, the front phase difference plate 4 having the following characteristics is introduced. That is, the front phase difference plate 4 has a negative phase difference in the thickness direction and no phase difference in the in-plane direction. Moreover, the value of the thickness direction retardation Rth1 of the front side phase difference plate 4 is 150-270 nm, such as 180 nm and 240 nm, for example. The front retardation plate 4 is introduced between the liquid crystal cell 1 and the front polarizing plate 2. As a result of the introduction of the front retardation plate 4 having the above characteristics, both the black display characteristics and the halftone display characteristics were improved, and the viewing angle could be widened.

本実施例では、液晶セル1と前側偏光板2の間に前側位相差板4を導入したが、液晶セル1と後側偏光板3の間に以下の特性を有する後側位相差板を導入してもよい。即ち、当該後側位相差板は、厚み方向に負の位相差を有し、面内方向には位相差を有さず、厚み方向位相差Rth2の値は、例えば180nmや240nm等、150〜270nmとする。尚、Rth2は、当該後側位相差板の面内方向のx軸方向及びy軸方向の屈折率をそれぞれns2及びnf2とし、厚み方向の屈折率をnz2とし、当該位相差板の厚さをd2としたときの、Rth2=((ns2+nf2)/2−nz2)d2である。この場合も、本実施例と同様の効果が得られる。   In this embodiment, the front retardation plate 4 is introduced between the liquid crystal cell 1 and the front polarizing plate 2, but a rear retardation plate having the following characteristics is introduced between the liquid crystal cell 1 and the rear polarizing plate 3. May be. That is, the rear side retardation plate has a negative phase difference in the thickness direction, no phase difference in the in-plane direction, and the value of the thickness direction phase difference Rth2 is, for example, 180 nm or 240 nm. 270 nm. Rth2 represents the in-plane x-axis direction and y-axis direction refractive indices of the rear retardation plate as ns2 and nf2, respectively, the thickness direction refractive index is nz2, and the thickness of the retardation plate is When d2, Rth2 = ((ns2 + nf2) / 2-nz2) d2. In this case, the same effect as in the present embodiment can be obtained.

[第1の実施形態の第2の実施例]
次に、第1の実施形態に係る液晶表示素子の第2の実施例について説明する。本実施例の説明では、前記第1の実施例との相違点について説明する。第1の実施例に係る液晶表示素子において、前側位相差板4は、その厚み方向に負の位相差を有し、面内方向に位相差がない位相差板である。即ち、面内方向にx軸、y軸を定義し、厚み方向をz軸とすると、x、y及びz方向の屈折率をそれぞれns1、nf1及びnz1としたときに、ns1=nf1>nz1の関係を有する。これに対して本実施例に係る前側位相差板4は、2軸延伸の位相差板である。面内方向で遅軸方向(面内方向の屈折率が最大となる方向)の屈折率をns1、速軸方向の屈折率をnf1とし、厚み方向の屈折率をnz1とすると、ns1>nf1>nz1の関係を有する。その他の構成は、第1の実施例と同様である。
[Second Example of First Embodiment]
Next, a second example of the liquid crystal display element according to the first embodiment will be described. In the description of this embodiment, differences from the first embodiment will be described. In the liquid crystal display device according to the first embodiment, the front retardation plate 4 is a retardation plate having a negative retardation in the thickness direction and no retardation in the in-plane direction. That is, if the x-axis and y-axis are defined in the in-plane direction and the thickness direction is z-axis, ns1 = nf1> nz1 when the refractive indices in the x, y, and z directions are ns1, nf1, and nz1, respectively. Have a relationship. On the other hand, the front phase difference plate 4 according to the present embodiment is a biaxially stretched phase difference plate. Assuming that the refractive index in the slow axis direction (the direction in which the refractive index in the in-plane direction is maximum) is ns1, the refractive index in the fast axis direction is nf1, and the refractive index in the thickness direction is nz1, ns1>nf1> It has a relationship of nz1. Other configurations are the same as those of the first embodiment.

本実施例に係る液晶表示素子の光学構成の分解平面図を図10に示す。この図に示す通り、前側位相差板4の遅軸4sの向きは、前側偏光板2の前側偏光板透過軸2tの向きと一致しており、前側位相差板4の速軸4fの向きは、前側偏光板2の前側偏光板吸収軸2aの向きと一致している。   FIG. 10 shows an exploded plan view of the optical configuration of the liquid crystal display element according to this example. As shown in this figure, the direction of the slow axis 4s of the front phase difference plate 4 coincides with the direction of the front polarizing plate transmission axis 2t of the front side polarizing plate 2, and the direction of the fast axis 4f of the front side phase difference plate 4 is The direction of the front polarizing plate absorption axis 2a of the front polarizing plate 2 coincides.

本実施例に係る液晶表示素子は、図6を参照し第1の実施例で説明した様な表示特性を改善するために、前側位相差板4を有している。本実施例では、前側位相差板4の最適な条件を決定するため、前側位相差板4の面内位相差R01と厚み方向位相差をRth1の値を様々に変更して、前記特性を検討した。尚、R01及びRth1は、それぞれR01=(ns1−nf1)d1及びRth1=((ns1+nf1)/2−nz1)d1の関係を有する。ここで、d1は当該位相差板の厚さである。   The liquid crystal display device according to the present embodiment has a front retardation plate 4 in order to improve the display characteristics as described in the first embodiment with reference to FIG. In this embodiment, in order to determine the optimum conditions for the front phase difference plate 4, the in-plane phase difference R01 and the thickness direction phase difference of the front side phase difference plate 4 are changed in various values, and the characteristics are examined. did. R01 and Rth1 have a relationship of R01 = (ns1−nf1) d1 and Rth1 = ((ns1 + nf1) / 2−nz1) d1, respectively. Here, d1 is the thickness of the retardation plate.

本実施例では、R01/Rth1=1/3の関係を維持してR01とRth1を変化させた。得られたRth1等と視野角(CR=10)の関係を、図11(a)に示す。横軸は、R01+Rth1を示している。この図に示す通り、当該液晶表示素子の水平(観察方位0°)方向における視野角(CR=10)の値は、R01+Rth1に関わらず80°以上であり良好であった。一方、当該液晶表示素子の斜め(観察方位45°)方向における視野角(CR=10)の値は、R01+Rth1の増加とともに増加した。   In this embodiment, R01 and Rth1 are changed while maintaining the relationship of R01 / Rth1 = 1/3. The relationship between the obtained Rth1 and the like and the viewing angle (CR = 10) is shown in FIG. The horizontal axis represents R01 + Rth1. As shown in this figure, the viewing angle (CR = 10) in the horizontal (observation azimuth 0 °) direction of the liquid crystal display element was 80 ° or more and good regardless of R01 + Rth1. On the other hand, the value of the viewing angle (CR = 10) in the oblique direction (viewing direction 45 °) of the liquid crystal display element increased with an increase in R01 + Rth1.

また、得られたR01+Rth1と視野角(階調反転)の関係を図11(b)に示す。この図に示す通り、当該液晶表示素子の水平(観察方位0°)方向における視野角(階調反転)の値は、R01+Rth1に関わらず65°で一定であった。一方、当該液晶表示素子の斜め(観察方位45°)方向における視野角(階調反転)の値は、R01+Rth1=150nmのときに最大値71°をとる、R01+Rth1に依存するものであった。   FIG. 11B shows the relationship between the obtained R01 + Rth1 and the viewing angle (gradation inversion). As shown in this figure, the viewing angle (gradation reversal) value in the horizontal (observation direction 0 °) direction of the liquid crystal display element was constant at 65 ° regardless of R01 + Rth1. On the other hand, the viewing angle (gradation inversion) value in the oblique (observation azimuth 45 °) direction of the liquid crystal display element depends on R01 + Rth1, which takes a maximum value of 71 ° when R01 + Rth1 = 150 nm.

また、視野角(CR=10)及び視野角(階調反転)のうち最小となる値(視野角(最小値))と、R01+Rth1との関係を調べると、図11(c)の様になった。この様にR01+Rth1が240nmのとき、視野角(最小値)が54°と最も大きくなり、良い結果が得られることが明らかになった。   Further, when the relationship between the minimum value (viewing angle (minimum value)) of viewing angle (CR = 10) and viewing angle (gradation inversion) and R01 + Rth1 is examined, it is as shown in FIG. It was. As described above, when R01 + Rth1 is 240 nm, the viewing angle (minimum value) is 54 °, which is the largest, and it is clear that good results can be obtained.

R01+Rth1が240nmのとき、視野角(最小値)が最大と成るものの、視野角(階調反転)は最大とは成らない。コントラストの低下よりも、階調反転の方が、見た目に与える影響が大きいことを考慮すると、視野角(最小値)よりも視野角(階調反転)を優先する方が良い場合もあると考えられる。このことを考慮すると、水平(観察方位0°)方向においても斜め(観察方位45°)方向においても、視野角(階調反転)が共に高い値となっており、視野角(CR=10)の値も比較的高いR01+Rth1が150〜210nmのときも、良い中間調特性が得られる液晶表示素子を実現できることが分かった。   When R01 + Rth1 is 240 nm, the viewing angle (minimum value) is maximized, but the viewing angle (gradation inversion) is not maximized. Considering that tone reversal has a greater effect on appearance than contrast reduction, it may be better to give priority to viewing angle (gradation reversal) over viewing angle (minimum value). It is done. Considering this, both the horizontal (observation azimuth 0 °) direction and the oblique (observation azimuth 45 °) direction have a high viewing angle (gradation inversion), and the viewing angle (CR = 10). It was found that even when R01 + Rth1 having a relatively high value is 150 to 210 nm, a liquid crystal display element capable of obtaining good halftone characteristics can be realized.

以上示した様に、本実施例に係る液晶表示素子においては、前側位相差板4のR01+Rth1の値は、150〜240nmが良いことが明らかになった。   As described above, in the liquid crystal display element according to this example, it has been clarified that the value of R01 + Rth1 of the front retardation plate 4 is preferably 150 to 240 nm.

R01+Rth1=180nm、即ちR01=45nm、Rth1=135nmのときの黒表示ときの光漏れの値を図12(a)に、水平(観察方位0°)方向及び斜め(観察方位45°)方向の各観察角度に対する輝度の関係を図12(b)及び(c)にそれぞれ示す。また、R01+Rth1=240nm、即ちR01=60nm、Rth1=180nmのときの黒表示時の光漏れの値を図13(a)に、水平(観察方位0°)方向及び斜め(観察方位45°)方向の各観察角度に対する輝度の関係を図13(b)及び(c)にそれぞれ示す。何れの場合もこれらの図に示す通り、図6に示した前側位相差板4を導入していない場合と比較して、黒表示の特性、即ち光漏れの少なさ、及び中間調表示の特性、例えば階調反転の起こりにくさを含む階調の滑らかさ、ともに改善し、視野角が広がっていることが分かる。特に、図12に示す通り、R01+Rth1=180nmのときは、斜め(観察方位45°)方向の光漏れがやや残るものの、中間調の表示特性が良いことが分かる。例えば、図6(c)に示した場合と異なり、図12(c)においては、表示輝度0.0〜0.86を表す各特性曲線が平行に近くなっており、当該液晶表示素子は、観察角度が増した斜め方向からの観察に対しても、中間調の階調表現が優れていることがわかる。また、図13に示す通り、R01+Rth1=240nmのときは、R01+Rth1=180nmのときに比べて中間調の表示特性はやや劣るものの、図13(a)に示す通り、斜め(観察方位45°)方向の光漏れが少なく、当該液晶表示素子のコントラストは良好であることが分かる。   FIG. 12A shows values of light leakage during black display when R01 + Rth1 = 180 nm, that is, R01 = 45 nm and Rth1 = 135 nm. Each of the horizontal (observation direction 0 °) direction and the oblique (observation direction 45 °) direction is shown in FIG. The relationship of the luminance with respect to the observation angle is shown in FIGS. 12B and 12C, respectively. Further, FIG. 13A shows values of light leakage during black display when R01 + Rth1 = 240 nm, that is, R01 = 60 nm and Rth1 = 180 nm, in the horizontal (observation azimuth 0 °) direction and the oblique (observation azimuth 45 °) direction. FIGS. 13B and 13C show the relationship of the luminance with respect to each observation angle. In any case, as shown in these drawings, compared with the case where the front phase difference plate 4 shown in FIG. 6 is not introduced, the black display characteristics, that is, the light leakage characteristics and the halftone display characteristics. It can be seen that, for example, the smoothness of the gradation including the difficulty of the gradation inversion is improved, and the viewing angle is widened. In particular, as shown in FIG. 12, when R01 + Rth1 = 180 nm, light leakage in an oblique (observation azimuth 45 °) direction remains somewhat, but it can be seen that halftone display characteristics are good. For example, unlike the case shown in FIG. 6C, in FIG. 12C, the characteristic curves representing the display brightness of 0.0 to 0.86 are nearly parallel, and the liquid crystal display element is It can be seen that halftone gradation expression is excellent even for observation from an oblique direction with an increased observation angle. Further, as shown in FIG. 13, when R01 + Rth1 = 240 nm, the halftone display characteristics are slightly inferior to those when R01 + Rth1 = 180 nm, but as shown in FIG. It can be seen that the liquid crystal display element has good contrast.

以上の通り、本実施例では、以下の特性を有する前側位相差板4を導入した。即ち、前側位相差板4は、2軸延伸の位相差板である。そして、前側位相差板4は、液晶セル1と前側偏光板2の間に導入されており、面内方向の遅軸方向を前側偏光板2の前側偏光板透過軸2tの向きと一致させている。また、前側位相差板4のR01/Rth1=1/3の関係を有し、例えばR01+Rth1=180nmやR01+Rth1=240nm等、R01+Rth1の値は150〜240nmである。以上の様な特性を有する前側位相差板4の導入の結果、黒表示の特性及び中間調表示の特性ともに改善し、視野角を広げることができた。   As described above, in this embodiment, the front phase difference plate 4 having the following characteristics is introduced. That is, the front phase difference plate 4 is a biaxially stretched phase difference plate. The front retardation plate 4 is introduced between the liquid crystal cell 1 and the front polarizing plate 2 so that the slow axis direction in the in-plane direction matches the direction of the front polarizing plate transmission axis 2 t of the front polarizing plate 2. Yes. The front phase difference plate 4 has a relationship of R01 / Rth1 = 1/3. For example, R01 + Rth1 = 180 nm, R01 + Rth1 = 240 nm, and the value of R01 + Rth1 is 150 to 240 nm. As a result of the introduction of the front retardation plate 4 having the above characteristics, both the black display characteristics and the halftone display characteristics were improved, and the viewing angle could be widened.

本実施例では、液晶セル1と前側偏光板2の間に前側位相差板4を導入したが、液晶セル1と後側偏光板3の間に以下の特性を有する後側位相差板を導入してもよい。即ち、当該後側位相差板は、2軸延伸の位相差板であり、面内方向の遅軸方向を後側偏光板3の後側偏光板透過軸3tの向きと一致させる。そして、面内位相差R02及び厚み方向位相差Rth2の和の値は、例えば180nmや240nm等、150〜240nmとする。尚、R02及びRth2は、当該後側位相差板の面内方向で遅軸方向の屈折率をns2、速軸方向の屈折率をnf2、厚み方向の屈折率をnz2とし、当該位相差板の厚さをd2としたときの、R02=(ns2−nf2)d2及びRth2=((ns2+nf2)/2−nz2)d2である。この場合も、本実施例と同様の効果が得られる。   In this embodiment, the front retardation plate 4 is introduced between the liquid crystal cell 1 and the front polarizing plate 2, but a rear retardation plate having the following characteristics is introduced between the liquid crystal cell 1 and the rear polarizing plate 3. May be. That is, the rear retardation plate is a biaxially stretched retardation plate, and the slow axis direction in the in-plane direction is made to coincide with the direction of the rear polarizing plate transmission axis 3 t of the rear polarizing plate 3. The sum of the in-plane retardation R02 and the thickness direction retardation Rth2 is 150 to 240 nm, such as 180 nm or 240 nm. R02 and Rth2 are the in-plane direction of the rear retardation plate, the refractive index in the slow axis direction is ns2, the refractive index in the fast axis direction is nf2, and the refractive index in the thickness direction is nz2. R02 = (ns2-nf2) d2 and Rth2 = ((ns2 + nf2) / 2-nz2) d2 when the thickness is d2. In this case, the same effect as in the present embodiment can be obtained.

[第1の実施形態の第3の実施例]
次に、第1の実施形態に係る液晶表示素子の第3の実施例について説明する。本実施例の説明では、前記第2の実施例との相違点について説明する。第2の実施例に係る液晶表示素子において、前側位相差板4は、2軸延伸の位相差板であり、面内方向で遅軸方向の屈折率をns1、速軸方向の屈折率をnf1とし、厚み方向の屈折率をnz1とすると、ns1>nf1>nz1の関係を有している。そして、遅軸方向を前側偏光板2の前側偏光板透過軸2tの向きと一致させており、R01/Rth1=1/3の関係を有している。これに対して、本実施例に係る液晶表示素子の前側位相差板4は、R01/Rth1=1/1の関係とした。その他の構成は、第2の実施例と同様である。
[Third example of the first embodiment]
Next, a third example of the liquid crystal display element according to the first embodiment will be described. In the description of the present embodiment, differences from the second embodiment will be described. In the liquid crystal display device according to the second embodiment, the front phase difference plate 4 is a biaxially stretched phase difference plate, and the refractive index in the slow axis direction is ns1 and the refractive index in the fast axis direction is nf1 in the in-plane direction. Assuming that the refractive index in the thickness direction is nz1, there is a relationship of ns1>nf1> nz1. The slow axis direction is made to coincide with the direction of the front polarizing plate transmission axis 2t of the front polarizing plate 2 and has a relationship of R01 / Rth1 = 1/3. In contrast, the front phase difference plate 4 of the liquid crystal display element according to the present embodiment has a relationship of R01 / Rth1 = 1/1. Other configurations are the same as those of the second embodiment.

本実施例でも、前側位相差板4の最適な条件を決定するため、前側位相差板4の面内位相差R01及び厚み方向位相差Rth1の値を、R01/Rth1=1/1の関係を維持しつつ様々に変更し、表示特性を検討した。   Also in this embodiment, in order to determine the optimum condition of the front phase difference plate 4, the values of the in-plane phase difference R01 and the thickness direction phase difference Rth1 of the front side phase difference plate 4 are set as follows: R01 / Rth1 = 1/1. Various changes were made while maintaining the display characteristics.

得られたRth1等と視野角(CR=10)の関係を、図14(a)に示す。横軸は、R01+Rth1を示している。この図に示す通り、当該液晶表示素子の水平(観察方位0°)方向における視野角(CR=10)の値は、R01+Rth1に関わらず80°以上であり良好であった。一方、当該液晶表示素子の斜め(観察方位45°)方向における視野角(CR=10)の値は、R01+Rth1=240nmのときに最大値48°をとる、R01+Rth1に依存するものであった。   FIG. 14A shows the relationship between the obtained Rth1 and the like and the viewing angle (CR = 10). The horizontal axis represents R01 + Rth1. As shown in this figure, the viewing angle (CR = 10) in the horizontal (observation azimuth 0 °) direction of the liquid crystal display element was 80 ° or more and good regardless of R01 + Rth1. On the other hand, the value of the viewing angle (CR = 10) in the oblique (observation azimuth 45 °) direction of the liquid crystal display element depends on R01 + Rth1, which takes a maximum value of 48 ° when R01 + Rth1 = 240 nm.

また、得られたR01+Rth1と視野角(階調反転)の関係を図14(b)に示す。この図に示す通り、当該液晶表示素子の水平(観察方位0°)方向における視野角(階調反転)の値は、R01+Rth1に関わらず65°で一定であった。一方、当該液晶表示素子の斜め(観察方位45°)方向における視野角(階調反転)の値は、R01+Rth1=180nmのときに最大値77°をとる、R01+Rth1に依存するものであった。   FIG. 14B shows the relationship between the obtained R01 + Rth1 and the viewing angle (gradation inversion). As shown in this figure, the viewing angle (gradation reversal) value in the horizontal (observation direction 0 °) direction of the liquid crystal display element was constant at 65 ° regardless of R01 + Rth1. On the other hand, the viewing angle (gradation inversion) value in the oblique (observation azimuth 45 °) direction of the liquid crystal display element depends on R01 + Rth1, which takes a maximum value of 77 ° when R01 + Rth1 = 180 nm.

また、視野角(CR=10)及び視野角(階調反転)のうち最小となる値(視野角(最小値))と、R01+Rth1との関係を調べると、図14(c)の様になった。この様にR01+Rth1が240nmのとき、視野角(最小値)が48°と最も大きくなり、良い結果が得られることが明らかになった。   Further, when the relationship between the minimum value (viewing angle (minimum value)) of viewing angle (CR = 10) and viewing angle (gradation inversion) and R01 + Rth1 is examined, it is as shown in FIG. It was. As described above, when R01 + Rth1 is 240 nm, the viewing angle (minimum value) is as large as 48 °, and it is clear that good results can be obtained.

R01+Rth1が240nmのとき、視野角(最小値)が最大と成るものの、視野角(階調反転)は最大とは成らない。コントラストの低下よりも階調反転の方が見た目に与える影響が大きいことを考慮すると、視野角(最小値)よりも視野角(階調反転)を優先する方が良い場合もあると考えられる。このことを考慮すると、視野角(階調反転)が水平(観察方位0°)方向においても斜め(観察方位45°)方向においても高い値となっており、視野角(CR=10)の値も比較的高いR01+Rth1が150〜240nmのときも、良い中間調特性が得られる液晶表示素子を実現できることが分かった。   When R01 + Rth1 is 240 nm, the viewing angle (minimum value) is maximized, but the viewing angle (gradation inversion) is not maximized. Considering that the effect of visual inversion is greater than the decrease in contrast, it may be preferable to prioritize the viewing angle (gradation inversion) over the viewing angle (minimum value). Considering this, the viewing angle (gradation reversal) is a high value both in the horizontal (observation direction 0 °) direction and in the oblique (observation direction 45 °) direction, and the value of the viewing angle (CR = 10). It was also found that a liquid crystal display element that can obtain good halftone characteristics can be realized even when the relatively high R01 + Rth1 is 150 to 240 nm.

以上示した様に、本実施例に係る液晶表示素子においては、前側位相差板4のR01+Rth1の値は、150〜240nmが良いことが明らかになった。   As described above, in the liquid crystal display element according to this example, it has been clarified that the value of R01 + Rth1 of the front retardation plate 4 is preferably 150 to 240 nm.

R01+Rth1=180nm、即ちR01=90nm、Rth1=90nmのときの黒表示時の光漏れの値を図15(a)に、水平(観察方位0°)方向及び斜め(観察方位45°)方向の各観察角度に対する輝度の関係を図15(b)及び(c)にそれぞれ示す。また、R01+Rth1=240nm、即ちR01=120nm、Rth1=120nmのときの黒表示時の光漏れの値を図16(a)に、水平(観察方位0°)方向及び斜め(観察方位45°)方向の各観察角度に対する輝度の関係を図16(b)及び(c)にそれぞれ示す。何れの場合もこれらの図に示す通り、図6に示した前側位相差板4を導入していない場合と比較して、黒表示の特性、即ち光漏れの少なさ、及び中間調表示の特性、例えば階調反転の起こりにくさを含む階調の滑らかさ、ともに改善し、視野角が広がっていることが分かる。特に、R01+Rth1=180nmのときは、斜め(観察方位45°)方向の光漏れがやや残るものの、図15(c)に示す通り、斜め(観察方位45°)方向の中間調の表示特性が良いことが分かる。また、R01+Rth1=240nmのときは、R01+Rth1=180nmのときに比べて中間調の表示特性はやや劣るものの、図16(a)に示す通り、斜め(観察方位45°)方向の光漏れが少なく、コントラストが良好であることが分かる。   FIG. 15A shows values of light leakage during black display when R01 + Rth1 = 180 nm, that is, R01 = 90 nm and Rth1 = 90 nm, in the horizontal (observation azimuth 0 °) direction and the oblique (observation azimuth 45 °) direction. FIGS. 15B and 15C show the relationship of the luminance with respect to the observation angle, respectively. Further, FIG. 16A shows light leakage values during black display when R01 + Rth1 = 240 nm, that is, R01 = 120 nm and Rth1 = 120 nm, in the horizontal (observation azimuth 0 °) direction and the oblique (observation azimuth 45 °) direction. The relationship of the brightness | luminance with respect to each observation angle is shown in FIG. In any case, as shown in these drawings, compared with the case where the front phase difference plate 4 shown in FIG. 6 is not introduced, the black display characteristics, that is, the light leakage characteristics and the halftone display characteristics. It can be seen that, for example, the smoothness of the gradation including the difficulty of the gradation inversion is improved, and the viewing angle is widened. In particular, when R01 + Rth1 = 180 nm, light leakage in the oblique (observation azimuth 45 °) direction remains slightly, but halftone display characteristics in the oblique (observation azimuth 45 °) direction are good as shown in FIG. I understand that. Further, when R01 + Rth1 = 240 nm, halftone display characteristics are slightly inferior to those when R01 + Rth1 = 180 nm, but light leakage in an oblique (observation direction 45 °) direction is small as shown in FIG. It can be seen that the contrast is good.

以上の通り、本実施例では以下の特性を有する前側位相差板4を導入した。即ち、前側位相差板4は、2軸延伸の位相差板である。そして、前側位相差板4は、液晶セル1と前側偏光板2の間に導入されており、面内方向の遅軸方向を前側偏光板2の前側偏光板透過軸2tの向きと一致させている。また、前側位相差板4はR01/Rth1=1/1の関係を有し、例えばR01+Rth1=180nmやR01+Rth1=240nm等、R01+Rth1の値が150〜240nmである。以上の様な特性を有する前側位相差板4の導入の結果、黒表示の特性及び中間調表示の特性ともに改善し、視野角を広げることができた。   As described above, in this embodiment, the front phase difference plate 4 having the following characteristics is introduced. That is, the front phase difference plate 4 is a biaxially stretched phase difference plate. The front retardation plate 4 is introduced between the liquid crystal cell 1 and the front polarizing plate 2 so that the slow axis direction in the in-plane direction matches the direction of the front polarizing plate transmission axis 2 t of the front polarizing plate 2. Yes. The front retardation plate 4 has a relationship of R01 / Rth1 = 1/1. For example, the value of R01 + Rth1 is 150 to 240 nm, such as R01 + Rth1 = 180 nm or R01 + Rth1 = 240 nm. As a result of the introduction of the front retardation plate 4 having the above characteristics, both the black display characteristics and the halftone display characteristics were improved, and the viewing angle could be widened.

本実施例では、液晶セル1と前側偏光板2の間に前側位相差板4を導入したが、液晶セル1と後側偏光板3の間に以下の特性を有する後側位相差板を導入してもよい。即ち、当該後側位相差板は、2軸延伸の位相差板であり、面内方向の遅軸方向を後側偏光板3の後側偏光板透過軸3tの向きと一致させる。そして、面内位相差R02及び厚み方向位相差Rth2の和の値は、例えば180nmや240nm等、150〜240nmとする。この場合も、本実施例と同様の効果が得られる。   In this embodiment, the front retardation plate 4 is introduced between the liquid crystal cell 1 and the front polarizing plate 2, but a rear retardation plate having the following characteristics is introduced between the liquid crystal cell 1 and the rear polarizing plate 3. May be. That is, the rear retardation plate is a biaxially stretched retardation plate, and the slow axis direction in the in-plane direction is made to coincide with the direction of the rear polarizing plate transmission axis 3 t of the rear polarizing plate 3. The sum of the in-plane retardation R02 and the thickness direction retardation Rth2 is 150 to 240 nm, such as 180 nm or 240 nm. In this case, the same effect as in the present embodiment can be obtained.

[第1の実施形態の第4の実施例]
次に、第1の実施形態に係る液晶表示素子の第4の実施例について説明する。本実施例の説明では、前記第2の実施例との相違点について説明する。第2の実施例に係る液晶表示素子においては、液晶セル1と前側偏光板2の間に前側位相差板4を導入している。そして、前側位相差板4は、2軸延伸の位相差板であり、面内方向で遅軸方向の屈折率をns1、速軸方向の屈折率をnf1とし、厚み方向の屈折率をnz1とすると、ns1>nf1>nz1の関係を有している。更に、遅軸方向を前側偏光板2の前側偏光板透過軸2tの向きと一致させており、R01/Rth1=1/3の関係を有している。これに対して、本実施例に係る液晶表示素子においては、前側位相差板4を2枚に分割することを考える。即ち、前側位相差板4に加えて、前側位相差板4と同様の特性を有する後側位相差板5を液晶セル1と後側偏光板3の間に挿入する。その他の構成は、第2の実施例と同様である。
[Fourth Example of the First Embodiment]
Next, a fourth example of the liquid crystal display element according to the first embodiment will be described. In the description of the present embodiment, differences from the second embodiment will be described. In the liquid crystal display element according to the second embodiment, a front retardation plate 4 is introduced between the liquid crystal cell 1 and the front polarizing plate 2. The front phase difference plate 4 is a biaxially stretched phase difference plate. In the in-plane direction, the refractive index in the slow axis direction is ns1, the refractive index in the fast axis direction is nf1, and the refractive index in the thickness direction is nz1. Then, there is a relationship of ns1>nf1> nz1. Further, the slow axis direction is made coincident with the direction of the front polarizing plate transmission axis 2t of the front polarizing plate 2, and a relationship of R01 / Rth1 = 1/3 is established. On the other hand, in the liquid crystal display element according to the present embodiment, it is considered that the front phase difference plate 4 is divided into two. That is, in addition to the front retardation plate 4, a rear retardation plate 5 having the same characteristics as the front retardation plate 4 is inserted between the liquid crystal cell 1 and the rear polarizing plate 3. Other configurations are the same as those of the second embodiment.

本実施例に係る液晶表示素子の断面の概略を図17に示す。この図に示す通り、本実施例では、液晶セル1と前側偏光板2の間に前側位相差板4が、液晶セル1と後側偏光板3の間に後側位相差板5が、それぞれ配置されている。また、本液晶表示素子の光学構成の分解平面図を図18に示す。この図に示す通り、第2の実施例と同様に、前側位相差板4の遅軸4sの向きは、前側偏光板2の前側偏光板透過軸2tの向きと一致されており、前側位相差板4の速軸4fの向きは、前側偏光板2の前側偏光板吸収軸2aの向きと一致されている。一方、後側位相差板5の遅軸5sの向きは、後側偏光板3の後側偏光板透過軸3tの向きと一致されており、後側位相差板5の速軸5fの向きは、後側偏光板3の後側偏光板吸収軸3aの向きと一致されている。   FIG. 17 shows an outline of a cross section of the liquid crystal display element according to this example. As shown in this figure, in this embodiment, the front retardation plate 4 is disposed between the liquid crystal cell 1 and the front polarizing plate 2, and the rear retardation plate 5 is disposed between the liquid crystal cell 1 and the rear polarizing plate 3, respectively. Has been placed. An exploded plan view of the optical configuration of the liquid crystal display element is shown in FIG. As shown in this figure, as in the second embodiment, the direction of the slow axis 4s of the front phase difference plate 4 coincides with the direction of the front polarizing plate transmission axis 2t of the front polarizing plate 2, and the front phase difference The direction of the fast axis 4 f of the plate 4 coincides with the direction of the front polarizing plate absorption axis 2 a of the front polarizing plate 2. On the other hand, the direction of the slow axis 5s of the rear retardation plate 5 is coincident with the direction of the rear polarizing plate transmission axis 3t of the rear polarizing plate 3, and the direction of the fast axis 5f of the rear retardation plate 5 is The direction of the rear polarizing plate absorption axis 3a of the rear polarizing plate 3 is matched.

本実施例でも、前側位相差板4及び後側位相差板5の最適な条件を決定するため、前側位相差板4の面内位相差R01と厚み方向位相差Rth1の値、及び後側位相差板5の面内位相差R02と厚み方向位相差Rth2の値を、R01/Rth1=R02/Rth2=1/3の関係を維持し、前側位相差板4及び後側位相差板5のR01=R02、Rth1=Rth2として様々に変更し、表示特性を検討した。尚、R02及びRth2は、後側位相差板5の面内方向で遅軸方向の屈折率をns2、速軸方向の屈折率をnf2、厚み方向の屈折率をnz2とし、当該位相差板の厚さをd2としたときの、R02=(ns2−nf2)d2及びRth2=((ns2+nf2)/2−nz2)d2である。   Also in this embodiment, in order to determine the optimum conditions for the front retardation plate 4 and the rear retardation plate 5, the values of the in-plane retardation R01 and the thickness direction retardation Rth1 of the front retardation plate 4, and the rear position The values of the in-plane retardation R02 and the thickness direction retardation Rth2 of the retardation plate 5 are maintained as R01 / Rth1 = R02 / Rth2 = 1/3, and R01 of the front retardation plate 4 and the rear retardation plate 5 is maintained. = R02 and Rth1 = Rth2 were variously changed, and the display characteristics were examined. R02 and Rth2 are the in-plane direction of the rear retardation plate 5 and the refractive index in the slow axis direction is ns2, the refractive index in the fast axis direction is nf2, and the refractive index in the thickness direction is nz2, and R02 = (ns2-nf2) d2 and Rth2 = ((ns2 + nf2) / 2-nz2) d2 when the thickness is d2.

得られたRth1等と視野角(CR=10)の関係を、図19(a)に示す。横軸は、R01+Rth1+R02+Rth2を示している。即ち、前側位相差板4のR01及びRth1並びに後側位相差板5のR02及びRth2の全ての和である。この図に示す通り、当該液晶表示素子の水平(観察方位0°)方向における視野角(CR=10)の値は、R01+Rth1+R02+Rth2に関わらず80°以上であり良好であった。一方、当該液晶表示素子の斜め(観察方位45°)方向における視野角(CR=10)の値は、R01+Rth1+R02+Rth2の増加とともに増加するものであった。   The relationship between the obtained Rth1 and the like and the viewing angle (CR = 10) is shown in FIG. The horizontal axis represents R01 + Rth1 + R02 + Rth2. That is, it is the sum of all of R01 and Rth1 of the front retardation plate 4 and R02 and Rth2 of the rear retardation plate 5. As shown in this figure, the value of the viewing angle (CR = 10) in the horizontal (observation direction 0 °) direction of the liquid crystal display element was 80 ° or more and good regardless of R01 + Rth1 + R02 + Rth2. On the other hand, the value of the viewing angle (CR = 10) in the oblique direction (observation azimuth 45 °) of the liquid crystal display element increases with an increase in R01 + Rth1 + R02 + Rth2.

また、得られたR01+Rth1+R02+Rth2と視野角(階調反転)の関係を図19(b)に示す。この図に示す通り、当該液晶表示素子の水平(観察方位0°)方向における視野角(階調反転)の値は、R01+Rth1+R02+Rth2に関わらず65°で一定であった。一方、当該液晶表示素子の斜め(観察方位45°)方向における視野角(階調反転)の値は、R01+Rth1+R02+Rth2=180nmのときに最大値75°をとる、R01+Rth1+R02+Rth2に依存するものであった。   FIG. 19B shows the relationship between the obtained R01 + Rth1 + R02 + Rth2 and the viewing angle (gradation inversion). As shown in this figure, the viewing angle (gradation reversal) value in the horizontal (observation azimuth 0 °) direction of the liquid crystal display element was constant at 65 ° regardless of R01 + Rth1 + R02 + Rth2. On the other hand, the viewing angle (gradation reversal) value in the oblique (observation azimuth 45 °) direction of the liquid crystal display element depends on R01 + Rth1 + R02 + Rth2, which takes a maximum value of 75 ° when R01 + Rth1 + R02 + Rth2 = 180 nm.

また、視野角(CR=10)及び視野角(階調反転)のうち最小となる値(視野角(最小値))と、R01+Rth1+R02+Rth2との関係を調べると、図19(c)の様になった。この様にR01+Rth1+R02+Rth2が240nmのとき、視野角の最小値が55°と最も大きくなり、良い結果が得られることが明らかになった。   Further, when the relationship between the minimum value (viewing angle (minimum value)) of viewing angle (CR = 10) and viewing angle (gradation inversion) and R01 + Rth1 + R02 + Rth2 is examined, it is as shown in FIG. It was. Thus, it was found that when R01 + Rth1 + R02 + Rth2 is 240 nm, the minimum value of the viewing angle is as large as 55 °, and good results can be obtained.

R01+Rth1+R02+Rth2が240nmのとき、視野角(最小値)が最大と成るものの、視野角(階調反転)は最大とは成らない。コントラストの低下よりも、階調反転の方が、見た目に与える影響が大きいことを考慮すると、視野角(階調反転)を優先する方が良い場合もあると考えられる。このことを考慮すると、水平(観察方位0°)方向においても斜め(観察方位45°)方向においても、視野角(階調反転)が高い値となっており、視野角(CR=10)の値も比較的高いR01+Rth1+R02+Rth2が150〜210nmのときも、良い中間調特性が得られる液晶表示素子を実現できることが分かった。   When R01 + Rth1 + R02 + Rth2 is 240 nm, the viewing angle (minimum value) is maximized, but the viewing angle (gradation inversion) is not maximized. Considering that tone reversal has a greater effect on appearance than contrast reduction, it may be better to give priority to viewing angle (gradation reversal). Considering this, the viewing angle (gradation inversion) is high both in the horizontal (observation direction 0 °) direction and in the oblique (observation direction 45 °) direction, and the viewing angle (CR = 10) is high. It was found that a liquid crystal display element capable of obtaining good halftone characteristics can be realized even when R01 + Rth1 + R02 + Rth2 having a relatively high value is 150 to 210 nm.

以上示した様に、本実施例に係る液晶表示素子においては、前側位相差板4及び後側位相差板5のR01+Rth1+R02+Rth2の値は、150〜240nmが良いことが明らかになった。即ち、前側位相差板4のR01+Rth1及び後側位相差板5のR02+Rth2は、それぞれ75〜120nmが良いことが明らかになった。   As described above, in the liquid crystal display element according to the present example, it has been clarified that the value of R01 + Rth1 + R02 + Rth2 of the front phase difference plate 4 and the rear phase difference plate 5 is preferably 150 to 240 nm. That is, it was found that R01 + Rth1 of the front retardation plate 4 and R02 + Rth2 of the rear retardation plate 5 are preferably 75 to 120 nm, respectively.

R01+Rth1+R02+Rth2=180nm、即ちR01=R02=22.5nm、Rth1=Rth2=67.5nmのときの黒表示時の光漏れの値を図20(a)に、水平(観察方位0°)方向及び斜め(観察方位45°)方向の各観察角度に対する輝度の関係を図20(b)及び(c)にそれぞれ示す。また、R01+Rth1+R02+Rth2=240nm、即ちR01=R02=30nm、Rth1=Rth2=90nmのときの黒表示時の光漏れの値を図21(a)に、水平(観察方位0°)方向及び斜め(観察方位45°)方向の各観察角度に対する輝度の関係を図21(b)及び(c)にそれぞれ示す。何れの場合もこれらの図に示す通り、図6に示した前側位相差板4を導入していない場合と比較して、黒表示の特性、即ち光漏れの少なさ、及び中間調表示の特性、例えば階調反転の起こりにくさを含む階調の滑らかさ、ともに改善し、視野角が広がっていることが分かる。特に、図20に示す通り、R01+Rth1+R02+Rth2=180nmのときは、斜め(観察方位45°)方向の光漏れがやや残るものの、中間調の表示特性が良いことが分かる。また、図21に示す通り、R01+Rth1+R02+Rth2=240nmのときは、R01+Rth1+R02+Rth2=180nmのときに比べて中間調の表示特性はやや劣るものの、斜め(観察方位45°)方向の光漏れが少なくコントラストが良好であることが分かる。   FIG. 20A shows the light leakage value during black display when R01 + Rth1 + R02 + Rth2 = 180 nm, that is, R01 = R02 = 22.5 nm and Rth1 = Rth2 = 67.5 nm. The horizontal (observation azimuth 0 °) direction and oblique ( FIGS. 20B and 20C show the relationship of the luminance with respect to each observation angle in the (observation direction 45 °) direction. Further, FIG. 21A shows light leakage values during black display when R01 + Rth1 + R02 + Rth2 = 240 nm, that is, R01 = R02 = 30 nm and Rth1 = Rth2 = 90 nm. The relationship of the luminance with respect to each observation angle in the (45 °) direction is shown in FIGS. In any case, as shown in these drawings, compared with the case where the front phase difference plate 4 shown in FIG. 6 is not introduced, the black display characteristics, that is, the light leakage characteristics and the halftone display characteristics. It can be seen that, for example, the smoothness of the gradation including the difficulty of the gradation inversion is improved, and the viewing angle is widened. In particular, as shown in FIG. 20, when R01 + Rth1 + R02 + Rth2 = 180 nm, light leakage in the oblique (observation direction 45 °) direction remains somewhat, but it can be seen that the halftone display characteristics are good. Further, as shown in FIG. 21, when R01 + Rth1 + R02 + Rth2 = 240 nm, the halftone display characteristics are slightly inferior to those when R01 + Rth1 + R02 + Rth2 = 180 nm, but there is little light leakage in the oblique (observation direction 45 °) direction and good contrast. I understand that there is.

以上の通り、本実施例では以下の特性を有する前側位相差板4及び後側位相差板5を導入した。即ち、前側位相差板4及び後側位相差板5は、2軸延伸の位相差板である。そして、前側位相差板4は、液晶セル1と前側偏光板2の間に導入されており、面内方向の遅軸方向を前側偏光板2の前側偏光板透過軸2tの向きと一致させている。また、後側位相差板5は、液晶セル1と後側偏光板3の間に導入されており、面内方向の遅軸方向を後側偏光板3の後側偏光板透過軸3tの向きと一致させている。そして、前側位相差板4及び後側位相差板5は、R01/Rth1=R02/Rth2=1/3の関係を有し、例えばR01+Rth1+R02+Rth2=180nmやR01+Rth1+R02+Rth2=240nm等、R01+Rth1+R02+Rth2の値が150〜240nmである。以上の様な特性を有する前側位相差板4及び後側位相差板5の導入の結果、黒表示の特性及び中間調表示の特性ともに改善し、視野角を広げることができた。   As described above, in this embodiment, the front phase difference plate 4 and the rear phase difference plate 5 having the following characteristics are introduced. That is, the front side retardation plate 4 and the rear side retardation plate 5 are biaxially stretched retardation plates. The front retardation plate 4 is introduced between the liquid crystal cell 1 and the front polarizing plate 2 so that the slow axis direction in the in-plane direction matches the direction of the front polarizing plate transmission axis 2 t of the front polarizing plate 2. Yes. The rear retardation plate 5 is introduced between the liquid crystal cell 1 and the rear polarizing plate 3, and the slow axis direction in the in-plane direction is the direction of the rear polarizing plate transmission axis 3 t of the rear polarizing plate 3. To match. The front phase difference plate 4 and the rear phase difference plate 5 have a relationship of R01 / Rth1 = R02 / Rth2 = 1/3. For example, R01 + Rth1 + R02 + Rth2 = 180 nm, R01 + Rth1 + R02 + Rth2 = 240 nm, etc. It is. As a result of the introduction of the front side retardation plate 4 and the rear side retardation plate 5 having the above characteristics, both the black display characteristics and the halftone display characteristics were improved, and the viewing angle could be widened.

以上に示した通り、本実施形態に依れば、VAモード型液晶表示装置において、下記の特性を有する1枚又は2枚の位相差板を導入することで、黒表示の特性、即ち光漏れの少なさ、及び中間調表示の特性、例えば階調反転の起こりにくさを含む階調の滑らかさ、ともに改善し、視野角を広げることができる。その位相差板の特性とは、厚み方向に負の位相差を有する位相差板、又は2軸延伸の位相差板であり、導入する全ての位相差板の、厚み方向位相差Rth及び面内位相差R0の和が例えば180nmや240nm等、150〜240nmである。そして、導入される場所は、液晶セル1と前側偏光板2の間や液晶セル1と後側偏光板3の間である。導入に際しては、面内方向の遅軸方向を、当該位相差板と近い方に配置された偏光板の透過軸の向きと一致させる。   As described above, according to the present embodiment, in the VA mode liquid crystal display device, by introducing one or two retardation plates having the following characteristics, black display characteristics, that is, light leakage, are obtained. And the smoothness of gradation including the difficulty of occurrence of gradation inversion, and the viewing angle can be widened. The characteristics of the retardation plate are a retardation plate having a negative retardation in the thickness direction, or a biaxially stretched retardation plate, and the thickness direction retardation Rth and in-plane of all the introduced retardation plates. The sum of the phase differences R0 is 150 to 240 nm, such as 180 nm or 240 nm. The place to be introduced is between the liquid crystal cell 1 and the front polarizing plate 2 or between the liquid crystal cell 1 and the rear polarizing plate 3. At the time of introduction, the slow axis direction in the in-plane direction is made to coincide with the direction of the transmission axis of the polarizing plate disposed closer to the retardation plate.

ここで、前記の様な効果を現す厚み方向位相差Rth及び面内位相差R0の和の範囲である150〜240nmは、当該液晶表示素子の液晶セル1中の液晶分子111の屈折率異方性Δnと液晶層厚dLCとの積であり、液晶層11の常光と異常光との光路差を示す量であるリタデーションΔn・dLCの値である360nmの42%〜67%であり、四捨五入すると40%〜70%である。   Here, 150 to 240 nm, which is the sum of the thickness direction retardation Rth and the in-plane retardation R0 that exhibit the above-described effects, is anisotropy of the refractive index of the liquid crystal molecules 111 in the liquid crystal cell 1 of the liquid crystal display element. The product of the property Δn and the liquid crystal layer thickness dLC, which is 42% to 67% of 360 nm, which is the value of retardation Δn · dLC, which is an amount indicating the optical path difference between the ordinary light and the extraordinary light of the liquid crystal layer 11, and is rounded off 40% to 70%.

[第2の実施形態]
次に、本発明の第2の実施形態について図面を参照して説明する。ここで第2の実施形態の説明では、第1の実施形態との相違点について説明し、第1の実施形態と同一の部分については同一の符号を付して、その説明は省略する。第1の実施形態においては、液晶セル1を構成する基板にピラミッド形状のリブ12を設け、液晶層11内の液晶分子111を、4方向に配向させている。これに対して、本実施形態においては、液晶セル1を構成する基板に設けるリブ12の形状を三角柱状とし、この三角柱状としたリブ12の一側面が基板に接する様にリブ12を設ける。その結果、図22に示す通り、液晶層11内の液晶分子111は、リブ12の存在のため、共通電極14及び画素電極16によって液晶層11に電場を形成した場合、2方向に配向する。その他の構成は、第1の実施形態と同じである。前記リブ12の形状は一例であり、液晶分子111を2方向に配向させる形状であれば良い。
[Second Embodiment]
Next, a second embodiment of the present invention will be described with reference to the drawings. Here, in the description of the second embodiment, differences from the first embodiment will be described, the same portions as those in the first embodiment will be denoted by the same reference numerals, and the description thereof will be omitted. In the first embodiment, pyramid-shaped ribs 12 are provided on the substrate constituting the liquid crystal cell 1, and the liquid crystal molecules 111 in the liquid crystal layer 11 are aligned in four directions. On the other hand, in the present embodiment, the rib 12 provided on the substrate constituting the liquid crystal cell 1 has a triangular prism shape, and the rib 12 is provided so that one side surface of the triangular prism-shaped rib 12 is in contact with the substrate. As a result, as shown in FIG. 22, the liquid crystal molecules 111 in the liquid crystal layer 11 are aligned in two directions when an electric field is formed in the liquid crystal layer 11 by the common electrode 14 and the pixel electrode 16 due to the presence of the ribs 12. Other configurations are the same as those of the first embodiment. The shape of the rib 12 is an example, and it may be a shape that aligns the liquid crystal molecules 111 in two directions.

本実施形態においても、液晶セル1と前側偏光板2との間に配置する前側位相差板4及び/又は液晶セル1と後側偏光板3との間に配置する後側位相差板5を挿入し、斜めから当該液晶表示素子を観察した場合の、黒表示時における光漏れを低減させ、更に中間調の表示性能を向上させることを図っている。本実施形態に係る液晶表示素子を設計するにあたっても、まず、液晶セル1の各種パラメータと、前側偏光板2及び後側偏光板3の透過軸の位置関係を決定する。次に、前記の液晶セル1、前側偏光板2及び後側偏光板3からなる液晶表示素子の視野角特性を改善するため、視野角特性の良否を確認しながら、前側位相差板4及び/又は後側位相差板5の特性を決定する。   Also in the present embodiment, the front retardation plate 4 disposed between the liquid crystal cell 1 and the front polarizing plate 2 and / or the rear retardation plate 5 disposed between the liquid crystal cell 1 and the rear polarizing plate 3 are provided. When the liquid crystal display element is inserted and observed from an oblique direction, light leakage during black display is reduced, and further, halftone display performance is improved. In designing the liquid crystal display element according to the present embodiment, first, the positional relationship between various parameters of the liquid crystal cell 1 and the transmission axes of the front polarizing plate 2 and the rear polarizing plate 3 is determined. Next, in order to improve the viewing angle characteristics of the liquid crystal display device comprising the liquid crystal cell 1, the front polarizing plate 2 and the rear polarizing plate 3, while confirming the quality of the viewing angle characteristics, Alternatively, the characteristics of the rear retardation plate 5 are determined.

[第2の実施形態の第1の実施例]
次に、第2の実施形態に係る液晶表示素子の第1の実施例を、図面を参照して具体的に説明する。本実施形態に係る液晶表示素子の構成は、第1の実施形態に係るそれと同じである。但し、リブ12と当該リブ12による液晶分子111の配向が異なっている。
[First example of the second embodiment]
Next, a first example of the liquid crystal display element according to the second embodiment will be specifically described with reference to the drawings. The configuration of the liquid crystal display element according to the present embodiment is the same as that according to the first embodiment. However, the alignment of the liquid crystal molecules 111 by the rib 12 and the rib 12 is different.

ここで図23に示す当該液晶表示素子の光学構成を示す分解平面図を参照して、その光学構成を説明する。図23の1段目に示す通り、前側偏光板透過軸2tは+90°の方向、前側偏光板吸収軸2aは0°の方向である。また、図23の3段目に示す通り、リブ12による液晶分子111の配向方向は+45°及び225°である。尚、第1の実施形態の場合と同様に、液晶分子111から成る液晶層11の屈折率異方性Δnは0.090であり、液晶層11の厚さdLCは4.0μmである。また、図23の4段目に示す通り、後側偏光板透過軸3tは0°の方向、後側偏光板吸収軸3aは+90°の方向である。   Here, the optical configuration will be described with reference to an exploded plan view showing the optical configuration of the liquid crystal display element shown in FIG. 23, the front polarizing plate transmission axis 2t is in the + 90 ° direction and the front polarizing plate absorption axis 2a is in the 0 ° direction. 23, the alignment directions of the liquid crystal molecules 111 by the ribs 12 are + 45 ° and 225 °. As in the case of the first embodiment, the refractive index anisotropy Δn of the liquid crystal layer 11 composed of the liquid crystal molecules 111 is 0.090, and the thickness dLC of the liquid crystal layer 11 is 4.0 μm. 23, the rear polarizing plate transmission axis 3t is in the direction of 0 °, and the rear polarizing plate absorption axis 3a is in the direction of + 90 °.

本実施例においては、液晶セル1と前側偏光板2の間に、前側位相差板4が配設されている。本実施例に係る前側位相差板4は、その厚み方向に負の位相差を有する位相差板であり、面内方向に位相差はない。即ち、面内方向にx軸、y軸を定義し、厚み方向をz軸とし、x、y及びz方向の屈折率をそれぞれns1、nf1及びnz1とすると、ns1=nf1>nz1の関係を有する。言い換えると、面内位相差をR01=(ns1−nf1)d1とすると、R01=0である。ここでd1は当該位相差板の厚さである。また、厚み方向位相差をRth1とする。ここで、Rth1=((ns1+nf1)/2−nz1)d1である。   In this embodiment, a front phase difference plate 4 is disposed between the liquid crystal cell 1 and the front polarizing plate 2. The front phase difference plate 4 according to the present embodiment is a phase difference plate having a negative phase difference in the thickness direction, and has no phase difference in the in-plane direction. That is, if the x-axis and y-axis are defined in the in-plane direction, the thickness direction is the z-axis, and the refractive indexes in the x, y, and z directions are ns1, nf1, and nz1, respectively, the relationship is ns1 = nf1> nz1. . In other words, when the in-plane phase difference is R01 = (ns1-nf1) d1, R01 = 0. Here, d1 is the thickness of the retardation plate. The thickness direction retardation is Rth1. Here, Rth1 = ((ns1 + nf1) / 2−nz1) d1.

前側位相差板4を有さない、液晶セル1、前側偏光板2、後側偏光板3からなる液晶表示素子の視野角特性を図24に示す。図24(a)は黒表示時の光漏れの値を示す。この図に示す通り、前側位相差板4を有さない本液晶表示素子は、当該液晶表示素子の水平垂直方向(観察方位が0°、90°、180°及び270°の方向)については、黒の表示に優れていることが分かる。これに対して、当該液晶表示素子の斜め方向(観察方位が45°、135°、225°及び315°の方向)の傾いた観察角度から当該液晶表示素子を観察した場合は、光漏れが認められることが分かる。即ち、当該液晶表示素子の斜め方向(観察方位が45°、135°、225°及び315°の方向)については、黒の表示特性に課題があることが分かる。   FIG. 24 shows the viewing angle characteristics of a liquid crystal display element that does not have the front retardation plate 4 and that is composed of the liquid crystal cell 1, the front polarizing plate 2, and the rear polarizing plate 3. FIG. 24A shows the value of light leakage during black display. As shown in this figure, the present liquid crystal display element that does not have the front retardation plate 4 has the horizontal and vertical directions of the liquid crystal display element (observation directions of 0 °, 90 °, 180 °, and 270 °). It can be seen that black display is excellent. On the other hand, when the liquid crystal display element is observed from an oblique observation angle of the liquid crystal display element (observation directions are 45 °, 135 °, 225 °, and 315 ° directions), light leakage is recognized. You can see that That is, it can be seen that there is a problem in the black display characteristics in the oblique direction of the liquid crystal display element (directions in which the observation directions are 45 °, 135 °, 225 °, and 315 °).

また、視野角(CR=10)は、当該液晶表示素子の水平垂直方向(観察方位が0°、90°、180°及び270°の方向)については80°以上であった。即ち、この方向についてはコントラストに係る視野角特性が優れていることが分かる。一方、液晶分子111の配向方向である当該液晶表示素子の第1の斜め方向(観察方位が45°及び225°の方向)の傾いた観察角度から観察した場合には、視野角(CR=10)は、33°であった。また、当該液晶表示素子の第2の斜め方向(観察方位が135°及び315°の方向)の傾いた観察角度から観察した場合には、視野角(CR=10)は、35°であった。即ち、これら第1及び第2の斜めの方向についてはコントラストに係る視野角特性に課題があることが分かる。尚、リブ12の形状による液晶分子111の配向が45°及び225°の方向であるため、前記の通り、当該液晶表示素子の第1の斜め方向(観察方位が45°及び225°の方向)と、第2の斜め方向(観察方位が135°及び315°の方向)では、表示特性が異なっている。   Further, the viewing angle (CR = 10) was 80 ° or more in the horizontal and vertical directions of the liquid crystal display element (directions where the observation directions were 0 °, 90 °, 180 ° and 270 °). That is, it can be seen that the viewing angle characteristic related to contrast is excellent in this direction. On the other hand, when the liquid crystal display element is observed from an inclined observation angle in the first oblique direction (the directions of observation directions of 45 ° and 225 °), which is the alignment direction of the liquid crystal molecules 111, the viewing angle (CR = 10). ) Was 33 °. Further, when the liquid crystal display element was observed from an inclined observation angle in the second oblique direction (directions where the observation directions were 135 ° and 315 °), the viewing angle (CR = 10) was 35 °. . That is, it can be seen that there is a problem in the viewing angle characteristics related to the contrast in the first and second oblique directions. Since the orientation of the liquid crystal molecules 111 due to the shape of the ribs 12 is in the directions of 45 ° and 225 °, as described above, the first oblique direction of the liquid crystal display element (the directions of observation directions are 45 ° and 225 °). The display characteristics are different in the second oblique direction (directions where the viewing directions are 135 ° and 315 °).

図24(b)は、当該液晶表示素子の水平方向(観察方位が0°の方向)の、当該液晶表示素子の面に対して傾いた観察角度から観察した場合の輝度を表している。この図に示す通り、当該液晶表示素子の水平方向(観察方位が0°の方向)で観察角度を増していくと、即ち観察する角度が斜めになる程、中間調(図においては表示輝度0.14〜0.86を表す各特性曲線)の観察輝度が、いずれも約0.5に近づいている。即ち、当該液晶表示素子は、水平観察方位の観察角度が斜めの方向から見た場合の中間調の表現性能に課題があることが分かる。そして、視野角(階調反転)は、65°であった。   FIG. 24B shows luminance when observed from an observation angle inclined with respect to the surface of the liquid crystal display element in the horizontal direction of the liquid crystal display element (the direction in which the observation direction is 0 °). As shown in this figure, when the observation angle is increased in the horizontal direction of the liquid crystal display element (the direction in which the observation direction is 0 °), that is, as the observation angle becomes oblique, the halftone (in the figure, the display luminance is 0). The observation luminances of the characteristic curves representing .14 to 0.86 are all close to about 0.5. That is, it can be seen that the liquid crystal display device has a problem in halftone expression performance when the observation angle of the horizontal observation direction is viewed from an oblique direction. The viewing angle (gradation inversion) was 65 °.

図24(c)は、当該液晶表示素子の第1の斜め方向(観察方位が45°の方向)の各観察角度から見た場合の観察輝度を示す。この図に示す通り、当該液晶表示素子の第1の斜め方向(観察方位が45°の方向)で観察角度を増していくと、即ち観察する角度が斜めになる程、黒表示(図においては輝度0.00を表す特性曲線)の観察輝度が、徐々に増加している。また、中間調の表示(図においては表示輝度0.14〜0.86を表す各特性曲線)の観察輝度は、高くなったり低くなったりと複雑な挙動を示し、概ね約0.6に近づいており、中間調の表現性能に課題があることが分かる。そして、視野角(階調反転)の角度は、46°である。   FIG. 24C shows the observation luminance when viewed from the respective observation angles in the first oblique direction (the direction in which the observation direction is 45 °) of the liquid crystal display element. As shown in this figure, when the observation angle is increased in the first oblique direction of the liquid crystal display element (observation direction is 45 °), that is, as the observation angle becomes oblique, black display (in the figure, The observation luminance of the characteristic curve representing luminance 0.00 is gradually increasing. Further, the observation brightness of the halftone display (respective characteristic curves representing the display brightness of 0.14 to 0.86 in the figure) shows a complicated behavior such as an increase or decrease, and approaches approximately 0.6. It can be seen that there is a problem in halftone expression performance. The viewing angle (gradation reversal) is 46 °.

図24(d)は、当該液晶表示素子の第2の斜め方向(観察方位が135°の方向)の各観察角度から見た場合の観察輝度を示す。この図に示す通り、当該液晶表示素子の第2の斜め方向(観察方位が135°の方向)で観察角度を増していくと、即ち観察する角度が斜めになる程、黒表示の観察輝度が、徐々に増加している。一方、中間調の表示(図においては表示輝度0.14〜0.86を表す各特性曲線)の観察輝度は、観察角度が増す程低下している。そして、視野角(階調反転)の角度は29°である。   FIG. 24D shows the observation luminance when viewed from the respective observation angles in the second oblique direction (the direction in which the observation direction is 135 °) of the liquid crystal display element. As shown in this figure, when the observation angle is increased in the second oblique direction of the liquid crystal display element (the observation azimuth is 135 °), that is, as the observation angle becomes oblique, the observation luminance of black display increases. It is gradually increasing. On the other hand, the observation luminance of the halftone display (in the figure, each characteristic curve representing the display luminance of 0.14 to 0.86) decreases as the observation angle increases. The viewing angle (gradation reversal) is 29 °.

本実施例に係る液晶表示素子は、前記の様な表示特性を改善するために、液晶セル1と前側偏光板2の間に、前側位相差板4を有している。本実施例では、前側位相差板4の最適な条件を決定するため、前側位相差板4の厚み方向の位相差Rth1の値を様々に変更して、前記特性を検討した。   The liquid crystal display element according to the present embodiment includes a front retardation plate 4 between the liquid crystal cell 1 and the front polarizing plate 2 in order to improve the display characteristics as described above. In this example, in order to determine the optimum condition of the front phase difference plate 4, the value of the phase difference Rth1 in the thickness direction of the front phase difference plate 4 was changed variously, and the characteristics were examined.

得られたRth1と視野角(CR=10)の関係を、図25(a)に示す。この図に示す通り、当該液晶表示素子の水平(観察方位0°)方向における視野角(CR=10)の値は、Rth1に関わらず80°以上であり良好であった。一方、当該液晶表示素子の第1の斜め(観察方位45°)方向における視野角(CR=10)の値は、Rth1の増加とともに単調に増加した。また、当該液晶表示素子の第2の斜め(観察方位135°)方向における視野角(CR=10)の値も、Rth1の増加とともに増加した。   The relationship between the obtained Rth1 and the viewing angle (CR = 10) is shown in FIG. As shown in this figure, the viewing angle (CR = 10) in the horizontal (observation azimuth 0 °) direction of the liquid crystal display element was 80 ° or more and good regardless of Rth1. On the other hand, the value of the viewing angle (CR = 10) in the first oblique direction (observation azimuth 45 °) of the liquid crystal display element monotonously increased with the increase of Rth1. In addition, the value of the viewing angle (CR = 10) in the second oblique (observation direction 135 °) direction of the liquid crystal display element also increased as Rth1 increased.

また、得られたRth1と視野角(階調反転)の関係を図25(b)に示す。この図に示す通り、当該液晶表示素子の水平(観察方位0°)方向における視野角(階調反転)の値は、Rth1に関わらず65°で一定であった。また、当該液晶表示素子の第1の斜め(観察方位45°)方向における視野角(階調反転)の値も、Rth1に関わらずほぼ45°で一定であった。一方、当該液晶表示素子の第2の斜め(観察方位135°)方向における視野角(CR=10)の値は、Rth1=180nmのときに最大値50°をとる、Rth1に依存するものであった。   FIG. 25B shows the relationship between the obtained Rth1 and the viewing angle (gradation inversion). As shown in this figure, the viewing angle (gradation reversal) value in the horizontal (observation azimuth 0 °) direction of the liquid crystal display element was constant at 65 ° regardless of Rth1. Further, the viewing angle (gradation reversal) value in the first oblique direction (observation azimuth 45 °) of the liquid crystal display element was also substantially constant at 45 ° regardless of Rth1. On the other hand, the value of the viewing angle (CR = 10) in the second oblique (observation direction 135 °) direction of the liquid crystal display element depends on Rth1, which takes a maximum value of 50 ° when Rth1 = 180 nm. It was.

また、視野角(CR=10)及び視野角(階調反転)のうち最小である値(視野角(最小値))と、Rth1との関係を調べると、図25(c)の様になった。この様にRth1が180〜210nmのとき、視野角の最小値が45°と最も大きくなり、良い結果が得られることが明らかになった。また、Rth1が150〜240nmのとき、視野角(最小値)が40°より大きく、良い中間調特性が得られる液晶表示素子を実現できることが分かった。   Further, when the relationship between the minimum value (viewing angle (minimum value)) of viewing angle (CR = 10) and viewing angle (gradation inversion) and Rth1 is examined, it is as shown in FIG. It was. As described above, when Rth1 is 180 to 210 nm, the minimum value of the viewing angle is as large as 45 °, and it has been clarified that good results can be obtained. Further, it was found that when Rth1 is 150 to 240 nm, a viewing angle (minimum value) is larger than 40 °, and a liquid crystal display element capable of obtaining good halftone characteristics can be realized.

以上示した様に、本実施例に係る液晶表示素子においては、前側位相差板4の厚み方向の位相差Rth1の値は、150〜240nmが良いことが明らかになった。   As described above, in the liquid crystal display element according to this example, it has been clarified that the value of the retardation Rth1 in the thickness direction of the front phase difference plate 4 is preferably 150 to 240 nm.

Rth1=210nmのときの黒表示時の光漏れの値を図26(a)に、水平(観察方位0°)方向、第1の斜め(観察方位45°)方向、及び第2の斜め(観察方位135°)方向の各観察角度に対する輝度の関係を図26(b)、(c)及び(d)にそれぞれ示す。図24に示した前側位相差板4を導入していない場合と比較して、図26(a)に示す通り、黒表示の特性、即ち光漏れの少なさ、特に、第1の斜め(観察方位45°)方向及び第2の斜め(観察方位135°)方向の特性が改善していることが分かる。更に図26(c)及び(d)に示す通り、中間調の表示特性、即ち階調反転の起こりにくさを含む階調の滑らかさが改善していることが分かる。この様に当該液晶表示素子の視野角が広がっていることが分かる。   FIG. 26A shows values of light leakage during black display when Rth1 = 210 nm. The horizontal (observation direction 0 °) direction, the first oblique (observation direction 45 °) direction, and the second oblique (observation). FIGS. 26B, 26C, and 26D show the relationship of luminance with respect to each observation angle in the direction of (azimuth 135 °). Compared with the case where the front phase difference plate 4 shown in FIG. 24 is not introduced, as shown in FIG. 26A, the black display characteristics, that is, less light leakage, particularly the first oblique (observation) It can be seen that the characteristics in the direction of 45 ° (azimuth) and the second oblique direction (135 ° of observation direction) are improved. Further, as shown in FIGS. 26C and 26D, it can be seen that the halftone display characteristics, that is, the smoothness of gradation including the difficulty of gradation inversion is improved. Thus, it can be seen that the viewing angle of the liquid crystal display element is widened.

この様に、本実施例に依れば、その厚み方向に負の位相差を有し、その厚み方向位相差Rth1が例えば180〜210nm等、Rth1の値が150〜240nmの有する前側位相差板4を液晶セル1と前側偏光板2の間に導入することによって、黒表示の特性及び中間調表示の特性ともに改善し、視野角を広げることができた。   Thus, according to the present embodiment, the front side retardation plate has a negative phase difference in the thickness direction, the thickness direction phase difference Rth1 is, for example, 180 to 210 nm, and the value of Rth1 is 150 to 240 nm. By introducing 4 between the liquid crystal cell 1 and the front polarizing plate 2, both the black display characteristics and the halftone display characteristics were improved, and the viewing angle could be widened.

本実施例では、液晶セル1と前側偏光板2の間に前側位相差板4を導入したが、液晶セル1と後側偏光板3の間に以下の特性を有する後側位相差板を導入してもよい。即ち、当該後側位相差板は、厚み方向に負の位相差を有し、厚み方向位相差Rth2の値は、例えば180〜210nm等、150〜240nmとする。尚、Rth2の定義は、第1の実施形態の第1の実施例と同様である。この場合も、本実施例と同様の効果が得られる。   In this embodiment, the front retardation plate 4 is introduced between the liquid crystal cell 1 and the front polarizing plate 2, but a rear retardation plate having the following characteristics is introduced between the liquid crystal cell 1 and the rear polarizing plate 3. May be. That is, the rear side retardation plate has a negative phase difference in the thickness direction, and the value of the thickness direction phase difference Rth2 is set to 150 to 240 nm, for example, 180 to 210 nm. The definition of Rth2 is the same as that of the first example of the first embodiment. In this case, the same effect as in the present embodiment can be obtained.

[第2の実施形態の第2の実施例]
次に、第2の実施形態に係る液晶表示素子の第2の実施例について説明する。本実施例の説明では、前記第2の実施形態の第1の実施例との相違点について説明する。第1の実施例に係る液晶表示素子において、前側位相差板4は、その厚み方向に負の位相差を有し、面内方向に位相差がない位相差板である。即ち、面内方向にx軸、y軸を定義し、厚み方向をz軸とし、x、y及びz方向の屈折率をそれぞれns1、nf1及びnz1とすると、ns1=nf1>nz1の関係を有する。これに対して本実施例に係る前側位相差板4は、2軸延伸の位相差板である。面内方向で遅軸方向の屈折率をns1、速軸方向の屈折率をnf1とし、厚み方向の屈折率をnz1とすると、ns1>nf1>nz1の関係を有する。その他の構成は、第1の実施例と同様である。
[Second Example of Second Embodiment]
Next, a second example of the liquid crystal display element according to the second embodiment will be described. In the description of this example, differences from the first example of the second embodiment will be described. In the liquid crystal display device according to the first embodiment, the front retardation plate 4 is a retardation plate having a negative retardation in the thickness direction and no retardation in the in-plane direction. That is, if the x-axis and y-axis are defined in the in-plane direction, the thickness direction is the z-axis, and the refractive indexes in the x, y, and z directions are ns1, nf1, and nz1, respectively, the relationship is ns1 = nf1> nz1. . On the other hand, the front phase difference plate 4 according to the present embodiment is a biaxially stretched phase difference plate. In the in-plane direction, when the refractive index in the slow axis direction is ns1, the refractive index in the fast axis direction is nf1, and the refractive index in the thickness direction is nz1, the relationship is ns1>nf1> nz1. Other configurations are the same as those of the first embodiment.

本実施例に係る液晶表示素子の光学構成の分解平面図を図27に示す。この図に示す通り、前側位相差板4の遅軸4sの向きは、前側偏光板2の前側偏光板透過軸2tの向きと一致しており、前側位相差板4の速軸4fの向きは、前側偏光板2の前側偏光板吸収軸2aの向きと一致している。   FIG. 27 shows an exploded plan view of the optical configuration of the liquid crystal display element according to this example. As shown in this figure, the direction of the slow axis 4s of the front phase difference plate 4 coincides with the direction of the front polarizing plate transmission axis 2t of the front side polarizing plate 2, and the direction of the fast axis 4f of the front side phase difference plate 4 is The direction of the front polarizing plate absorption axis 2a of the front polarizing plate 2 coincides.

本実施例に係る液晶表示素子は、図24に示し第1の実施例で説明した様な表示特性を改善するために、前側位相差板4を有している。本実施例では、前側位相差板4の最適な条件を決定するため、前側位相差板4の面内位相差R01と厚み方向位相差をRth1の値を様々に変更して、前記特性を検討した。尚、R01及びRth1は、それぞれR01=(ns1−nf1)d1、Rth1=((ns1+nf1)/2−nz1)d1の関係を有する。ここで、d1は当該位相差板の厚さである。本実施例では、R01/Rth1=1/3の関係を維持してR01とRth1を変化させた。   The liquid crystal display element according to the present embodiment has a front retardation plate 4 in order to improve the display characteristics as shown in FIG. 24 and described in the first embodiment. In this embodiment, in order to determine the optimum conditions for the front phase difference plate 4, the in-plane phase difference R01 and the thickness direction phase difference of the front side phase difference plate 4 are changed in various values, and the characteristics are examined. did. R01 and Rth1 have a relationship of R01 = (ns1-nf1) d1 and Rth1 = ((ns1 + nf1) / 2-nz1) d1, respectively. Here, d1 is the thickness of the retardation plate. In this embodiment, R01 and Rth1 are changed while maintaining the relationship of R01 / Rth1 = 1/3.

得られたRth1等と視野角(CR=10)の関係を、図28(a)に示す。横軸は、R01+Rth1を示している。この図に示す通り、当該液晶表示素子の水平(観察方位0°)方向における視野角(CR=10)の値は、R01+Rth1に関わらず80°以上であり良好であった。一方、当該液晶表示素子の第1の斜め(観察方位45°)方向における視野角(CR=10)の値、及び、当該液晶表示素子の第2の斜め(観察方位135°)方向における視野角(CR=10)の値は、ともにR01+Rth1の増加に従って単調に増加した。   The relationship between the obtained Rth1 and the like and the viewing angle (CR = 10) is shown in FIG. The horizontal axis represents R01 + Rth1. As shown in this figure, the viewing angle (CR = 10) in the horizontal (observation azimuth 0 °) direction of the liquid crystal display element was 80 ° or more and good regardless of R01 + Rth1. On the other hand, the value of the viewing angle (CR = 10) in the first oblique (observation direction 45 °) direction of the liquid crystal display element and the viewing angle in the second oblique (observation direction 135 °) direction of the liquid crystal display element. Both the values of (CR = 10) increased monotonously as R01 + Rth1 increased.

また、得られたR01+Rth1と視野角(階調反転)の関係を図28(b)に示す。この図に示す通り、当該液晶表示素子の水平(観察方位0°)方向における視野角(階調反転)の値は、R01+Rth1に関わらず65°で一定であった。また、当該液晶表示素子の第1の斜め(観察方位45°)方向における視野角(階調反転)の値は、ほぼ40〜50°であった。一方、また、当該液晶表示素子の第2の斜め(観察方位135°)方向における視野角(階調反転)の値は、R01+Rth1が180〜210nmのときに最大値49°をとる、R01+Rth1に依存するものであった。   Further, FIG. 28B shows the relationship between the obtained R01 + Rth1 and the viewing angle (gradation inversion). As shown in this figure, the viewing angle (gradation reversal) value in the horizontal (observation direction 0 °) direction of the liquid crystal display element was constant at 65 ° regardless of R01 + Rth1. The viewing angle (gradation inversion) in the first oblique direction (observation direction 45 °) of the liquid crystal display element was approximately 40 to 50 °. On the other hand, the viewing angle (gradation reversal) value in the second oblique direction (observation azimuth 135 °) of the liquid crystal display element has a maximum value of 49 ° when R01 + Rth1 is 180 to 210 nm, and depends on R01 + Rth1. It was something to do.

また、視野角(CR=10)及び視野角(階調反転)のうち最小となる値(視野角(最小値))と、R01+Rth1との関係を調べると、図28(c)の様になった。この様にR01+Rth1が180〜210nmのとき、視野角(最小値)が46°と最も大きくなり、良い結果が得られることが明らかになった。また、R01+Rth1が150〜240nmのとき、視野角(最小値)が40°より大きく、良い中間調特性が得られる液晶表示素子を実現できることが分かった。   Further, when the relationship between the minimum value (viewing angle (minimum value)) of viewing angle (CR = 10) and viewing angle (gradation inversion) and R01 + Rth1 is examined, it is as shown in FIG. It was. As described above, when R01 + Rth1 is 180 to 210 nm, the viewing angle (minimum value) is as large as 46 °, and it is clear that good results can be obtained. Further, it was found that when R01 + Rth1 is 150 to 240 nm, a viewing angle (minimum value) is larger than 40 °, and a liquid crystal display element capable of obtaining good halftone characteristics can be realized.

以上示した様に、本実施例に係る液晶表示素子においては、前側位相差板4のR01+Rth1の値は、150〜240nmが良いことが明らかになった。   As described above, in the liquid crystal display element according to this example, it has been clarified that the value of R01 + Rth1 of the front retardation plate 4 is preferably 150 to 240 nm.

R01+Rth1=210nm、即ちR01=45nm、Rth1=135nmのときの光漏れの値を図29(a)に、水平(観察方位0°)方向、第1の斜め(観察方位45°)方向、及び第2の斜め(観察方位135°)方向の各観察角度に対する輝度の関係を図29(b)、(c)及び(d)にそれぞれ示す。図24に示した前側位相差板4を導入していない場合と比較して、図29(a)に示す通り、黒表示の特性、即ち光漏れの少なさ、特に、第1の斜め(観察方位45°)方向及び第2の斜め(観察方位135°)方向の特性が改善していることが分かる。更に図29(c)及び(d)に示す通り、中間調の表示特性、即ち階調反転の起こりにくさを含む階調の滑らかさが改善していることが分かる。この様に当該液晶表示素子の視野角が広がっていることが分かる。   FIG. 29A shows light leakage values when R01 + Rth1 = 210 nm, that is, R01 = 45 nm and Rth1 = 135 nm. FIG. 29B, FIG. 29C, and FIG. 29D show the relationship of luminance with respect to each observation angle in the oblique direction (observation direction 135 °). Compared to the case where the front phase difference plate 4 shown in FIG. 24 is not introduced, as shown in FIG. 29A, the black display characteristics, that is, less light leakage, particularly the first oblique (observation) It can be seen that the characteristics in the direction of 45 ° (azimuth) and the second oblique direction (135 ° of observation direction) are improved. Further, as shown in FIGS. 29C and 29D, it can be seen that the display characteristics of halftone, that is, the smoothness of gradation including the difficulty of gradation inversion is improved. Thus, it can be seen that the viewing angle of the liquid crystal display element is widened.

以上の通り、本実施例では、以下の特性を有する前側位相差板4を導入した。即ち、前側位相差板4は、2軸延伸の位相差板である。そして、前側位相差板4は、液晶セル1と前側偏光板2の間に導入されており、面内方向の遅軸方向を前側偏光板2の前側偏光板透過軸2tの向きと一致させている。また、前側位相差板4のR01/Rth1=1/3の関係を有し、例えばR01+Rth1=180〜210nm等、R01+Rth1の値が150〜240nmである。以上の様な特性を有する前側位相差板4の導入の結果、黒表示の特性及び中間調表示の特性ともに改善し、視野角を広げることができた。   As described above, in this embodiment, the front phase difference plate 4 having the following characteristics is introduced. That is, the front phase difference plate 4 is a biaxially stretched phase difference plate. The front retardation plate 4 is introduced between the liquid crystal cell 1 and the front polarizing plate 2 so that the slow axis direction in the in-plane direction matches the direction of the front polarizing plate transmission axis 2 t of the front polarizing plate 2. Yes. The front phase difference plate 4 has a relationship of R01 / Rth1 = 1/3, and the value of R01 + Rth1 is 150 to 240 nm, for example, R01 + Rth1 = 180 to 210 nm. As a result of the introduction of the front retardation plate 4 having the above characteristics, both the black display characteristics and the halftone display characteristics were improved, and the viewing angle could be widened.

本実施例では、液晶セル1と前側偏光板2の間に前側位相差板4を導入したが、液晶セル1と後側偏光板3の間に以下の特性を有する後側位相差板を導入してもよい。即ち、当該後側位相差板は、2軸延伸の位相差板であり、面内方向の遅軸方向を後側偏光板3の後側偏光板透過軸3tの向きと一致させる。そして、面内位相差R02及び厚み方向位相差Rth2の和の値は、例えば180〜210nm等、150〜240nmとする。尚、Rth2の定義は、第1の実施形態の第2の実施例と同様である。この場合も、本実施例と同様の効果が得られる。   In this embodiment, the front retardation plate 4 is introduced between the liquid crystal cell 1 and the front polarizing plate 2, but a rear retardation plate having the following characteristics is introduced between the liquid crystal cell 1 and the rear polarizing plate 3. May be. That is, the rear retardation plate is a biaxially stretched retardation plate, and the slow axis direction in the in-plane direction is made to coincide with the direction of the rear polarizing plate transmission axis 3 t of the rear polarizing plate 3. The sum of the in-plane retardation R02 and the thickness direction retardation Rth2 is 150 to 240 nm, such as 180 to 210 nm. The definition of Rth2 is the same as that of the second example of the first embodiment. In this case, the same effect as in the present embodiment can be obtained.

[第2の実施形態の第3の実施例]
次に、第1の実施形態に係る液晶表示素子の第3の実施例について説明する。本実施例の説明では、前記第2の実施例との相違点について説明する。第2の実施例に係る液晶表示素子において、前側位相差板4は、2軸延伸の位相差板であり、面内方向で遅軸方向の屈折率をns1、速軸方向の屈折率をnf1とし、厚み方向の屈折率をnz1とすると、ns1>nf1>nz1の関係を有している。そして、遅軸方向を前側偏光板2の前側偏光板透過軸2tの向きと一致されており、R01/Rth1=1/3の関係を有している。これに対して、本実施例に係る液晶表示素子の前側位相差板4は、R01/Rth1=1/1の関係とした。その他の構成は、第2の実施例と同様である。
[Third example of the second embodiment]
Next, a third example of the liquid crystal display element according to the first embodiment will be described. In the description of the present embodiment, differences from the second embodiment will be described. In the liquid crystal display device according to the second embodiment, the front phase difference plate 4 is a biaxially stretched phase difference plate, and the refractive index in the slow axis direction is ns1 and the refractive index in the fast axis direction is nf1 in the in-plane direction. Assuming that the refractive index in the thickness direction is nz1, there is a relationship of ns1>nf1> nz1. The slow axis direction coincides with the direction of the front polarizing plate transmission axis 2t of the front polarizing plate 2 and has a relationship of R01 / Rth1 = 1/3. In contrast, the front phase difference plate 4 of the liquid crystal display element according to the present embodiment has a relationship of R01 / Rth1 = 1/1. Other configurations are the same as those of the second embodiment.

本実施例でも、前側位相差板4の最適な条件を決定するため、前側位相差板4の面内位相差R01と厚み方向位相差をRth1の値を、R01/Rth1=1/1の関係を維持して様々に変更し、表示特性を検討した。   Also in this embodiment, in order to determine the optimum condition of the front phase difference plate 4, the in-plane phase difference R01 and the thickness direction phase difference of the front side phase difference plate 4 are set to Rth1, and R01 / Rth1 = 1/1. The display characteristics were examined by making various changes while maintaining the above.

得られたRth1等と視野角(CR=10)の関係を、図30(a)に示す。横軸は、R01+Rth1を示している。この図に示す通り、当該液晶表示素子の水平(観察方位0°)方向における視野角(CR=10)の値は、R01+Rth1に関わらず80°以上であり良好であった。一方、当該液晶表示素子の第1の斜め(観察方位45°)方向における視野角(CR=10)の値、及び、当該液晶表示素子の第2の斜め(観察方位135°)方向における視野角(CR=10)の値は、ともにR01+Rth1=240nmのときに最大値をとり、その値はそれぞれ46°及び49°とする、R01+Rth1に依存するものであった。   The relationship between the obtained Rth1 and the like and the viewing angle (CR = 10) is shown in FIG. The horizontal axis represents R01 + Rth1. As shown in this figure, the viewing angle (CR = 10) in the horizontal (observation azimuth 0 °) direction of the liquid crystal display element was 80 ° or more and good regardless of R01 + Rth1. On the other hand, the value of the viewing angle (CR = 10) in the first oblique (observation direction 45 °) direction of the liquid crystal display element and the viewing angle in the second oblique (observation direction 135 °) direction of the liquid crystal display element. The values of (CR = 10) both depend on R01 + Rth1, which takes a maximum value when R01 + Rth1 = 240 nm, and the values are 46 ° and 49 °, respectively.

また、得られたRth1と視野角(階調反転)の関係を図30(b)に示す。この図に示す通り、当該液晶表示素子の水平(観察方位0°)方向における視野角(階調反転)の値は、R01+Rth1に関わらず65°で一定であった。一方、当該液晶表示素子の第1の斜め(観察方位45°)方向における視野角(階調反転)の値は、R01+Rth1に関わらずほぼ45°であった。また、当該液晶表示素子の第2の斜め(観察方位135°)方向における視野角(階調反転)の値は、R01+Rth1が210〜240nmのときに最大値51°をとる、R01+Rth1に依存するものであった。   Further, FIG. 30B shows the relationship between the obtained Rth1 and the viewing angle (gradation inversion). As shown in this figure, the viewing angle (gradation reversal) value in the horizontal (observation direction 0 °) direction of the liquid crystal display element was constant at 65 ° regardless of R01 + Rth1. On the other hand, the viewing angle (gradation inversion) in the first oblique direction (observation azimuth 45 °) of the liquid crystal display element was approximately 45 ° regardless of R01 + Rth1. In addition, the viewing angle (gradation reversal) value in the second oblique (observation direction 135 °) direction of the liquid crystal display element depends on R01 + Rth1, which takes a maximum value of 51 ° when R01 + Rth1 is 210 to 240 nm. Met.

また、視野角(CR=10)及び視野角(階調反転)のうち最小となる値(視野角(最小値))とR01+Rth1の関係を調べると、図30(c)の様になった。この様にR01+Rth1が210〜270nmのとき、視野角(最小値)が46°と最も大きくなり、良い結果が得られることが明らかになった。また、R01+Rth1が180〜270nmのとき、視野角(最小値)が40°より大きく、良い中間調特性が得られる液晶表示素子を実現できることが分かった。   Further, when the relationship between the minimum value (viewing angle (minimum value)) of viewing angle (CR = 10) and viewing angle (gradation inversion) and R01 + Rth1 is examined, it is as shown in FIG. 30 (c). As described above, when R01 + Rth1 is 210 to 270 nm, the viewing angle (minimum value) is 46 °, which is the largest, and it is clear that good results can be obtained. Further, it was found that when R01 + Rth1 is 180 to 270 nm, a viewing angle (minimum value) is larger than 40 °, and a liquid crystal display element having good halftone characteristics can be realized.

以上示した様に、本実施例に係る液晶表示素子においては、前側位相差板4のR01+Rth1の値は、180〜270nmが良いことが明らかになった。   As described above, in the liquid crystal display element according to this example, it has been clarified that the value of R01 + Rth1 of the front phase difference plate 4 is preferably 180 to 270 nm.

R01+Rth1=210nm、即ちR01=105nm、Rth1=105nmのときの光漏れの値を図31(a)に、水平(観察方位0°)方向、第1の斜め(観察方位45°)方向、及び第2の斜め(観察方位135°)方向の各観察角度に対する輝度の関係を図31(b)、(c)及び(d)にそれぞれ示す。図24に示した前側位相差板4を導入していない場合と比較して、図31(a)に示す通り、黒表示の特性、即ち光漏れの少なさ、特に第1の斜め(観察方位45°)方向及び第2の斜め(観察方位135°)方向の特性が改善していることが分かる。更に図31(c)及び(d)に示す通り、中間調の表示特性、即ち階調反転の起こりにくさを含む階調の滑らかさが改善していることが分かる。この様に当該液晶表示素子の視野角が広がっていることが分かる。   The light leakage values when R01 + Rth1 = 210 nm, that is, R01 = 105 nm and Rth1 = 105 nm are shown in FIG. 31A. The horizontal (observation azimuth 0 °) direction, the first oblique (observation azimuth 45 °) direction, and the first FIG. 31B, FIG. 31C, and FIG. 31D show the relationship of the luminance with respect to each observation angle in the oblique (observation direction 135 °) direction. Compared to the case where the front phase difference plate 4 shown in FIG. 24 is not introduced, as shown in FIG. 31A, the black display characteristics, that is, less light leakage, particularly the first oblique (observation direction) It can be seen that the characteristics in the (45 °) direction and the second oblique (observation azimuth 135 °) direction are improved. Furthermore, as shown in FIGS. 31C and 31D, it can be seen that the display characteristics of halftone, that is, the smoothness of gradation including the difficulty of gradation inversion is improved. Thus, it can be seen that the viewing angle of the liquid crystal display element is widened.

以上の通り、本実施例では以下の特性を有する前側位相差板4を導入した。即ち、前側位相差板4は、2軸延伸の位相差板である。そして、前側位相差板4は、液晶セル1と前側偏光板2の間に導入されており、面内方向の遅軸方向を前側偏光板2の前側偏光板透過軸2tの向きと一致させている。また、前側位相差板4のR01/Rth1=1/1の関係を有し、例えばR01+Rth1=180〜270nm等、R01+Rth1の値が150〜270nmである。以上の様な特性を有する前側位相差板4の導入の結果、黒表示の特性及び中間調表示の特性ともに改善し、視野角を広げることができた。   As described above, in this embodiment, the front phase difference plate 4 having the following characteristics is introduced. That is, the front phase difference plate 4 is a biaxially stretched phase difference plate. The front retardation plate 4 is introduced between the liquid crystal cell 1 and the front polarizing plate 2 so that the slow axis direction in the in-plane direction matches the direction of the front polarizing plate transmission axis 2 t of the front polarizing plate 2. Yes. Further, the front phase difference plate 4 has a relationship of R01 / Rth1 = 1/1, and the value of R01 + Rth1 is 150 to 270 nm, for example, R01 + Rth1 = 180 to 270 nm. As a result of the introduction of the front retardation plate 4 having the above characteristics, both the black display characteristics and the halftone display characteristics were improved, and the viewing angle could be widened.

本実施例では、液晶セル1と前側偏光板2の間に前側位相差板4を導入したが、液晶セル1と後側偏光板3の間に以下の特性を有する後側位相差板を導入してもよい。即ち、当該後側位相差板は、2軸延伸の位相差板であり、面内方向の遅軸方向を後側偏光板3の後側偏光板透過軸3tの向きと一致させる。そして、面内位相差R02及び厚み方向位相差Rth2の和の値は、例えば180〜270nm等、150〜270nmとする。この場合も、本実施例と同様の効果が得られる。   In this embodiment, the front retardation plate 4 is introduced between the liquid crystal cell 1 and the front polarizing plate 2, but a rear retardation plate having the following characteristics is introduced between the liquid crystal cell 1 and the rear polarizing plate 3. May be. That is, the rear retardation plate is a biaxially stretched retardation plate, and the slow axis direction in the in-plane direction is made to coincide with the direction of the rear polarizing plate transmission axis 3 t of the rear polarizing plate 3. The sum of the in-plane retardation R02 and the thickness direction retardation Rth2 is set to 150 to 270 nm, such as 180 to 270 nm. In this case, the same effect as in the present embodiment can be obtained.

[第2の実施形態の第4の実施例]
次に、第1の実施形態に係る液晶表示素子の第4の実施例について説明する。本実施例の説明では、前記第2の実施例との相違点について説明する。第2の実施例に係る液晶表示素子においては、液晶セル1と前側偏光板2の間に前側位相差板4を導入している。そして、前側位相差板4は、2軸延伸の位相差板であり、面内方向で遅軸方向の屈折率をns1、速軸方向の屈折率をnf1とし、厚み方向の屈折率をnz1とすると、ns1>nf1>nz1の関係を有し、遅軸方向を前側偏光板2の前側偏光板透過軸2tの向きと一致されており、R01/Rth1=1/3の関係を有している。これに対して、本実施例に係る液晶表示素子においては、前側位相差板4を2枚に分割することを考える。即ち、前側位相差板4に加えて、前側位相差板4と同様の特性を有する後側位相差板5を液晶セル1と後側偏光板3の間に挿入する。その他の構成は、第2の実施例と同様である。本実施例に係る液晶表示素子の断面の概略は図17に示した第1の実施形態の第4の実施例の場合と同様である。
[Fourth Example of Second Embodiment]
Next, a fourth example of the liquid crystal display element according to the first embodiment will be described. In the description of the present embodiment, differences from the second embodiment will be described. In the liquid crystal display element according to the second embodiment, a front retardation plate 4 is introduced between the liquid crystal cell 1 and the front polarizing plate 2. The front phase difference plate 4 is a biaxially stretched phase difference plate. In the in-plane direction, the refractive index in the slow axis direction is ns1, the refractive index in the fast axis direction is nf1, and the refractive index in the thickness direction is nz1. Then, it has a relationship of ns1>nf1> nz1, the slow axis direction coincides with the direction of the front polarizing plate transmission axis 2t of the front polarizing plate 2, and has a relationship of R01 / Rth1 = 1/3. . On the other hand, in the liquid crystal display element according to the present embodiment, it is considered that the front phase difference plate 4 is divided into two. That is, in addition to the front retardation plate 4, a rear retardation plate 5 having the same characteristics as the front retardation plate 4 is inserted between the liquid crystal cell 1 and the rear polarizing plate 3. Other configurations are the same as those of the second embodiment. The outline of the cross section of the liquid crystal display element according to this example is the same as that of the fourth example of the first embodiment shown in FIG.

また、本液晶表示素子の光学構成の分解平面図を図32に示す。この図に示す通り、前側位相差板4の遅軸4sの向きは、前側偏光板2の前側偏光板透過軸2tの向きと一致されており、前側位相差板4の速軸4fの向きは、前側偏光板2の前側偏光板吸収軸2aの向きと一致されている。また、後側位相差板5の遅軸5sの向きは、後側偏光板3の後側偏光板透過軸3tの向きと一致されており、後側位相差板5の速軸5fの向きは、後側偏光板3の後側偏光板吸収軸3aの向きと一致されている。   An exploded plan view of the optical configuration of the liquid crystal display element is shown in FIG. As shown in this figure, the direction of the slow axis 4s of the front phase difference plate 4 coincides with the direction of the front polarizing plate transmission axis 2t of the front side polarizing plate 2, and the direction of the fast axis 4f of the front side phase difference plate 4 is The direction of the front polarizing plate absorption axis 2a of the front polarizing plate 2 is the same. Further, the direction of the slow axis 5s of the rear retardation plate 5 is coincident with the direction of the rear polarizing plate transmission axis 3t of the rear polarizing plate 3, and the direction of the fast axis 5f of the rear retardation plate 5 is The direction of the rear polarizing plate absorption axis 3a of the rear polarizing plate 3 is matched.

本実施例でも、前側位相差板4及び後側位相差板5の最適な条件を決定するため、前側位相差板4の面内位相差R01と厚み方向位相差をRth1の値、及び後側位相差板5の面内位相差R02と厚み方向位相差をRth2の値を、R01/Rth1=R02/Rth2=1/3の関係を維持し、前側位相差板4及び後側位相差板5のR01=R02、Rth1=Rth2として様々に変更し、表示特性を検討した。尚、Rth2の定義は、第1の実施形態の第4の実施例と同様である。   Also in this embodiment, in order to determine the optimum conditions for the front retardation plate 4 and the rear retardation plate 5, the in-plane retardation R01 and the thickness direction retardation of the front retardation plate 4 are set to the Rth1 value and the rear retardation. The in-plane retardation R02 and the thickness direction retardation of the retardation film 5 are maintained as Rth2, and the relationship of R01 / Rth1 = R02 / Rth2 = 1/3 is maintained, and the front retardation film 4 and the rear retardation film 5 are maintained. R01 = R02 and Rth1 = Rth2 were variously changed, and display characteristics were examined. The definition of Rth2 is the same as that of the fourth example of the first embodiment.

得られたRth1等と視野角(CR=10)の関係を、図33(a)に示す。横軸は、R01+Rth1+R02+Rth2を示している。即ち、前側位相差板4のR01及びRth1並びに後側位相差板5のR02及びRth2の全ての和である。この図に示す通り、当該液晶表示素子の水平(観察方位0°)方向における視野角(CR=10)の値は、R01+Rth1+R02+Rth2に関わらず80°以上であり良好であった。一方、当該液晶表示素子の第1の斜め(観察方位45°)方向における視野角(CR=10)の値、及び当該液晶表示素子の第2の斜め(観察方位135°)方向における視野角(CR=10)の値は、R01+Rth1+R02+Rth2の増加とともに単調に増加するものであった。   The relationship between the obtained Rth1 and the like and the viewing angle (CR = 10) is shown in FIG. The horizontal axis represents R01 + Rth1 + R02 + Rth2. That is, it is the sum of all of R01 and Rth1 of the front retardation plate 4 and R02 and Rth2 of the rear retardation plate 5. As shown in this figure, the value of the viewing angle (CR = 10) in the horizontal (observation direction 0 °) direction of the liquid crystal display element was 80 ° or more and good regardless of R01 + Rth1 + R02 + Rth2. On the other hand, the value of the viewing angle (CR = 10) in the first oblique (observation azimuth 45 °) direction of the liquid crystal display element and the viewing angle in the second oblique (observation azimuth 135 °) direction of the liquid crystal display element ( The value of CR = 10) monotonically increased with an increase in R01 + Rth1 + R02 + Rth2.

また、得られたR01+Rth1+R02+Rth2と視野角(階調反転)の関係を図33(b)に示す。この図に示す通り、当該液晶表示素子の水平(観察方位0°)方向における視野角(階調反転)の値は、R01+Rth1+R02+Rth2に関わらず65°で一定であった。また、当該液晶表示素子の第1の斜め(観察方位45°)方向における視野角(階調反転)の値は、R01+Rth1+R02+Rth2に関わらずほぼ45°で一定であった。一方、当該液晶表示素子の第2の斜め(観察方位135°)方向における視野角(階調反転)の値は、R01+Rth1+R02+Rth2=210nmのときに最大値49°をとる、R01+Rth1+R02+Rth2に依存するものであった。   FIG. 33B shows the relationship between the obtained R01 + Rth1 + R02 + Rth2 and the viewing angle (gradation inversion). As shown in this figure, the viewing angle (gradation reversal) value in the horizontal (observation azimuth 0 °) direction of the liquid crystal display element was constant at 65 ° regardless of R01 + Rth1 + R02 + Rth2. In addition, the viewing angle (gradation reversal) value in the first oblique (observation direction 45 °) direction of the liquid crystal display element was substantially 45 ° regardless of R01 + Rth1 + R02 + Rth2. On the other hand, the viewing angle (gradation inversion) value in the second oblique direction (observation azimuth 135 °) of the liquid crystal display element depends on R01 + Rth1 + R02 + Rth2, which takes a maximum value of 49 ° when R01 + Rth1 + R02 + Rth2 = 210 nm. It was.

また、視野角(CR=10)及び視野角(階調反転)のうち最小となる値(視野角(最小値))とR01+Rth1+R02+Rth2の関係を調べると、図33(c)の様になった。この様にR01+Rth1+R02+Rth2が210〜240nmのとき、視野角(最小値)が45°と最も大きくなり、良い結果が得られることが明らかになった。また、R01+Rth1+R02+Rth2が180〜270nmのとき、視野角(最小値)が40°より大きく、良い中間調特性が得られる液晶表示素子を実現できることが分かった。   Further, when the relationship between the minimum value (viewing angle (minimum value)) of viewing angle (CR = 10) and viewing angle (gradation inversion) and R01 + Rth1 + R02 + Rth2 is examined, it is as shown in FIG. As described above, when R01 + Rth1 + R02 + Rth2 is 210 to 240 nm, the viewing angle (minimum value) is as large as 45 °, and it has been revealed that good results can be obtained. Further, it was found that when R01 + Rth1 + R02 + Rth2 is 180 to 270 nm, a viewing angle (minimum value) is larger than 40 °, and a liquid crystal display element capable of obtaining good halftone characteristics can be realized.

以上示した様に、本実施例に係る液晶表示素子においては、前側位相差板4のR01+Rth1+R02+Rth2の値は、180〜270nmが良いことが明らかになった。   As described above, in the liquid crystal display element according to this example, it has been clarified that the value of R01 + Rth1 + R02 + Rth2 of the front phase difference plate 4 is preferably 180 to 270 nm.

R01+Rth1+R02+Rth2=210nm、即ちR01=R02=26.25nm、Rth1=Rth2=78.75nmのときの光漏れの値を図34(a)に、水平(観察方位0°)方向、第1の斜め(観察方位45°)方向、及び第2の斜め(観察方位135°)方向の各観察角度に対する輝度の関係を図34(b)、(c)及び(d)にそれぞれ示す。図24に示した前側位相差板4を導入していない場合と比較して、図34(a)に示す通り、黒表示の特性、即ち光漏れの少なさ、特に第1の斜め(観察方位45°)方向及び第2の斜め(観察方位135°)方向の特性が改善していることが分かる。更に図34(c)及び(d)に示す通り、中間調の表示特性、即ち階調反転の起こりにくさを含む階調の滑らかさが改善していることが分かる。この様に当該液晶表示素子の視野角が広がっていることが分かる。   The light leakage values when R01 + Rth1 + R02 + Rth2 = 210 nm, that is, R01 = R02 = 26.25 nm, Rth1 = Rth2 = 78.75 nm are shown in FIG. 34A, in the horizontal (observation azimuth 0 °) direction, the first oblique (observation) 34 (b), (c), and (d) show the relationship of the luminance with respect to each observation angle in the direction (azimuth 45 °) and the second oblique (observation direction 135 °). Compared to the case where the front phase difference plate 4 shown in FIG. 24 is not introduced, as shown in FIG. 34A, the black display characteristics, that is, less light leakage, particularly the first oblique (observation direction) It can be seen that the characteristics in the (45 °) direction and the second oblique (observation azimuth 135 °) direction are improved. Further, as shown in FIGS. 34 (c) and 34 (d), it can be seen that the halftone display characteristics, that is, the smoothness of gradation including the difficulty of gradation inversion is improved. Thus, it can be seen that the viewing angle of the liquid crystal display element is widened.

以上の通り、本実施例では以下の特性を有する前側位相差板4及び後側位相差板5を導入した。即ち、前側位相差板4及び後側位相差板5は、2軸延伸の位相差板である。そして、前側位相差板4は、液晶セル1と前側偏光板2の間に導入されており、面内方向の遅軸方向を前側偏光板2の前側偏光板透過軸2tの向きと一致させている。また、後側位相差板5は、液晶セル1と後側偏光板3の間に導入されており、面内方向の遅軸方向を後側偏光板3の後側偏光板透過軸3tの向きと一致させている。そして、前側位相差板4及び後側位相差板5は、R01/Rth1=R02/Rth2=1/3の関係を有し、例えばR01+Rth1+R02+Rth2の値が210〜240nm等、R01+Rth1+R02+Rth2の値が180〜270nmである。以上の様な特性を有する前側位相差板4及び後側位相差板5の導入の結果、黒表示の特性及び中間調表示の特性ともに改善し、視野角を広げることができた。   As described above, in this embodiment, the front phase difference plate 4 and the rear phase difference plate 5 having the following characteristics are introduced. That is, the front side retardation plate 4 and the rear side retardation plate 5 are biaxially stretched retardation plates. The front retardation plate 4 is introduced between the liquid crystal cell 1 and the front polarizing plate 2 so that the slow axis direction in the in-plane direction matches the direction of the front polarizing plate transmission axis 2 t of the front polarizing plate 2. Yes. The rear retardation plate 5 is introduced between the liquid crystal cell 1 and the rear polarizing plate 3, and the slow axis direction in the in-plane direction is the direction of the rear polarizing plate transmission axis 3 t of the rear polarizing plate 3. To match. The front phase difference plate 4 and the rear phase difference plate 5 have a relation of R01 / Rth1 = R02 / Rth2 = 1/3. It is. As a result of the introduction of the front side retardation plate 4 and the rear side retardation plate 5 having the above characteristics, both the black display characteristics and the halftone display characteristics were improved, and the viewing angle could be widened.

以上に示した通り、本実施形態に依れば、VAモード型液晶表示装置において、下記の特性を有する1枚又は2枚の位相差板を導入することで、黒表示の特性、即ち光漏れの少なさ、及び中間調表示の特性、例えば階調反転の起こりにくさを含む階調の滑らかさ、ともに改善し、視野角を広げることができる。その位相差板の特性とは、厚み方向に負の位相差を有する位相差板、又は2軸延伸の位相差板であり、導入する全ての位相差板の、厚み方向位相差Rth及び面内位相差R0の和が例えば210nm等、180〜240nmである。そして、導入される場所は、液晶セル1と前側偏光板2の間や液晶セル1と後側偏光板3の間である。導入に際しては、面内方向の遅軸方向を、当該位相差板と近い方に配置された偏光板の透過軸の向きと一致させる。   As described above, according to the present embodiment, in the VA mode liquid crystal display device, by introducing one or two retardation plates having the following characteristics, black display characteristics, that is, light leakage, are obtained. And the smoothness of gradation including the difficulty of occurrence of gradation inversion, and the viewing angle can be widened. The characteristics of the retardation plate are a retardation plate having a negative retardation in the thickness direction, or a biaxially stretched retardation plate, and the thickness direction retardation Rth and in-plane of all the introduced retardation plates. The sum of the phase differences R0 is 180 to 240 nm, such as 210 nm. The place to be introduced is between the liquid crystal cell 1 and the front polarizing plate 2 or between the liquid crystal cell 1 and the rear polarizing plate 3. At the time of introduction, the slow axis direction in the in-plane direction is made to coincide with the direction of the transmission axis of the polarizing plate disposed closer to the retardation plate.

ここで、前記の様な効果を現す厚み方向位相差Rth及び面内位相差R0の和の範囲である180〜240nmは、当該液晶表示素子の液晶セル1のリタデーションΔn・dLCの値である360nmの50%〜67%であり、四捨五入すると50%〜70%である。   Here, the range of 180 to 240 nm which is the sum of the thickness direction retardation Rth and the in-plane retardation R0 exhibiting the above-described effects is 360 nm which is the value of retardation Δn · dLC of the liquid crystal cell 1 of the liquid crystal display element. Of 50% to 67%, and rounded off to 50% to 70%.

尚、本発明は前記実施形態、実施例及び変形例そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、前記実施形態、実施例及び変形例に開示されている複数の構成要素の適宜な組み合わせにより、種々の発明を形成できる。例えば、実施形態及び実施例に示される全構成要素から幾つかの構成要素を削除しても、発明が解決しようとする課題の欄で述べられた課題が解決でき、かつ、発明の効果が得られる場合には、この構成要素が削除された構成も発明として抽出され得る。さらに、異なる実施形態及び実施例にわたる構成要素を適宜組み合わせてもよい。   In addition, this invention is not limited to the said embodiment, an Example, and a modification example as it is, In the implementation stage, a component can be deform | transformed and embodied in the range which does not deviate from the summary. Moreover, various inventions can be formed by appropriately combining a plurality of constituent elements disclosed in the embodiment, examples, and modifications. For example, even if some constituent elements are deleted from all the constituent elements shown in the embodiments and examples, the problems described in the column of problems to be solved by the invention can be solved and the effects of the invention can be obtained. In such a case, a configuration in which this component is deleted can also be extracted as an invention. Furthermore, constituent elements over different embodiments and examples may be appropriately combined.

1…液晶セル、11…液晶層、111…液晶分子、12…リブ、13…前側基板、14…共通電極、15…後側基板、16…画素電極、2…前側偏光板、2t…前側偏光板透過軸、2a…前側偏光板吸収軸、3…後側偏光板、3t…後側偏光板透過軸、3a…後側偏光板吸収軸、4…前側位相差板、4s…遅軸、4f…速軸、5…後側位相差板、5s…遅軸、5f…速軸。   DESCRIPTION OF SYMBOLS 1 ... Liquid crystal cell, 11 ... Liquid crystal layer, 111 ... Liquid crystal molecule, 12 ... Rib, 13 ... Front substrate, 14 ... Common electrode, 15 ... Rear substrate, 16 ... Pixel electrode, 2 ... Front side polarizing plate, 2t ... Front side polarization Plate transmission axis, 2a ... front polarizing plate absorption axis, 3 ... rear polarizing plate, 3t ... rear polarizing plate transmission axis, 3a ... rear polarizing plate absorption axis, 4 ... front retardation plate, 4s ... slow axis, 4f ... fast axis, 5 ... rear retardation plate, 5s ... slow axis, 5f ... fast axis.

Claims (19)

それぞれ互いに対向する面に平面電極が形成された前側透明基板及び後側透明基板に狭持された液晶層を有する液晶セルと、
前記前側透明基板の前記液晶層が配されている面側に対して反対の面側に配設された前側偏光板と、
前記後側透明基板の前記液晶層が配されている面側に対して反対の面側に配設された後側偏光板と、
を具備し、
前記液晶セルは、前記平面電極間に電位差がないときは前記液晶層を形成する液晶分子が前記前側透明基板の前記平面電極が形成された面及び前記後側透明基板の前記平面電極が形成された面に対して垂直に配向する、垂直配向型液晶セルである液晶表示素子において、
前記前側偏光板の透過軸と前記後側偏光板の透過軸は直交しており、
前記前側偏光板と前記液晶セルの間に配設された前側位相差板、及び前記後側偏光板と前記液晶セルの間に配設された後側位相差板、のうち少なくとも何れか一方を更に具備し、
当該液晶表示素子が前記前側位相差板を具備するとき、該前側位相差板の屈折率が最大である一方向は前記前側偏光板の透過軸と平行であり、
当該液晶表示素子が前記後側位相差板を具備するとき、該後側位相差板の屈折率が最大である一方向は前記後側偏光板の透過軸と平行である、
ことを特徴とする液晶表示素子。
A liquid crystal cell having a liquid crystal layer sandwiched between a front transparent substrate and a rear transparent substrate on which planar electrodes are formed on surfaces facing each other;
A front polarizing plate disposed on the opposite surface side of the front transparent substrate on which the liquid crystal layer is disposed;
A rear polarizing plate disposed on the side opposite to the side on which the liquid crystal layer of the rear transparent substrate is disposed;
Comprising
In the liquid crystal cell, when there is no potential difference between the planar electrodes, the liquid crystal molecules forming the liquid crystal layer are formed on the surface of the front transparent substrate on which the planar electrode is formed and the planar electrode on the rear transparent substrate. In a liquid crystal display element which is a vertical alignment type liquid crystal cell, which is aligned perpendicular to the surface of
The transmission axis of the front polarizing plate and the transmission axis of the rear polarizing plate are orthogonal,
At least one of a front retardation plate disposed between the front polarizing plate and the liquid crystal cell, and a rear retardation plate disposed between the rear polarizing plate and the liquid crystal cell. In addition,
When the liquid crystal display element comprises the front retardation plate, one direction in which the refractive index of the front retardation plate is maximum is parallel to the transmission axis of the front polarizing plate,
When the liquid crystal display element comprises the rear retardation plate, one direction in which the refractive index of the rear retardation plate is maximum is parallel to the transmission axis of the rear polarizing plate,
The liquid crystal display element characterized by the above-mentioned.
前記液晶層の、
屈折率異方性をΔn、
厚さをdLC、
と定義し、
当該液晶表示素子が前記前側位相差板を具備するとき、該前側位相差板の、
厚さをd1、
面内方向の屈折率が最大である一方向の屈折率をns1、
前記屈折率がns1である一方向と直交する面内方向の屈折率をnf1、
厚み方向の屈折率をnz1、
と定義し、
当該液晶表示素子が前記前側位相差板を具備しないときは前記d1を0と定義し、
当該液晶表示素子が前記後側位相差板を具備するとき、該後側位相差板の、
厚さをd2、
面内方向の屈折率が最大である一方向の屈折率をns2、
前記屈折率がns2である一方向と直交する面内方向の屈折率をnf2、
厚み方向の屈折率をnz2、
と定義し、
当該液晶表示素子が前記後側位相差板を具備しないときは前記d2を0と定義し、
前記d1、前記ns1、前記nf1及び前記nz1を用いて、前記前側位相差板の厚み方向位相差Rth1及び面内位相差R01を、
Rth1=((ns1+nf1)/2−nz1)d1、
R01=(ns1−nf1)d1、
と定義し、
前記d2、前記ns2、前記nf2及び前記nz2を用いて、前記後側位相差板の厚み方向位相差Rth2及び面内位相差R02を、
Rth2=((ns2+nf2)/2−nz2)d2、
R02=(ns2−nf2)d2、
と定義したときに、
前記平面電極間に所定以上の電位差があるときは、
前記液晶分子が前記前側透明基板及び前記後側透明基板に対して傾斜して配向し、
該液晶分子の配向方向は、該液晶分子の配向方向の前記前側透明基板への投影方向と、前記前側偏光板の透過軸又は前記後側偏光板の透過軸との成す角が45°である4方向に規定されており、
前記Rth1、前記R01、前記Rth2及び前記R02の和が、Δn・dLCの値の40%以上70%以下である、
ことを特徴とする請求項1に記載の液晶表示素子。
Of the liquid crystal layer,
Refractive index anisotropy Δn,
Thickness dLC,
And define
When the liquid crystal display element comprises the front retardation plate, the front retardation plate,
The thickness is d1,
The refractive index in one direction where the refractive index in the in-plane direction is the maximum is ns1,
The refractive index in the in-plane direction perpendicular to the one direction in which the refractive index is ns1 is nf1,
The refractive index in the thickness direction is nz1,
And define
When the liquid crystal display element does not include the front retardation plate, d1 is defined as 0,
When the liquid crystal display element comprises the rear retardation plate, the rear retardation plate,
The thickness is d2,
The refractive index in one direction where the refractive index in the in-plane direction is the maximum is ns2,
The refractive index in the in-plane direction perpendicular to the one direction in which the refractive index is ns2 is nf2,
The refractive index in the thickness direction is nz2,
And define
When the liquid crystal display element does not include the rear retardation plate, d2 is defined as 0,
Using the d1, the ns1, the nf1, and the nz1, the thickness direction retardation Rth1 and the in-plane retardation R01 of the front retardation plate are obtained.
Rth1 = ((ns1 + nf1) / 2−nz1) d1,
R01 = (ns1-nf1) d1,
And define
Using the d2, the ns2, the nf2, and the nz2, the thickness direction retardation Rth2 and the in-plane retardation R02 of the rear retardation plate are obtained.
Rth2 = ((ns2 + nf2) / 2-nz2) d2,
R02 = (ns2-nf2) d2,
Defined as
When there is a predetermined potential difference or more between the planar electrodes,
The liquid crystal molecules are aligned with an inclination with respect to the front transparent substrate and the rear transparent substrate,
The alignment direction of the liquid crystal molecules is 45 ° formed by the projection direction of the alignment direction of the liquid crystal molecules onto the front transparent substrate and the transmission axis of the front polarizing plate or the transmission axis of the rear polarizing plate. It is defined in 4 directions,
The sum of Rth1, R01, Rth2 and R02 is not less than 40% and not more than 70% of the value of Δn · dLC.
The liquid crystal display element according to claim 1.
前記Δn・dLCの値は360nmであり、
前記Rth1、前記R01、前記Rth2及び前記R02の和が、150nm以上240nm以下である、
ことを特徴とする請求項2に記載の液晶表示素子。
The value of Δn · dLC is 360 nm,
The sum of Rth1, R01, Rth2, and R02 is 150 nm to 240 nm.
The liquid crystal display element according to claim 2.
前記Δn・dLCの値は360nmであり、
前記Rth1、前記R01、前記Rth2及び前記R02の和が、180nmであることを特徴とする請求項2に記載の液晶表示素子。
The value of Δn · dLC is 360 nm,
The liquid crystal display element according to claim 2, wherein the sum of Rth1, R01, Rth2, and R02 is 180 nm.
前記Δn・dLCの値は360nmであり、
前記Rth1、前記R01、前記Rth2及び前記R02の和が、240nmであることを特徴とする請求項2に記載の液晶表示素子。
The value of Δn · dLC is 360 nm,
The liquid crystal display element according to claim 2, wherein the sum of Rth1, R01, Rth2, and R02 is 240 nm.
前記前側位相差板と前記後側位相差板のうち、前記前側位相差板のみを具備する場合に、
前記ns1、前記nf1及び前記nz1は、ns1=nf1>nz1の関係を有する、
ことを特徴とする請求項1乃至請求項5のうち何れか1項に記載の液晶表示素子。
Of the front phase difference plate and the rear phase difference plate, when comprising only the front phase difference plate,
The ns1, the nf1, and the nz1 have a relationship of ns1 = nf1> nz1.
The liquid crystal display element according to claim 1, wherein the liquid crystal display element is a liquid crystal display element.
前記前側位相差板と前記後側位相差板のうち、前記前側位相差板のみを具備する場合に、
前記ns1、前記nf1及び前記nz1は、ns1>nf1>nz1の関係を有する、
ことを特徴とする請求項1乃至請求項5のうち何れか1項に記載の液晶表示素子。
Of the front phase difference plate and the rear phase difference plate, when comprising only the front phase difference plate,
The ns1, the nf1, and the nz1 have a relationship of ns1>nf1> nz1.
The liquid crystal display element according to claim 1, wherein the liquid crystal display element is a liquid crystal display element.
前記前側位相差板と前記後側位相差板とをともに具備する場合に、
前記ns1、前記nf1及び前記nz1は、ns1>nf1>nz1の関係を有し、
前記ns2、前記nf2及び前記nz2は、ns2>nf2>nz2の関係を有する、
ことを特徴とする請求項1乃至請求項5のうち何れか1項に記載の液晶表示素子。
When both the front retardation plate and the rear retardation plate are provided,
The ns1, the nf1, and the nz1 have a relationship of ns1>nf1> nz1,
The ns2, the nf2, and the nz2 have a relationship of ns2>nf2> nz2.
The liquid crystal display element according to claim 1, wherein the liquid crystal display element is a liquid crystal display element.
前記d1、前記ns1、前記nf1、前記nz1、前記d2、前記ns2、前記nf2及び前記nz2は、
d1=d2、
nz1=nz2、
ns1=ns2、
nf1=nf2、
の関係を有することを特徴とする請求項8に記載の液晶表示素子。
The d1, the ns1, the nf1, the nz1, the d2, the ns2, the nf2, and the nz2 are:
d1 = d2,
nz1 = nz2,
ns1 = ns2,
nf1 = nf2,
The liquid crystal display element according to claim 8, wherein:
前記液晶層の、
屈折率異方性をΔn、
厚さをdLC、
と定義し、
当該液晶表示素子が前記前側位相差板を具備するとき、該前側位相差板の、
厚さをd1、
面内方向の屈折率が最大である一方向の屈折率をns1、
前記屈折率がns1である一方向と直交する面内方向の屈折率をnf1、
厚み方向の屈折率をnz1、
と定義し、
当該液晶表示素子が前記前側位相差板を具備しないときは前記d1を0と定義し、
当該液晶表示素子が前記後側位相差板を具備するとき、該後側位相差板の、
厚さをd2、
面内方向の屈折率が最大である一方向の屈折率をns2、
前記屈折率がns2である一方向と直交する面内方向の屈折率をnf2、
厚み方向の屈折率をnz2、
と定義し、
当該液晶表示素子が前記後側位相差板を具備しないときは前記d2を0と定義し、
前記d1、前記ns1、前記nf1及び前記nz1を用いて、前記前側位相差板の厚み方向位相差Rth1及び面内位相差R01を、
Rth1=((ns1+nf1)/2−nz1)d1、
R01=(ns1−nf1)d1、
と定義し、
前記d2、前記ns2、前記nf2及び前記nz2を用いて、前記後側位相差板の厚み方向位相差Rth2及び面内位相差R02を、
Rth2=((ns2+nf2)/2−nz2)d2、
R02=(ns2−nf2)d2、
と定義したときに、
前記平面電極間に所定以上の電位差があるときは、
前記液晶分子が前記前側透明基板及び前記後側透明基板に対して傾斜して配向し、
該液晶分子の配向方向は、
該液晶分子の配向方向の前記前側透明基板への投影方向と、前記前側偏光板の透過軸との成す角が45°である第1の液晶配向方向と、
該液晶分子の配向方向の前記前側透明基板への投影方向と、前記第1の液晶配向方向の前記透明基板への投影方向との成す角が180°である第2の液晶配向方向と、
の2方向に規定されており、
前記Rth1、前記R01、前記Rth2及び前記R02の和が、Δn・dLCの値の50%以上70%以下である、
ことを特徴とする請求項1に記載の液晶表示素子。
Of the liquid crystal layer,
Refractive index anisotropy Δn,
Thickness dLC,
And define
When the liquid crystal display element comprises the front retardation plate, the front retardation plate,
The thickness is d1,
The refractive index in one direction where the refractive index in the in-plane direction is the maximum is ns1,
The refractive index in the in-plane direction perpendicular to the one direction in which the refractive index is ns1 is nf1,
The refractive index in the thickness direction is nz1,
And define
When the liquid crystal display element does not include the front retardation plate, d1 is defined as 0,
When the liquid crystal display element comprises the rear retardation plate, the rear retardation plate,
The thickness is d2,
The refractive index in one direction where the refractive index in the in-plane direction is the maximum is ns2,
The refractive index in the in-plane direction perpendicular to the one direction in which the refractive index is ns2 is nf2,
The refractive index in the thickness direction is nz2,
And define
When the liquid crystal display element does not include the rear retardation plate, d2 is defined as 0,
Using the d1, the ns1, the nf1, and the nz1, the thickness direction retardation Rth1 and the in-plane retardation R01 of the front retardation plate are obtained.
Rth1 = ((ns1 + nf1) / 2−nz1) d1,
R01 = (ns1-nf1) d1,
And define
Using the d2, the ns2, the nf2, and the nz2, the thickness direction retardation Rth2 and the in-plane retardation R02 of the rear retardation plate are obtained.
Rth2 = ((ns2 + nf2) / 2-nz2) d2,
R02 = (ns2-nf2) d2,
Defined as
When there is a predetermined potential difference or more between the planar electrodes,
The liquid crystal molecules are aligned with an inclination with respect to the front transparent substrate and the rear transparent substrate,
The alignment direction of the liquid crystal molecules is
A first liquid crystal alignment direction in which an angle formed by a projection direction of the alignment direction of the liquid crystal molecules on the front transparent substrate and a transmission axis of the front polarizing plate is 45 °;
A second liquid crystal alignment direction in which an angle formed by a projection direction of the alignment direction of the liquid crystal molecules on the front transparent substrate and a projection direction of the first liquid crystal alignment direction on the transparent substrate is 180 °;
In two directions,
The sum of Rth1, R01, Rth2, and R02 is 50% to 70% of the value of Δn · dLC.
The liquid crystal display element according to claim 1.
前記Δn・dLCの値は360nmであり、
前記Rth1、前記R01、前記Rth2及び前記R02の和が、180nm以上240nm以下である、
ことを特徴とする請求項10に記載の液晶表示素子。
The value of Δn · dLC is 360 nm,
The sum of Rth1, R01, Rth2, and R02 is 180 nm to 240 nm.
The liquid crystal display element according to claim 10.
前記Δn・dLCの値は360nmであり、
前記Rth1、前記R01、前記Rth2及び前記R02の和が、210nmであることを特徴とする請求項10に記載の液晶表示素子。
The value of Δn · dLC is 360 nm,
The liquid crystal display element according to claim 10, wherein the sum of Rth1, R01, Rth2, and R02 is 210 nm.
前記前側位相差板と前記後側位相差板のうち、前記前側位相差板のみを具備する場合に、
前記ns1、前記nf1及び前記nz1は、ns1=nf1>nz1の関係を有する、
ことを特徴とする請求項10乃至請求項12のうち何れか1項に記載の液晶表示素子。
Of the front phase difference plate and the rear phase difference plate, when comprising only the front phase difference plate,
The ns1, the nf1, and the nz1 have a relationship of ns1 = nf1> nz1.
The liquid crystal display element according to claim 10, wherein the liquid crystal display element is a liquid crystal display element.
前記前側位相差板と前記後側位相差板のうち、前記前側位相差板のみを具備する場合に、
前記ns1、前記nf1及び前記nz1は、ns1>nf1>nz1の関係を有する
ことを特徴とする請求項10乃至請求項12のうち何れか1項に記載の液晶表示素子。
Of the front phase difference plate and the rear phase difference plate, when comprising only the front phase difference plate,
The liquid crystal display element according to any one of claims 10 to 12, wherein the ns1, the nf1, and the nz1 have a relationship of ns1>nf1> nz1.
前記前側位相差板と前記後側位相差板とをともに具備する場合に、
前記ns1、前記nf1及び前記nz1は、ns1>nf1>nz1の関係を有し、
前記ns2、前記nf2及び前記nz2は、ns2>nf2>nz2の関係を有する、
ことを特徴とする請求項10乃至請求項12のうち何れか1項に記載の液晶表示素子。
When both the front retardation plate and the rear retardation plate are provided,
The ns1, the nf1, and the nz1 have a relationship of ns1>nf1> nz1,
The ns2, the nf2, and the nz2 have a relationship of ns2>nf2> nz2.
The liquid crystal display element according to claim 10, wherein the liquid crystal display element is a liquid crystal display element.
前記d1、前記ns1、前記nf1、前記nz1、前記d2、前記ns2、前記nf2及び前記nz2は、
d1=d2、
nz1=nz2、
ns1=ns2、
nf1=nf2、
の関係を有することを特徴とする請求項15に記載の液晶表示素子。
The d1, the ns1, the nf1, the nz1, the d2, the ns2, the nf2, and the nz2 are:
d1 = d2,
nz1 = nz2,
ns1 = ns2,
nf1 = nf2,
The liquid crystal display element according to claim 15, wherein:
互いに対向する面に平面電極が形成された一対の基板に狭持された液晶層を有する液晶セルと、
前記液晶セルを挟持する一対の偏光板と、
を具備し、
前記液晶セルは、前記平面電極間に電位差がないときは前記液晶層を形成する液晶分子が前記一対の基板の前記平面電極が形成された面に対して垂直に配向する、垂直配向型液晶セルである液晶表示素子において、
前記一対の偏光板を構成する第1の偏光板の透過軸と第2の偏光板の透過軸は直交しており、
前記一対の偏光板と前記液晶セルの間に配設された位相差板を更に具備し、
前記位相差板の屈折率が最大である一方向は前記位相差板に隣接する偏光板の透過軸と平行である、
ことを特徴とする液晶表示素子。
A liquid crystal cell having a liquid crystal layer sandwiched between a pair of substrates having planar electrodes formed on opposite surfaces;
A pair of polarizing plates sandwiching the liquid crystal cell;
Comprising
In the liquid crystal cell, when there is no potential difference between the planar electrodes, the liquid crystal molecules forming the liquid crystal layer are aligned perpendicularly to the surfaces of the pair of substrates on which the planar electrodes are formed. In the liquid crystal display element,
The transmission axis of the first polarizing plate and the transmission axis of the second polarizing plate constituting the pair of polarizing plates are orthogonal to each other,
Further comprising a retardation plate disposed between the pair of polarizing plates and the liquid crystal cell,
One direction in which the refractive index of the retardation plate is maximum is parallel to the transmission axis of the polarizing plate adjacent to the retardation plate.
The liquid crystal display element characterized by the above-mentioned.
前記液晶層の、
屈折率異方性をΔn、
厚さをdLC、
と定義し、
前記位相差板の、
厚さをd
面内方向の屈折率が最大である一方向の屈折率をns、
前記屈折率がnsである一方向と直交する面内方向の屈折率をnf、
厚み方向の屈折率をnz、
と定義し、
前記d、前記ns、前記nf及び前記nzを用いて、前記位相差板の厚み方向位相差Rth及び面内位相差R0を、
Rth=((ns+nf)/2−nz)d、
R0=(ns−nf)d、
と定義したときに、
前記平面電極間に所定以上の電位差があるときは、
前記液晶分子が前記一対の基板に対して傾斜して配向し、
該液晶分子の配向方向は、該液晶分子の配向方向の前記一対の基板への投影方向と、前記第1の偏光板の透過軸又は前記第2の偏光板の透過軸との成す角が45°である4方向に規定されており、
前記Rth、前記R0の総和が、Δn・dLCの値の40%以上70%以下である、
ことを特徴とする請求項17に記載の液晶表示素子。
Of the liquid crystal layer,
Refractive index anisotropy Δn,
Thickness dLC,
And define
Of the retardation plate,
Thickness d
The refractive index in one direction where the refractive index in the in-plane direction is the maximum is ns,
The refractive index in the in-plane direction perpendicular to one direction where the refractive index is ns is nf,
The refractive index in the thickness direction is nz,
And define
Using the d, the ns, the nf, and the nz, the thickness direction retardation Rth and the in-plane retardation R0 of the retardation plate,
Rth = ((ns + nf) / 2−nz) d,
R0 = (ns−nf) d,
Defined as
When there is a predetermined potential difference or more between the planar electrodes,
The liquid crystal molecules are aligned with an inclination with respect to the pair of substrates,
The alignment direction of the liquid crystal molecules is an angle formed by the projection direction of the alignment direction of the liquid crystal molecules onto the pair of substrates and the transmission axis of the first polarizing plate or the transmission axis of the second polarizing plate. It is defined in four directions that are °,
The sum of Rth and R0 is not less than 40% and not more than 70% of the value of Δn · dLC;
The liquid crystal display element according to claim 17.
前記液晶層の、
屈折率異方性をΔn、
厚さをdLC、
と定義し、
前記位相差板の、
厚さをd
面内方向の屈折率が最大である一方向の屈折率をns、
前記屈折率がnsである一方向と直交する面内方向の屈折率をnf、
厚み方向の屈折率をnz、
と定義し、
前記d、前記ns、前記nf及び前記nzを用いて、前記位相差板の厚み方向位相差Rth及び面内位相差R0を、
Rth=((ns+nf)/2−nz)d、
R0=(ns−nf)d、
と定義したときに、
前記平面電極間に所定以上の電位差があるときは、
前記液晶分子が前記一対の基板に対して傾斜して配向し、
該液晶分子の配向方向は、
該液晶分子の配向方向の前記一対の基板への投影方向と、前記第1の偏光板の透過軸との成す角が45°である第1の液晶配向方向と、
該液晶分子の配向方向の前記一対の基板への投影方向と、前記第1の液晶配向方向の前記一対の基板への投影方向との成す角が180°である第2の液晶配向方向と、
の2方向に規定されており、
前記Rth、前記R0の総和が、Δn・dLCの値の50%以上70%以下である、
ことを特徴とする請求項17に記載の液晶表示素子。
Of the liquid crystal layer,
Refractive index anisotropy Δn,
Thickness dLC,
And define
Of the retardation plate,
Thickness d
The refractive index in one direction where the refractive index in the in-plane direction is the maximum is ns,
The refractive index in the in-plane direction perpendicular to one direction where the refractive index is ns is nf,
The refractive index in the thickness direction is nz,
And define
Using the d, the ns, the nf, and the nz, the thickness direction retardation Rth and the in-plane retardation R0 of the retardation plate,
Rth = ((ns + nf) / 2−nz) d,
R0 = (ns−nf) d,
Defined as
When there is a predetermined potential difference or more between the planar electrodes,
The liquid crystal molecules are aligned with an inclination with respect to the pair of substrates,
The alignment direction of the liquid crystal molecules is
A first liquid crystal alignment direction in which an angle formed by a projection direction of the alignment direction of the liquid crystal molecules onto the pair of substrates and a transmission axis of the first polarizing plate is 45 °;
A second liquid crystal alignment direction in which an angle formed by the projection direction of the alignment direction of the liquid crystal molecules on the pair of substrates and the projection direction of the first liquid crystal alignment direction on the pair of substrates is 180 °;
In two directions,
The sum of Rth and R0 is not less than 50% and not more than 70% of the value of Δn · dLC;
The liquid crystal display element according to claim 17.
JP2010024530A 2010-02-05 2010-02-05 Liquid crystal display element Pending JP2011164209A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010024530A JP2011164209A (en) 2010-02-05 2010-02-05 Liquid crystal display element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010024530A JP2011164209A (en) 2010-02-05 2010-02-05 Liquid crystal display element

Publications (2)

Publication Number Publication Date
JP2011164209A true JP2011164209A (en) 2011-08-25
JP2011164209A5 JP2011164209A5 (en) 2012-05-17

Family

ID=44594991

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010024530A Pending JP2011164209A (en) 2010-02-05 2010-02-05 Liquid crystal display element

Country Status (1)

Country Link
JP (1) JP2011164209A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109752886A (en) * 2019-03-26 2019-05-14 深圳市华星光电技术有限公司 Liquid crystal display panel

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11133413A (en) * 1997-08-29 1999-05-21 Sharp Corp Liquid crystal display device
JP2000019518A (en) * 1997-09-25 2000-01-21 Sharp Corp Liquid crystal display device
JP2002303869A (en) * 2001-04-04 2002-10-18 Fujitsu Ltd Liquid crystal display
JP2003262872A (en) * 2002-03-08 2003-09-19 Sharp Corp Liquid crystal display device
JP2007286413A (en) * 2006-04-18 2007-11-01 Nec Lcd Technologies Ltd Liquid crystal display device and image display system
JP2009157007A (en) * 2007-12-26 2009-07-16 Nitto Denko Corp Liquid crystal display for va mode
JP2010009056A (en) * 2000-04-06 2010-01-14 Sharp Corp Viewing angle compensation film and liquid crystal display

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11133413A (en) * 1997-08-29 1999-05-21 Sharp Corp Liquid crystal display device
JP2000019518A (en) * 1997-09-25 2000-01-21 Sharp Corp Liquid crystal display device
JP2010009056A (en) * 2000-04-06 2010-01-14 Sharp Corp Viewing angle compensation film and liquid crystal display
JP2002303869A (en) * 2001-04-04 2002-10-18 Fujitsu Ltd Liquid crystal display
JP2003262872A (en) * 2002-03-08 2003-09-19 Sharp Corp Liquid crystal display device
JP2007286413A (en) * 2006-04-18 2007-11-01 Nec Lcd Technologies Ltd Liquid crystal display device and image display system
JP2009157007A (en) * 2007-12-26 2009-07-16 Nitto Denko Corp Liquid crystal display for va mode

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109752886A (en) * 2019-03-26 2019-05-14 深圳市华星光电技术有限公司 Liquid crystal display panel

Similar Documents

Publication Publication Date Title
JP3763401B2 (en) Liquid crystal display
US7489376B2 (en) Liquid crystal display device and electronic apparatus
CN1841155B (en) Liquid crystal display device
CN100478767C (en) Liquid crystal display device and electronic device
US7277140B2 (en) Image shifting device, image display, liquid crystal display, and projection image display
WO2010137377A1 (en) Liquid crystal display device
CN101241275B (en) Liquid crystal display device and electronic equipment
JP3900141B2 (en) Liquid crystal display device and electronic device
CN100380187C (en) Liquid crystal display device and electronic equipment
CN101013212A (en) Liquid crystal display device and electronic apparatus
US7995170B2 (en) Liquid crystal display device
JP4390595B2 (en) Liquid crystal display
CN100460962C (en) Liquid crystal display device and electronic equipment
JP2006091229A (en) Liquid crystal display
WO2010038507A1 (en) Liquid crystal display device
TW200422691A (en) Liquid crystal display device and electronic appliance
JP3597446B2 (en) Liquid crystal display
JP5552728B2 (en) Liquid crystal device, projector, optical compensation method for liquid crystal device, and retardation plate
JP4366985B2 (en) Liquid crystal display
US20140098328A1 (en) VA Display Mode Compensation Architecture and VA Display Mode Liquid Crystal Display Device
US20140098329A1 (en) VA Display Mode Compensation Architecture and VA Display Mode Liquid Crystal Display Device
JP2011164209A (en) Liquid crystal display element
JP2006337676A (en) Liquid crystal display element
JP2011112952A (en) Liquid crystal display element and optical compensation method thereof
JP2009031437A (en) Liquid crystal display panel

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120326

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120326

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130625

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131126