[go: up one dir, main page]

JP2011160565A - スイッチング電源装置 - Google Patents

スイッチング電源装置 Download PDF

Info

Publication number
JP2011160565A
JP2011160565A JP2010020106A JP2010020106A JP2011160565A JP 2011160565 A JP2011160565 A JP 2011160565A JP 2010020106 A JP2010020106 A JP 2010020106A JP 2010020106 A JP2010020106 A JP 2010020106A JP 2011160565 A JP2011160565 A JP 2011160565A
Authority
JP
Japan
Prior art keywords
current
value
voltage
capacitor
power supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010020106A
Other languages
English (en)
Inventor
Toshiaki Ikuma
俊明 井熊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sinfonia Technology Co Ltd
Original Assignee
Sinfonia Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sinfonia Technology Co Ltd filed Critical Sinfonia Technology Co Ltd
Priority to JP2010020106A priority Critical patent/JP2011160565A/ja
Publication of JP2011160565A publication Critical patent/JP2011160565A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Dc-Dc Converters (AREA)

Abstract

【課題】負荷電流の動的な変動による、出力電圧の安定性及び応答性を向上させることができるスイッチング電源装置を提供すること。
【解決手段】第1の変流器51及び第2の変流器52により得られる各電流IL及びIoutの差分値であるフィードバック電流値Ifbが算出され、これが制御部6へフィードバックされる。各電流IL及びIoutは、負荷9の電流の変動に対応して変動するので、これらの差分値が算出されることにより、その変動に影響されないコンデンサ4の電流値Ic(差分値)を得ることができる。このように、負荷電流の変動に影響されないフィードバック電流値Ifbがフィードバックされることにより、制御部6による制御が安定化し、また、フィードバック電流値Ifbの変動が少ないことによりオーバーシュートも抑制されるので、制御の応答性も向上させることができる。
【選択図】図1

Description

本発明は、チョッパ回路により電力変換を行うスイッチング電源装置に関する。
直流電圧値を可変に制御して出力するために、チョッパ回路を用いたスイッチング電源装置がある。特許文献1では、例えば電気自動車等のバッテリを模擬したバッテリシミュレータ用の電源装置として、降圧チョッパ回路を搭載したスイッチング電源装置が開示されている。
この電源装置では、負荷電流の動的な変動に対応する電流変化を監視するために、リアクトルに流れる電流を検出する電流検出器が接続されている。また、出力電圧を監視するために、電圧検出器がコンデンサの両端に接続されている。この電源装置は、その出力電圧を一定に保つように入力電圧を制御するために、出力電圧値を自動電圧調整器(AVR)にフィードバックし、かつ、電流検出器により検出された電流値を、自動電流調整器(ACR)にフィードバックする。電流検出器は、上記した負荷電流の変動分に対応する電流の変動を刻々と検出するものである。したがって、この電源装置は、このような負荷電流の変動分に対応する電流を、その変動を補償するようにリアクトルを介してコンデンサに流し、コンデンサの両端の電圧を一定にすることで、出力電圧を一定に保つようにしている。
なお、2つのスイッチング素子が用いられるのは、力行動作及び回生動作の両方を実現するためである。
特開2000−295869号公報
しかしながら、フィードバックされるリアクトルに流れる検出電流値は負荷電流の変動分に対応するため、この負荷電流の変動が大きい場合、制御の安定性及び応答性、つまり、出力電圧の安定性及び応答性が悪くなるという問題がある。
コンデンサに流れる電流を直接検出することも考えられるが、インダクタンスが大きくなり、回路定数が変わってくるため問題があった。
以上のような事情に鑑み、本発明の目的は、負荷電流の動的な変動による、出力電圧の安定性及び応答性を向上させることができるスイッチング電源装置を提供することにある。
上記目的を達成するため、本発明の一形態に係るスイッチング電源装置は、チョッパ部と、リアクトルと、接続線と、コンデンサと、電流検出手段と、制御手段とを具備する。
前記リアクトル部は、前記チョッパ部の出力側に接続されている。
前記接続線は、前記リアクトルを負荷に接続することが可能である。
前記コンデンサは、前記接続線から分岐して前記負荷に並列に接続される。
前記電流検出手段は、前記コンデンサへの分岐前に前記接続線に流れる電流と、前記コンデンサへの前記分岐後に前記接続線に流れる電流との差分値を検出する。
前記制御手段は、少なくとも、前記電流検出手段により検出された前記差分値に基づき、前記負荷への出力電圧が一定となるように、前記チョッパ部を制御する。
コンデンサへの分岐前に接続線に流れる電流は、例えばリアクトルから出力される電流であり、分岐後に接続線に流れる電流は、例えば負荷への出力電流である。これら分岐前後に流れる電流は、負荷電流の変動に対応して変動するので、電流検出手段は、これらの差分を取ることにより、その変動に影響されない、コンデンサの電流値(差分値)を得ることができる。この差分値が制御手段へフィードバックされ、制御手段は、少なくともこの差分値に基づいて出力電圧が一定となるようにチョッパ部を制御する。このように、負荷電流の変動に影響されない差分値がフィードバックされることにより、制御手段による制御が安定化し、また、差分値の変動が少ないことによりオーバーシュートも抑えられるので、制御の応答性も向上させることができる。
また、本発明では、コンデンサに流れる電流を直接に検出せず、負荷への接続線において、コンデンサへの分岐前後の電流の差分値が検出されるので、回路のインダクタンスが大きくなるという問題を回避することができる。
前記コンデンサの両端の電圧値を検出する電圧検出手段をさらに具備してもよい。この場合、前記制御手段は、前記電流検出手段により検出された前記差分値及び前記電圧検出手段により検出された前記電圧値に基づき、前記負荷への出力電圧が一定となるように、前記チョッパ部を制御する。
電圧検出手段により検出されたコンデンサの両端の電圧が、制御手段にフィードバックされる。上記差分値及び電圧検出手段により検出されたコンデンサ両端の電圧値の両方に基づきチョッパ部が制御されるので、より高精度な制御を実現することができる。
前記制御手段は、電圧基準値を取り込み前記電圧基準値を微分する微分処理部と、前記電圧検出手段により検出された前記電圧値を前記電圧基準値に近づけるために比例積分処理を実行する比例積分処理部とを有してもよい。この場合、前記制御手段は、前記微分処理部から出力される出力値と、前記比例積分処理部から出力される出力値とを加算し、前記加算により得られた値を、前記コンデンサに対する電流指令値として出力し、前記電流検出手段により検出された前記差分値を前記電流指令値に近づけるように前記チョッパ部を制御する。
本発明では、制御手段は、比例積分処理部に加え、電圧基準値を微分する微分処理部を有する。比例積分処理部だけでは、制御の応答性が犠牲になるため、本発明では、微分処理部により電圧基準値が微分され、その値が比成績分制御器から出力される出力値と加算されることにより、電圧基準値に対する応答性の高い電流指令値を得ることができる。
以上、本発明によれば、負荷電流の動的な変動による、出力電圧の安定性及び応答性を向上させることができる。
本発明の第1の実施形態に係るスイッチング電源装置を示す図である。 力行時のスイッチング電源装置の動作であって、コンデンサに充電されるときの電流ループを示す図である。 力行時のスイッチング電源装置の動作であって、コンデンサが放電されるときの電流ループを示す図である。 負荷への出力電流値、コンデンサの電流値及び電圧指令値を示す波形である。 第1の実施形態に係るスイッチング電源装置の各部位の電流及び電圧のシミュレーションの波形図である。 リアクトル電流値がフィードバックされるときの各部位の電流及び電圧のシミュレーションの波形図である。 本発明の第2の実施形態に係るスイッチング電源装置を示す図である。
以下、図面を参照しながら、本発明の実施形態を説明する。
[第1の実施形態]
図1は、本発明の第1の実施形態に係るスイッチング電源装置を示す図である。
このスイッチング電源装置100は、例えば電気自動車に搭載されるバッテリユニットを模擬したバッテリシミュレータ(バッテリエミュレータ)である。あるいは、スイッチング電源装置100は、電気自動車に実際に搭載される製品としてのスイッチング電源装置100であってもよい。
スイッチング電源装置100は、入力コンデンサ2、チョッパ部1、リアクトル3、コンデンサ4、電圧検出器8、電流検出部5及び制御部6を含む。
チョッパ部1は、トランジスタによる2つのスイッチング素子11及び12を含む。これらの2つのスイッチング素子11及び12には、ダイオード13及び14が逆方向でそれぞれ並列に接続されている。スイッチング素子11及び12は、典型的にはIGBT(Insulated Gate Bipolar Transistor)素子が用いられるが、これに限られず、FET(Field Effect Transistor)が用いられてもよい。
なお、スイッチング電源装置100が2つのスイッチング素子11及び12を備えるのは、力行及び回生の動作の両方を実行するためである。
入力コンデンサ2の両端には、図示しない商用電源等の一次電源が接続される。リアクトル3の一端は、チョッパ部1の出力側に接続され、リアクトル3の他端には接続線7を介して負荷9を接続することが可能となっている。コンデンサ4は、バッテリ(二次電池)を模擬したものであり、接続線7から分岐して負荷9に並列に接続される。負荷9としては、典型的には供試体としてのインバータが用いられる。
リアクトル3及びコンデンサ4は、チョッパ部1の出力を平滑化する平滑フィルタの機能を有する。チョッパ部1、リアクトル3及びコンデンサ4により降圧チョッパ回路が構成される。
電流検出部5は、接続線7からコンデンサ4へ分岐する前の電流(つまりリアクトル3の電流IL)を検出する第1の変流器51と、その分岐後の電流である負荷への出力電流Ioutを検出する第2の変流器52とを有する。電流検出部5は、これら第1の変流器51及び第2の変流器52で検出された各電流値IL及びIoutの差分値(フィードバック電流値Ifb)を算出する。電流検出部5は、算出した差分値を制御部6へ出力する。
なお、第2の変流器52で検出される電流値は、力行時においては、このスイッチング電源装置100から負荷9への出力電流Ioutとなるが、回生時においては負荷9からスイッチング電源装置100への入力電流となる。
電圧検出器8は、コンデンサ4の両端の電圧値(フィードバック電圧値Vfb)を検出する電圧検出器8を備えている。
制御部6は、電流検出部5で検出されたフィードバック電流値Ifb、及び、電圧検出器8により検出されたコンデンサ4の両端の電圧値Vfbに基づき、負荷9への出力電圧Voutが一定となるようにチョッパ部1を制御するものである。
具体的には、制御部6は、AVR(Automatic Voltage Regulator)61、ACR(Automatic Current Regulator)62及びPWM(Pulse Width Modulation)制御部63を有し、フィードバック電圧値Vfbを取り込む。また、制御部6は、例えば図示しないブロックで生成された電圧基準値Vrefを取り込む。
AVR61は、フィードバック電圧値Vfbを電圧基準値Vrefに近づけるための電流指令値Irefを生成し、これを出力する。ACR62は、上記電流検出部5から出力された上記フィードバック電流値Ifbをその電流指令値Irefに近づけるための電圧指令値VDrefを生成し、これを出力する。
PWM制御部63には、ACR62から出力された電圧指令値VDrefが入力され、PWM制御部63は、この電圧指令値VDrefに基づいて、2つのスイッチング素子11及び12に加えられるゲート信号をそれぞれ制御する。
以上のように構成されたスイッチング電源装置100の動作を説明する。図2及び図3は、その動作を説明するための図である。太線の矢印は、電流のループを示している。
まず、チョッパ部1のチョッパ出力を得るために、スイッチング素子11がONとされ、スイッチング素子12がOFFとされる。これにより、負荷9に電圧及び電流が印加され、負荷9により電力が消費される。
次に、図3に示すようにスイッチング素子11がOFFとされ、スイッチング素子12がONとされる。これにより、図2に示した動作時にコンデンサ4に充電された電荷が放電される。
なお、力行時においてスイッチング素子12がONとされる。これは、スイッチング素子11及び12を交互にONとする制御が実行されているからであり、チョッパ回路の原理では、コンデンサ4に充電された電荷が放電されるためには、必ずしもスイッチング素子12がONである必要はない。
回生時においても、力行時と同様に、スイッチング素子11及び12は、交互にONとなるようにスイッチングされる。スイッチング素子11がONのときも、スイッチング素子12がONのときも、負荷9からスイッチング電源装置100側へ電力が供給される。
次に、スイッチング電源装置100の制御部6の動作について説明する。
制御部6は、AVR61により、フィードバック電圧値Vfbを電圧基準値Vrefに近づけるための電流指令値Irefを生成する。制御部6は、ACR62により、フィードバック電流値Ifbを電流指令値Irefに近づけるように、PWM制御部63への電圧指令値VDrefを生成する。そして、PWM制御部63は、その電圧指令値VDrefに基づき、2つのスイッチング素子11及び12を制御する。
すなわち、制御部6は、電流検出部5で検出された上記差分値、及び、フィードバック電圧値Vfbに基づき、負荷9への出力電圧Voutが一定となるようにチョッパ部1を制御する。
図4(A)は、第2の変流器52で検出される負荷9への出力電流Ioutと、コンデンサ4の電流値Icを示している。例えば力行動作時においては、図4(A)の出力電流Ioutに示すように、負荷9での消費電力分の電流が増加する。このとき、出力電流Ioutの増加分だけ、図4(A)のようにIcが減る、つまりコンデンサ4が放電する。制御部6は、コンデンサ4の電圧(負荷9への出力電圧Vout)が一定となるように、つまりそのコンデンサ4の放電を補償するように、図4(B)に示すような電圧指令値VDrefを生成する。
回生時においては、上記力行動作時とは逆に、負荷9からスイッチング電源装置100へ電流が供給され、そのときの電流の一部がコンデンサ4に蓄積される。したがって、制御部6は、コンデンサ4の電圧が一定となるように、つまりそのコンデンサ4への充電によるコンデンサ4の電圧上昇を抑えるように電圧指令値VDrefを生成する。
以上のように、本実施形態では、第1の変流器51及び第2の変流器52により得られる各電流IL及びIoutの差分値であるフィードバック電流値Ifbが算出され、これが制御部6へフィードバックされる。各電流IL及びIoutは、負荷電流の変動に対応して変動するので、これらの差分値が算出されることにより、その変動に影響されないコンデンサ4の電流値Ic(差分値)を得ることができる。このように、負荷電流の変動に影響されないフィードバック電流値Ifbがフィードバックされることにより、制御部6による制御が安定化し、また、フィードバック電流値Ifbの変動が少ないことによりオーバーシュートも抑制されるので、制御の応答性も向上させることができる。
また、本実施形態では、コンデンサ4に流れる電流を直接に検出せず、負荷9への接続線7において、コンデンサ4への分岐前後の電流の差分値が検出されるので、回路のインダクタンスが大きくなるという問題を回避することができる。
図5は、スイッチング電源装置100の各部位の電流及び電圧のシミュレーションの波形図である。特に、図5(D)に示すように、第1の変流器51及び第2の変流器52により得られる各電流IL及びIoutは、負荷変動に対応して変動しているが、それらの差分値は変動が少なくなっている。
図6は、例えば従来のように、リアクトル電流値ILがフィードバックされ、そのリアクトル電流値IL(=Ifb)に基づき電圧ACRにより電圧指令値が生成されたときのシミュレーション波形を示す。図6(A)〜(E)は、図5(A)〜(E)にそれぞれ対応する図である。図6(D)に示すように、負荷変動の影響を受けているリアクトル電流値IL(=Ifb)がフィードバックされるため、図6(B)に示すように出力電圧Voutが不安定となる。
[第2の実施形態]
図7は、本発明の第2の実施形態に係るスイッチング電源装置を示す図である。これ以降の説明では、上記第1の実施形態に係るスイッチング電源装置100が含む素子や機能等について同様のものは説明を簡略化または省略し、異なる点を中心に説明する。
本実施形態に係るスイッチング電源装置200の制御部6は、微分(D)処理部162と、比例積分(PI)処理部161とを有する。比例積分処理部161は、例えば図1に示した実施形態におけるAVR61に相当する。微分処理部162は、電圧基準値Vrefを取り込み、それを微分して出力する。比例積分処理部161は、フィードバック電圧値Vfbを電圧基準値Vrefに近づけるために、それらの値の差分の比例積分演算を実行して出力する。比例積分処理部161からの出力値IrefPIは、微分処理部162からの出力値IrefDと加算される。この加算により得られた値が、電流指令値IrefとしてACR62に入力される。
そして、上記第1の実施形態と同様に、制御部6は、電流検出部5により検出された、第1及び第2の変流器52からの各電流の差分値であるフィードバック電流値Ifbを、電流指令値Irefに近づけるように制御を実行する。
以上のように、制御部6は、比例積分処理部161に加え、電圧基準値Vrefを微分する微分処理部162を有する。比例積分処理部161だけでは応答性が犠牲になるため、微分処理部162により電圧基準値Vrefが微分され、その出力値IrefDが比例績分処理部161から出力される出力値IrefPIと加算されることにより、電圧基準値Vrefに対する応答性の高い電流指令値Irefを得ることができる。
一般的に、バッテリユニットを模擬した電源装置では、大容量のコンデンサ4により内部抵抗が大きいため、電圧指令に対する追従、すなわち応答性が悪くなる傾向がある。制御において安定性と応答性とはトレードオフの関係にあり、電源装置では応答性よりも安定性が優先され、安定性を高めるためにコンデンサ4の容量がより大きいものが用いられる。したがって、本実施形態に係るスイッチング電源装置200では、上記のように微分処理部162により電圧基準値Vrefが微分される。
また、本実施形態に係る微分処理部162では、フィードバック電圧値Vfbと電圧基準値Vrefとの差分が微分されるのではなく、電圧基準値Vrefが微分される。フィードバック電圧値Vfbと電圧基準値Vrefとの差分は、本来負荷電流の変化により安定しないものである。したがって、フィードバック電圧値Vfbと電圧基準値Vrefとの差分がPID処理される場合に比べ、本実施形態では安定性を高めることができる。
本発明に係る実施形態は、以上説明した実施形態に限定されず、他の種々の実施形態が考えられる。
上記各実施形態に係るスイッチング電源装置100及び200は、力行動作及び回生動作を実現するために、2つのスイッチング素子11及び12を備えていた。しかし、スイッチング電源装置100及び200は、例えば力行動作時のみの制御を実現すべく、一般的なチョッパ回路のように1つのスイッチング素子を備えたものであってもよい。
上記実施形態に係るスイッチング電源装置100及び200では、制御部6は、電流検出部5で検出された差分値、及び、電圧検出器8により検出されたコンデンサ4の両端の電圧値Vfbに基づき、チョッパ部1を制御した。しかし、制御部6は、電流検出部5で検出された差分値のみに基づきPWM制御部63への電圧指令値VDrefを生成し、チョッパ部1を制御してもよい。
1…チョッパ部
3…リアクトル
4…コンデンサ
5…電流検出部(電流検出手段に相当)
6…制御部(制御手段に相当)
7…接続線
8…電圧検出器(電圧検出手段に相当)
9…負荷
11…スイッチング素子
12…スイッチング素子
100、200…スイッチング電源装置
161…比例積分処理部
162…微分処理部

Claims (3)

  1. チョッパ部と、
    前記チョッパ部の出力側に接続されたリアクトルと、
    前記リアクトルを負荷に接続することが可能な接続線と、
    前記接続線から分岐して前記負荷に並列に接続されるコンデンサと、
    前記コンデンサへの分岐前に前記接続線に流れる電流と、前記コンデンサへの前記分岐後に前記接続線に流れる電流との差分値を検出する電流検出手段と、
    少なくとも、前記電流検出手段により検出された前記差分値に基づき、前記負荷への出力電圧が一定となるように、前記チョッパ部を制御する制御手段と
    を具備するスイッチング電源装置。
  2. 請求項1に記載のスイッチング電源装置であって、
    前記コンデンサの両端の電圧値を検出する電圧検出手段をさらに具備し、
    前記制御手段は、前記電流検出手段により検出された前記差分値及び前記電圧検出手段により検出された前記電圧値に基づき、前記負荷への出力電圧が一定となるように、前記チョッパ部を制御するスイッチング電源装置。
  3. 請求項2に記載のスイッチング電源装置であって、
    前記制御手段は、電圧基準値を取り込み前記電圧基準値を微分する微分処理部と、前記電圧検出手段により検出された前記電圧値を前記電圧基準値に近づけるために比例積分処理を実行する比例積分処理部とを有し、前記微分処理部から出力される出力値と、前記比例積分処理部から出力される出力値とを加算し、前記加算により得られた値を、前記コンデンサに対する電流指令値として出力し、前記電流検出手段により検出された前記差分値を前記電流指令値に近づけるように前記チョッパ部を制御するスイッチング電源装置。
JP2010020106A 2010-02-01 2010-02-01 スイッチング電源装置 Pending JP2011160565A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010020106A JP2011160565A (ja) 2010-02-01 2010-02-01 スイッチング電源装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010020106A JP2011160565A (ja) 2010-02-01 2010-02-01 スイッチング電源装置

Publications (1)

Publication Number Publication Date
JP2011160565A true JP2011160565A (ja) 2011-08-18

Family

ID=44592017

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010020106A Pending JP2011160565A (ja) 2010-02-01 2010-02-01 スイッチング電源装置

Country Status (1)

Country Link
JP (1) JP2011160565A (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013143785A (ja) * 2012-01-06 2013-07-22 Sinfonia Technology Co Ltd スイッチング電源装置
JP2014138479A (ja) * 2013-01-16 2014-07-28 Denso Corp スイッチングレギュレータ
CN104850014A (zh) * 2015-05-27 2015-08-19 广东戈兰玛汽车系统有限公司 一种电池包的仿真方法及仿真电池包系统
CN105915082A (zh) * 2016-04-21 2016-08-31 中国船舶重工集团公司第七〇二研究所 一种高压大功率电池模拟设备
CN109709412A (zh) * 2017-10-25 2019-05-03 上海汽车集团股份有限公司 一种动力电池高压检测点电压模拟装置及模拟方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63242174A (ja) * 1987-03-30 1988-10-07 Toshiba Corp Cvcfの電圧制御装置
JP2002084743A (ja) * 2000-09-04 2002-03-22 Shindengen Electric Mfg Co Ltd スイッチング電源装置
JP2007195363A (ja) * 2006-01-20 2007-08-02 Fuji Electric Device Technology Co Ltd Dc−dcコンバータ
JP2007312586A (ja) * 2006-05-19 2007-11-29 Yoshihiro Sekino スイッチング電源

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63242174A (ja) * 1987-03-30 1988-10-07 Toshiba Corp Cvcfの電圧制御装置
JP2002084743A (ja) * 2000-09-04 2002-03-22 Shindengen Electric Mfg Co Ltd スイッチング電源装置
JP2007195363A (ja) * 2006-01-20 2007-08-02 Fuji Electric Device Technology Co Ltd Dc−dcコンバータ
JP2007312586A (ja) * 2006-05-19 2007-11-29 Yoshihiro Sekino スイッチング電源

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013143785A (ja) * 2012-01-06 2013-07-22 Sinfonia Technology Co Ltd スイッチング電源装置
JP2014138479A (ja) * 2013-01-16 2014-07-28 Denso Corp スイッチングレギュレータ
CN104850014A (zh) * 2015-05-27 2015-08-19 广东戈兰玛汽车系统有限公司 一种电池包的仿真方法及仿真电池包系统
CN105915082A (zh) * 2016-04-21 2016-08-31 中国船舶重工集团公司第七〇二研究所 一种高压大功率电池模拟设备
CN109709412A (zh) * 2017-10-25 2019-05-03 上海汽车集团股份有限公司 一种动力电池高压检测点电压模拟装置及模拟方法

Similar Documents

Publication Publication Date Title
JP6153144B1 (ja) Dc/dcコンバータの制御装置および制御方法
KR101840412B1 (ko) 벅 스위치 모드 파워 컨버터 큰 신호 천이 응답 최적화기
JP5397230B2 (ja) 電源制御システム
US9065327B2 (en) Efficiency optimized power converter with dual voltage power factor correction
JP5803946B2 (ja) スイッチングレギュレータ
CN104980032B (zh) 电力转换装置以及电力转换方法
US20140211515A1 (en) Dc-dc converter and power supply device having dc-dc converter
JP5391100B2 (ja) 電源装置
US20120146602A1 (en) Control circuit and method for a buck-boost switching converter
US9160238B2 (en) Power converter with current feedback loop
US9438126B2 (en) Power conversion device and power conversion method
JP2015204639A (ja) 電力変換装置及びその制御方法
EP3168974B1 (en) Power conversion device
JP5783195B2 (ja) 電源装置及び制御方法
JP5935789B2 (ja) 電力変換装置及び電力変換方法
JP6065753B2 (ja) Dc/dcコンバータおよびバッテリ充放電装置
JP2011160565A (ja) スイッチング電源装置
TW201935834A (zh) 諧振轉換器的控制方法
US20230291319A1 (en) System and method for providing a compensation factor for a dc/dc converter
JP5252213B2 (ja) 電源装置
JP2010022136A (ja) Dc/dcコンバータの制御装置及び制御方法
JP2004120844A (ja) 昇圧コンバータ制御装置
JP2007195276A (ja) 電源装置
US9515564B2 (en) Power conversion apparatus and power conversion method based on a control constant and a feedback value based on current flow
WO2020183775A1 (ja) 電力変換装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131218

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140708

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20141104