[go: up one dir, main page]

JP2011163209A - Differential pressure control valve and fuel flow rate control device - Google Patents

Differential pressure control valve and fuel flow rate control device Download PDF

Info

Publication number
JP2011163209A
JP2011163209A JP2010026675A JP2010026675A JP2011163209A JP 2011163209 A JP2011163209 A JP 2011163209A JP 2010026675 A JP2010026675 A JP 2010026675A JP 2010026675 A JP2010026675 A JP 2010026675A JP 2011163209 A JP2011163209 A JP 2011163209A
Authority
JP
Japan
Prior art keywords
pressure
piston
control valve
differential pressure
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010026675A
Other languages
Japanese (ja)
Other versions
JP5423456B2 (en
Inventor
Kenji Takamiya
健治 高宮
Akitoshi Masuda
精鋭 増田
Suguru Tsubomoto
卓 坪本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2010026675A priority Critical patent/JP5423456B2/en
Publication of JP2011163209A publication Critical patent/JP2011163209A/en
Application granted granted Critical
Publication of JP5423456B2 publication Critical patent/JP5423456B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Supply Devices, Intensifiers, Converters, And Telemotors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve the controllability of a fuel flow rate control device by preventing the generation of a fluid force or a fluid fixing force in a differential pressure control unit, in the fuel flow rate control device including the differential pressure control unit. <P>SOLUTION: The control valve 21 of the differential pressure section includes a control valve piston 23 formed with a large diameter portion and a small diameter portion. A through-hole penetrating the control valve piston is opened in the control valve piston. A flapper 24 having a diameter smaller than that of the through-hole is inserted into the through-hole. The opening degree of the through-hole is adjusted by the relative displacement between the flapper and the control valve piston. Discharge pressure from a fixed positive displacement fuel pump is applied to the small diameter pressure receiving surface of the small diameter portion. Pressure penetrating the through-hole and depressurized is applied to the large diameter pressure receiving surface of the large diameter portion. A pressure difference sensing piston and the flapper are connected to each other, and the control valve piston is displaced by following the displacement of the pressure difference sensing piston through the flapper. <P>COPYRIGHT: (C)2011,JPO&amp;INPIT

Description

本発明はジェットエンジン或はガスタービンへの燃料供給量を制御する差圧制御バルブ及び燃料流量制御装置に関するものである。   The present invention relates to a differential pressure control valve and a fuel flow rate control device for controlling a fuel supply amount to a jet engine or a gas turbine.

ジェットエンジンの燃料流量制御装置は、定容積型燃料ポンプ、差圧制御バルブ、計量バルブ等で構成されており、電子制御部からの計量バルブ開度指令通りに前記計量バルブの開度を制御し、燃料を計量している。   The fuel flow control device of a jet engine is composed of a constant displacement fuel pump, a differential pressure control valve, a metering valve, etc., and controls the opening of the metering valve according to a metering valve opening command from an electronic control unit. , Weigh the fuel.

前記定容積型燃料ポンプはエンジンの高圧系に直結・駆動され、エンジン回転数に比例した燃料流量を吐出する。前記計量バルブは電子制御部のフィードバック制御により、任意の開口面積に定められ、前記差圧制御バルブは、前記計量バルブの入口圧力と出口圧力間の計量バルブ差圧を常時一定に保つことで、前記計量バルブを通過する計量燃料が計量バルブ開度に常時比例する様になっている。   The constant displacement fuel pump is directly connected to and driven by a high pressure system of the engine, and discharges a fuel flow rate proportional to the engine speed. The metering valve is determined to have an arbitrary opening area by feedback control of an electronic control unit, and the differential pressure control valve constantly maintains the metering valve differential pressure between the inlet pressure and the outlet pressure of the metering valve, The metered fuel passing through the metering valve is always proportional to the metering valve opening.

ジェットエンジン用の従来の燃料流量制御装置として、例えば図7に示されるものがある。   An example of a conventional fuel flow control device for a jet engine is shown in FIG.

燃料流量制御装置1は、定容積型燃料ポンプ2、差圧制御部3、燃料加圧弁4、計量バルブ5、該計量バルブ5の開度を調整するフラップバルブ6等で構成されている。   The fuel flow control device 1 includes a constant displacement fuel pump 2, a differential pressure control unit 3, a fuel pressurization valve 4, a metering valve 5, a flap valve 6 for adjusting the opening of the metering valve 5, and the like.

前記定容積型燃料ポンプ2はエンジン回転数に比例した燃料流量を吐出し、吐出される燃料は入側圧力P1から吐出圧P2迄昇圧する。図示しない電子制御部からの開度指令により、前記フラップバルブ6が駆動され、該フラップバルブ6によって前記計量バルブ5の開度が調整され、前記定容積型燃料ポンプ2から吐出される燃料を計量している。   The constant displacement fuel pump 2 discharges a fuel flow rate proportional to the engine speed, and the discharged fuel is increased from the inlet pressure P1 to the discharge pressure P2. The flap valve 6 is driven by an opening command from an electronic control unit (not shown), the opening of the metering valve 5 is adjusted by the flap valve 6, and fuel discharged from the constant displacement fuel pump 2 is measured. is doing.

前記差圧制御部3は、差圧感知バルブ7及びバイパスバルブ8を有している。前記差圧感知バルブ7は定容積型燃料ポンプ2からの吐出圧P2と前記計量バルブ5で計量された後の計量圧P3との差圧を検出し、サーボ圧P4を前記バイパスバルブ8に伝達する。この時、計量圧P3は、前記計量バルブ5の開度により決定される。   The differential pressure control unit 3 includes a differential pressure sensing valve 7 and a bypass valve 8. The differential pressure sensing valve 7 detects the differential pressure between the discharge pressure P2 from the constant displacement fuel pump 2 and the measured pressure P3 measured by the metering valve 5, and transmits the servo pressure P4 to the bypass valve 8. To do. At this time, the metering pressure P3 is determined by the opening degree of the metering valve 5.

該バイパスバルブ8には前記吐出圧P2が作用しており、該吐出圧P2と前記サーボ圧P4の差圧によって前記バイパスバルブ8の開度が決定され、該バイパスバルブ8の開度に応じた流量で前記定容積型燃料ポンプ2からの吐出流量の一部が前記バイパスバルブ8を介して吐出圧P2の入側にバイパスして戻される。このことにより、前記計量バルブ5から前記燃料加圧弁4及びオリフィス9へ供給される燃料の量が増減する。即ち、前記バイパスバルブ8のバイパス燃料流量制御によって、前記計量バルブ5からの燃料供給流量が所定の量に制御され、流量制御された燃料は前記燃料加圧弁4及びオリフィス9を経てジェットエンジン(図示せず)に供給される。   The discharge pressure P2 acts on the bypass valve 8, and the opening degree of the bypass valve 8 is determined by the differential pressure between the discharge pressure P2 and the servo pressure P4, and according to the opening degree of the bypass valve 8. A part of the discharge flow rate from the constant displacement fuel pump 2 is bypassed and returned to the inlet side of the discharge pressure P2 through the bypass valve 8 at the flow rate. As a result, the amount of fuel supplied from the metering valve 5 to the fuel pressurizing valve 4 and the orifice 9 increases or decreases. That is, the fuel supply flow rate from the metering valve 5 is controlled to a predetermined amount by the bypass fuel flow rate control of the bypass valve 8, and the fuel whose flow rate is controlled passes through the fuel pressurization valve 4 and the orifice 9 to the jet engine (FIG. Not shown).

一方、前記差圧感知バルブ7に吐出圧P2を作用させた前記定容積型燃料ポンプ2からの燃料は、入側圧力P1迄減圧され前記定容積型燃料ポンプ2の入側に戻される。   On the other hand, the fuel from the constant displacement fuel pump 2 in which the discharge pressure P2 is applied to the differential pressure sensing valve 7 is reduced to the inlet pressure P1 and returned to the inlet side of the constant displacement fuel pump 2.

この為、前記差圧感知バルブ7には、高圧、即ち大きな差圧を持ち大流量の燃料が常時通過する。この大きな差圧から前記差圧感知バルブ7のピストンには流体力が作用し、若しくは流体力によってピストンが壁面に押付けられて固着する流体固着力が発生する虞れがある。   For this reason, a high pressure, that is, a large differential pressure and a large flow of fuel always pass through the differential pressure sensing valve 7. From this large differential pressure, there is a possibility that a fluid force acts on the piston of the differential pressure sensing valve 7 or a fluid adhering force that is fixed by pressing the piston against the wall surface by the fluid force.

この為、前記差圧感知バルブ7が正常に作用しない、或は応答遅れが発生する可能性がある。   For this reason, there is a possibility that the differential pressure sensing valve 7 does not operate normally or a response delay occurs.

特開平7−54672号公報JP-A-7-54672

本発明は斯かる実情に鑑み、差圧制御部を有する燃料流量制御装置に於いて、差圧制御部での流体力若しくは流体固着力の発生を防止し、燃料流量制御装置の制御性を向上させるものである。   In view of such circumstances, the present invention prevents the generation of fluid force or fluid adhering force in the differential pressure control unit and improves the controllability of the fuel flow control device in the fuel flow control device having the differential pressure control unit. It is something to be made.

本発明は、差圧感知ピストンに作用する圧力差を差圧感知ピストンの変位として出力する差圧感知バルブと、ピストンの変位で流量又はサーボ圧を制御する制御バルブとを具備し、該制御バルブは大径部と小径部を有し、大径部の大径受圧面に低圧が作用し、小径部の小径受圧面に高圧が作用する様構成された制御バルブピストンを有し、該制御バルブピストンには中心部を貫通し、小径受圧面と大径受圧面とを連通する通孔が穿設され、該通孔に該通孔より小径のフラッパが挿通され、該フラッパと前記制御バルブピストンとの相対変位で前記通孔の開孔度が調整される様にし、前記差圧感知ピストンと前記フラッパとを連結し、前記差圧感知ピストンの変位に前記フラッパを介して前記制御バルブピストンが追従して変位する様構成した差圧制御バルブに係るものである。   The present invention includes a differential pressure sensing valve that outputs a pressure difference acting on a differential pressure sensing piston as a displacement of the differential pressure sensing piston, and a control valve that controls a flow rate or servo pressure by the displacement of the piston. Has a control valve piston having a large diameter portion and a small diameter portion, a low pressure acting on the large diameter pressure receiving surface of the large diameter portion, and a high pressure acting on the small diameter pressure receiving surface of the small diameter portion, the control valve The piston has a through-hole penetrating through the center and communicating the small-diameter pressure receiving surface and the large-diameter pressure-receiving surface, and a flapper having a smaller diameter than the through-hole is inserted into the through-hole. The flapper and the control valve piston The differential pressure sensing piston and the flapper are connected to each other so that the degree of opening of the through hole is adjusted by relative displacement with the control valve piston via the flapper. Configured to follow and displace It relates to a pressure control valve.

又本発明は、差圧感知バルブのシリンダと制御バルブのシリンダが同一軸心上に配設され、両シリンダ間に高圧室が形成され、両シリンダの相対向する端部は前記高圧室に対して開口し、前記差圧感知ピストンには検知対象の流体圧が作用すると共に前記高圧室からの圧力が作用し、前記制御バルブピストンの小径受圧面には前記高圧室の圧力が作用すると共に大径受圧面には前記通孔を通過し、減圧された圧力が作用する様構成した差圧制御バルブに係るものである。   Further, according to the present invention, the cylinder of the differential pressure sensing valve and the cylinder of the control valve are disposed on the same axis, a high pressure chamber is formed between both cylinders, and opposite ends of both cylinders are opposed to the high pressure chamber. The fluid pressure to be detected acts on the differential pressure sensing piston and the pressure from the high pressure chamber acts, and the pressure of the high pressure chamber acts on the small diameter pressure receiving surface of the control valve piston. The radial pressure receiving surface relates to a differential pressure control valve configured to pass through the through hole and to apply a reduced pressure.

又本発明は、定容積型燃料ポンプからの吐出燃料の供給流量を計量する計量バルブと前記定容積型燃料ポンプからの吐出燃料を定容積型燃料ポンプの入側にバイパスするバイパスラインと、該バイパスラインに設けられた差圧制御部とを具備し、該差圧制御部は、差圧感知ピストンに作用する前記定容積型燃料ポンプからの吐出圧と前記計量バルブによる計量後の計量圧との圧力差を差圧感知ピストンの変位として出力する差圧感知バルブと、ピストンの変位でバイパスラインによる燃料戻し流量を制御する制御バルブとを具備し、該制御バルブは大径部と小径部が形成された制御バルブピストンを有し、該制御バルブピストンを貫通する通孔を穿設し、該通孔に該通孔より小径のフラッパが挿通され、該フラッパと前記制御バルブピストンとの相対変位で前記通孔の開孔度が調整される様にすると共に小径部の小径受圧面に前記定容積型燃料ポンプからの吐出圧が作用し、前記大径部の大径受圧面には前記通孔を通過し、減圧された圧力が作用する様構成し、前記差圧感知ピストンと前記フラッパとを連結し、前記差圧感知ピストンの変位に前記フラッパを介して前記制御バルブピストンが追従して変位する様構成した燃料流量制御装置に係るものである。   The present invention also provides a metering valve for measuring the supply flow rate of the discharged fuel from the constant displacement fuel pump, a bypass line for bypassing the discharged fuel from the constant displacement fuel pump to the inlet side of the constant displacement fuel pump, A differential pressure control unit provided in the bypass line, and the differential pressure control unit includes: a discharge pressure from the constant displacement fuel pump acting on a differential pressure sensing piston; a metering pressure after metering by the metering valve; A differential pressure sensing valve that outputs the pressure difference as a displacement of the differential pressure sensing piston, and a control valve that controls the fuel return flow rate by the bypass line by the displacement of the piston, the control valve having a large diameter portion and a small diameter portion. A control valve piston formed, a through hole penetrating the control valve piston is formed, and a flapper having a smaller diameter than the through hole is inserted into the through hole; the flapper and the control valve piston And the discharge pressure from the constant displacement fuel pump acts on the small diameter pressure receiving surface of the small diameter portion, and the large diameter pressure receiving surface of the large diameter portion is adjusted. Is configured so that a reduced pressure acts through the through-hole, and connects the differential pressure sensing piston and the flapper, and the control valve piston moves through the flapper to the displacement of the differential pressure sensing piston. The present invention relates to a fuel flow control device configured to follow and displace.

又本発明は、定容積型燃料ポンプからの吐出燃料の供給流量を計量する計量バルブと前記定容積型燃料ポンプからの吐出燃料を定容積型燃料ポンプの入側にバイパスするバイパスラインと、該バイパスラインに設けられた差圧制御部とを具備し、該差圧制御部は、差圧感知ピストンに作用する前記定容積型燃料ポンプからの吐出圧と前記計量バルブによる計量後の計量圧との圧力差を差圧感知ピストンの変位として出力する差圧感知バルブと、ピストンの変位でサーボ圧を制御する制御バルブと、サーボ圧により開度が制御され、バイパスする燃料流量を制御するバイパスバルブとを具備し、前記制御バルブは大径部と小径部が形成された制御バルブピストンを有し、該制御バルブピストンを貫通する通孔を穿設し、該通孔に該通孔より小径のフラッパが挿通され、該フラッパと前記制御バルブピストンとの相対変位で前記通孔の開孔度が調整される様にすると共に小径部の小径受圧面に前記定容積型燃料ポンプからの吐出圧が作用し、前記大径部の大径受圧面には前記通孔を通過し、減圧された圧力が作用する様構成し、前記差圧感知ピストンと前記フラッパとを連結し、前記差圧感知ピストンの変位に前記フラッパを介して前記制御バルブピストンが追従して変位する様構成した燃料流量制御装置に係るものである。   The present invention also provides a metering valve for measuring the supply flow rate of the discharged fuel from the constant displacement fuel pump, a bypass line for bypassing the discharged fuel from the constant displacement fuel pump to the inlet side of the constant displacement fuel pump, A differential pressure control unit provided in the bypass line, and the differential pressure control unit includes: a discharge pressure from the constant displacement fuel pump acting on a differential pressure sensing piston; a metering pressure after metering by the metering valve; A differential pressure sensing valve that outputs the pressure difference as a displacement of the differential pressure sensing piston, a control valve that controls the servo pressure by the displacement of the piston, and a bypass valve that controls the fuel flow to be bypassed by controlling the opening degree by the servo pressure The control valve has a control valve piston having a large diameter portion and a small diameter portion, and has a through hole penetrating the control valve piston, and the through hole has a smaller diameter than the through hole. A flapper is inserted, and the opening degree of the through hole is adjusted by relative displacement between the flapper and the control valve piston, and the discharge pressure from the constant displacement fuel pump is applied to the small diameter pressure receiving surface of the small diameter portion. The large pressure receiving surface of the large diameter portion passes through the through-hole and is configured so that a reduced pressure acts, and the differential pressure sensing piston and the flapper are connected, and the differential pressure sensing piston The fuel flow control device is configured such that the control valve piston is displaced following the displacement of the control valve via the flapper.

本発明によれば、差圧感知ピストンに作用する圧力差を差圧感知ピストンの変位として出力する差圧感知バルブと、ピストンの変位で流量又はサーボ圧を制御する制御バルブとを具備し、該制御バルブは大径部と小径部を有し、大径部の大径受圧面に低圧が作用し、小径部の小径受圧面に高圧が作用する様構成された制御バルブピストンを有し、該制御バルブピストンには中心部を貫通し、小径受圧面と大径受圧面とを連通する通孔が穿設され、該通孔に該通孔より小径のフラッパが挿通され、該フラッパと前記制御バルブピストンとの相対変位で前記通孔の開孔度が調整される様にし、前記差圧感知ピストンと前記フラッパとを連結し、前記差圧感知ピストンの変位に前記フラッパを介して前記制御バルブピストンが追従して変位する様構成したので、制御バルブに作用させる油圧は、燃料流量制御装置の最大差圧を使用することになり、流体力や流体固着力といった外力がかかっても大径部圧力の変化によりピストンを高速かつ十分な余力(フォース・マージン)をもって駆動することが可能であり、更に計量圧の微妙な変化を検知する差圧感知バルブには大きな差圧が作用しないので、流体力や流体固着力の発生を防止できる。   According to the present invention, there is provided a differential pressure sensing valve that outputs a pressure difference acting on the differential pressure sensing piston as a displacement of the differential pressure sensing piston, and a control valve that controls a flow rate or a servo pressure by the displacement of the piston, The control valve has a large-diameter portion and a small-diameter portion, and has a control-valve piston configured so that a low pressure acts on the large-diameter pressure receiving surface of the large-diameter portion and a high-pressure acts on the small-diameter pressure-receiving surface of the small diameter portion, The control valve piston has a through hole penetrating the center portion and communicating the small diameter pressure receiving surface and the large diameter pressure receiving surface, and a flapper having a smaller diameter than the through hole is inserted into the through hole. The opening degree of the through hole is adjusted by relative displacement with the valve piston, the differential pressure sensing piston and the flapper are connected, and the control valve is connected to the displacement of the differential pressure sensing piston via the flapper. A structure in which the piston follows and displaces Therefore, the hydraulic pressure that acts on the control valve uses the maximum differential pressure of the fuel flow control device, and even if an external force such as a fluid force or a fluid adhering force is applied, the piston is moved quickly and sufficiently by the change in the large-diameter pressure. It is possible to drive with a large margin (force margin), and furthermore, since a large differential pressure does not act on the differential pressure sensing valve that detects subtle changes in metering pressure, the generation of fluid force and fluid adhering force is prevented. it can.

又本発明によれば、定容積型燃料ポンプからの吐出燃料の供給流量を計量する計量バルブと前記定容積型燃料ポンプからの吐出燃料を定容積型燃料ポンプの入側にバイパスするバイパスラインと、該バイパスラインに設けられた差圧制御部とを具備し、該差圧制御部は、差圧感知ピストンに作用する前記定容積型燃料ポンプからの吐出圧と前記計量バルブによる計量後の計量圧との圧力差を差圧感知ピストンの変位として出力する差圧感知バルブと、ピストンの変位でバイパスラインによる燃料戻し流量を制御する制御バルブとを具備し、該制御バルブは大径部と小径部が形成された制御バルブピストンを有し、該制御バルブピストンを貫通する通孔を穿設し、該通孔に該通孔より小径のフラッパが挿通され、該フラッパと前記制御バルブピストンとの相対変位で前記通孔の開孔度が調整される様にすると共に小径部の小径受圧面に前記定容積型燃料ポンプからの吐出圧が作用し、前記大径部の大径受圧面には前記通孔を通過し、減圧された圧力が作用する様構成し、前記差圧感知ピストンと前記フラッパとを連結し、前記差圧感知ピストンの変位に前記フラッパを介して前記制御バルブピストンが追従して変位する様構成したので、制御バルブに作用させる油圧は、燃料流量制御装置の最大差圧を使用することになり、流体力や流体固着力といった外力がかかっても大径部圧力の変化によりピストンを高速かつ十分な余力(フォース・マージン)をもって駆動することが可能であり、更に計量圧の微妙な変化を検知する差圧感知バルブには大きな差圧が作用しないので、流体力や流体固着力の発生を防止できる。   According to the present invention, the metering valve for measuring the supply flow rate of the discharged fuel from the constant displacement fuel pump, the bypass line for bypassing the discharged fuel from the constant displacement fuel pump to the inlet side of the constant displacement fuel pump, And a differential pressure control unit provided in the bypass line, wherein the differential pressure control unit measures the discharge pressure from the constant volume fuel pump acting on the differential pressure sensing piston and the metering valve after metering. A differential pressure sensing valve that outputs a pressure difference from the pressure as a displacement of the differential pressure sensing piston, and a control valve that controls a fuel return flow rate by a bypass line by the displacement of the piston, the control valve having a large diameter portion and a small diameter A control valve piston having a portion formed therein, a through hole penetrating the control valve piston is formed, and a flapper having a smaller diameter than the through hole is inserted into the through hole. The degree of opening of the through hole is adjusted by relative displacement with the ton, and the discharge pressure from the constant displacement fuel pump acts on the small diameter pressure receiving surface of the small diameter portion, and the large diameter pressure receiving pressure of the large diameter portion The surface passes through the through-hole and is configured such that a reduced pressure is applied, the differential pressure sensing piston and the flapper are connected, and the control valve is connected to the displacement of the differential pressure sensing piston via the flapper. Since the piston is configured to follow and displace, the hydraulic pressure applied to the control valve uses the maximum differential pressure of the fuel flow control device, and even if an external force such as fluid force or fluid adhering force is applied, the large diameter part It is possible to drive the piston at a high speed with sufficient remaining force (force margin) due to the change in pressure, and since a large differential pressure does not act on the differential pressure sensing valve that detects subtle changes in the metering pressure, Physical fitness The occurrence of body fixing force can be prevented.

又本発明によれば、定容積型燃料ポンプからの吐出燃料の供給流量を計量する計量バルブと前記定容積型燃料ポンプからの吐出燃料を定容積型燃料ポンプの入側にバイパスするバイパスラインと、該バイパスラインに設けられた差圧制御部とを具備し、該差圧制御部は、差圧感知ピストンに作用する前記定容積型燃料ポンプからの吐出圧と前記計量バルブによる計量後の計量圧との圧力差を差圧感知ピストンの変位として出力する差圧感知バルブと、ピストンの変位でサーボ圧を制御する制御バルブと、サーボ圧により開度が制御され、バイパスする燃料流量を制御するバイパスバルブとを具備し、前記制御バルブは大径部と小径部が形成された制御バルブピストンを有し、該制御バルブピストンを貫通する通孔を穿設し、該通孔に該通孔より小径のフラッパが挿通され、該フラッパと前記制御バルブピストンとの相対変位で前記通孔の開孔度が調整される様にすると共に小径部の小径受圧面に前記定容積型燃料ポンプからの吐出圧が作用し、前記大径部の大径受圧面には前記通孔を通過し、減圧された圧力が作用する様構成し、前記差圧感知ピストンと前記フラッパとを連結し、前記差圧感知ピストンの変位に前記フラッパを介して前記制御バルブピストンが追従して変位する様構成したので、制御バルブに作用させる油圧は、燃料流量制御装置の最大差圧を使用することになり、流体力や流体固着力といった外力がかかっても大径部圧力の変化によりピストンを高速かつ十分な余力(フォース・マージン)をもって駆動することが可能であり、更に計量圧の微妙な変化を検知する差圧感知バルブには大きな差圧が作用しないので、流体力や流体固着力の発生を防止できるという優れた効果を発揮する。   According to the present invention, the metering valve for measuring the supply flow rate of the discharged fuel from the constant displacement fuel pump, the bypass line for bypassing the discharged fuel from the constant displacement fuel pump to the inlet side of the constant displacement fuel pump, And a differential pressure control unit provided in the bypass line, wherein the differential pressure control unit measures the discharge pressure from the constant volume fuel pump acting on the differential pressure sensing piston and the metering valve after metering. A differential pressure sensing valve that outputs the pressure difference from the pressure as a displacement of the differential pressure sensing piston, a control valve that controls the servo pressure by the displacement of the piston, and the opening degree is controlled by the servo pressure to control the fuel flow rate to bypass A bypass valve, the control valve having a control valve piston formed with a large diameter portion and a small diameter portion, a through hole penetrating the control valve piston is formed, and the through hole is connected to the through hole. A small-diameter flapper is inserted, and the opening degree of the through-hole is adjusted by relative displacement between the flapper and the control valve piston, and the small-diameter pressure receiving surface of the small-diameter portion discharges from the constant displacement fuel pump. Pressure is applied, the large diameter pressure receiving surface of the large diameter portion passes through the through hole, and the pressure reduced pressure is applied, the differential pressure sensing piston and the flapper are connected, and the differential pressure Since the control valve piston is configured to follow the displacement of the sensing piston via the flapper, the hydraulic pressure applied to the control valve uses the maximum differential pressure of the fuel flow control device, and the fluid force The piston can be driven at a high speed and with sufficient remaining force (force margin) by the change in the large-diameter pressure even when an external force such as a fluid adhering force is applied, and a subtle change in the metering pressure is detected. Since the difference between pressure sensing valve does not act a large differential pressure, there is exhibited an excellent effect that can prevent the occurrence of fluid force and the fluid fixing strength.

本発明の第1の実施例に係る燃料流量制御装置の概略構成図である。1 is a schematic configuration diagram of a fuel flow control device according to a first embodiment of the present invention. 該燃料流量制御装置の差圧制御部拡大図である。It is a differential pressure control part enlarged view of this fuel flow control device. (A)(B)は該燃料流量制御装置の差圧制御部拡大図で、計量圧が小さくなる様に変化した場合を示している。(A) and (B) are enlarged views of the differential pressure control unit of the fuel flow control device, showing a case where the metering pressure is changed to be small. (A)(B)は該燃料流量制御装置の差圧制御部拡大図で、計量圧が大きくなる様に変化した場合を示している。(A) and (B) are enlarged views of the differential pressure control unit of the fuel flow control device, showing a case where the metering pressure changes so as to increase. 本発明の第2の実施例に係る燃料流量制御装置の概略構成図である。It is a schematic block diagram of the fuel flow control apparatus which concerns on 2nd Example of this invention. (A)(B)は該燃料流量制御装置の差圧制御部拡大図である。(A) and (B) are enlarged views of a differential pressure control unit of the fuel flow control device. 従来の燃料流量制御装置の概略構成図である。It is a schematic block diagram of the conventional fuel flow control apparatus.

以下、図面を参照しつつ本発明の実施例を説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1、図2を参照して本発明の第1の実施例を説明する。尚、図1、図2中、図7と同等のものには同符号を付してある。   A first embodiment of the present invention will be described with reference to FIGS. In FIGS. 1 and 2, the same components as those in FIG.

定容積型燃料ポンプ2の吐出ライン15には、下流に向って計量バルブ5、燃料加圧弁4が設けられ、該燃料加圧弁4からの燃料供給ライン16にはオリフィス9が設けられ、前記燃料加圧弁4、前記オリフィス9を経てジェットエンジン(図示せず)に燃料が供給される様になっている。   The discharge line 15 of the constant displacement fuel pump 2 is provided with a metering valve 5 and a fuel pressurization valve 4 in the downstream direction, and a fuel supply line 16 from the fuel pressurization valve 4 is provided with an orifice 9. Fuel is supplied to the jet engine (not shown) through the pressurizing valve 4 and the orifice 9.

前記定容積型燃料ポンプ2の吐出側に連通し、更に該定容積型燃料ポンプ2の入側に連通するバイパスライン17が設けられ、該バイパスライン17に差圧制御部3が設けられる。又、前記燃料加圧弁4には前記燃料供給ライン16に連通したバイパス接続ライン18が接続され、前記燃料加圧弁4に背圧として入側圧力P1が作用する様になっている。   A bypass line 17 communicating with the discharge side of the constant displacement fuel pump 2 and further communicating with the inlet side of the constant displacement fuel pump 2 is provided, and the differential pressure control unit 3 is provided in the bypass line 17. A bypass connection line 18 communicating with the fuel supply line 16 is connected to the fuel pressurizing valve 4 so that an inlet side pressure P1 acts on the fuel pressurizing valve 4 as a back pressure.

前記差圧制御部3は、差圧感知バルブ20とサーボバルブを兼ねる制御バルブ21とによって構成され、前記差圧感知バルブ20のピストン22と前記制御バルブ21のピストン23とはフラッパ24によって機械的に連結されている。   The differential pressure control unit 3 includes a differential pressure sensing valve 20 and a control valve 21 that also serves as a servo valve. The piston 22 of the differential pressure sensing valve 20 and the piston 23 of the control valve 21 are mechanically coupled by a flapper 24. It is connected to.

前記差圧感知バルブ20には計量圧P3と吐出圧P2とが作用する様に、前記計量バルブ5と前記差圧感知バルブ20とが計量圧ライン25によって接続され、又吐出ライン15と差圧感知バルブ20とがバイパスライン17によって接続されている。該バイパスライン17の途中に前記制御バルブ21が設けられ、前記バイパスライン17から前記制御バルブ21を経て定容積型燃料ポンプ2入側に戻される燃料は、前記制御バルブ21を経ることで吐出圧P2から入側圧力P1に減圧する。   The metering valve 5 and the differential pressure sensing valve 20 are connected to each other by the metering pressure line 25 so that the metering pressure P3 and the discharge pressure P2 act on the differential pressure sensing valve 20, and the pressure difference between the discharge line 15 and the differential pressure sensing valve 20. The sensing valve 20 is connected by a bypass line 17. The control valve 21 is provided in the middle of the bypass line 17, and fuel returned from the bypass line 17 through the control valve 21 to the fixed displacement fuel pump 2 inlet side is discharged through the control valve 21. The pressure is reduced from P2 to the inlet pressure P1.

次に、前記差圧制御部3について、図2を参照して更に説明する。   Next, the differential pressure control unit 3 will be further described with reference to FIG.

前記差圧感知バルブ20のシリンダ室29にピストン22が摺動自在に設けられ、該ピストン22はスプリング28によって突出方向に付勢されている。前記シリンダ室29には計量圧ライン25が接続され、前記シリンダ室29には前記計量圧P3が作用する。   A piston 22 is slidably provided in a cylinder chamber 29 of the differential pressure sensing valve 20, and the piston 22 is urged in a protruding direction by a spring 28. A metering pressure line 25 is connected to the cylinder chamber 29, and the metering pressure P 3 acts on the cylinder chamber 29.

前記制御バルブ21のシリンダ室には、ピストン23が摺動自在に設けられている。該ピストン23は大径部23aと小径部23bからなる縦断面が凸形状となっており、前記大径部23aを挾んで両側に油圧室32,33が形成される様になっている。該油圧室32と油圧室33とは絞り34を介して連通しており、前記ピストン23の周面には凹部35が形成されている。前記大径部23aと前記小径部23bの面積比を、例えば2:1とする。   A piston 23 is slidably provided in the cylinder chamber of the control valve 21. The piston 23 has a convex shape in a longitudinal section composed of a large diameter portion 23a and a small diameter portion 23b, and hydraulic chambers 32 and 33 are formed on both sides of the large diameter portion 23a. The hydraulic chamber 32 and the hydraulic chamber 33 communicate with each other via a throttle 34, and a recess 35 is formed on the peripheral surface of the piston 23. The area ratio between the large diameter portion 23a and the small diameter portion 23b is, for example, 2: 1.

前記ピストン23の中心に通孔36が穿設され、該通孔36の先端には小径の絞り孔36aが設けられている。前記通孔36にフラッパ24が挿入され、該フラッパ24の先端と前記絞り孔36aとで可変絞り41が形成される。前記通孔36は後述する油圧室37に前記可変絞り41を介して連通する油路となっている。   A through hole 36 is formed at the center of the piston 23, and a small diameter throttle hole 36a is provided at the tip of the through hole 36. The flapper 24 is inserted into the through hole 36, and a variable throttle 41 is formed by the tip of the flapper 24 and the throttle hole 36a. The through hole 36 is an oil passage that communicates with a hydraulic chamber 37 described later via the variable throttle 41.

前記フラッパ24の一端(基端)は前記ピストン22に連結され、先端は拡大するテーパ形状を有する弁部24aとなっており、該弁部24aは前記ピストン23と前記フラッパ24の軸心方向の相対変位で、前記絞り孔36aとの間隙が変化し、絞りの開口度が変化する様になっている。尚、前記可変絞り41の開口面積は前記ピストン22と前記ピストン23とが釣合った状態では前記絞り34の開口面積と等しくなる様に設定されている。   One end (base end) of the flapper 24 is connected to the piston 22, and a distal end is a valve portion 24 a having a tapered shape. The valve portion 24 a is in the axial direction of the piston 23 and the flapper 24. By the relative displacement, the gap with the aperture hole 36a changes, and the aperture of the aperture changes. The opening area of the variable throttle 41 is set to be equal to the opening area of the diaphragm 34 when the piston 22 and the piston 23 are balanced.

尚、前記差圧感知バルブ20と前記制御バルブ21との間には油圧室37が形成される。   A hydraulic chamber 37 is formed between the differential pressure sensing valve 20 and the control valve 21.

高圧側の前記バイパスライン17は前記油圧室37に連通されると共に第1ポート38を介して前記凹部35に常時連通される。低圧側のバイパスライン17は第2ポート39を介して常時油圧室32に連通されると共に第3ポート40を介して前記凹部35に連通され、前記ピストン23の位置に応じ前記第3ポート40の開度が調整される様になっている。   The bypass line 17 on the high pressure side communicates with the hydraulic chamber 37 and always communicates with the recess 35 via the first port 38. The bypass line 17 on the low pressure side is always communicated with the hydraulic chamber 32 via the second port 39 and also communicated with the recess 35 via the third port 40, and the bypass port 17 of the third port 40 depends on the position of the piston 23. The opening is adjusted.

而して、前記第1ポート38、前記凹部35、前記第3ポート40を介して前記バイパスライン17が前記定容積型燃料ポンプ2の出側と入側を連通し、バイパスして戻される流量は前記ピストン23の位置によって調整される様になっている。   Thus, the bypass line 17 communicates the outlet side and the inlet side of the constant displacement fuel pump 2 via the first port 38, the recess 35, and the third port 40, and is returned by bypass. Is adjusted by the position of the piston 23.

以下、上記第1の実施例の作用について説明する。   The operation of the first embodiment will be described below.

前記差圧感知バルブ20について、前記ピストン22の位置は前記シリンダ室29の圧力(P3)と前記油圧室37の圧力(P2)との差圧と前記スプリング28の反力との釣合によって決定される。即ち、前記ピストン22の位置は前記計量圧P3と前記吐出圧P2との差圧、即ち前記計量バルブ5の計量状態によって決定される。   With respect to the differential pressure sensing valve 20, the position of the piston 22 is determined by the balance between the differential pressure between the pressure (P 3) of the cylinder chamber 29 and the pressure (P 2) of the hydraulic chamber 37 and the reaction force of the spring 28. Is done. That is, the position of the piston 22 is determined by the differential pressure between the metering pressure P3 and the discharge pressure P2, that is, the metering state of the metering valve 5.

前記ピストン22の位置は前記フラッパ24によって前記ピストン23によって伝達され、前記ピストン22の位置によって前記ピストン23の位置が決定される。該ピストン23の位置によって前記第3ポート40の開度が決定され、前記バイパスライン17による燃料の戻し流量が決定される。   The position of the piston 22 is transmitted by the piston 23 by the flapper 24, and the position of the piston 23 is determined by the position of the piston 22. The opening degree of the third port 40 is determined by the position of the piston 23, and the fuel return flow rate by the bypass line 17 is determined.

而して、前記計量バルブ5の計量作用が前記吐出ライン15に送出す流量の決定に反映される。   Thus, the metering action of the metering valve 5 is reflected in the determination of the flow rate delivered to the discharge line 15.

次に、前記制御バルブ21の作用について説明する。   Next, the operation of the control valve 21 will be described.

前記ピストン23の小径部23bの受圧面積と大径部23aの受圧面積とは1:2の関係にあるので、前記ピストン22と前記ピストン23との相対動が停止した状態で前記油圧室33の圧力P5は圧力P2とP1の略中間となる。即ち、前記絞り34の開口と前記絞り孔36aの開口が等しくなった時に前記ピストン23の変位は停止する。又、この位置が、前記絞り孔36aの開度のナル位置(中立位置)とする。   Since the pressure receiving area of the small diameter portion 23b of the piston 23 and the pressure receiving area of the large diameter portion 23a are in a 1: 2 relationship, the relative movement between the piston 22 and the piston 23 is stopped. The pressure P5 is substantially between the pressures P2 and P1. That is, the displacement of the piston 23 stops when the aperture of the aperture 34 becomes equal to the aperture of the aperture 36a. This position is the null position (neutral position) of the opening of the throttle hole 36a.

図2に示す中立の状態から、前記計量圧P3が前記吐出圧P2より小さくなり、図3(A)に示す様に、前記ピストン22が図中左方に変位し、又該ピストン22に追従して前記フラッパ24が左方に変位すると、前記可変絞り41の開口面積が増大し、その結果高圧の油が前記可変絞り41を経て前記油圧室33に流入し、該油圧室33の圧力P5を増大させる。該油圧室33の圧力が増大することで、前記ピストン23が左方に変位し、前記可変絞り41の開口面積が前記絞り34の開口面積と等しくなる位置で前記ピストン23が停止する(図3(B)参照)。又、前記ピストン23の左方への変位で、前記第3ポート40の開口面積が増大し、前記バイパスライン17への戻し量が増大する。即ち、燃料油の供給量が減少する。   From the neutral state shown in FIG. 2, the metering pressure P3 becomes smaller than the discharge pressure P2, and as shown in FIG. 3 (A), the piston 22 is displaced to the left in the figure and follows the piston 22. When the flapper 24 is displaced to the left, the opening area of the variable throttle 41 increases. As a result, high-pressure oil flows into the hydraulic chamber 33 through the variable throttle 41, and the pressure P5 in the hydraulic chamber 33 is increased. Increase. As the pressure in the hydraulic chamber 33 increases, the piston 23 is displaced to the left, and the piston 23 stops at a position where the opening area of the variable throttle 41 becomes equal to the opening area of the throttle 34 (FIG. 3). (See (B)). Further, the displacement of the piston 23 to the left increases the opening area of the third port 40 and increases the return amount to the bypass line 17. That is, the amount of fuel oil supplied decreases.

又、図2に示す中立の状態から、前記計量圧P3が前記吐出圧P2より大きくなり、図4(A)に示す様に、前記ピストン22が図中右方に変位し、又前記フラッパ24が右方に変位すると、前記可変絞り41の開口面積が減少し、その結果高圧の油の前記油圧室33への流入が前記可変絞り41によって一層絞られ、該油圧室33の圧力P5が低下する。該油圧室33の圧力が低下することで、前記ピストン23が右方に変位し、前記可変絞り41の開口面積が前記絞り34の開口面積と等しくなる位置で前記ピストン23が停止する(図4(B)参照)。又、前記ピストン23の右方への変位で、前記第3ポート40の開口面積が減少し、前記バイパスライン17への戻し量が減少する。即ち、燃料油の供給量が増大する。   Further, from the neutral state shown in FIG. 2, the metering pressure P3 becomes larger than the discharge pressure P2, the piston 22 is displaced to the right in the figure as shown in FIG. Is displaced to the right, the opening area of the variable throttle 41 decreases, and as a result, the flow of high-pressure oil into the hydraulic chamber 33 is further throttled by the variable throttle 41, and the pressure P5 in the hydraulic chamber 33 decreases. To do. As the pressure in the hydraulic chamber 33 decreases, the piston 23 is displaced to the right, and the piston 23 stops at a position where the opening area of the variable throttle 41 becomes equal to the opening area of the throttle 34 (FIG. 4). (See (B)). Further, the displacement of the piston 23 to the right decreases the opening area of the third port 40, and the amount of return to the bypass line 17 decreases. That is, the amount of fuel oil supplied increases.

前記フラッパ24の位置に追従して前記ピストン23が変位することで、前記第3ポート40の開度が調整され、燃料の戻し量が調整される。この時、前記フラッパ24の変位は前記ピストン22の変位によって決定され、前記ピストン22の変位は前記計量バルブ5の開度によって決定される前記計量圧P3と前記吐出圧P2との差圧により決定される。従って、前記計量バルブ5による計量作用が、燃料供給量に迅速に反映される。   The piston 23 is displaced following the position of the flapper 24, whereby the opening degree of the third port 40 is adjusted and the return amount of fuel is adjusted. At this time, the displacement of the flapper 24 is determined by the displacement of the piston 22, and the displacement of the piston 22 is determined by the differential pressure between the metering pressure P3 and the discharge pressure P2 determined by the opening of the metering valve 5. Is done. Therefore, the metering action by the metering valve 5 is quickly reflected in the fuel supply amount.

又、前記ピストン23に作用させる油圧は、吐出圧P2と入側圧力P1となり、燃料流量制御装置1の最大差圧を使用することになり、流体力や流体固着力といった外力がかかっても大径部23a圧力の変化によりピストン23を高速かつ十分な余力(フォース・マージン)をもって駆動することが可能である。   Further, the hydraulic pressure applied to the piston 23 becomes the discharge pressure P2 and the inlet pressure P1, and the maximum differential pressure of the fuel flow control device 1 is used, and even if an external force such as a fluid force or a fluid adhering force is applied. The piston 23 can be driven at a high speed and with a sufficient remaining force (force margin) by changing the pressure of the diameter portion 23a.

前記計量バルブ5の計量作用によって、前記ピストン22に作用する差圧は微妙に変化するが、この差圧を感知する差圧感知バルブ20の前記ピストン22に作用する圧力差は、吐出圧P2と計量圧P3との差圧であり、従来の吐出圧P2と入側圧力P1との差圧より小さく、流体力や流体固着力の発生は少ない。   The differential pressure acting on the piston 22 slightly changes due to the metering action of the metering valve 5, but the pressure difference acting on the piston 22 of the differential pressure sensing valve 20 that senses this differential pressure is different from the discharge pressure P2. It is a differential pressure with the metering pressure P3, which is smaller than the differential pressure between the conventional discharge pressure P2 and the inlet side pressure P1, and generates less fluid force and fluid adhering force.

従って、本実施例では、差圧感知弁は外乱を受けにくく、制御バルブ21は外力に強い構成となり、外力の影響を受け難い差圧制御部3、及び燃料流量制御装置1を構成することが可能である。   Therefore, in the present embodiment, the differential pressure sensing valve is less susceptible to disturbance, and the control valve 21 is configured to be resistant to external force, so that the differential pressure control unit 3 and the fuel flow control device 1 that are less susceptible to external force can be configured. Is possible.

尚、フラッパ24はリンク機構により適宜変位もしくは力の増幅をおこなうことが可能であり、又、前記大径部23a、小径部23bの面積比を適宜選択することで、所望のナル状態を設定できる。   The flapper 24 can be appropriately displaced or amplified by a link mechanism, and a desired null state can be set by appropriately selecting the area ratio of the large diameter portion 23a and the small diameter portion 23b. .

図5、図6により、第2の実施例を説明する。第2の実施例は、差圧制御部3を除き第1の実施例と同様な構成であり、図5、図6中、図1、図2、図7中で示したものと同等のものには同符号を付し、その説明を省略する。   The second embodiment will be described with reference to FIGS. The second embodiment has the same configuration as that of the first embodiment except for the differential pressure control unit 3, and is equivalent to that shown in FIGS. 5, 6, 1, 2, and 7. Are denoted by the same reference numerals, and the description thereof is omitted.

第2の実施例では、差圧制御部3に於いてバイパスバルブ42を独立して設けたものであり、バイパスライン17の途中に前記バイパスバルブ42が設けられ、該バイパスバルブ42の開度により、定容積型燃料ポンプ2で吐出される燃料がバイパスして戻される流量が調整される様になっている。   In the second embodiment, the bypass valve 42 is provided independently in the differential pressure control unit 3, and the bypass valve 42 is provided in the middle of the bypass line 17. The flow rate at which the fuel discharged from the constant volume fuel pump 2 is bypassed and returned is adjusted.

図6に於いて、制御バルブ21には入側ポートとして第4ポート43、第5ポート44が設けられ、出側ポートとして第2ポート39、第3ポート40が設けられている。前記第4ポート43にはバイパス接続ライン18が連通し、前記第4ポート43には低圧(入側圧力P1)の燃料が流入する様になっている。   In FIG. 6, the control valve 21 is provided with a fourth port 43 and a fifth port 44 as inlet ports, and a second port 39 and a third port 40 as outlet ports. The bypass connection line 18 communicates with the fourth port 43, and low-pressure (inlet pressure P1) fuel flows into the fourth port 43.

前記第5ポート44はバイパスライン17によって前記定容積型燃料ポンプ2の吐出側と連通され、前記第5ポート44には高圧(吐出圧P2)の燃料が流入する様になっている。   The fifth port 44 communicates with the discharge side of the constant displacement fuel pump 2 by the bypass line 17 so that high pressure (discharge pressure P2) fuel flows into the fifth port 44.

前記制御バルブ21のピストン23が中立位置にある状態(図6(A)参照)では、前記第4ポート43、第5ポート44を共に封止した状態となり、前記ピストン23が変位することで、前記第4ポート43、第5ポート44のいずれか一方が凹部35に連通する。   When the piston 23 of the control valve 21 is in a neutral position (see FIG. 6A), the fourth port 43 and the fifth port 44 are both sealed, and the piston 23 is displaced, One of the fourth port 43 and the fifth port 44 communicates with the recess 35.

前記第2ポート39は第2バイパス接続ライン45によってバイパスライン17に接続され、前記第2ポート39には低圧(入側圧力P1)が作用する様になっている。又、前記第3ポート40は常時前記凹部35に連通し、又、前記第3ポート40はサーボライン46によって前記バイパスバルブ42に接続され、前記サーボライン46を介して前記バイパスバルブ42にサーボ圧P4を作用させる様になっている。   The second port 39 is connected to the bypass line 17 by a second bypass connection line 45, and a low pressure (inlet pressure P1) acts on the second port 39. The third port 40 is always in communication with the recess 35, and the third port 40 is connected to the bypass valve 42 by a servo line 46. The servo pressure is applied to the bypass valve 42 via the servo line 46. P4 is made to act.

前記計量バルブ5によって計量流量が変化すると、この変化は計量圧P3の変化に現れ、シリンダ室29に作用する計量圧P3が変化する。この為、ピストン22の位置が変位し、フラッパ24が変位する。   When the metering flow rate is changed by the metering valve 5, this change appears in the change of the metering pressure P3, and the metering pressure P3 acting on the cylinder chamber 29 changes. For this reason, the position of the piston 22 is displaced, and the flapper 24 is displaced.

上記した様に、前記フラッパ24の変位によってフラッパ開度が変化し、該フラッパ開度がナル位置となる様に、前記ピストン23の位置が変位する。即ち、前記ピストン22の変位は前記フラッパ24を介して前記制御バルブ21の前記ピストン23に伝達される。   As described above, the flapper opening is changed by the displacement of the flapper 24, and the position of the piston 23 is displaced so that the flapper opening becomes the null position. That is, the displacement of the piston 22 is transmitted to the piston 23 of the control valve 21 through the flapper 24.

例えば、燃料の供給流量を減少させたい時は、前記計量バルブ5の開度を調節し計量圧P3を低圧側に変化させる。この時、計量圧P3と吐出圧P2との差圧による力を受けて前記ピストン22が図3中左方に変位し、前記フラッパ24を介して前記ピストン23が左方に変位する(図6(B)参照)。前記第4ポート43と前記凹部35とが連通して、前記第4ポート43には低圧の入側圧力P1が作用し、前記第3ポート40から出力されるサーボ圧P4が減少する。該サーボ圧P4が減少することで、前記バイパスバルブ42のピストンが左方に変位して開度を増大させ、燃料の戻し量が増大する。即ち、前記燃料供給ライン16からの燃料供給量が減少する。   For example, when it is desired to decrease the fuel supply flow rate, the opening of the metering valve 5 is adjusted to change the metering pressure P3 to the low pressure side. At this time, the piston 22 is displaced to the left in FIG. 3 under the force of the differential pressure between the metering pressure P3 and the discharge pressure P2, and the piston 23 is displaced to the left via the flapper 24 (FIG. 6). (See (B)). The fourth port 43 and the recess 35 communicate with each other so that a low pressure inlet pressure P1 acts on the fourth port 43, and the servo pressure P4 output from the third port 40 decreases. As the servo pressure P4 decreases, the piston of the bypass valve 42 is displaced leftward to increase the opening, and the amount of fuel returned increases. That is, the amount of fuel supplied from the fuel supply line 16 decreases.

上記第2の実施例に於いても、制御バルブ21の前記ピストン23に作用させる油圧は、吐出圧P2と入側圧力P1となり、燃料流量制御装置1の最大差圧を使用することになり、流体力や流体固着力といった外力の影響を受け難い。又、前記差圧感知バルブ20の前記ピストン22に作用する圧力差は、吐出圧P2と計量圧P3との差圧であり、従来の吐出圧P2と入側圧力P1との差圧より小さく、流体力や流体固着力の発生は少ない。   Also in the second embodiment, the hydraulic pressure applied to the piston 23 of the control valve 21 is the discharge pressure P2 and the inlet pressure P1, and the maximum differential pressure of the fuel flow control device 1 is used. Less susceptible to external forces such as fluid force and fluid adhering force. The pressure difference acting on the piston 22 of the differential pressure sensing valve 20 is a differential pressure between the discharge pressure P2 and the metering pressure P3, which is smaller than the differential pressure between the conventional discharge pressure P2 and the inlet pressure P1. There is little generation of fluid force or fluid adhering force.

従って、第2の実施例に於いても、差圧感知弁は外乱を受け難く、制御バルブ21は外力に強い構成となり、外力の影響を受け難い差圧制御部3、及び燃料流量制御装置1を構成することが可能である。   Therefore, also in the second embodiment, the differential pressure sensing valve is not easily affected by disturbance, and the control valve 21 is configured to be resistant to external force, and the differential pressure control unit 3 and the fuel flow rate control device 1 which are not easily affected by external force. Can be configured.

1 燃料流量制御装置
2 定容積型燃料ポンプ
3 差圧制御部
4 燃料加圧弁
5 計量バルブ
6 フラップバルブ
8 バイパスバルブ
15 吐出ライン
16 燃料供給ライン
17 バイパスライン
18 バイパス接続ライン
20 差圧感知バルブ
21 制御バルブ
24 フラッパ
24a 弁部
37 油圧室
45 第2バイパス接続ライン
P1 入側圧力
P2 吐出圧
P3 計量圧
P4 サーボ圧
DESCRIPTION OF SYMBOLS 1 Fuel flow control apparatus 2 Constant displacement type fuel pump 3 Differential pressure control part 4 Fuel pressurization valve 5 Metering valve 6 Flap valve 8 Bypass valve 15 Discharge line 16 Fuel supply line 17 Bypass line 18 Bypass connection line 20 Differential pressure sensing valve 21 Control Valve 24 Flapper 24a Valve part 37 Hydraulic chamber 45 Second bypass connection line P1 Inlet pressure P2 Discharge pressure P3 Metering pressure P4 Servo pressure

Claims (4)

差圧感知ピストンに作用する圧力差を差圧感知ピストンの変位として出力する差圧感知バルブと、ピストンの変位で流量又はサーボ圧を制御する制御バルブとを具備し、該制御バルブは大径部と小径部を有し、大径部の大径受圧面に低圧が作用し、小径部の小径受圧面に高圧が作用する様構成された制御バルブピストンを有し、該制御バルブピストンには中心部を貫通し、小径受圧面と大径受圧面とを連通する通孔が穿設され、該通孔に該通孔より小径のフラッパが挿通され、該フラッパと前記制御バルブピストンとの相対変位で前記通孔の開孔度が調整される様にし、前記差圧感知ピストンと前記フラッパとを連結し、前記差圧感知ピストンの変位に前記フラッパを介して前記制御バルブピストンが追従して変位する様構成したことを特徴とする差圧制御バルブ。   A differential pressure sensing valve that outputs a pressure difference acting on the differential pressure sensing piston as a displacement of the differential pressure sensing piston, and a control valve that controls the flow rate or servo pressure by the displacement of the piston, the control valve having a large diameter portion And a control valve piston that is configured so that a low pressure acts on the large diameter pressure receiving surface of the large diameter portion and a high pressure acts on the small diameter pressure receiving surface of the small diameter portion. A through-hole is formed through which the small-diameter pressure receiving surface communicates with the large-diameter pressure-receiving surface, and a flapper having a smaller diameter than the through-hole is inserted into the through-hole, and the relative displacement between the flapper and the control valve piston The degree of opening of the through hole is adjusted by connecting the differential pressure sensing piston and the flapper, and the control valve piston follows the displacement of the differential pressure sensing piston via the flapper. It is configured to do Differential pressure control valve to be. 差圧感知バルブのシリンダと制御バルブのシリンダが同一軸心上に配設され、両シリンダ間に高圧室が形成され、両シリンダの相対向する端部は前記高圧室に対して開口し、前記差圧感知ピストンには検知対象の流体圧が作用すると共に前記高圧室からの圧力が作用し、前記制御バルブピストンの小径受圧面には前記高圧室の圧力が作用すると共に大径受圧面には前記通孔を通過し、減圧された圧力が作用する様構成した請求項1の差圧制御バルブ。   The cylinder of the differential pressure sensing valve and the cylinder of the control valve are arranged on the same axis, a high pressure chamber is formed between both cylinders, opposite ends of both cylinders open to the high pressure chamber, The pressure of the detection target fluid pressure acts on the differential pressure sensing piston and the pressure from the high pressure chamber acts, the pressure of the high pressure chamber acts on the small diameter pressure receiving surface of the control valve piston and the large diameter pressure receiving surface. 2. The differential pressure control valve according to claim 1, wherein a pressure reduced pressure is applied through the through hole. 定容積型燃料ポンプからの吐出燃料の供給流量を計量する計量バルブと前記定容積型燃料ポンプからの吐出燃料を定容積型燃料ポンプの入側にバイパスするバイパスラインと、該バイパスラインに設けられた差圧制御部とを具備し、該差圧制御部は、差圧感知ピストンに作用する前記定容積型燃料ポンプからの吐出圧と前記計量バルブによる計量後の計量圧との圧力差を差圧感知ピストンの変位として出力する差圧感知バルブと、ピストンの変位でバイパスラインによる燃料戻し流量を制御する制御バルブとを具備し、該制御バルブは大径部と小径部が形成された制御バルブピストンを有し、該制御バルブピストンを貫通する通孔を穿設し、該通孔に該通孔より小径のフラッパが挿通され、該フラッパと前記制御バルブピストンとの相対変位で前記通孔の開孔度が調整される様にすると共に小径部の小径受圧面に前記定容積型燃料ポンプからの吐出圧が作用し、前記大径部の大径受圧面には前記通孔を通過し、減圧された圧力が作用する様構成し、前記差圧感知ピストンと前記フラッパとを連結し、前記差圧感知ピストンの変位に前記フラッパを介して前記制御バルブピストンが追従して変位する様構成したことを特徴とする燃料流量制御装置。   A metering valve for measuring the supply flow rate of the discharged fuel from the constant displacement fuel pump, a bypass line for bypassing the discharged fuel from the constant displacement fuel pump to the inlet side of the constant displacement fuel pump, and the bypass line A differential pressure control unit, and the differential pressure control unit provides a difference between a discharge pressure from the constant displacement fuel pump acting on the differential pressure sensing piston and a measured pressure after metering by the metering valve. A differential pressure sensing valve that outputs as a displacement of the pressure sensing piston, and a control valve that controls the fuel return flow rate by the bypass line by the displacement of the piston, the control valve having a large diameter portion and a small diameter portion A through-hole penetrating the control valve piston is provided, and a flapper having a smaller diameter than the through-hole is inserted into the through-hole. The relative displacement between the flapper and the control valve piston The opening degree of the through hole is adjusted, and the discharge pressure from the constant displacement fuel pump acts on the small diameter pressure receiving surface of the small diameter portion, and the through hole is formed on the large diameter pressure receiving surface of the large diameter portion. The differential pressure sensing piston and the flapper are connected, and the control valve piston follows the displacement of the differential pressure sensing piston via the flapper. A fuel flow control device configured to do so. 定容積型燃料ポンプからの吐出燃料の供給流量を計量する計量バルブと前記定容積型燃料ポンプからの吐出燃料を定容積型燃料ポンプの入側にバイパスするバイパスラインと、該バイパスラインに設けられた差圧制御部とを具備し、該差圧制御部は、差圧感知ピストンに作用する前記定容積型燃料ポンプからの吐出圧と前記計量バルブによる計量後の計量圧との圧力差を差圧感知ピストンの変位として出力する差圧感知バルブと、ピストンの変位でサーボ圧を制御する制御バルブと、サーボ圧により開度が制御され、バイパスする燃料流量を制御するバイパスバルブとを具備し、前記制御バルブは大径部と小径部が形成された制御バルブピストンを有し、該制御バルブピストンを貫通する通孔を穿設し、該通孔に該通孔より小径のフラッパが挿通され、該フラッパと前記制御バルブピストンとの相対変位で前記通孔の開孔度が調整される様にすると共に小径部の小径受圧面に前記定容積型燃料ポンプからの吐出圧が作用し、前記大径部の大径受圧面には前記通孔を通過し、減圧された圧力が作用する様構成し、前記差圧感知ピストンと前記フラッパとを連結し、前記差圧感知ピストンの変位に前記フラッパを介して前記制御バルブピストンが追従して変位する様構成したことを特徴とする燃料流量制御装置。   A metering valve for measuring the supply flow rate of the discharged fuel from the constant displacement fuel pump, a bypass line for bypassing the discharged fuel from the constant displacement fuel pump to the inlet side of the constant displacement fuel pump, and the bypass line A differential pressure control unit, and the differential pressure control unit provides a difference between a discharge pressure from the constant displacement fuel pump acting on the differential pressure sensing piston and a measured pressure after metering by the metering valve. A differential pressure sensing valve that outputs the displacement of the pressure sensing piston, a control valve that controls the servo pressure by the displacement of the piston, and a bypass valve that controls the fuel flow rate to be bypassed, the opening degree of which is controlled by the servo pressure, The control valve has a control valve piston having a large-diameter portion and a small-diameter portion, and has a through hole penetrating the control valve piston, and a flapper having a smaller diameter than the through-hole is formed in the through-hole. The opening degree of the through hole is adjusted by relative displacement between the flapper and the control valve piston, and the discharge pressure from the constant displacement fuel pump acts on the small diameter pressure receiving surface of the small diameter portion. The large-diameter pressure receiving surface of the large-diameter portion passes through the through-hole and is configured such that a reduced pressure acts, connects the differential pressure sensing piston and the flapper, and displaces the differential pressure sensing piston. Further, the fuel flow control device is configured such that the control valve piston is displaced following the flapper.
JP2010026675A 2010-02-09 2010-02-09 Differential pressure control valve and fuel flow control device Active JP5423456B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010026675A JP5423456B2 (en) 2010-02-09 2010-02-09 Differential pressure control valve and fuel flow control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010026675A JP5423456B2 (en) 2010-02-09 2010-02-09 Differential pressure control valve and fuel flow control device

Publications (2)

Publication Number Publication Date
JP2011163209A true JP2011163209A (en) 2011-08-25
JP5423456B2 JP5423456B2 (en) 2014-02-19

Family

ID=44594191

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010026675A Active JP5423456B2 (en) 2010-02-09 2010-02-09 Differential pressure control valve and fuel flow control device

Country Status (1)

Country Link
JP (1) JP5423456B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107084051A (en) * 2017-06-12 2017-08-22 西安成立航空制造有限公司 A kind of direct acting type fuel-metering device and its metering method
US11352959B2 (en) 2017-11-16 2022-06-07 Ihi Corporation Fuel supply control device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5461109U (en) * 1977-10-07 1979-04-27
JPS63285234A (en) * 1987-04-24 1988-11-22 ユナイテッド・テクノロジーズ・コーポレイション Fuel weighing valve
US5111653A (en) * 1990-04-11 1992-05-12 Woodward Governor Company Fuel delivery system with capacity monitor
JPH10121987A (en) * 1996-10-22 1998-05-12 Ishikawajima Harima Heavy Ind Co Ltd Fuel supply device
JP2001090579A (en) * 1999-09-22 2001-04-03 Ishikawajima Harima Heavy Ind Co Ltd Fuel flow control circuit
JP2003020958A (en) * 2001-07-09 2003-01-24 Ishikawajima Harima Heavy Ind Co Ltd Fuel flow control device
JP2003020959A (en) * 2001-07-09 2003-01-24 Ishikawajima Harima Heavy Ind Co Ltd Fuel flow control device with emergency deceleration function
JP2004150428A (en) * 2002-10-30 2004-05-27 Hispano Suiza Fuel metering unit with compensated regulator valve in turbomachine

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5461109U (en) * 1977-10-07 1979-04-27
JPS63285234A (en) * 1987-04-24 1988-11-22 ユナイテッド・テクノロジーズ・コーポレイション Fuel weighing valve
US5111653A (en) * 1990-04-11 1992-05-12 Woodward Governor Company Fuel delivery system with capacity monitor
JPH10121987A (en) * 1996-10-22 1998-05-12 Ishikawajima Harima Heavy Ind Co Ltd Fuel supply device
JP2001090579A (en) * 1999-09-22 2001-04-03 Ishikawajima Harima Heavy Ind Co Ltd Fuel flow control circuit
JP2003020958A (en) * 2001-07-09 2003-01-24 Ishikawajima Harima Heavy Ind Co Ltd Fuel flow control device
JP2003020959A (en) * 2001-07-09 2003-01-24 Ishikawajima Harima Heavy Ind Co Ltd Fuel flow control device with emergency deceleration function
JP2004150428A (en) * 2002-10-30 2004-05-27 Hispano Suiza Fuel metering unit with compensated regulator valve in turbomachine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107084051A (en) * 2017-06-12 2017-08-22 西安成立航空制造有限公司 A kind of direct acting type fuel-metering device and its metering method
US11352959B2 (en) 2017-11-16 2022-06-07 Ihi Corporation Fuel supply control device

Also Published As

Publication number Publication date
JP5423456B2 (en) 2014-02-19

Similar Documents

Publication Publication Date Title
JP4739529B2 (en) Control unit for at least two hydraulic consumers and differential pressure valve for the control unit
WO2000073664A1 (en) Pump capacity control device and valve device
US4132506A (en) Pressure and volume-flow control for variable pump
JP5462177B2 (en) Hydraulic valve device
JP2007505270A (en) Control apparatus and method for supplying pressure means to at least two fluid pressure consumers
EP1705435A3 (en) Constant flow rate expansion valve
JP5938187B2 (en) Flow rate addition system for controlling variable discharge hydraulic pump
CN101542134B (en) LS control arrangement
WO1993021447A1 (en) Control valve with pressure compensator valves
WO1991018211A1 (en) Control valve provided with pressure compensated valve
JPH04201616A (en) Pressure control valve for active suspension
JP5423456B2 (en) Differential pressure control valve and fuel flow control device
JPH1089304A (en) Hydraulic driving device
JP5493953B2 (en) Differential pressure sensing valve and fuel flow control device
JPS6059441B2 (en) Valve and workport compensator so that workport fluid is compensated
CN111396391B (en) A high-precision large-flow multi-way valve with disturbance compensation
US5326230A (en) Closed loop control circuit for variable hydraulic pump
JP2007032782A (en) Hydraulic driving device
JP2001003905A (en) Control device for fluid pressure actuator
JP3083152B2 (en) Hydraulic drive for construction machinery
JP2003004001A (en) Hydraulic control apparatus
JP5004665B2 (en) Piston pump hydraulic circuit
JP3320907B2 (en) Hydraulic pump flow control device
JP6924951B2 (en) Hydraulic drive
JP3240286B2 (en) Hydraulic system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131023

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131029

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131111

R151 Written notification of patent or utility model registration

Ref document number: 5423456

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250