JP2011150287A - Optical transmitting and receiving device using one pof, and optical transmitting and receiving system - Google Patents
Optical transmitting and receiving device using one pof, and optical transmitting and receiving system Download PDFInfo
- Publication number
- JP2011150287A JP2011150287A JP2010234024A JP2010234024A JP2011150287A JP 2011150287 A JP2011150287 A JP 2011150287A JP 2010234024 A JP2010234024 A JP 2010234024A JP 2010234024 A JP2010234024 A JP 2010234024A JP 2011150287 A JP2011150287 A JP 2011150287A
- Authority
- JP
- Japan
- Prior art keywords
- light
- pof
- condensing means
- central axis
- light receiving
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Semiconductor Lasers (AREA)
- Light Receiving Elements (AREA)
- Optical Couplings Of Light Guides (AREA)
Abstract
Description
本発明は、低廉な被検出物の検出装置および双方向通信装置に好適な、一本のプラスチック光ファイバ(以降POFと略記する)を用いた光送受信装置および光送受信システムに関する。 The present invention relates to an optical transmission / reception apparatus and an optical transmission / reception system using a single plastic optical fiber (hereinafter abbreviated as POF), which are suitable for inexpensive detection objects and bidirectional communication apparatuses.
物体の検出に関して種々のセンサが用いられており、その一つに、被検出体と検知回路ないしは光源間を光ファイバでつなぐ光ファイバセンサがある。この光ファイバセンサには、物体が光を遮ることによる光量変化を検出する透過型と、物体からの反射光により検出する反射型とに分類される。光ファイバ使用により、光源や受光部分と被検出体間の絶縁性が保たれるとともに、光源や受光部分を自由な位置に設置できる利点を有しており、耐水性や耐環境性に優れている。 Various sensors are used for detecting an object, and one of them is an optical fiber sensor that connects an object to be detected and a detection circuit or a light source with an optical fiber. This optical fiber sensor is classified into a transmission type that detects a change in the amount of light due to an object blocking light, and a reflection type that is detected by reflected light from the object. Use of optical fiber maintains the insulation between the light source and the light receiving part and the object to be detected, and has the advantage that the light source and light receiving part can be installed at any position, providing excellent water resistance and environmental resistance. Yes.
反射型の光ファイバセンサの一従来例は、特開2002−71553号公報図1に示される様に、投光用光ファイバと検出用光ファイバを別々に設置し、投光用光ファイバの一端付近には光源であるLED素子を設置し、他端は被検出体近傍に設置している。また、検出用光ファイバの一端付近には受光素子を設置し、他端は被検出体近傍に設置しており、全体では2本の光ファイバにより光ファイバセンサを構成している。 As shown in FIG. 1 of JP-A-2002-71553, a conventional example of a reflection-type optical fiber sensor is provided with a light projecting optical fiber and a detection optical fiber separately, and one end of the light projecting optical fiber. An LED element as a light source is installed in the vicinity, and the other end is installed in the vicinity of the detection target. In addition, a light receiving element is installed near one end of the detection optical fiber, and the other end is installed in the vicinity of the detection target, and an optical fiber sensor is constituted by two optical fibers as a whole.
このような2本の光ファイバで反射型光センサを構成した場合、光ファイバが2本必要なため、コスト面スペース面で不利になると共に、投光素子/受光素子から検出体までの光ファイバ対が太くなりこの部分の柔軟性が悪くなる欠点がある。 When a reflection type optical sensor is constituted by such two optical fibers, two optical fibers are required, which is disadvantageous in terms of cost and space, and an optical fiber from a light projecting element / light receiving element to a detector. There is a drawback that the pair becomes thicker and the flexibility of this part becomes worse.
反射型の光ファイバセンサの他の従来例は、実開平02−90540号公報第1図、特開平07−98384号公報図1、特開2002−94107号公報図1に示される様、2本の光ファイバの一端が光カプラや光アイソレータ等により一本の光ファイバに変換されているものである。2本の光ファイバの他端はそれぞれ投光素子と受光素子の近傍に設置され、変換された1本のファイバの他端は、検出体の付近に設置される。1本の光ファイバ部分の柔軟性は保たれるが、2本の光ファイバ部分ならびに光カプラや光アイソレータ等の部分は、前述の特開2002−71553号公報図1にくらべて、コスト面ではさらに不利となる欠点を有する。 As shown in FIG. 1 of Japanese Utility Model Laid-Open No. 02-90540, FIG. 1 of Japanese Patent Laid-Open No. 07-98384, and FIG. One end of the optical fiber is converted into a single optical fiber by an optical coupler, an optical isolator or the like. The other ends of the two optical fibers are installed in the vicinity of the light projecting element and the light receiving element, respectively, and the other end of the converted one fiber is installed in the vicinity of the detector. Although the flexibility of one optical fiber portion is maintained, the two optical fiber portions and the portions such as the optical coupler and the optical isolator are less costly than the aforementioned Japanese Patent Laid-Open No. 2002-71553 FIG. Further disadvantages are disadvantageous.
単芯ファイバを用いた双方向通信の従来例は、特開2004−45825号公報の図7に示されている様に、直径1mm程度のPOFの端面が球端面を有している場合と平坦面を有している場合につき、この端面付近にレンズと発光素子を有する送信部と、レンズと受光素子を有する受信部を配置し、2つのケースにおける受信部の受信効率につき、比較されている。この両ケースとも、受信部の一部が光ファイバの中心軸上に存在するように配置し、送信部からの光は光ファイバの中心軸を横切って、光ファイバの中心軸に対して送信部からは離れる側で光ファイバの端面の反対側の周辺部分に入射させ、受信効率の向上を図っている。
本公知例の実施例は、直径1mm程度の比較的細いPOFを使用し,かつ送信部の光学系の設定には、高精度が必要とされ、使用する素子も特殊なものになるなど、高価なものとなる欠点を有する。As shown in FIG. 7 of Japanese Patent Laid-Open No. 2004-45825, the conventional example of bidirectional communication using a single-core fiber is flat when the end face of a POF having a diameter of about 1 mm has a spherical end face. In the case of having a surface, a transmitting unit having a lens and a light emitting element and a receiving unit having a lens and a light receiving element are arranged in the vicinity of the end surface, and the receiving efficiency of the receiving unit in the two cases is compared. . In both cases, the receiving unit is arranged so that a part of the receiving unit exists on the central axis of the optical fiber, and the light from the transmitting unit traverses the central axis of the optical fiber and transmits to the central axis of the optical fiber. In order to improve the reception efficiency, the light is incident on the peripheral portion on the opposite side of the end face of the optical fiber on the side away from the optical fiber.
The embodiment of this known example uses a relatively thin POF having a diameter of about 1 mm, and requires high precision for setting the optical system of the transmitter, and the elements to be used are special and expensive. Have disadvantages.
単芯ファイバを用いた双方向通信の他の従来例は、特開2003−262765号公報の図1(a)図9図10に示されている様に、直径1mm程度のPOFの端面付近の直径を拡大し、拡大されたPOFの周辺部分中の狭い領域に送信光を入射する構成を取っている。本例では。端面付近で直径が拡大し、かつ端面形状も円端反射を避けるため特殊な形状となっており、高価なものとなる欠点がある。 Other conventional examples of bidirectional communication using a single-core fiber are shown in FIG. 1 (a) and FIG. 10 in JP-A-2003-262765, in the vicinity of the end face of a POF having a diameter of about 1 mm. The configuration is such that the transmission light is incident on a narrow area in the peripheral portion of the enlarged POF with an enlarged diameter. In this example. In the vicinity of the end face, the diameter increases, and the end face shape has a special shape for avoiding circular end reflection, and there is a disadvantage that it is expensive.
単芯ファイバを用いた双方向通信の他の従来例は、特開平11−308179号公報の図1、図2および図12などに示されている様に、直径1mm程度以下の光ファイバの端面を光ファイバの中心軸に対し傾斜して設け、この端面に、半導体レーザからの光を、光ファイバの中心軸と平行に設置されたコア部とクラッド部を有する送信光用導波路を経由して光ファイバの周辺部に入射すると共に、光ファイバから出射される光を、光ファイバの端面に密設した端面を有しかつ光ファイバの中心軸と平行に設置されたコア部とクラッド部を有する、受信光用導波路を経由してフォトダイオードで受光する例が記載されている。本例では、図2などに示されているように、発光素子と受光素子の配置は、光ファイバの直径程度内に納めることが必要であるため専用の微小な発光素子や受光素子の使用が前提となり、また、光学的位置合わせも精度を要し、高価なものとなる欠点がある。
なお、本公報では、光ファイバの端面を傾斜して形成する利点として、送信光の当該傾斜端面での反射光が受信光用導波路に入力されにくい点のみが述べられている。しかし、本公報では、送信光導波路の出射側端面や受信光導波路の入射側端面と、光ファイバの当該傾斜端面との距離は密着ないしは短く設定することが前提となっており、光ファイバを経由して伝搬されてきた光の出射光の中心軸が、当該傾斜端面にて曲がる効果は記載されていない。Another conventional example of bidirectional communication using a single-core fiber is an end face of an optical fiber having a diameter of about 1 mm or less, as shown in FIGS. 1, 2 and 12 of Japanese Patent Laid-Open No. 11-308179. Is provided at an angle with respect to the center axis of the optical fiber, and light from the semiconductor laser is passed through this end face through a waveguide for transmitting light having a core portion and a clad portion installed in parallel to the center axis of the optical fiber. The core portion and the clad portion, which are incident on the peripheral portion of the optical fiber and have an end face densely arranged on the end face of the optical fiber and installed parallel to the central axis of the optical fiber, An example in which light is received by a photodiode via a received light waveguide is described. In this example, as shown in FIG. 2 and the like, the arrangement of the light emitting element and the light receiving element needs to be within the diameter of the optical fiber. In addition, there is a drawback that optical alignment requires accuracy and is expensive.
In this publication, as an advantage of forming the end face of the optical fiber with an inclination, only the point that the reflected light of the transmitted light at the inclined end face is not easily input to the reception light waveguide is described. However, in this publication, it is assumed that the distance between the outgoing side end face of the transmitting optical waveguide or the incoming side end face of the receiving optical waveguide and the inclined end face of the optical fiber is set to be close or short. The effect that the central axis of the outgoing light of the light propagated in this way is bent at the inclined end surface is not described.
しかしながら、上記特許文献1−特許文献4では、光ファイバの少なくとも一部が2本で構成されており、コスト面や柔軟性などの点で好ましくない。
また、特許文献5−特許文献7では、直径が1mm程度以下のPOFなどを使用し、単芯双方向通信を行っているが、光軸合わせに精度を要し、また専用の発光素子や受光素子や光ファイバの使用が前提になるなど、コストの点で好ましくない。However, in Patent Document 1 to Patent Document 4, at least a part of the optical fiber is composed of two, which is not preferable in terms of cost and flexibility.
In Patent Document 5 to Patent Document 7, POF having a diameter of about 1 mm or less is used and single-core bidirectional communication is performed. However, accuracy is required for optical axis alignment, and a dedicated light emitting element or light receiving device is used. It is not preferable in terms of cost, for example, it is assumed that an element or an optical fiber is used.
本発明の目的は、上記問題点に鑑み、位置合わせが容易で、汎用や市販の発光素子や受光素子ないしは、汎用や市販の反射型フォトセンサ等を使用することができ、安価に構成可能な光送受信装置およびそれを用いた光送受信システムを提供することにある。 In view of the above problems, the object of the present invention is easy to align, and can use general-purpose or commercially available light-emitting elements, light-receiving elements or general-purpose or commercially available reflective photosensors, and can be configured at low cost. An optical transmitter / receiver and an optical transmitter / receiver system using the same are provided.
上記課題を解決するための技術的手段は、開口数が0.4以上0.7以下でコア部の口径が1.8mm以上5mm以下の部分を有する一本のPOFの一端の少なくとも一部を、POFの中心軸に垂直な面から、角度δ(10度−40度)を有する斜端面で構成し、対称平面[POFの長さ方向の外形線と斜端面部分とが成す角が最鋭角を有する頂点部分(以降では斜端面の最鋭角部と略記する)から当該POFの中心軸に下ろした垂線に垂直であり、かつPOFの中心軸を含む平面を指す。以下同様]に対して、斜端面の最鋭角部側に受光素子および受光用集光手段の光軸を配置し、対称平面に対し斜端面の最鋭角部とは反対側でかつPOFの開口角内に発光素子および発光用集光手段の光軸を配置し、発光素子からの光の少なくとも一部を、発光用集光手段を用いて、POFの該一端より入射するとともに、POF中を伝送してきた光の、該斜端面からの出射光を、受光用集光手段を用いて集光し受光素子にて検知し、その出力をAD変換器を経由し、しきい値処理を有する信号処理装置に入力し、信号処理後に信号処理装置から出力することを、光送受信装置の技術的特徴としている。 The technical means for solving the above-described problem is that at least a part of one end of a single POF having a numerical aperture of 0.4 to 0.7 and a core portion having a diameter of 1.8 mm to 5 mm. , Composed of an oblique end surface having an angle δ (10 degrees to 40 degrees) from a plane perpendicular to the central axis of the POF, and a symmetrical plane [the angle formed by the outline in the length direction of the POF and the oblique end surface portion is the acute angle. A plane that is perpendicular to a perpendicular line extending from the apex portion (hereinafter abbreviated as the sharpest angle portion of the oblique end surface) to the central axis of the POF and includes the central axis of the POF. The same applies to the following], the optical axes of the light receiving element and the light receiving condensing means are arranged on the sharpest angle side of the oblique end surface, and the POF opening angle is opposite to the acute angle portion of the oblique end surface with respect to the symmetry plane. The optical axes of the light emitting element and the light collecting condensing means are arranged inside, and at least part of the light from the light emitting element is incident from the one end of the POF using the light emitting condensing means and is transmitted through the POF. The emitted light from the oblique end surface of the received light is collected using a light receiving condensing means and detected by a light receiving element, and the output is passed through an AD converter, and signal processing having threshold processing It is a technical feature of the optical transmission / reception apparatus to input to the apparatus and output from the signal processing apparatus after the signal processing.
POFの長手方向の中心軸に対し、POF中を伝送してきた光が斜端面から出射する出射光の中心がなす角をγ(度)とすると(図1参照)、
sin[(δ−γ)π/180]=n・sin[δπ/180]・・・・・式(1)
ただし、n=光ファイバのコアの屈折率(例:POFの場合=1.49)
δ=POFの中心軸に垂直な平面に対し、POFの斜端面が成す角(度)
の関係(以下では「出射光中心軸の式」と呼ぶ)が成り立つ。
すなわち、POFの斜端面からの出射光の中心軸は、POFの中心軸に対して、斜端面の最鋭角部側に曲がる性質を有する。
なお、時計回り方向の角度の符号はプラス、反時計回りの方向の角度の符号はマイナスで表示している(以下も同じ)。If the angle formed by the center of the outgoing light emitted from the oblique end surface of the light transmitted through the POF with respect to the central axis in the longitudinal direction of the POF is γ (degrees) (see FIG. 1),
sin [(δ−γ) π / 180] = n · sin [δπ / 180] (1)
Where n = index of optical fiber core (eg POF = 1.49)
δ = An angle (degree) formed by the oblique end surface of the POF with respect to a plane perpendicular to the central axis of the POF
(Hereinafter referred to as “emitted light central axis equation”).
That is, the central axis of the light emitted from the oblique end surface of the POF has a property of bending toward the sharpest angle side of the oblique end surface with respect to the central axis of the POF.
The sign of the clockwise angle is indicated by plus, and the sign of the counterclockwise angle is indicated by minus (the same applies hereinafter).
上記課題を解決するための好ましい第1の追加の技術的手段は、受光用集光手段の光軸を、POF中を伝送してきた光の斜端面からの出射光の中心軸のプラス・マイナス10度以内に設置し、かつ発光素子の集光手段の光軸を、POFの該一端の開口角内に設置することである。 A preferred first additional technical means for solving the above-described problem is that the optical axis of the light receiving condensing means is set to plus or minus 10 of the central axis of the outgoing light from the oblique end face of the light transmitted through the POF. And the optical axis of the light condensing means of the light emitting element is set within the opening angle of the one end of the POF.
上記課題を解決するための好ましい第2の追加の技術的手段は、発光用集光手段の光軸を、POFの斜端面の法線方向のプラス・マイナス10度以内ないしはPOFの斜端面の法線方向に対し受光素子の集光手段の光軸側に設定することである。 A preferred second additional technical means for solving the above-mentioned problems is that the optical axis of the light-emission condensing means is set within ± 10 degrees of the normal direction of the oblique end surface of the POF or the oblique end surface method of the POF. It is to set to the optical axis side of the condensing means of a light receiving element with respect to a line direction.
上記課題を解決するための好ましい第3の追加の技術的手段は、発光素子と、発光用集光手段と、受光素子と、受光用集光手段とを一体に結合させたものを、上記POFの斜端面を含む該一端付近に設置する点にある。 A preferred third additional technical means for solving the above-mentioned problem is a combination of a light-emitting element, a light-collecting condensing means, a light-receiving element, and a light-receiving condensing means, which is integrated with the POF. It is in the point installed near this one end including a slant end face.
上記課題を解決するための好ましい第4の追加技術的手段は、発光用集光手段として、集光手段の出射光が平行光ないしそれに近似の光となるコリメートレンズを用いる点にある。 A preferred fourth additional technical means for solving the above-described problem is that a collimating lens is used as the light-emission condensing means so that the light emitted from the light converging means becomes parallel light or approximate light.
上記課題を解決するための好ましい第5の追加技術的手段は、被検出体が無い状態や通信信号が存在しない状態での受光素子からの出力量を適宜測定し、信号処理装置にそれらの測定量を記憶し、その記憶量を反映して、受光素子の出力量の検知しきい値を決定する点にある。 A fifth preferred additional technical means for solving the above-mentioned problem is to appropriately measure the output amount from the light receiving element in a state where there is no object to be detected or in a state where no communication signal exists, and the signal processing device measures them. The amount is stored, and the detection threshold of the output amount of the light receiving element is determined by reflecting the stored amount.
上記課題を解決するための好ましい第6の追加技術的手段は、被検出体の有無や通信信号の有無の両状態での受光素子からの出力量を適宜測定し、信号処理装置にそれらの測定量を記憶し、その記憶量を基に、受光素子の出力量の検知しきい値と校正値とを決定する点にある。 A sixth preferred additional technical means for solving the above-mentioned problem is to appropriately measure the output amount from the light receiving element in both the presence / absence of the detected object and the presence / absence of the communication signal, and measure them in the signal processing device. The amount is stored, and the detection threshold value and the calibration value of the output amount of the light receiving element are determined based on the stored amount.
上記課題を解決するための好ましい第7の追加技術的手段は、POFの一端の一部を、POFの中心軸に垂直な平面から10度以上40度以下の角度を有する第一の斜端面で構成し、該POFの中心軸に平行な該POFの外形線と該第一の斜端面との最鋭角部分からPOFの中心軸におろした垂線に垂直でかつPOFの中心軸を含む対称平面に対して、該最鋭角部分側に受光素子および受光用集光手段の光軸を、該最鋭角部分とは反対側に発光素子および発光用集光手段の光軸を配置し、当該POFの該一端の他の部分に、POFの中心軸に垂直な平面に対して、第一の斜端面とは逆向きの角度を有する第二の斜端面ないしはPOFの中心軸に垂直な端面を構成し、第二の斜端面ないしは該POFの中心軸に垂直な該端面と第一の斜端面との境界付近に遮光体を設置し、発光素子からの光の少なくとも一部を第二の斜端面ないしは該POFの中心軸に垂直な該端面を経由してPOFに入射し、受光素子および受光用集光手段の光軸と、発光素子および発光用集光手段の光軸とが、対称平面ならびに遮光体に対して、それぞれ反対側に位置している点にある。 A seventh preferred additional technical means for solving the above-mentioned problem is that a part of one end of the POF is a first oblique end surface having an angle of not less than 10 degrees and not more than 40 degrees from a plane perpendicular to the central axis of the POF. A symmetric plane that is perpendicular to the perpendicular from the sharpest portion of the outline of the POF parallel to the central axis of the POF and the first oblique end surface to the central axis of the POF and includes the central axis of the POF On the other hand, the optical axis of the light receiving element and the light collecting condensing means is arranged on the side of the sharpest angle portion, and the optical axis of the light emitting element and the light collecting condensing means is arranged on the side opposite to the sharpest angle portion. A second oblique end surface or an end surface perpendicular to the central axis of the POF having an angle opposite to the first oblique end surface with respect to a plane perpendicular to the central axis of the POF is formed on the other part of the one end. A second oblique end surface or an end surface perpendicular to the central axis of the POF and the first oblique end surface; A light shield is installed near the field, and at least part of light from the light emitting element is incident on the POF via the second oblique end face or the end face perpendicular to the central axis of the POF. The optical axis of the light means and the optical axes of the light emitting element and the light collecting condensing means are respectively located on opposite sides with respect to the symmetry plane and the light shielding body.
上記課題を解決するための好ましい第8の追加技術的手段は、POF中に、POF口径変換部を経由して、コアの口径が1.5mm以下のPOFに光学的に接続されている部分を含む点ある。 A preferred eighth additional technical means for solving the above-mentioned problem is that a portion optically connected to a POF having a core diameter of 1.5 mm or less is provided in the POF via the POF diameter conversion section. There are points to include.
コア部の口径が1.8mm以上5mm以下の大口径POFを用いることにより、軸合わせなどにも高精度を要しない。また、POFの端面を斜端面とすることにより、POFからの出射光の中心軸が、式(1)に示したように、斜端面の最鋭頂点部方向に曲がるため、対称平面より斜端面の最鋭角部を含む領域側に受光素子ならびに受光用集光手段の光軸を設置することにより効率的な受光が可能となる。また、発光素子および発光用集光手段の光軸を対称平面に対し受光素子などとは反対側に設置でき、かつPOFの開口角として0.4以上0.6以下の大開口角のPOFを使用することにより、発光素子からの光の斜端面での反射光が受光用集光手段に入射されにくくかつ発光素子からの光を効率よくPOFに入射するよう構成することができる光送受信装置が得られる利点がある。
ただし、発光素子からの光の斜端面での反射光や拡散光などを含む不要な光が受光素子に入射されるのを完全に阻止することは困難なため、本発明では、受光素子の検知信号をAD変換器でデジタル信号に変換したうえで、信号処理装置にて不要信号部分を除去する信号処理を行っている。なお、このAD変換と信号処理装置部分は数十円−数百円で入手可能な汎用のワンチップマイコンなどで対応できるため、コストの点からは特には問題とはならない。By using a large-diameter POF with a core portion having a diameter of 1.8 mm or more and 5 mm or less, high accuracy is not required for axial alignment or the like. Further, by making the end face of the POF a bevel end face, the central axis of the light emitted from the POF is bent in the direction of the sharpest apex of the bevel end face as shown in the equation (1). By installing the light receiving element and the optical axis of the light receiving condensing means on the region side including the sharpest angle portion, efficient light reception is possible. In addition, the optical axis of the light emitting element and the light collecting condensing means can be installed on the opposite side of the light receiving element with respect to the plane of symmetry, and a POF having a large opening angle of 0.4 to 0.6 is used as the POF opening angle. As a result, an optical transmission / reception apparatus can be obtained in which the light reflected from the oblique end surface of the light from the light emitting element is not easily incident on the light receiving condensing means and the light from the light emitting element is efficiently incident on the POF. There are advantages to being
However, since it is difficult to completely prevent unnecessary light including light reflected from the oblique end face of the light emitting element and diffused light from entering the light receiving element, the present invention detects the light receiving element. After the signal is converted into a digital signal by an AD converter, signal processing for removing an unnecessary signal portion is performed by a signal processing device. The AD conversion and the signal processing unit can be handled by a general-purpose one-chip microcomputer that can be obtained for several tens of yen to several hundreds of yen, so that there is no particular problem in terms of cost.
また、発光素子用の光ファイバと受光素子用の光ファイバとを用い、かつ光カプラを用いて1本の光ファイバに結合する従来の方式に比べ、本発明は、前記課題を解決するための技術的手段により、1本の柔軟なPOFの一端付近に発光素子、受光素子ならびにこれらの集光手段を配置すればよいので、従来方式に比べ大幅に小型かつ安価でかつ柔軟性に富んで、POFの他端における、被検出体の検出を行うことができる光送受信システムが得られる利点がある。なお、POF部分は、絶縁性、防塵性、防水性などを保有することは、もちろんである。 In addition, the present invention solves the above problems as compared with a conventional method in which an optical fiber for a light emitting element and an optical fiber for a light receiving element are used and coupled to one optical fiber using an optical coupler. By means of technical means, a light emitting element, a light receiving element and these light condensing means may be arranged near one end of one flexible POF, so that it is much smaller, cheaper and more flexible than the conventional method. There is an advantage that an optical transmission / reception system capable of detecting an object to be detected at the other end of the POF can be obtained. Needless to say, the POF portion possesses insulating properties, dustproof properties, waterproof properties, and the like.
受光用集光手段の光軸を、POF中を伝送してきた光の出射光の中心軸(式(1))のプラス・マイナス10度以内に設置し、かつ発光用集光手段の光軸をPOF中の伝送条件を満たす範囲に設置する、上記課題を解決するための好ましい第1の追加の技術的手段によれば、POF中を伝送してきた光の斜端面からの出射光に対し、光量の大きい出射光の中心軸付近に受光素子の集光手段の光軸を設置するため、受光量が増加する光送受信装置が得られる利点がある。 The optical axis of the light collecting condensing means is set within plus or minus 10 degrees of the central axis (Equation (1)) of the emitted light transmitted through the POF, and the optical axis of the light collecting condensing means is According to a preferred first additional technical means for solving the above-mentioned problem, which is installed in a range satisfying the transmission condition in the POF, the amount of light with respect to the outgoing light from the oblique end surface of the light transmitted through the POF Since the optical axis of the condensing means of the light receiving element is installed near the central axis of the emitted light having a large size, there is an advantage that an optical transmission / reception apparatus in which the amount of received light increases can be obtained.
発光用集光手段の光軸を、POFの斜端面の法線方向のプラス・マイナス10度以内ないしはPOFの端面の法線方向に対し受光用集光手段の光軸側に設置する、上記課題を解決するための好ましい第2の追加の技術的手段によれば、発光素子から出た光がPOF端面で直接反射する光は、そのままほぼ同じ光路(プラス・マイナス10度以内)で反射されるかないしは受光素子からは離れる方向の角度に反射される。したがって、このPOFの斜端面で直接反射する光を、受光用集光手段に入射させなくすることが容易になる光送受信装置が得られる利点がある。 The above-mentioned problem is that the optical axis of the light collecting condensing means is set within plus or minus 10 degrees in the normal direction of the oblique end surface of the POF or on the optical axis side of the light receiving condensing means with respect to the normal direction of the end face of the POF. According to the second preferred additional technical means for solving the above problem, the light directly reflected by the POF end face from the light emitting element is reflected as it is by the substantially same optical path (within plus or minus 10 degrees). However, it is reflected at an angle away from the light receiving element. Therefore, there is an advantage that an optical transmission / reception apparatus that makes it easy to prevent the light directly reflected by the oblique end surface of the POF from entering the light receiving condensing means can be obtained.
発光素子と、発光用集光手段と、受光素子と、受光用集光手段とを一体に結合させたものを、上記POFの該一端付近に設置する、上記課題を解決するための好ましい第3の追加の技術的手段によれば、発光素子・発光用集光手段・受光素子・受光用集光手段の光軸や位置をあらかじめ好ましい状態で一体に結合させておけば、発光素子・発光用集光手段・受光素子・受光用集光手段の光軸や位置を個々に調整する必要がなく、この一体結合品とPOFとの光軸および位置を合わせればすむため、安価で高性能の計測が可能となる利点がある。
さらに、発光用集光手段の光軸と、受光用集光手段の光軸との成す角の適切なものを選択すれば、市販の一体型の反射型フォトセンサを活用し、上記の大口径のPOFの該一端付近に設置することにより、コンパクトで容易に、かつ安価に、被検出物の検出や単芯双方向通信ができる光送受信装置や光送受信システムが得られる利点がある。A light emitting element, a light collecting condensing means, a light receiving element, and a light receiving condensing means are integrally connected to each other in the vicinity of the one end of the POF. According to the additional technical means, if the optical axes and positions of the light-emitting element, the light-collecting light-collecting means, the light-receiving element, and the light-receiving light-collecting means are coupled together in a preferable state in advance, It is not necessary to adjust the optical axis and position of the light collecting means, light receiving element, and light receiving light collecting means individually, and it is only necessary to match the optical axis and position of this integrated unit with POF, so it is inexpensive and has high performance. There is an advantage that becomes possible.
Furthermore, if an appropriate angle between the optical axis of the light-collecting condensing means and the optical axis of the light-receiving condensing means is selected, a commercially available integrated reflective photosensor can be used to By installing it near the one end of the POF, there is an advantage that an optical transmission / reception apparatus and optical transmission / reception system capable of detecting an object to be detected and single-core bidirectional communication can be obtained in a compact, easy and inexpensive manner.
発光用集光手段として、集光手段の出射光が平行光ないしそれに近似の光となるコリメートレンズを用いる、上記課題を解決するための好ましい第4の追加の技術的手段によれば、発光素子の集光手段からの全光量ないしは大半の光量を使用するPOFの開口角内に設定できるため、該POFに入射する光量を増加できPOFの他端より出射する光量を増大することができる。POFの他端付近で被検出体の検出を行う場合には該POFの他端より再入射する光量を増加でき、ひいては該POFの斜端面から出射する光量もふえるため、受光素子の出力信号が増大し、受光素子にて検知される光信号のSN比を大幅に向上することができ、被検出体の有無を確実に検出したり、単芯双方向通信における光信号の確実な授受を行うことができる光送受信装置や光送受信システムが得られる利点がある。 According to a fourth preferred additional technical means for solving the above-mentioned problem, a collimating lens in which the light emitted from the condensing means becomes parallel light or light similar thereto is used as the light condensing means. Therefore, the amount of light incident on the POF can be increased and the amount of light emitted from the other end of the POF can be increased. When detecting an object to be detected near the other end of the POF, the amount of light incident again from the other end of the POF can be increased. As a result, the amount of light emitted from the oblique end surface of the POF is also increased. The signal-to-noise ratio of the optical signal detected by the light receiving element can be greatly improved, and the presence / absence of an object to be detected can be reliably detected, or the optical signal can be reliably transferred in single-core bidirectional communication. There is an advantage that an optical transmission / reception apparatus and an optical transmission / reception system that can be obtained are obtained.
被検出体が無い状態や通信信号のない状態での受光素子からの出力量を適宜計測し、信号処理装置にそれらの計測量を記憶し、その記憶量を反映して、受光素子の出力量の検知しきい値を決定する、上記課題を解決するための好ましい第5の追加の技術的手段によれば、無視できない不要光量が存在し、またその値が経時的に徐々に変化する場合においても、被検出体の有無を確実に検出したり、双方向通信における光信号の確実な授受を行うことができる光送受信装置や光送受信システムが得られる利点がある。Measure the output amount from the light receiving element when there is no detected object or no communication signal, store the measured amount in the signal processing device, and reflect the stored amount to output the light receiving element. According to a fifth preferred additional technical means for solving the above-mentioned problem for determining the detection threshold value, there is an unnecessary light amount that cannot be ignored, and the value gradually changes over time. In addition, there is an advantage that an optical transmission / reception apparatus and an optical transmission / reception system capable of reliably detecting the presence / absence of an object to be detected and performing reliable transmission / reception of optical signals in bidirectional communication can be obtained.
被検出体の有と無しの両状態や通信信号の有と無しの両状態での受光素子からの出力量を適宜測定し、信号処理装置にそれらの測定量を記憶し、その記憶量を基に、受光素子の出力量の検知しきい値と校正値とを決定する、上記課題を解決するための好ましい第6の追加の技術的手段によれば、被処理物からの反射光の大きさを、多値のデータとして容易に取り扱えるようになる光送受信装置や光送受信システムが得られる利点がある。 Measure the output amount from the light receiving element in both the presence / absence of the detected object and the presence / absence of the communication signal, and store the measured amount in the signal processing device. Further, according to a sixth additional technical means for determining the output threshold value and the calibration value of the light receiving element, which is preferable for solving the above-mentioned problem, the magnitude of the reflected light from the object to be processed Therefore, there is an advantage that an optical transmission / reception apparatus and an optical transmission / reception system can be obtained.
POFの一端の一部を、POFの中心軸に垂直な平面から10度以上40度以下の角度を有する第一の斜端面で構成し、該POFの中心軸に平行な該POFの外形線と該第一の斜端面との最鋭角部分からPOFの中心軸におろした垂線に垂直でかつPOFの中心軸を含む対称平面に対して、該最鋭角部分側に受光素子および受光用集光手段の光軸を、該最鋭角部分とは反対側に発光素子および発光用集光手段の光軸を配置し、当該POFの該一端の他の部分に、POFの中心軸に垂直な平面に対して、第一の斜端面とは逆向きの角度を有する第二の斜端面ないしはPOFの中心軸に垂直な端面を構成し、第二の斜端面ないしは該POFの中心軸に垂直な該端面と第一の斜端面との境界付近に遮光体を設置し、発光素子からの光の少なくとも一部を第二の斜端面ないしは該POFの中心軸に垂直な該端面を経由してPOFに入射し、受光素子および受光用集光手段の光軸と、発光素子および発光用集光手段の光軸とが、対称平面ならびに遮光体に対して、それぞれ反対側に位置することを特徴とする上記課題を解決するための好ましい第7の追加の技術的手段によれば、第二の斜端面ないしは該POFの中心軸に垂直な端面付近に設置した発光素子からPOFの該一端の他の部分での反射光や拡散光が、受光素子に入射する可能性が大幅に低減できて、受光素子にて検知される光信号のSN比を大幅に向上することができ、被検出体の有無を確実に検出したり、双方向通信における光信号の確実な授受を行うことができるとともに、POFで伝送可能な、該一端の他の部分への入射光の入射角の範囲を拡大できるため、発光素子および発光用集光手段を設置する範囲を広げることができる光送受信装置や光送受信システムが得られる利点がある。 A part of one end of the POF is constituted by a first oblique end surface having an angle of 10 degrees or more and 40 degrees or less from a plane perpendicular to the central axis of the POF, and an outline of the POF parallel to the central axis of the POF A light receiving element and a light collecting condensing means on the side of the acute angle portion with respect to a symmetrical plane perpendicular to a perpendicular line from the sharpest angle portion to the first oblique end surface to the central axis of the POF and including the central axis of the POF The light axis of the light emitting element and the light collecting condensing means are arranged on the opposite side of the sharpest angle portion, and the other portion of the one end of the POF is in a plane perpendicular to the central axis of the POF. And an end surface perpendicular to the central axis of the second oblique end surface or POF having an angle opposite to the first oblique end surface, and the second oblique end surface or the end surface perpendicular to the central axis of the POF; A light shield is installed near the boundary with the first oblique end surface, and at least one of the light from the light emitting element is provided. Is incident on the POF via the second oblique end face or the end face perpendicular to the central axis of the POF, the optical axis of the light receiving element and the light receiving condensing means, and the optical axis of the light emitting element and the light collecting condensing means According to a seventh preferred additional technical means for solving the above-mentioned problem, wherein the second oblique end surface or the second oblique end surface or It is possible to greatly reduce the possibility that reflected light or diffused light at the other part of the POF from the light emitting element installed near the end face perpendicular to the central axis of the POF is incident on the light receiving element. The signal-to-noise ratio of the detected optical signal can be greatly improved, the presence / absence of the detected object can be reliably detected, and the optical signal can be reliably transferred in two-way communication, and can be transmitted by POF. The incident light to the other part of the one end Because it can increase the range of the angle of incidence, there is the advantage that the light emitting element and the light receiving device and an optical transmission and reception system a light emission focusing means it is possible to widen the range of installation can be obtained.
POF中に、口径が1.5mm以下の口径のPOFないしは光ファイバ部分へ変換するPOF口径変換部を有する、上記課題を解決するための好ましい第8の追加の技術的手段によれば、口径が1.5mm以下の口径を有するPOFないしは光ファイバ部分での柔軟性がさらに向上しかつ低コストの光送受信装置や光送受信システムが得られる利点がある。 According to a preferred 8th additional technical means for solving the above-mentioned problem, the POF has a POF aperture conversion portion for converting into a POF having an aperture of 1.5 mm or less or an optical fiber portion in the POF. There is an advantage that the flexibility in the POF or optical fiber portion having a diameter of 1.5 mm or less is further improved, and a low-cost optical transmission / reception apparatus and optical transmission / reception system can be obtained.
図1に本発明の実施形態における光送受信装置20および光送受信システム21の一例を示す。1本のPOF5の一端8付近に、発光素子1、発光用集光手段2、受光素子3、および受光用集光手段4を配置し、当該POF5の他端13付近に、動く被検出体6を配置する。発光素子1と受光素子3は、制御装置7により制御される。1本のみのPOF5で構成しており、POF部分の柔軟性にとみ、かつシステム構成がシンプルで安価に構成できる利点がある。
図1において、POF5,POF5の一端8、発光素子1、発光用集光手段2、受光素子3、受光用集光手段4、および制御装置7で光送受信装置20を構成している。
また、光送受信装置20に、POF5の他端13、移動体6を含めて、移動体検出用の光送受信システム21を構成している。FIG. 1 shows an example of an optical transmission / reception device 20 and an optical transmission / reception system 21 according to an embodiment of the present invention. The light emitting element 1, the light emitting condensing means 2, the light receiving element 3, and the light receiving condensing means 4 are arranged near one end 8 of one POF 5, and the object 6 to be detected is moved near the other end 13 of the POF 5. Place. The light emitting element 1 and the light receiving element 3 are controlled by the control device 7. Since it is composed of only one POF 5, there is an advantage that the system configuration is simple and inexpensive, considering the flexibility of the POF portion.
In FIG. 1, one end 8 of POF 5, POF 5, light emitting element 1, light emitting condensing means 2, light receiving element 3, light receiving condensing means 4, and control device 7 constitute an optical transceiver 20.
Further, the optical transceiver 20 includes the other end 13 of the POF 5 and the movable body 6 to constitute an optical transceiver system 21 for detecting a movable body.
POF5の一端8はPOF5の中心軸9に垂直な面に対して斜めに切断されている(以降では斜端面と略す)。POF5の他端13は、POF5の軸9に対し、垂直に切断されている。発光用集光手段2の光軸は、POF5の中心軸9ないしは後述する対称平面22に対しα度なる角度を有し、受光用集光手段4の光軸は、POF5の中心軸9ないしは対称平面22に対しβ度なる角度を有している。なお、以下の説明ではすべて、時計回り方向の角度をプラスとし、反時計まわり方向の角度をマイナスとする。また、以下の説明図では、説明上、POF5の直径の寸法を、集光手段の直径や光ファイバと各集光手段との距離にくらべ、拡大して示している。
光の入射の効率と、POF5の柔軟性の点より、POF5の直径の寸法としては、1mm以上10mm以下、好ましくは1.8mm以上5mm以下を対象としている。また、POF5の一端8の斜端面と発光用集光手段2ないしは受光用集光手段4との距離は、通常1mm程度以上15mm程度以下、好ましくはPOFのコア径程度以上でコア径の5倍程度以下、の範囲となる。One end 8 of the POF 5 is cut obliquely with respect to a plane perpendicular to the central axis 9 of the POF 5 (hereinafter abbreviated as a bevel end surface). The other end 13 of the POF 5 is cut perpendicular to the shaft 9 of the POF 5. The optical axis of the light collecting condensing means 2 has an angle of α degrees with respect to the central axis 9 of the POF 5 or a symmetry plane 22 described later, and the optical axis of the light receiving condensing means 4 is the central axis 9 or symmetrical of the POF 5. It has an angle of β degrees with respect to the plane 22. In all the following descriptions, the clockwise angle is positive, and the counterclockwise angle is negative. Further, in the following explanatory diagrams, for the sake of explanation, the diameter dimension of the POF 5 is shown enlarged as compared with the diameter of the condensing means and the distance between the optical fiber and each condensing means.
In view of the efficiency of light incidence and the flexibility of the POF 5, the diameter dimension of the POF 5 is 1 mm to 10 mm, preferably 1.8 mm to 5 mm. Further, the distance between the oblique end surface of the one end 8 of the POF 5 and the light collecting condensing means 2 or the light receiving condensing means 4 is usually about 1 mm or more and about 15 mm or less, and preferably about POF core diameter or more and 5 times the core diameter. The range is less than about.
図1では、POF5の一端の端面を、POF5の軸9の垂直方向からδの斜端面角度をもって斜めに切断している。POF5の長手方向の中心軸9に対し、POF5中を伝送してきた光が斜端面から出射する出射光の中心軸がなす角をγ(度)とすると、上記の式(1)の関係(以下では「出射光中心軸の式」と呼ぶ)が成り立つ。すなわち出射光の中心軸は、POF5の中心軸9に対し、斜端面の法線方向からは遠くなる方向(下記に示す斜端面の最鋭角部P側)に曲がる。
以後の説明において、POF5の中心軸9と平行な外形線と斜端面部分とが成す角が最鋭角を有する頂点部分P(図1、最鋭角部と略記する)から当該POF5の中心軸に下ろした垂線に垂直であり、かつPOF5の中心軸を含む平面、すなわち図1でPOF5の中心軸を通り紙面に垂直な平面、を対称平面22と呼ぶ。なお、図1中のQは,POF5の長さ方向の外形線と斜端面部分とが成す角が最鈍角を有する頂点部分を示す。
上述のように、POF5の斜端面8から出射される出射光の中心軸は、POF5の中心軸9に対し、上記のP側に曲がるため、受光用集光手段4の光軸を出射光の中心軸付近(プラスマイナス10度以内)に設置することにより、効率よく出射光を検出できると共に、対称平面22に対して受光用集光手段4の光軸とは反対側で、かつPOF5中の伝送条件を満たす入射可能範囲に発光用集光手段2の光軸を設置できるため、入射光や出射光の光の利用効率を高くした状態で、発光素子1、発光用集光手段2、受光素子3、受光用集光手段4の設置が容易となる利点がある。In FIG. 1, the end face of one end of the POF 5 is cut obliquely with a slant end face angle of δ from the direction perpendicular to the axis 9 of the POF 5. When the angle formed by the central axis of the outgoing light emitted from the oblique end surface of the light transmitted through the POF 5 with respect to the central axis 9 in the longitudinal direction of the POF 5 is γ (degrees), the relationship of the above formula (1) (hereinafter, Then, “the expression of the central axis of the emitted light” is established. That is, the central axis of the emitted light is bent in a direction farther from the normal direction of the oblique end surface (the sharpest angle portion P side of the oblique end surface described below) with respect to the central axis 9 of the POF 5.
In the following description, the angle formed by the contour line parallel to the central axis 9 of the POF 5 and the oblique end surface portion is lowered from the apex portion P (FIG. 1, abbreviated as the acute angle portion) to the central axis of the POF 5. A plane perpendicular to the vertical line and including the central axis of the POF 5, that is, a plane passing through the central axis of the POF 5 and perpendicular to the paper surface in FIG. Note that Q in FIG. 1 indicates a vertex portion where the angle formed by the outline in the length direction of the POF 5 and the oblique end surface portion has the most obtuse angle.
As described above, the central axis of the outgoing light emitted from the oblique end surface 8 of the POF 5 is bent to the above-described P side with respect to the central axis 9 of the POF 5, so By installing near the central axis (within plus or minus 10 degrees), the emitted light can be detected efficiently, on the side opposite to the optical axis of the light receiving condensing means 4 with respect to the symmetry plane 22, and in the POF 5 Since the optical axis of the light collecting condensing means 2 can be installed within the incident range that satisfies the transmission condition, the light emitting element 1, the light condensing means 2 and the light receiving element are used in a state where the utilization efficiency of incident light and outgoing light is increased. There is an advantage that the element 3 and the light receiving condensing means 4 are easily installed.
なお、POF5の一端8の斜端面と受光用集光手段4の光軸とが交差する部分が、対称平面22に対しわずかに受光素子3の反対側に位置する場合であっても、POF5の一端8と受光用集光手段4との間の受光用集光手段4の光軸の主要部分(90%以上)が上記条件を満たせば、特に問題とはならず、上記の利点は保存される。発光用集光手段4の光軸に対しても、同様に、POF5の一端8の斜端面と発光用集光手段2との間の発光用集光手段4の光軸の主要部分(90%以上)が上記条件を満たせば、特に問題とはならなず、上記の利点は保存される。したがって、これらの状態も、上記の[0035]の記載に含まれるものとする。
また、受光素子3及び受光用集光手段4と、発光素子1および発光用集光手段2とが、対称平面22に対して反対側に位置しかつほぼ対称に設置することが可能となるため、市販の反射型フォトセンサ11を用いることにより、従来法では面倒な光軸の設定が不要で、光利用効率の高い状態が、容易に設定できると共に、特性の揃ったシステムの構築が容易になる利点がある。Even if the portion where the oblique end surface of the one end 8 of the POF 5 and the optical axis of the light receiving condensing means 4 intersect is slightly located on the opposite side of the light receiving element 3 with respect to the symmetry plane 22, If the main part (90% or more) of the optical axis of the light receiving condensing means 4 between the one end 8 and the light receiving condensing means 4 satisfies the above conditions, there is no particular problem, and the above advantages are preserved. The Similarly, with respect to the optical axis of the light collecting means 4, the main part (90%) of the light axis of the light collecting means 4 between the oblique end surface of the one end 8 of the POF 5 and the light collecting means 2. If the above conditions satisfy the above conditions, there is no particular problem and the above advantages are preserved. Therefore, these states are also included in the description of [0035] above.
Further, the light receiving element 3 and the light receiving condensing means 4, and the light emitting element 1 and the light emitting condensing means 2 can be located on the opposite side with respect to the symmetry plane 22 and can be installed almost symmetrically. By using a commercially available reflective photosensor 11, the conventional method does not require a troublesome setting of the optical axis, and it is possible to easily set a state of high light utilization efficiency and to easily construct a system with uniform characteristics. There are advantages.
なお、発光用集光手段2として、通常のレンズに変えて、発光素子1からの光を集光しほぼ平行光に変換するコリメートレンズを用いることができる。コリメートレンズに入力した光のほとんどを、POF5中の伝送条件を満たす条件にてPOF5の一端から入射させることができるため、受光素子3に入射する光量もさらに増加する利点がある。また、受光用集光手段としてコリメートレンズを用いると、POF5からの所定角度の出射光のみを集光できるため、発光用集光手段からPOF5の一端8の端面に入射された光の当該端面での直接的な反射光をさらに受けにくくできる利点がある。 Note that a collimating lens that condenses light from the light emitting element 1 and converts it into substantially parallel light can be used as the light emission condensing means 2 instead of a normal lens. Since most of the light input to the collimating lens can be incident from one end of the POF 5 under conditions that satisfy the transmission conditions in the POF 5, there is an advantage that the amount of light incident on the light receiving element 3 is further increased. In addition, when a collimating lens is used as the light receiving condensing means, only the emitted light at a predetermined angle from the POF 5 can be condensed, so that the light incident on the end face of the one end 8 of the POF 5 from the light emitting condensing means There is an advantage that it is difficult to receive the direct reflected light.
図2は、POF5の一端が、POF5の軸9に対し、垂直に切断されている場合において、POF5中を伝送可能な条件においての、POF5への入射光の角度の条件およびPOF5から出射される光の角度の存在範囲を示す。なお、POF5の一端8が斜端面を有する場合には、出射光や入射光の中心軸に対して、光の存在範囲は若干増加するが、基本的な傾向は変わらない。
受光素子3により、被検出物6からの光を効率よく安定して検出するためには、発光用集光手段2の光軸ならびに受光用集光手段4の光軸は、少なくともPOF5から出射される光が存在する角度内に設置すべきである。すなわち、図2において、出射光の存在する灰色部分の範囲に受光用集光手段4の光軸を設定する必要がある。FIG. 2 shows the condition of the angle of incident light on the POF 5 and the light emitted from the POF 5 under the condition that the POF 5 can be transmitted through the POF 5 when one end of the POF 5 is cut perpendicular to the axis 9 of the POF 5. Indicates the range of light angles. When the end 8 of the POF 5 has a beveled end surface, the light existence range slightly increases with respect to the central axis of the emitted light or incident light, but the basic tendency remains the same.
In order for the light receiving element 3 to detect light from the detected object 6 efficiently and stably, the optical axis of the light collecting condensing means 2 and the optical axis of the light receiving condensing means 4 are emitted from at least the POF 5. It should be installed within an angle where there is light. That is, in FIG. 2, it is necessary to set the optical axis of the light receiving condensing means 4 in the range of the gray portion where the outgoing light exists.
発光用集光手段2の光軸と、受光用集光手段4の光軸との関係は任意に設計することも不可能ではない。しかし、発光素子1からの光のかなりの部分をPOF5に入射させ、かつPOF5からの出射光のかなりの部分を受光素子3に入射させるためには、発光用集光手段2と受光用集光手段4とはある程度の大きさを必要とし、発光用集光手段2の光軸と、受光用集光手段4の光軸との成す角(以下ではθと略記。|α−β|に相当。)は、汎用の受光素子や発光素子や反射型フォトセンサ等を使用するには、少なくとも15度程度以上を要することを見い出した。発光用集光手段2からの光のPOF5の端面での直接的反射光が、受光用集光手段4に入射しにくくなる好ましい条件として、発光用集光手段2の光軸ないしは受光用集光手段4の光軸をPOF5の軸9にほぼ一致させた場合において、上記2つの条件を満たす光ファイバ5の開口数は、図6より0.3程度以上となる。 It is not impossible to arbitrarily design the relationship between the optical axis of the light collecting condensing means 2 and the optical axis of the light receiving condensing means 4. However, in order to make a significant part of the light from the light emitting element 1 enter the POF 5 and to make a considerable part of the light emitted from the POF 5 enter the light receiving element 3, the light collecting condensing means 2 and the light receiving condensing means. The means 4 requires a certain size, and is an angle (hereinafter abbreviated as θ. | Α−β |) formed by the optical axis of the light collecting condensing means 2 and the optical axis of the light receiving condensing means 4. It has been found that it takes at least about 15 degrees to use a general-purpose light-receiving element, light-emitting element, reflection type photosensor, or the like. As a preferable condition that the light directly reflected from the end face of the POF 5 of the light from the light-collecting light collecting unit 2 is less likely to be incident on the light-receiving light condensing unit 4, the optical axis of the light-emitting light collecting unit 2 or the light collecting light collecting When the optical axis of the means 4 is substantially coincident with the axis 9 of the POF 5, the numerical aperture of the optical fiber 5 that satisfies the above two conditions is about 0.3 or more from FIG.
なお、POF5の端面に入射した光はその一部が直接反射されるが、端面部分の凹凸や表面状態により、直截反射光のさらに一部が拡散性の反射になる場合がある。このように拡散性の反射があっても、受光素子3に入射するこれらの不要な光を減じ、かつ受光用集光手段4に入射する光量を増加させるには、発光用集光手段2の光軸と、受光用集光手段4の光軸との成す角θは好ましくは20度程度以上を要することを見い出した。この場合、POF5の開口数としては、図2より0.4程度以上が好ましい。
一方、開口数が0.7以上になると、POF5から出射する光が広がりすぎて単位立体角当たりの光量が低下するため、受光素子に入射する光量も低下し好ましくない。したがって、開口数としては0.7以下、さらに好ましくは0.6以下に設定する。Note that a part of the light incident on the end face of the POF 5 is directly reflected, but a part of the direct reflected light may become diffusive reflection depending on the unevenness and surface state of the end face part. In order to reduce the unnecessary light incident on the light receiving element 3 and increase the amount of light incident on the light receiving condensing means 4 even if there is diffusive reflection in this way, It has been found that the angle θ formed by the optical axis and the optical axis of the light receiving condensing means 4 is preferably about 20 degrees or more. In this case, the numerical aperture of the POF 5 is preferably about 0.4 or more from FIG.
On the other hand, when the numerical aperture is 0.7 or more, the light emitted from the POF 5 spreads too much to reduce the amount of light per unit solid angle, which is not preferable because the amount of light incident on the light receiving element also decreases. Therefore, the numerical aperture is set to 0.7 or less, more preferably 0.6 or less.
図1において、発光素子1からの光のPOF5の一端8の斜端面において直接反射した光が、発光用集光手段2ないしはその付近方向に反射されるか、ないしはPOF5の一端8の斜端面の法線に対し受光用集光手段4とは反対側に反射されるように、発光用集光手段2の光軸を、POF5の一端8の斜端面の法線方向のプラス・マイナス10度以内、ないしはPOF5の一端8の斜端面の法線方向に対し受光用集光手段4側に、設置している。 In FIG. 1, the light directly reflected from the oblique end surface of the one end 8 of the POF 5 of the light from the light emitting element 1 is reflected in the light emission condensing means 2 or the vicinity thereof, or the oblique end surface of the one end 8 of the POF 5 is reflected. The optical axis of the light-emission condensing means 2 is within plus or minus 10 degrees in the normal direction of the oblique end surface of the one end 8 of the POF 5 so that it is reflected to the opposite side to the light-receiving condensing means 4 with respect to the normal line. Or, it is installed on the light receiving condensing means 4 side with respect to the normal direction of the oblique end surface of the one end 8 of the POF 5.
図3に、開口角が0.5の時の斜端面角δに対する、出射光の中心軸、斜端面角の法線方向、光ファイバ5中での伝送条件を満たす斜断面への入射光のPOF5の軸に対する角度α(度)の範囲、および斜断面からの入射光のPOF5の軸に対する角度β(度)の範囲、を灰色で示す。なお、
|α(度)−δ(度)|≧90、あるいは|β(度)−δ(度)|≧90・・・式(2)の場合は、POF5への入射、あるいはPOF5からの出射が不可能となる。図7では式(2)の等号の場合を、|α,β−δ|=90と略記している。
また、90>|α,β−δ|≧80の場合には、入射ないしは出射光と斜断面の端面との角度が10度以下となり、POF5の端面を見込む立体角が極めて狭くなるため、効率的な光の入射および出射光の受光は困難になる。FIG. 3 shows the incident light incident on the oblique section satisfying the transmission condition in the optical fiber 5 with respect to the oblique axis angle δ when the aperture angle is 0.5, the central axis of the emitted light, the normal direction of the oblique face angle. The range of the angle α (degrees) with respect to the POF5 axis and the range of the angle β (degrees) of the incident light from the oblique section with respect to the POF5 axis are shown in gray. In addition,
| Α (degrees) −δ (degrees) | ≧ 90, or | β (degrees) −δ (degrees) | ≧ 90 In the case of Equation (2), the incident light enters or exits the POF 5. It becomes impossible. In FIG. 7, the case of the equal sign in equation (2) is abbreviated as | α, β−δ | = 90.
Further, in the case of 90> | α, β−δ | ≧ 80, the angle between the incident or outgoing light and the end face of the oblique section is 10 degrees or less, and the solid angle for looking at the end face of the POF 5 becomes extremely narrow. It is difficult to receive incident light and to receive outgoing light.
なお、開口数が0.5以外の場合の斜端面角に対する伝送条件は、図3と類似の傾向を示す。すなわち、出射光の中心軸の上下に存在する入射光・出射光の存在範囲の幅は、斜端面角δが0度では図2での存在範囲の幅に一致し、斜端面角δの絶対値の増大とともに増大する。 Note that the transmission conditions with respect to the oblique end face angle when the numerical aperture is other than 0.5 show a tendency similar to that in FIG. That is, the width of the existing range of incident light and outgoing light existing above and below the central axis of the outgoing light is the same as the width of the existing range in FIG. Increases with increasing value.
図3において、発光用集光手段2の光軸と受光用集光手段4の光軸とが成す角=θ(度)=|α−β|として、25度のものを使用したときの、発光用集光手段の光軸がPOF5の中心軸9ないしは対称平面22に対して成す角度=α(度)を黒丸で示し、受光用集光手段の光軸がPOF5の中心軸9ないしは対称平面22に対して成す角度=β(度)を矢印の頂点で示し、黒丸部分にケース番号を付している。 In FIG. 3, when the angle formed by the optical axis of the light collecting condensing means 2 and the optical axis of the light receiving condensing means 4 = θ (degrees) = | α−β | An angle formed by the optical axis of the light collecting condensing means with respect to the central axis 9 or symmetrical plane 22 of the POF 5 is indicated by a black circle, and the optical axis of the light receiving condensing means is the central axis 9 or symmetrical plane of the POF 5. An angle formed with respect to 22 = β (degrees) is indicated by a vertex of an arrow, and a case number is given to a black circle portion.
斜端面角δが0の時(すなわち、端面がPOF5の中心軸に垂直の時)は、図3中のA0、A1およびA2の設定が可能である。A0およびA1は、ともに発光用集光手段の光軸がPOF5の中心軸付近に設置し、受光用集光手段の光軸を入射光・出射光の存在範囲の限界付近に設置するものである。これらの場合、受光素子に入射される光量が大幅に減じる欠点がある。
一方、A2は、発光用集光手段の光軸を入射光・出射光の存在範囲の限界付近に設置し、受光用集光手段の光軸をPOF5の中心軸付近に設置するものである。これらの場合、受光素子への光量は増えるが、発光用集光手段の光軸が入射光・出射光の存在範囲の限界付近に設置され、この限界より外側の光軸成分の光部分はPOF5中を伝送されないため、所定の光量をPOF5に入射させるためには、発光用集光手段の光軸を高い精度で設置することが必要になりコストアップとなると共にPOF5中を伝送される光量が低下する欠点がある。When the oblique end face angle δ is 0 (that is, when the end face is perpendicular to the central axis of the POF 5), A0, A1, and A2 in FIG. 3 can be set. In both A0 and A1, the optical axis of the light collecting condensing means is installed near the central axis of the POF 5, and the optical axis of the light receiving condensing means is installed near the limit of the existing range of incident light and outgoing light. . In these cases, there is a drawback that the amount of light incident on the light receiving element is significantly reduced.
On the other hand, in A2, the optical axis of the light-collecting condensing means is installed near the limit of the existence range of incident light and outgoing light, and the optical axis of the light-receiving condensing means is installed near the central axis of POF5. In these cases, the amount of light to the light receiving element is increased, but the optical axis of the light-emission condensing means is installed near the limit of the existence range of incident light and outgoing light, and the optical portion of the optical axis component outside this limit is POF5 In order to allow a predetermined amount of light to be incident on the POF 5, it is necessary to install the optical axis of the light-emission condensing means with high accuracy, resulting in an increase in cost and the amount of light transmitted through the POF 5. There are downsides.
斜端面角δ=5度付近では、POF5の一端8の斜端面の法線方向に黒丸を、出射光の中心軸より反法線方向のマイナス20度に矢印の頂点を有するB0ケースは、δ=0のA0ケースに比べ、受光用集光手段の光軸が、出射光の中心軸に近づくため、受光量が増大するが、出射光の中心軸のプラスマイナス10度以内の部分に受光用集光手段の光軸を設定する場合に比較し低い値を示す。出射光の中心軸より反法線方向に黒丸を設定し出射光の中心軸上に矢印の頂点を有するB2のケースでは、入射光のPOF5の一端8の斜端面での直接的反射光は、POF5の一端8の斜端面の法線方向10に対し対称な位置に反射し、受光用集光手段の光軸に対しさらに遠くに離れため、δ=0のA1ケースのPOF5の中心軸に対称なケース(A2ケースと呼ぶ)に比べ、不要な光を受光する危険性がさらに少なくなる。ただしδ=0時のA2のケースで述べた欠点と同じ欠点を有する。
なお、黒丸をPOF5の端面8の法線方向10より反受光素子側に設置し、矢印の頂点を出射光の中心軸に設定するB1ケースでは、入射光のPOF5の一端8の斜端面での直接的反射光が受光用集光手段4の光軸に対し近づくため、好ましくない。In the vicinity of the oblique end face angle δ = 5 degrees, the B0 case having a black circle in the normal direction of the oblique end face of the one end 8 of the POF 5 and the apex of the arrow at minus 20 degrees in the opposite normal direction from the central axis of the emitted light is δ Compared to the A0 case with = 0, the light receiving amount increases because the optical axis of the light receiving condensing means approaches the central axis of the outgoing light, but the light receiving portion is within ± 10 degrees of the central axis of the outgoing light. The value is lower than that in the case of setting the optical axis of the light collecting means. In the case of B2 in which a black circle is set in a direction normal to the central axis of the outgoing light and the vertex of the arrow is on the central axis of the outgoing light, the direct reflected light at the oblique end surface of the one end 8 of the POF 5 of the incident light is Reflected at a position symmetrical with respect to the normal direction 10 of the oblique end surface of the end 8 of the POF 5 and further away from the optical axis of the light receiving condensing means, it is symmetric with respect to the central axis of the POF 5 of the A1 case where δ = 0. The risk of receiving unnecessary light is further reduced as compared with a case (referred to as A2 case). However, it has the same defects as described in the case of A2 when δ = 0.
In the B1 case in which the black circle is placed on the side opposite to the light receiving element from the normal direction 10 of the end face 8 of the POF 5 and the vertex of the arrow is set as the central axis of the emitted light, the incident light at the oblique end face of the one end 8 of the POF 5 Since the directly reflected light approaches the optical axis of the light receiving condensing means 4, it is not preferable.
斜端面角δ=10度付近では、POF5の一端8の斜端面の法線方向に黒丸を、出射光の中心軸方向に矢印の頂点を有するC0ケースは、δ=5度のB0ケースに比べ、受光用集光手段の光軸が、出射光の中心軸のプラスマイナス10度以内ないしはその付近となるため、受光量がさらに増大する。
出射光の中心軸より反法線方向に黒丸を設定し出射光の中心軸上に矢印の頂点を有するC2のケースは、δ=5度のB2ケースに比べ、不要な光を受光する危険性がさらに少なくなるが、δ=0時のA2のケースで述べた欠点と同じ欠点を有する。
なお、黒丸を光ファイバ5の端面の法線方向より反受光素子側に設置し、矢印の頂点を出射光の中心軸に設定するC1ケースでは、入射光のPOF5の一端8の斜端面での直接的反射光が受光用集光手段の光軸に対し近づくため、B1ケース同様に好ましくない。In the vicinity of the bevel end face angle δ = 10 degrees, the C0 case having a black circle in the normal direction of the bevel end face of the one end 8 of the POF 5 and the vertex of the arrow in the central axis direction of the emitted light is compared with the B0 case of δ = 5 degrees. Since the optical axis of the light receiving condensing means is within or near plus or minus 10 degrees of the central axis of the emitted light, the amount of received light is further increased.
The case of C2 having a black circle in a direction opposite to the central axis of the outgoing light and having the vertex of the arrow on the central axis of the outgoing light has a higher risk of receiving unnecessary light than the B2 case of δ = 5 degrees. However, it has the same drawbacks as described in the case of A2 when δ = 0.
In the C1 case in which the black circle is placed on the side opposite to the light receiving element from the normal direction of the end face of the optical fiber 5 and the vertex of the arrow is set as the central axis of the outgoing light, the incident light at the oblique end face of the one end 8 of the POF 5 Since the directly reflected light approaches the optical axis of the light receiving condensing means, it is not preferable as in the case B1.
斜端面角δ=20度付近では、POF5の一端8の斜端面の法線方向より出射光の中心軸側に黒丸設定し、出射光の中心軸付近に矢印の頂点を設定するD1のケースは、入射光のPOF5の一端8の斜端面での直接的反射光が受光用集光手段の光軸に対しさらに遠くに離れため、δ=10度のC0ケースに比べ、不要な光を受光する危険性がさらに少なくなる。また、矢印を、出射光の中心軸付近に合わせることができるため、受光量が増大し、SN比は増大する。
出射光の中心軸より反法線方向に黒丸を設定し出射光の中心軸上に矢印の頂点を有するD2のケースは、δ=0時のA2のケースで述べた欠点と同じ欠点を有する。また、発光用集光手段の光軸から斜端面を見込む角度が狭くなる欠点も強くなってくる。In the vicinity of the oblique end face angle δ = 20 degrees, a black circle is set on the center axis side of the outgoing light from the normal direction of the oblique end face of the one end 8 of the POF 5 and the vertex of the arrow is set near the central axis of the outgoing light. Since the direct reflected light of the incident light at the oblique end surface of the one end 8 of the POF 5 is further away from the optical axis of the light receiving condensing means, unnecessary light is received compared to the C0 case where δ = 10 degrees. The risk is further reduced. In addition, since the arrow can be matched to the vicinity of the central axis of the emitted light, the amount of received light increases and the SN ratio increases.
The case of D2 in which a black circle is set in a direction opposite to the normal axis of the outgoing light and the vertex of the arrow is on the central axis of the outgoing light has the same drawbacks as those described in the case of A2 when δ = 0. In addition, the disadvantage of narrowing the angle at which the oblique end surface is viewed from the optical axis of the light-collecting means becomes stronger.
斜端面角δ=30度付近では、F1,F2のケースはδ=20度時のD1,D2のケースと類似の特徴を有する。光ファイバの一端8の端面の法線方向10に対し出射光の中心軸側に黒丸を設定し、出射光の中心軸付近に矢印の頂点を設定するD1のケースは、入射光のPOF5の一端8の斜端面での直接的反射光が受光用集光手段の光軸に対しさらに遠くに離れため、δ=20度のD0ケースに比べ、不要な光を受光する危険性がさらに少なくなる。また、矢印を、出射光の中心軸付近に合わせることができるため、受光量が増大し、SN比は増大する。
なお、θ=25度においては、20度付近≦δ≦30度付近において、黒丸と矢印とが、POF5の中心軸9に対して対称な位置となるところがある(E1)。この部分は、発光素子1,発光用集光手段2、受光素子3,受光用集光手段4に対し、実際に光学的設定を行う上で設定しやすい利点がある。In the vicinity of the oblique end face angle δ = 30 degrees, the cases F1 and F2 have similar characteristics to the cases D1 and D2 when δ = 20 degrees. The case of D1 in which a black circle is set on the central axis side of the outgoing light with respect to the normal direction 10 of the end face of the one end 8 of the optical fiber and the vertex of the arrow is set near the central axis of the outgoing light is one end of the POF 5 of the incident light. Since the directly reflected light at the oblique end surface 8 is further away from the optical axis of the light receiving condensing means, the risk of receiving unnecessary light is further reduced compared to the D0 case where δ = 20 degrees. In addition, since the arrow can be matched to the vicinity of the central axis of the emitted light, the amount of received light increases and the SN ratio increases.
When θ = 25 degrees, there are places where the black circle and the arrow are symmetrical with respect to the central axis 9 of the POF 5 near 20 degrees ≦ δ ≦ 30 degrees (E1). This portion has an advantage that it is easy to set the light-emitting element 1, the light-collecting condensing means 2, the light-receiving element 3, and the light-receiving condensing means 4 when actually performing optical settings.
斜端面角δ=40度付近のG1ケースでは被検出物からPOF5の他端13に入射した光はファイバ中を伝送され、POF5の一端8から出射されるが、POF5の一端8の端面が斜めに加工されているため、その出射光は、この斜端面の法線方向から離れる方向に、屈折する。このため、POF5の端面がPOF5の光軸に垂直な場合に比べ、発光用集光手段2の光軸と受光用集光手段4とのなす角θとして大きくできるため、端面部分の凹凸や表面状態により、直截反射光のさらに一部が拡散性の反射になる場合であっても、受光素子3に入射するこれらの不要な光を大幅に減じることができる。また、受光用集光手段4の光軸は、POF5の一端から出射する出射光の中心軸に一致ないしは近づけることができるため、受光素子に入射する光量を大幅に増加させることができる。このため、さらにSN比が大幅に改善した測定が可能となる利点がある。
ただし、図3にも示している通り、斜断面角のわずかな増減で、POF5の一端8からの出射光の中心軸の位置が大きく変化するため、製品ごとの特性を一定に保つには、斜断面角を精度よく管理することが必要となる。In the G1 case near the oblique end face angle δ = 40 degrees, light incident on the other end 13 of the POF 5 from the object to be detected is transmitted through the fiber and emitted from one end 8 of the POF 5, but the end face of the one end 8 of the POF 5 is oblique. Therefore, the emitted light is refracted in a direction away from the normal direction of the oblique end surface. For this reason, since the angle θ between the optical axis of the light-emission condensing means 2 and the light-receiving condensing means 4 can be increased as compared with the case where the end face of the POF 5 is perpendicular to the optical axis of the POF 5, Depending on the state, even if a part of the direct reflected light becomes diffusive reflection, the unnecessary light incident on the light receiving element 3 can be greatly reduced. In addition, since the optical axis of the light receiving condensing means 4 can coincide with or be close to the central axis of the outgoing light emitted from one end of the POF 5, the amount of light incident on the light receiving element can be greatly increased. For this reason, there is an advantage that a measurement with a much improved SN ratio becomes possible.
However, as shown in FIG. 3, the position of the central axis of the emitted light from the one end 8 of the POF 5 greatly changes with a slight increase / decrease in the oblique section angle. It is necessary to accurately manage the oblique section angle.
図3中の斜端面角δは、大きくしすぎるとPOF5の伝送条件を満たさなくなったり、斜断面角のわずかな増減で出射光の中心軸の位置が大きく変化したり、斜端面の法線方向と光ファイバ5から出射される光の中心軸方向との成す角が必要以上に広くなり斜端面角δの効果が少なくなるため、斜端面角δとしては、5度以上40度以下、好ましくは10度以上40度以下に設定する。
なお、図3において、矢印の位置として、出射光の中心軸に一致させている部分は、出射光の中心軸のプラス・マイナス10度以内であれば、出射光の中の光量の比較的大きい部分が受光素子3に入力されるため、上記に述べたのと同様な効果が得られる。この場合[0049]で述べた、黒丸と矢印とが、POF5の中心軸9に対して対称な位置となるδの範囲は、13度付近≦δ≦30度付近まで拡大される。
また、図3においては、黒丸と矢印間の角度θとして、25度の場合を例示しているが、前述したように、15度以上であれば本発明は適用することができ、好ましくは20度程度以上であればよい。黒丸と矢印間の角度θが大きすぎると、図2の傾向からも予想される様に、POF5の一端8の斜端面での不要な反射光をできるだけ受光しないようにするために使用できるPOF5の開口数が大きいものに制限されるため、黒丸と矢印間の角度θは50度以下で、好ましくは40度以下とする。If the oblique end face angle δ in FIG. 3 is too large, the transmission condition of POF 5 will not be satisfied, the position of the central axis of the emitted light will change greatly with a slight increase or decrease in the oblique section angle, or the normal direction of the oblique end face And the central axis direction of the light emitted from the optical fiber 5 becomes wider than necessary, and the effect of the oblique end face angle δ is reduced. Therefore, the oblique end face angle δ is 5 degrees or more and 40 degrees or less, preferably Set to 10 degrees or more and 40 degrees or less.
In FIG. 3, as the position of the arrow, if the portion matched with the central axis of the outgoing light is within plus or minus 10 degrees of the central axis of the outgoing light, the amount of light in the outgoing light is relatively large. Since the portion is input to the light receiving element 3, the same effect as described above can be obtained. In this case, the range of δ in which the black circle and the arrow described in [0049] are symmetrical with respect to the central axis 9 of the POF 5 is expanded to near 13 degrees ≦ δ ≦ 30 degrees.
3 illustrates the case where the angle θ between the black circle and the arrow is 25 degrees, but as described above, the present invention can be applied if it is 15 degrees or more, and preferably 20 degrees. Any degree or more is acceptable. If the angle θ between the black circle and the arrow is too large, as expected from the tendency of FIG. 2, as expected from the tendency of FIG. 2, the POF 5 that can be used to prevent unnecessary reflected light on the oblique end surface of the end 8 of the POF 5 as much as possible. Since the numerical aperture is limited to a large one, the angle θ between the black circle and the arrow is 50 degrees or less, preferably 40 degrees or less.
図4に制御装置7の構成例を示す。同期信号発生手段7−2からのパルス信号を受けて発光素子駆動手段7−3にて光素子1を周期的にパルス発光させ、発光用集光手段2によりPOF5の一端8に光を導入する。POF5中を伝送し、POF5の他端13から光を放出し、少なくともその一部をPOF5の該他端13から再入射し、POF5中を伝送しPOF5の該一端8から放射し、受光用集光手段4を経由して受光素子3で光を電気に変換する。その信号を信号増幅手段7−4にて増幅後、同期信号発生手段7−2からの変換開始パルス信号によりAD変換手段(アナログーデジタル変換器)7−5にてデジタル信号に変換後、信号処理手段7−1によって信号処理を行って出力信号12ないしは表示器7−8に出力する。なお、収集したデータは一時記憶手段7−6で記憶する。出力信号12は、リレー素子などを経由して接点出力とすることもできる。なお、信号処理手段7−1への指示は、スイッチ類やタッチパネル等により入力手段7−7から行う。なお、信号処理手段7−1、同期信号発生手段7−2、AD変換手段7−5および一時記憶手段7−6などは、処理装置7−9として、市販の汎用マイクロコンピュータ(例えばPIC等)で代用することもできる。また、AD変換手段7−5には、必要に応じてサンプル・ホールド回路機能を含ませることができる。また、他の処理用にマイクロコンピュータやデジタル信号処理装置を使用している場合には、当該マイクロコンピュータやデジタル信号処理装置の一部の機能を流用し、図4中の処理装置7−9の機能を行わせることもできる。 FIG. 4 shows a configuration example of the control device 7. In response to the pulse signal from the synchronizing signal generating means 7-2, the light emitting element driving means 7-3 causes the optical element 1 to periodically emit light, and the light emission condensing means 2 introduces light to one end 8 of the POF 5. . Transmits through the POF 5, emits light from the other end 13 of the POF 5, reenters at least a part of the other end 13 of the POF 5, transmits through the POF 5, and radiates from the one end 8 of the POF 5. Light is converted into electricity by the light receiving element 3 via the light means 4. The signal is amplified by the signal amplifying means 7-4, converted into a digital signal by the AD converting means (analog-digital converter) 7-5 by the conversion start pulse signal from the synchronizing signal generating means 7-2, and then the signal The signal is processed by the processing means 7-1 and output to the output signal 12 or the display 7-8. The collected data is stored in the temporary storage means 7-6. The output signal 12 may be a contact output via a relay element or the like. The instruction to the signal processing means 7-1 is given from the input means 7-7 by a switch or a touch panel. The signal processing means 7-1, synchronization signal generating means 7-2, AD converting means 7-5, temporary storage means 7-6, etc. are commercially available general-purpose microcomputers (for example, PIC) as the processing device 7-9. Can be substituted. The AD conversion means 7-5 can include a sample and hold circuit function as required. Further, when a microcomputer or a digital signal processing device is used for other processing, a part of the functions of the microcomputer or the digital signal processing device is used, and the processing device 7-9 in FIG. You can also perform functions.
一本のファイバを用いる本発明においては、POF5の一端8における端面の状態により、大なり小なり、発光素子1からの発光の一部が、POF5の一端8や他端13などで反射拡散し、受光素子3に入力される危険性が高い。この一端8の端面を斜断面状に製作することにより、受光素子3に不要な光が入力される危険性を大幅に低減可能であるが、ゼロにすることは困難である。したがって、受光素子3に入力される光量中、光素子1の発光が被検出物6経由で光ファイバ5の他端から光ファイバ5に再入射した光に起因する信号成分と、POF5の一端8や他端13の端面などで反射・拡散した光に起因する不要な光量およびその他の不要な光量起因分とを、判別する必要がある。
なお、発光光素子1の発光の光ファイバへの導入と、光ファイバからの受光素子3への光の出射を、別の光ファイバないしは別の光ファイバ部分を用いる従来の方式では、POF5の一端8の端面で反射・拡散した光に起因する不要な光の受光は、通常考慮する必要がない。In the present invention using a single fiber, depending on the state of the end face at one end 8 of the POF 5, the light emitted from the light emitting element 1 is partially reflected and diffused at the one end 8 or the other end 13 of the POF 5. The risk of being input to the light receiving element 3 is high. By manufacturing the end face of the one end 8 in an oblique cross section, the risk of unnecessary light being input to the light receiving element 3 can be greatly reduced, but it is difficult to make it zero. Therefore, among the light amount input to the light receiving element 3, the signal component resulting from the light emitted from the optical element 1 reentering the optical fiber 5 from the other end of the optical fiber 5 via the detected object 6 and the one end 8 of the POF 5. It is necessary to discriminate between the unnecessary light quantity caused by the light reflected and diffused by the end face of the other end 13 and the other unnecessary light quantity origin.
In the conventional system using another optical fiber or another optical fiber portion, the light emitting optical element 1 is introduced into the optical fiber and the light is emitted from the optical fiber to the light receiving element 3. The reception of unnecessary light due to the light reflected and diffused at the end face of 8 does not normally need to be considered.
本発明においては、このPOF5の一端8や他端13などの端面で光素子1からの光が反射・拡散したものが、受光素子3に入射する不要な光を把握する必要性が高い。この不要な光は、POF5の一端8や他端13などの端面の状態などによっても変化するため、適当な周期で計測しその値(以降では、ファイバ端面反射等起因データと略記する)を一時記憶手段7−6に記憶し、通常時には計測データからこのファイバ端面反射等起因データを、まず差し引いた上、以後の信号処理を行うのが好ましい。なお、このファイバ端面反射等起因データには、後述するPOF口径変換部5−2での反射などを含め、上記で述べたその他の不要な光量起因分も含まれている。
ファイバ端面反射等起因データを計測するタイミングは、被検出体6がPOF5の他端13から離れている時に行う。後述する単芯双方向通信システムにおいては、通信を行っていない状態でかつ発光素子が発光している状態で行う。初期状態において、被検出体6がPOF5の他端13から離れているケースや、通信を行わないケースにおいては、電源投入直後に行うことができる。また、入力手段7−7中にリセット位置TESTスイッチを設け、被検出体6がPOF5の他端13から離れていることを操作者が確認し、ないしは単芯双方向通信システムにおいて通信を行っていないことを操作者が確認し、操作者がこのスイッチを押す時に行ってもよい。In the present invention, the light reflected and diffused from the optical element 1 at the end face such as the one end 8 or the other end 13 of the POF 5 is highly required to grasp unnecessary light incident on the light receiving element 3. Since this unnecessary light also changes depending on the state of the end face such as one end 8 or the other end 13 of the POF 5, it is measured at an appropriate period and the value (hereinafter abbreviated as data due to fiber end face reflection etc.) is temporarily stored. It is preferable to store the data in the storage means 7-6 and, in normal times, first subtract the data due to the fiber end face reflection from the measurement data, and then perform subsequent signal processing. The fiber end surface reflection-related data includes other unnecessary light amount-related components described above, including reflection at a POF aperture converter 5-2, which will be described later.
The timing for measuring the fiber end face reflection data is performed when the detected object 6 is away from the other end 13 of the POF 5. In the single-core bidirectional communication system to be described later, the communication is performed in a state where communication is not performed and the light emitting element is emitting light. In the initial state, in the case where the detected object 6 is separated from the other end 13 of the POF 5 or the case where communication is not performed, the detection can be performed immediately after the power is turned on. Further, a reset position TEST switch is provided in the input means 7-7 so that the operator confirms that the detected body 6 is separated from the other end 13 of the POF 5 or performs communication in a single-core bidirectional communication system. It may be performed when the operator confirms that there is no such event and the operator presses this switch.
POF5の一端8の端面を斜端面状に製作することにより、受光素子3に入力されるファイバ端面反射等起因の不要な光を大幅に低減可能である。この場合にはAD変換後の値が所定の値以下における複数のデータの値を時間平均し、その値を一時記憶手段7−6に適当な周期で記憶し、その値を上記のファイバ端面反射等起因データとして用いることもできる。 By manufacturing the end face of the one end 8 of the POF 5 in the form of a slant end face, unnecessary light caused by fiber end face reflection or the like input to the light receiving element 3 can be greatly reduced. In this case, the values of a plurality of data whose values after AD conversion are equal to or less than a predetermined value are time-averaged, and the values are stored in the temporary storage means 7-6 at an appropriate period, and the values are reflected on the above-mentioned fiber end face reflection. It can also be used as equivalence data.
上記のようにして、通常時におけるAD変換後のデータからこのファイバ端面反射等起因データを、まず差し引いた上、しきい値処理を含む以後の信号処理を行えば、信号処理時のデータでは不要な光量に起因する値が排除できるため、被検出体6の有無の2値の計測のみに止まらず、複数階調の多値の判別も可能となる。例えば、被検出体6とPOF5との相対位置として、直近、少し近い、少し遠い、遠い、の4段階等、3値ないしはそれ以上の多値の判定が可能となる。 As described above, if the data resulting from reflection at the fiber end face is first subtracted from the data after AD conversion in normal time and then the subsequent signal processing including threshold processing is performed, the data at the time of signal processing is unnecessary. Since a value due to a large amount of light can be eliminated, it is possible to distinguish not only binary measurement of the presence / absence of the detected object 6 but also multi-value of a plurality of gradations. For example, as the relative position between the detection object 6 and the POF 5, it is possible to determine a multi-value of three or more values, such as four steps of the latest, a little closer, a little far, and a far.
また、発光スペクトルの異なる(例えば、赤色、緑色、青色等)複数の発光素子1とこれらとそれぞれ複数本のPOF5および複数個の受光素子3を組合せることにより、被検出体6の色情報の検出も可能となる。この場合簡単には、図4のシステムを複数個揃えれば構成できる。制御装置7中の点線で囲った部分はアナログマルチプレクサ付の1個のマイクロコンピュータにて順次処理することも可能であり、入力手段7−7や表示手段7−8も一組ですませられる。3色の発光に対し、それぞれ3値ないしはそれ以上の多値の判定を行う場合、10色を超える色の判別が可能である。
なお、発光スペクトルの異なる複数の発光素子が一つの発光素子1として集積されているものを用い、受光スペクトルの異なる複数の受光素子が一つの受光素子3として集積されているものを用いれば、単一のPOF5のみを用いた極めてシンプルな構成で、被検出体6の色情報の検出も可能となる。また、発光スペクトルの異なる複数の発光素子が一つの発光素子1として集積されているものを用い、発光素子1中に内蔵する複数の発光素子を時分割で点灯させ、受光スペクトルの広い単一の受光素子3用いて発光に同期して色情報の検出を行う場合においても、単一のPOF5のみを用いた極めてシンプルな構成で、被検出体6の色情報の検出も可能となる。Further, by combining a plurality of light emitting elements 1 having different emission spectra (for example, red, green, blue, etc.) and a plurality of these POFs 5 and a plurality of light receiving elements 3 respectively, Detection is also possible. In this case, it can be configured simply by arranging a plurality of systems shown in FIG. The portion surrounded by the dotted line in the control device 7 can be processed in sequence by a single microcomputer with an analog multiplexer, and the input means 7-7 and the display means 7-8 are also a set. When multi-valued determination of three values or more is performed with respect to light emission of three colors, it is possible to determine colors exceeding 10 colors.
If a plurality of light emitting elements having different emission spectra are integrated as one light emitting element 1 and a plurality of light receiving elements having different light reception spectra are integrated as one light receiving element 3, a single light emitting element 1 is used. The color information of the detection object 6 can be detected with a very simple configuration using only one POF 5. Further, a plurality of light emitting elements having different emission spectra are integrated as a single light emitting element 1, and a plurality of light emitting elements incorporated in the light emitting element 1 are turned on in a time-sharing manner, so that a single light having a wide light receiving spectrum is obtained. Even when color information is detected in synchronization with light emission using the light receiving element 3, the color information of the detection target 6 can be detected with a very simple configuration using only a single POF 5.
なお、3値ないしはそれ以上の多値の判定を行う場合には、白色の被検出体を用いて、受光素子3への最大光量の校正を行うのが好ましい。実際には、反射率の高い白色の被検出体を、POF5の他端付近に設置し、入力手段7−7中に設けた最大光量校正ボタンを押すことにより、このとき受光素子3に入射する光の信号を信号増幅手段7−4を経由してAD変換し、このときの値から前記のファイバ端面反射等起因データを差し引き、制御部7内の一時記憶手段7−6に最大光量信号として記憶する。ゼロと最大光量信号の値との間を3値ないしはそれ以上の領域に分ける。3値の場合は、反射無領域、反射小領域、反射中領域および反射大領域に区分する。この区分は等間隔でもよいし、反射光の弱い部分を狭く、強い部分を広くして人間の目の感覚に合わせるなどを行ってもよい。 In the case of ternary or higher multilevel determination, it is preferable to calibrate the maximum light amount to the light receiving element 3 using a white detection object. Actually, a white object to be detected having a high reflectance is placed near the other end of the POF 5, and the maximum light amount calibration button provided in the input means 7-7 is pressed, so that it enters the light receiving element 3 at this time. The optical signal is AD-converted via the signal amplifying means 7-4, and the above-mentioned data caused by reflection of the fiber end face is subtracted from the value at this time, and the maximum light quantity signal is stored in the temporary storage means 7-6 in the control section 7. Remember. The area between zero and the value of the maximum light quantity signal is divided into three or more areas. In the case of ternary values, it is divided into a non-reflection area, a small reflection area, a mid-reflection area, and a large reflection area. This division may be equally spaced, or the portion where the reflected light is weak may be narrowed and the strong portion may be widened to match the sense of the human eye.
これまで、図1においては、POF5を直線状に配置しているが、POF5中の伝送条件が大幅に変化しない範囲で、屈曲しても、本発明は同様に適用できることはもちろんである。なお、POF5の他端13における光の放射方向と被検出体6の位置が交差しない場合には、POF5の他端13部分に、光の放射方向を変化させる光アダプタ14(図示しない)を用いても、本発明は同様に適用できる。なお、光アダプタ14としては、曲がり形状のファイバや反射ミラーやプリズムなどを用いることができる。 Until now, in FIG. 1, the POF 5 is arranged in a straight line, but it goes without saying that the present invention can be similarly applied even if it is bent within a range in which the transmission conditions in the POF 5 do not change significantly. When the light emission direction at the other end 13 of the POF 5 and the position of the detected object 6 do not intersect, an optical adapter 14 (not shown) that changes the light emission direction is used at the other end 13 portion of the POF 5. However, the present invention can be similarly applied. The optical adapter 14 may be a bent fiber, a reflection mirror, a prism, or the like.
また、後述する口径変換手段と同様な方法により、口径の小さいPOFに変換し、POF5の他端13付近の口径を絞り、POF5の他端13から出射される出射光の領域を狭い範囲に制限し、位置精度の良い移動体検出用の光送受信システムを構成することもできる。 In addition, the aperture is converted into a small aperture POF by the same method as the aperture conversion means described later, the aperture in the vicinity of the other end 13 of the POF 5 is narrowed, and the region of the emitted light emitted from the other end 13 of the POF 5 is limited to a narrow range. In addition, it is possible to configure an optical transmission / reception system for detecting a moving body with high positional accuracy.
図5に他の実施例を示す。これまで、POF5として、単一の直径を有するPOF5を用いる場合を述べてきたが、何らこれに限定するものではない、図5に示すように、端面が斜めに加工された、比較的大きい直径(例えば、直径が1.8mm−5mm)のPOF部分5−1と、細い直径(例えば、0.2mm−1.5mm)のPOF部分5−3と、その間に位置する直径が変化するPOF口径変換部5−2とからなっている。 FIG. 5 shows another embodiment. Up to now, the case where a POF 5 having a single diameter is used as the POF 5 has been described. However, the present invention is not limited to this. As shown in FIG. 5, a relatively large diameter with an end face processed obliquely. The POF portion 5-1 (for example, the diameter is 1.8 mm-5 mm), the POF portion 5-3 that is a thin diameter (for example, 0.2 mm-1.5 mm), and the POF aperture whose diameter changes between them is changed. It consists of the conversion unit 5-2.
図5において、発光素子1、受光素子2、発光用集光手段2および受光用集光手段4は、一体化された反射型フォトセンサ11に構成されたものを使用する場合につき示している。一体化された反射型フォトセンサ11は、市販品もあり、低コストでかつ品質がそろっている利点がある。
また、一体化された反射型フォトセンサ11部分と、POF5−1の一端8付近は、遮光手段16を設置し、外部光が受光素子3やPOF5−1の端面に入射しないよう構成している。なお、遮光手段16の内面は、艶消しの黒色塗料などを塗布し、不要な反射が生じない構成するのが好ましい。
また、図5では、POF5の一端8の斜端面は、斜断面角δ=10−40度、好ましくは15度−30度で、斜めに加工されている。POF5の中心軸9ないしは対称平面22と、発光用集光手段2の光軸と成す角αは、+5度ないしは+30度(好ましくは+5度ないしは+20度)に設定し、POF5の中心軸9ないしは対称平面22と、受光用集光手段4の光軸と成す角βは、−5度ないしは−30度(好ましくは−10度ないしは−20度)に設定している。
なお、図3でも述べたように、斜断面角δを、使用する一体化された反射型フォトセンサ11に合わせて、13度−30度程度の適当な値に設定すれば、上記の角度αとβは、符号が逆でほぼ同じ絶対値にすることができるため、光学的設定も容易になる利点がある。In FIG. 5, the light emitting element 1, the light receiving element 2, the light emitting condensing means 2, and the light receiving condensing means 4 are shown in the case where an integrated reflection type photosensor 11 is used. The integrated reflection type photosensor 11 is also available on the market, and has the advantage of being low in cost and quality.
Further, a light shielding means 16 is installed in the vicinity of the integrated reflection type photosensor 11 portion and one end 8 of the POF 5-1 so that external light is not incident on the end surfaces of the light receiving element 3 and the POF 5-1. . In addition, it is preferable that the inner surface of the light shielding means 16 is coated with a matte black paint or the like so that unnecessary reflection does not occur.
In FIG. 5, the oblique end surface of the one end 8 of the POF 5 is processed obliquely at an oblique section angle δ = 10−40 degrees, preferably 15 degrees−30 degrees. The angle α formed between the central axis 9 or the symmetry plane 22 of the POF 5 and the optical axis of the light collecting means 2 is set to +5 degrees or +30 degrees (preferably +5 degrees or +20 degrees), and the central axis 9 or The angle β formed between the symmetry plane 22 and the optical axis of the light receiving condensing means 4 is set to −5 degrees or −30 degrees (preferably −10 degrees or −20 degrees).
As described with reference to FIG. 3, if the oblique section angle δ is set to an appropriate value of about 13 degrees to 30 degrees in accordance with the integrated reflection type photosensor 11 to be used, the above angle α And β have opposite signs and can be set to substantially the same absolute value, so that there is an advantage that the optical setting is facilitated.
発光素子1や受光素子3との間で、集光手段2や4を介して光の入出力を行う、POF5の端部8では、図2に示したように、ある程度以上の開口数のファイバを使用するほうが、効率のよい光の入出力ができる。また、比較的大きい直径(例えば、直径が1.8mm−5mm)のPOF5−1を用いる方が、少々光軸がずれても、効率よくPOF5への光の入射が可能で、POF5の一端8からの出射光も大きく変化せずに受光可能である。しかし、ファイバの直径が太くなると、柔軟性が悪くなり、曲げ半径も大きくなる欠点がある。
一方、反射光の変化を検出したいPOF5の他端13は、設置するスペースが狭かったり、小さい光ファイバの曲げ半径を要する場合がしばしば生じ、POF5の他端13付近の直径は、細い方が好ましい場合が多い。このような場合には、図5に示したように、POF5の途中にPOF口径変換部5−2のように、POF5の直径を漸次変化させる部分を設ければよい。At the end 8 of the POF 5 that inputs and outputs light through the light collecting means 2 and 4 between the light emitting element 1 and the light receiving element 3, as shown in FIG. The light can be input and output more efficiently when using. In addition, using a POF 5-1 having a relatively large diameter (for example, a diameter of 1.8 mm-5 mm) allows light to be efficiently incident on the POF 5 even if the optical axis is slightly shifted. The light emitted from the light can be received without greatly changing. However, when the diameter of the fiber is increased, the flexibility is deteriorated and the bending radius is increased.
On the other hand, the other end 13 of the POF 5 for which a change in reflected light is to be detected often requires a small installation space or a small optical fiber bending radius, and the diameter near the other end 13 of the POF 5 is preferably narrower. There are many cases. In such a case, as shown in FIG. 5, a portion that gradually changes the diameter of the POF 5 may be provided in the middle of the POF 5, such as the POF aperture conversion unit 5-2.
POF口径変換部5−2は、比較的太い直径の光ファイバを回転させながら、その周囲から熱を加えつつ、徐々に引っ張ることにより得ることができる。あるいは、比較的太い直径の光ファイバの先端付近を図5のPOF口径変換部5−2に示すテーパ形状になるように機械加工し、その先端を細い直径の光ファイバと接着させてもよい。なお、この場合には、接着剤として、固着後POFのコアに近い屈折率となるものを用いることが望ましく、機械加工した部分は前もって透明フッ素樹脂の低屈折率樹脂などで単層ないしは複数層のコーティングを行い、薄い単層ないしは複数層のクラッド層を形成しておくのが望ましい。 The POF aperture conversion unit 5-2 can be obtained by gradually pulling an optical fiber having a relatively large diameter while applying heat from the surroundings while rotating the optical fiber having a relatively large diameter. Alternatively, the vicinity of the tip of an optical fiber having a relatively large diameter may be machined so as to have a tapered shape as shown in the POF aperture converter 5-2 in FIG. 5, and the tip may be bonded to an optical fiber having a small diameter. In this case, it is desirable to use an adhesive having a refractive index close to that of the POF core after fixing, and the machined portion is made of a single layer or a plurality of layers with a low refractive index resin of transparent fluororesin in advance. It is desirable to form a thin single layer or a plurality of clad layers.
POF口径変換部5−2としては、特開2001−350037号公報に記載ないしは引用されているような、レンズないしはレンズ作用を有する物質の使用、ないしは大口径側のPOF5の端面を凸状に加工すること、などによりPOF5の口径変換を効率よく行う方法を用いることもできる。 As the POF aperture converting section 5-2, a lens or a substance having a lens action as described or cited in JP-A-2001-350037 is used, or the end surface of the POF 5 on the large aperture side is processed into a convex shape. It is also possible to use a method for efficiently converting the aperture of the POF 5 by, for example.
なお、いずれのPOF口径変換部5−2を用いても、POF口径変換部5−2ではいくばくかの反射成分が生じその一部はPOF5を逆に伝送し、POF5の一端8から出射し、受光素子3にて不要光として検知される。このため、POF口径変換部5−2を使用する場合には、制御装置7内にて、図4に関連して述べたファイバ端面反射等起因データの信号処理が必須となる。 Note that, regardless of which POF aperture converter 5-2 is used, some reflection components are generated in the POF aperture converter 5-2, part of which is transmitted through the POF 5 in reverse and emitted from one end 8 of the POF 5, It is detected as unnecessary light by the light receiving element 3. For this reason, when the POF aperture converter 5-2 is used, the signal processing of the fiber end surface reflection and the like data described with reference to FIG.
図5において、発光素子1からの光は、発光用集光手段2を適切に設計しPOF5の斜端面8の一部分だけに集光させることにより、POF5の端面のエッジ部分や遮光手段16を照射してそれらの不要な反射光が、受光素子4に入射されるのを回避ないしは大幅に低減することができる。なお、集光手段2とPOF5との間で、発光素子1からの光を制限させる様に後述するような遮光体19を設け、発光素子1からの光が受光素子3側のPOF5の端面のエッジ等を照射しない様に構成し、上記不要な反射光を光受光素子4に入射させないように構成することもできる。 In FIG. 5, the light from the light emitting element 1 irradiates the edge part of the end face of the POF 5 and the light shielding means 16 by appropriately condensing the light collecting means 2 and condensing only on a part of the oblique end face 8 of the POF 5. Thus, it is possible to avoid or significantly reduce the unnecessary reflected light from entering the light receiving element 4. A light shield 19 as described later is provided between the light condensing means 2 and the POF 5 so as to limit the light from the light emitting element 1, and the light from the light emitting element 1 is incident on the end face of the POF 5 on the light receiving element 3 side. It is also possible to configure so as not to irradiate the edge or the like, and to prevent the unnecessary reflected light from entering the light receiving element 4.
図6に、POF5の両端部分に、ともに、一体化反射型フォトセンサ11aおよび11bを設置し、制御装置7aおよび7bを介してパソコン17aおよび17b間でデータ通信を行う光送受信システムの他の実施例を示す。電気通信路12aおよび12bは、低速のRS−232C規格の通信や、より高速の全2重通信にも対応させることもできる。
第1のパソコン17aから発信された信号は、制御装置7aを経由して、発光素子1aを駆動する。その光は発行用集光手段2aを介して、POF5の一端に入射される。その入射光は、光ファイバ5中を伝搬し、光ファイバ5の他端から出射され、受光用集光手段4bを経由して受光素子3bに入射し、電気信号に変換されて、制御装置7bと電気通信路12bを経由して、第2のパソコン17bに入力される。
同様に、第2のパソコン17bから発信された信号は、上記と逆のルートをたどって、第1のパソコン17aに入力される。POF5中では、右に伝搬する波と、左へ伝搬する波が共存するが、基本的には、両方向の光間では、干渉等は生じない。
図6においては、POF5部分に口径変換部5−2a、5−2bを設け、POF5の主要部分の口径を細くし柔軟性を良くした単芯双方向通信の光送受信システム21を示す。
なお、発光素子1a,1bの発光波長を異ならせ、発光素子1aの光は通すが発光素子1bの光は通さない光学フィルタを受光素子3bないしはその集光手段4bの前面に設置し、発光素子1bの光は通すが発光素子1aの光は通さない光学フィルタを受光素子3aないしはその集光手段4aの前面に設置することにより、POF5の端面やエッジあるいは遮光手段16経由での不要光の受光素子3への漏れ込みの悪影響を低減することもできる。FIG. 6 shows another embodiment of an optical transmission / reception system in which integrated reflection type photosensors 11a and 11b are installed at both ends of POF 5 and data communication is performed between personal computers 17a and 17b via control devices 7a and 7b. An example is shown. The electric communication paths 12a and 12b can be adapted to low-speed RS-232C standard communication and higher-speed full-duplex communication.
The signal transmitted from the first personal computer 17a drives the light emitting element 1a via the control device 7a. The light is incident on one end of the POF 5 through the issuing condensing means 2a. The incident light propagates through the optical fiber 5, is emitted from the other end of the optical fiber 5, enters the light receiving element 3b via the light receiving condensing means 4b, is converted into an electric signal, and is then controlled by the control device 7b. To the second personal computer 17b via the electric communication path 12b.
Similarly, the signal transmitted from the second personal computer 17b follows the reverse route and is input to the first personal computer 17a. In the POF 5, a wave propagating to the right and a wave propagating to the left coexist, but basically no interference or the like occurs between the light in both directions.
FIG. 6 shows an optical transmission / reception system 21 for single-core bi-directional communication in which the aperture converters 5-2a and 5-2b are provided in the POF 5 portion, and the aperture of the main portion of the POF 5 is narrowed to improve flexibility.
The light emitting elements 1a and 1b have different emission wavelengths, and an optical filter that allows light from the light emitting element 1a to pass but does not pass light from the light emitting element 1b is disposed on the front surface of the light receiving element 3b or its condensing means 4b. By installing an optical filter that allows light of 1b but not light of the light emitting element 1a on the front surface of the light receiving element 3a or its condensing means 4a, it is possible to receive unnecessary light via the end face or edge of the POF 5 or the light shielding means 16. The adverse effect of leakage into the element 3 can also be reduced.
図6において、POF5の部分に、光コネクタ15を用いてで着脱割可能にすることもできる。図6においては、口径の大きいPOF部分である5−1aや5−1b部分に光コネクタ15aや15b(図示せず)を設置するのが、光コネクタの接合精度をあまり必要とせずに所望の結合特性が得られるためコストと性能の点で好ましい。 In FIG. 6, the POF 5 can be attached / detached using the optical connector 15. In FIG. 6, it is desirable to install optical connectors 15a and 15b (not shown) in the 5-1a and 5-1b portions, which are POF portions having a large aperture, without requiring much optical connector joining accuracy. Since the bonding characteristics can be obtained, it is preferable in terms of cost and performance.
図7は、POF5の一端8を、複数個の端面で構成する光送受信装置20の例を示す。受光用集光手段4と対面する端面(第1の端面部分)の斜端面角δをプラスに設定し、発光用集光手段2と対面する端面(第2の端面部分)の斜端面角δ‘(図7参照)を0ないしはマイナスに設定し、POF5からの出射光を効率よく検知し、POF5への入射効率を改善すると共に、発光素子1からの不要光が、受光素子3に入射されないように構成している。
この場合、図1でも述べたと同様に、POF5の一端8の斜端面から出射される出射光の中心軸は、POF5の中心軸9に対し、上記のP側に曲がるため、受光用集光手段4の光軸を出射光の中心軸付近(プラスマイナス10度以内)に設置することにより、効率よく出射光を検出できると共に、対称平面22に対して受光用集光手段4の光軸とは反対側で、かつPOF5中の伝送条件を満たす入射可能範囲に発光用集光手段2の光軸を設置できるため、発光素子1、発光用集光手段2、受光素子3、受光用集光手段4の設置が容易となり、市販の一体化反射型フォトセンサの使用も可能となる利点がある。
一体化反射型フォトセンサ11中の発光用集光手段2と受光用集光手段4との中心間距離が、POF5の一端8でのPOFの直径と比べ同等ないしはより広い場合には、受光用集光手段4と対面する端面(第1の端面部分)の斜端面角δをプラスに設定し、発光用集光手段2と対面する端面(第2の端面部分)の斜端面角δ‘(図7参照)を0ないしはマイナスに設定し、POF5への入射光や光ファイバ5からの出射光を効率よく一体化反射型フォトセンサ11に入出力するように構成している。
発光素子1からの光によるPOF5の端面や遮光手段16等での不要な反射光による受光素子3への不要な光の入射を極力避けるために、第1の端面部分と第2の端面部分との境界部分と一体化反射型フォトセンサ11との間に、遮光体19を設けている。また、第1の端面部分と第2の端面部分との境界部分の端面部分に空隙18を設けることにより、この境界部分を介した不要光を大幅に低減できる。
このことにより、発光素子1からの光によるPOF5の一端8での不要な反射光が受光素子3に入射される危険性を大幅に低減することができると共に、発光用集光手段2の光軸の設置可能範囲を大幅に増加させることができる。すなわち図4における、ファイバ端面の法線方向近より受光素子側に、発光素子を設置する制限の必要がなくなる。FIG. 7 shows an example of an optical transmission / reception device 20 in which one end 8 of the POF 5 is constituted by a plurality of end faces. The oblique end face angle δ of the end face (first end face portion) facing the light receiving condensing means 4 is set to plus, and the oblique end face angle δ of the end face (second end face portion) facing the light emitting condensing means 2 is set. '(See FIG. 7) is set to 0 or minus, the light emitted from the POF 5 is efficiently detected, the incident efficiency to the POF 5 is improved, and unnecessary light from the light emitting element 1 is not incident on the light receiving element 3 It is configured as follows.
In this case, as described with reference to FIG. 1, the central axis of the outgoing light emitted from the oblique end surface of the one end 8 of the POF 5 is bent to the P side with respect to the central axis 9 of the POF 5. By arranging the optical axis 4 near the central axis of the outgoing light (within ± 10 degrees), the outgoing light can be detected efficiently, and the optical axis of the light receiving condensing means 4 with respect to the symmetrical plane 22 Since the optical axis of the light-collecting light collecting means 2 can be installed on the opposite side and in an incidentable range that satisfies the transmission conditions in the POF 5, the light-emitting element 1, the light-emitting light collecting means 2, the light-receiving element 3, and the light-receiving light collecting means 4 is easy to install, and there is an advantage that a commercially available integrated reflection type photosensor can be used.
When the distance between the centers of the light-emission condensing means 2 and the light-receiving condensing means 4 in the integrated reflective photosensor 11 is equal to or wider than the diameter of the POF at one end 8 of the POF 5, The oblique end face angle δ of the end face (second end face portion) facing the light-collecting means 2 is set to be positive by setting the oblique end face angle δ of the end face (first end face portion) facing the light collecting means 4 to be plus. 7) is set to 0 or minus, and the incident light to the POF 5 and the outgoing light from the optical fiber 5 are efficiently input / output to / from the integrated reflection type photosensor 11.
In order to avoid unnecessary light from being incident on the light receiving element 3 due to unnecessary reflected light from the end face of the POF 5 or the light shielding means 16 due to light from the light emitting element 1, the first end face part, the second end face part, A light shielding body 19 is provided between the boundary portion of the light source and the integrated reflective photosensor 11. Further, by providing the gap 18 in the end surface portion of the boundary portion between the first end surface portion and the second end surface portion, unnecessary light through this boundary portion can be greatly reduced.
As a result, it is possible to greatly reduce the risk that unnecessary reflected light from the one end 8 of the POF 5 is incident on the light receiving element 3 due to the light from the light emitting element 1, and the optical axis of the light collecting means 2. The installation range of can be greatly increased. That is, in FIG. 4, it is not necessary to limit the light emitting element to be installed on the light receiving element side from near the normal direction of the fiber end face.
POF5の長さ方向の外形線と第一の端面部分および第二の端面部分の最鋭角部をPおよびP‘で示している。
第一の端面部分の最鋭角部であるPからPOF5の中心軸に下ろした垂線に垂直であり、かつPOF5の中心軸を含む平面、すなわち図7でPOF5の中心軸を通り紙面に垂直な平面を、図1と同様に対称平面22と呼ぶ。The contour line in the length direction of the POF 5 and the sharpest corners of the first end face part and the second end face part are indicated by P and P ′.
The plane perpendicular to the central axis of the POF 5 from P, which is the sharpest corner of the first end face portion, and including the central axis of the POF 5, that is, the plane that passes through the central axis of the POF 5 in FIG. Is called a plane of symmetry 22 as in FIG.
図8に、図7に対する、POF5中での伝送条件を満たす、出射光の範囲と入射光の可能範囲を示す。なお、図8中の黒丸と矢印は、図3の説明のため用いたものをそのまま併記している。
図8中縦軸が負の部分は、POF5の一端8の第一の端面からの出射光の範囲を示し、この範囲は図3の下半分に相当している。
図8中縦軸が正の部分は、POF5の一端8の第二の端面部分への入射光の可能範囲を示す。この場合には、第一の端面の斜断面角(δ)には無関係となり、第二の端面の斜断面角(δ‘)にのみ依存する。δ‘=0のときはβの上限は約30度、δ‘=10度の時はβの上限は約37度、であり、第二の端面の斜断面角(δ‘)が増大するとともに、βの上限も増大する。
また、発光素子1からの光がPOF5の一端8の第二端面に入射し、端面での反射成分が生じても、遮光手段19にて遮光されて、受光素子3には入力されないため、図3のB1やC1のケースに対しても、SN比の高い信号を受信できる利点がある。FIG. 8 shows the range of emitted light and the possible range of incident light that satisfy the transmission conditions in POF 5 with respect to FIG. Note that the black circles and arrows in FIG. 8 are the same as those used for the explanation of FIG.
In FIG. 8, the negative part of the vertical axis indicates the range of the emitted light from the first end face of the one end 8 of the POF 5, and this range corresponds to the lower half of FIG.
In FIG. 8, the vertical axis indicates a possible range of incident light on the second end face portion of the one end 8 of the POF 5. In this case, it becomes irrelevant to the oblique section angle (δ) of the first end face, and depends only on the oblique section angle (δ ′) of the second end face. When δ ′ = 0, the upper limit of β is about 30 degrees, and when δ ′ = 10 degrees, the upper limit of β is about 37 degrees, and the oblique section angle (δ ′) of the second end face increases. , Β also increases.
Further, even if light from the light emitting element 1 is incident on the second end face of the one end 8 of the POF 5 and a reflection component is generated at the end face, it is shielded by the light shielding means 19 and is not input to the light receiving element 3. There is an advantage that a signal with a high S / N ratio can be received even in the case of 3 of B1 and C1.
1:発光素子、2:発光用集光手段、2’:発光用コリメータレンズ、
3:受光素子、4:受光用集光手段、4’:受光用コリメータレンズ、
5:POF、6:被検出体、7:制御装置、8:POFの一端、
9:POFの中心軸、10:POFの一端の端面の法線、11:一体化反射型フォトセンサ、12:制御装置の出力信号、13:POFの他端、14:光アダプタ、15:光コネクタ、16:遮光手段、17:パソコン、18:空隙、19:遮光体、20:光送受信装置、21:光送受信システム、22:対称平面1: light-emitting element, 2: light-collecting means, 2 ′: light-emitting collimator lens,
3: light receiving element, 4: light receiving condensing means, 4 ′: light receiving collimator lens,
5: POF, 6: detected object, 7: control device, 8: one end of POF,
9: POF central axis, 10: normal line of one end face of POF, 11: integrated reflection type photosensor, 12: output signal of control device, 13: other end of POF, 14: optical adapter, 15: light Connector: 16: light shielding means, 17: personal computer, 18: air gap, 19: light shielding body, 20: optical transceiver, 21: optical transceiver system, 22: plane of symmetry
Claims (11)
開口数が0.4以上0.6以下でコア部の口径が1.8mm以上5mm以下の部分を有する該POFの一端の少なくとも一部を、該POFの中心軸に垂直な平面から10度以上40度以下の角度を有する斜端面で構成し、当該斜端面と該POFの中心軸に平行な該POFの外形線との最鋭角部分から該POFの中心軸におろした垂線に垂直でかつ該POFの中心軸を含む平面に対して、該最鋭角部分側に受光素子および受光用集光手段の光軸を、該最鋭角部分とは反対側に発光素子および発光用集光手段の光軸を配置し、発光素子からの光の少なくとも一部を該POFに入射するとともに該POFからの出射光を受光用集光手段を経由して受光素子で検知し、その出力をAD変換器を経由し、しきい値処理を有する信号処理装置に入力し、信号処理後に信号処理装置から出力することを特徴とする一本のPOFを用いた光送受信システム。A light emitting element, a light emitting condensing means, a light receiving element, and a light receiving condensing means are arranged near one end of one POF, and the POF is irradiated again with light emitted from the other end of the POF, and then again the POF. An optical transmission / reception system arranged to be incident on
At least part of one end of the POF having a numerical aperture of 0.4 to 0.6 and a core portion having a diameter of 1.8 mm to 5 mm is at least 10 degrees from a plane perpendicular to the central axis of the POF. A slanted end surface having an angle of 40 degrees or less, perpendicular to a perpendicular line extending from the sharpest part of the slanted end surface and the outline of the POF parallel to the central axis of the POF to the central axis of the POF, and the With respect to a plane including the central axis of the POF, the optical axis of the light receiving element and the light collecting condensing means is on the most acute angle portion side, and the light axis of the light emitting element and the light emitting condensing means is on the opposite side of the sharpest angle portion. And at least a part of the light from the light emitting element is incident on the POF and the light emitted from the POF is detected by the light receiving element through the light receiving condensing means, and the output is passed through the AD converter. And input to a signal processing device having threshold processing. Optical transmission and reception system using a single POF, characterized in that the output from the signal processing device after processing.
開口数が0.4以上0.6以下でコア部の口径が1.8mm以上5mm以下の部分を有する該POFの一端および他端のそれぞれの少なくとも一部を、POFの中心軸に垂直な平面から10度以上40度以下の角度を有する斜端面で構成し、当該斜端面と該POFの中心軸に平行な該POFの外形線との最鋭角部分からPOFの中心軸におろした垂線に垂直でかつPOFの中心軸を含む平面に対して、該最鋭角部分側に受光素子および受光用集光手段の光軸を、該最鋭角部分とは反対側に発光素子および発光用集光手段の光軸を配置し、発光素子からの光の少なくとも一部を該POFに入射するとともに、POFからの出射光を該受光用集光手段を経由して受光素子で検知し、その出力をAD変換器を経由し、しきい値処理を有する信号処理装置に入力し、信号処理後に信号処理装置から出力することを特徴とする一本のPOFを用いた光送受信システム。A first light emitting element, a first light emitting condensing means, a first light receiving element, and a first light receiving condensing means are arranged near one end of one POF, and near the other end of the POF, An optical transmission / reception system in which a second light emitting element, a second light emitting condensing means, a second light receiving element, and a second light receiving condensing means are arranged to perform single-core bidirectional communication,
At least a part of each of the one end and the other end of the POF having a numerical aperture of 0.4 to 0.6 and a core diameter of 1.8 mm to 5 mm is a plane perpendicular to the central axis of the POF. The angle is 10 degrees or more and 40 degrees or less from the oblique end face and is perpendicular to the perpendicular line from the most acute angle portion between the oblique end face and the outline of the POF parallel to the central axis of the POF to the central axis of the POF. And the optical axis of the light receiving element and the light collecting condensing means on the side of the sharpest angle portion and the light emitting element and the light collecting condensing means on the side opposite to the sharpest angle portion with respect to a plane including the central axis of the POF. An optical axis is arranged, and at least a part of the light from the light emitting element is incident on the POF, and the light emitted from the POF is detected by the light receiving element via the light receiving condensing means, and the output is AD converted. Signal processing with threshold processing via Optical transmission and reception system using a single POF, characterized in that input to the location is output from the signal processing unit after the signal processing.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010234024A JP2011150287A (en) | 2009-12-25 | 2010-09-28 | Optical transmitting and receiving device using one pof, and optical transmitting and receiving system |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009299598 | 2009-12-25 | ||
JP2009299598 | 2009-12-25 | ||
JP2010234024A JP2011150287A (en) | 2009-12-25 | 2010-09-28 | Optical transmitting and receiving device using one pof, and optical transmitting and receiving system |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2011150287A true JP2011150287A (en) | 2011-08-04 |
Family
ID=44537294
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010234024A Pending JP2011150287A (en) | 2009-12-25 | 2010-09-28 | Optical transmitting and receiving device using one pof, and optical transmitting and receiving system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2011150287A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015034947A (en) * | 2013-08-09 | 2015-02-19 | 株式会社豊田中央研究所 | Optical device |
JP2020174097A (en) * | 2019-04-10 | 2020-10-22 | 富士ゼロックス株式会社 | Light-emitting device, optical device, and information processor |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07168061A (en) * | 1993-12-15 | 1995-07-04 | Fujitsu Ltd | Optical transceiver module |
JPH09197164A (en) * | 1996-01-11 | 1997-07-31 | Hitachi Cable Ltd | Optical fiber connector |
JPH10300995A (en) * | 1997-04-25 | 1998-11-13 | Matsushita Electric Works Ltd | Silica aerogel film and its production, optical fiber |
JPH11308179A (en) * | 1998-04-20 | 1999-11-05 | Sharp Corp | Bi-directional optical communication unit/equipment |
JP2002148117A (en) * | 2000-11-14 | 2002-05-22 | Yamatake Corp | Optical sensor |
JP2003110506A (en) * | 2001-09-28 | 2003-04-11 | Sharp Corp | Optical transmitter/receiver and optical communication system using the same |
-
2010
- 2010-09-28 JP JP2010234024A patent/JP2011150287A/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07168061A (en) * | 1993-12-15 | 1995-07-04 | Fujitsu Ltd | Optical transceiver module |
JPH09197164A (en) * | 1996-01-11 | 1997-07-31 | Hitachi Cable Ltd | Optical fiber connector |
JPH10300995A (en) * | 1997-04-25 | 1998-11-13 | Matsushita Electric Works Ltd | Silica aerogel film and its production, optical fiber |
JPH11308179A (en) * | 1998-04-20 | 1999-11-05 | Sharp Corp | Bi-directional optical communication unit/equipment |
JP2002148117A (en) * | 2000-11-14 | 2002-05-22 | Yamatake Corp | Optical sensor |
JP2003110506A (en) * | 2001-09-28 | 2003-04-11 | Sharp Corp | Optical transmitter/receiver and optical communication system using the same |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015034947A (en) * | 2013-08-09 | 2015-02-19 | 株式会社豊田中央研究所 | Optical device |
JP2020174097A (en) * | 2019-04-10 | 2020-10-22 | 富士ゼロックス株式会社 | Light-emitting device, optical device, and information processor |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10481041B2 (en) | Measuring optical array polarity, power, and loss using a position sensing detector and photodetector-equipped optical testing device | |
CN114341600A (en) | Optical measurement equipment including internal spectral reference | |
US20130321906A1 (en) | Annulus to create distinct illumination and imaging apertures for an imaging system | |
CN109655008B (en) | Optical fiber bending sensor and intelligent glove comprising same | |
WO2008111320A1 (en) | Optical fiber sensor | |
JP2008051698A (en) | Bidirectional optical module and optical pulse tester using the same | |
CN109813425B (en) | Light source light power detection device and laser light source | |
KR20140119605A (en) | Optical module and optical transmitting and receiving module | |
CN102047162A (en) | Method and apparatus for verifying the termination quality of an optical fiber interface in a fiber optic cable connector | |
CN103712564A (en) | Reflection type optical fiber displacement sensor based on Y-shaped optical fiber coupler and self-focusing lens | |
JP2023164689A5 (en) | ||
US8976346B2 (en) | Optical coupling lens and system for measuring optical attenuation coefficient | |
US11989346B2 (en) | Fiber-optic sensor, data glove and method for detecting curvature | |
JP2011150287A (en) | Optical transmitting and receiving device using one pof, and optical transmitting and receiving system | |
JP4862594B2 (en) | Optical fiber sensor | |
JP2016051146A (en) | Optical detection device | |
TW201326943A (en) | Photoelectric converter | |
WO2022030292A1 (en) | Optical device, spectroradiometer, and colorimeter | |
CN108362313A (en) | A kind of sensor and signal processing method | |
KR20050077455A (en) | Optical antenna and wireless optical system using the same | |
CN115885201A (en) | Light guide for magneto-optical current sensor | |
JP2008216577A (en) | Fiber coupler for monitoring and optical fiber type physical quantity measuring apparatus using the same | |
JP5178093B2 (en) | Optical sensor | |
WO2012026523A1 (en) | Optical tap module | |
CN112816094B (en) | Sensing optical fiber, sensing assembly, sensor and decoupling method of sensor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20130913 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20130913 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20130913 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20140131 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140819 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20141020 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20150320 |