JP2011149066A - Cold-rolled steel sheet, hot-rolled steel sheet and methods for producing them - Google Patents
Cold-rolled steel sheet, hot-rolled steel sheet and methods for producing them Download PDFInfo
- Publication number
- JP2011149066A JP2011149066A JP2010012111A JP2010012111A JP2011149066A JP 2011149066 A JP2011149066 A JP 2011149066A JP 2010012111 A JP2010012111 A JP 2010012111A JP 2010012111 A JP2010012111 A JP 2010012111A JP 2011149066 A JP2011149066 A JP 2011149066A
- Authority
- JP
- Japan
- Prior art keywords
- steel sheet
- less
- rolled steel
- hot
- cold
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910000831 Steel Inorganic materials 0.000 title claims abstract description 140
- 239000010959 steel Substances 0.000 title claims abstract description 140
- 239000010960 cold rolled steel Substances 0.000 title claims abstract description 72
- 238000000034 method Methods 0.000 title claims description 20
- 229910001566 austenite Inorganic materials 0.000 claims abstract description 92
- 229910000859 α-Fe Inorganic materials 0.000 claims abstract description 62
- 230000000717 retained effect Effects 0.000 claims abstract description 49
- 238000004519 manufacturing process Methods 0.000 claims abstract description 21
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 14
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 13
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 13
- 229910052748 manganese Inorganic materials 0.000 claims abstract description 11
- 229910000734 martensite Inorganic materials 0.000 claims abstract description 9
- 229910001563 bainite Inorganic materials 0.000 claims abstract description 7
- 238000001816 cooling Methods 0.000 claims description 58
- 238000005098 hot rolling Methods 0.000 claims description 42
- 239000000203 mixture Substances 0.000 claims description 22
- 239000000126 substance Substances 0.000 claims description 22
- 239000002245 particle Substances 0.000 claims description 21
- 238000005097 cold rolling Methods 0.000 claims description 18
- 238000005096 rolling process Methods 0.000 claims description 13
- 238000004804 winding Methods 0.000 claims description 13
- 239000012535 impurity Substances 0.000 claims description 10
- 229910052742 iron Inorganic materials 0.000 claims description 3
- 229910052719 titanium Inorganic materials 0.000 abstract description 26
- 239000006104 solid solution Substances 0.000 abstract description 19
- 239000000243 solution Substances 0.000 abstract description 3
- 238000000137 annealing Methods 0.000 description 30
- 229910052758 niobium Inorganic materials 0.000 description 25
- 239000000463 material Substances 0.000 description 18
- 238000001556 precipitation Methods 0.000 description 18
- 230000000694 effects Effects 0.000 description 17
- 239000013078 crystal Substances 0.000 description 14
- 238000005728 strengthening Methods 0.000 description 14
- 230000009471 action Effects 0.000 description 10
- 230000015572 biosynthetic process Effects 0.000 description 10
- 238000007747 plating Methods 0.000 description 10
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 9
- 239000002244 precipitate Substances 0.000 description 8
- 238000010438 heat treatment Methods 0.000 description 7
- 150000001247 metal acetylides Chemical class 0.000 description 6
- 230000008569 process Effects 0.000 description 6
- 230000000087 stabilizing effect Effects 0.000 description 6
- 230000007423 decrease Effects 0.000 description 5
- 229910052759 nickel Inorganic materials 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- 230000009466 transformation Effects 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- 229910001567 cementite Inorganic materials 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- KSOKAHYVTMZFBJ-UHFFFAOYSA-N iron;methane Chemical compound C.[Fe].[Fe].[Fe] KSOKAHYVTMZFBJ-UHFFFAOYSA-N 0.000 description 4
- 230000009467 reduction Effects 0.000 description 4
- 239000002436 steel type Substances 0.000 description 4
- 229910052726 zirconium Inorganic materials 0.000 description 4
- 229910045601 alloy Inorganic materials 0.000 description 3
- 239000000956 alloy Substances 0.000 description 3
- 238000007796 conventional method Methods 0.000 description 3
- 238000005246 galvanizing Methods 0.000 description 3
- 238000000465 moulding Methods 0.000 description 3
- 229910001562 pearlite Inorganic materials 0.000 description 3
- 229910052698 phosphorus Inorganic materials 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- 229910052717 sulfur Inorganic materials 0.000 description 3
- 230000033228 biological regulation Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 230000003111 delayed effect Effects 0.000 description 2
- 238000010894 electron beam technology Methods 0.000 description 2
- 238000009713 electroplating Methods 0.000 description 2
- 238000009776 industrial production Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 230000001737 promoting effect Effects 0.000 description 2
- 238000001953 recrystallisation Methods 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 238000002791 soaking Methods 0.000 description 2
- 238000009864 tensile test Methods 0.000 description 2
- 229910018134 Al-Mg Inorganic materials 0.000 description 1
- 229910021365 Al-Mg-Si alloy Inorganic materials 0.000 description 1
- 229910018467 Al—Mg Inorganic materials 0.000 description 1
- 229910001208 Crucible steel Inorganic materials 0.000 description 1
- 229910001335 Galvanized steel Inorganic materials 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 229910001209 Low-carbon steel Inorganic materials 0.000 description 1
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 1
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 229910007570 Zn-Al Inorganic materials 0.000 description 1
- 229910007567 Zn-Ni Inorganic materials 0.000 description 1
- 229910007614 Zn—Ni Inorganic materials 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 230000003796 beauty Effects 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 239000008397 galvanized steel Substances 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 238000000265 homogenisation Methods 0.000 description 1
- 239000012943 hotmelt Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000006911 nucleation Effects 0.000 description 1
- 238000010899 nucleation Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 238000003303 reheating Methods 0.000 description 1
- 238000001878 scanning electron micrograph Methods 0.000 description 1
- 238000005204 segregation Methods 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 238000010583 slow cooling Methods 0.000 description 1
- 238000005482 strain hardening Methods 0.000 description 1
Landscapes
- Heat Treatment Of Sheet Steel (AREA)
Abstract
【課題】微細粒組織を有し、高強度でありながら加工性に優れた冷延鋼板、熱延鋼板の提供。
【解決手段】質量%で、C:0.06〜0.25%、Si:0.01〜2.0%、Mn:0.5〜2.0%、およびAl:0.01〜2.0%を含有し、さらに、Ti:0.20%以下とNb:0.10%以下の1種または2種を含有し、Si+AlおよびTi+Nbを所定量有し、かつ体積%で、フェライト:70%以上および残留オーステナイト:3%以上を含有し、残部がベイナイトおよび不可避的マルテンサイトとからなり、フェライトの平均粒径が3.0μm以下、残留オーステナイトの平均粒径が1.0μm以下であって、残留オーステナイトに占めるアスペクト比2以下の残留オーステナイトの割合が60体積%以上である鋼組織を有する冷延鋼板と、固溶Ti+固溶Nが0.003質量%以上の熱延鋼板。熱延鋼板および冷延鋼板の製造方法。
【選択図】なしThe present invention provides a cold-rolled steel sheet and a hot-rolled steel sheet having a fine-grained structure, high strength and excellent workability.
SOLUTION: In mass%, C: 0.06 to 0.25%, Si: 0.01 to 2.0%, Mn: 0.5 to 2.0%, and Al: 0.01 to 2.0%, and Ti: 0.20% or less and Nb: Contains one or two of 0.10% or less, has a predetermined amount of Si + Al and Ti + Nb, and contains by volume%, ferrite: 70% or more and residual austenite: 3% or more, with the balance being bainite And the inevitable martensite, the average grain size of ferrite is 3.0 μm or less, the average grain size of retained austenite is 1.0 μm or less, and the proportion of retained austenite with an aspect ratio of 2 or less in the retained austenite is 60% by volume. A cold-rolled steel sheet having a steel structure as described above, and a hot-rolled steel sheet having a solid solution Ti + solid solution N content of 0.003% by mass or more. Manufacturing method of hot-rolled steel sheet and cold-rolled steel sheet.
[Selection figure] None
Description
本発明は、冷延鋼板および前記冷延鋼板の母材に好適な熱延鋼板ならびにそれらの製造方法に関する。より詳しくは、本発明は、自動車や産業機器の構造部材の素材として好適な、高強度でありながら加工性に優れた、微細な組織を有する冷延鋼板および前記冷延鋼板の母材に好適な熱延鋼板ならびにそれらの製造方法に関する。 The present invention relates to a cold-rolled steel sheet, a hot-rolled steel sheet suitable for the base material of the cold-rolled steel sheet, and a method for producing them. More specifically, the present invention is suitable as a material for structural members of automobiles and industrial equipment, and is suitable for a cold-rolled steel sheet having a fine structure with high strength while being excellent in workability and a base material of the cold-rolled steel sheet. The present invention relates to a hot-rolled steel sheet and a manufacturing method thereof.
車体の軽量化および衝突時の安全性向上を目的として、高張力鋼板の自動車部品への適用が進められている。自動車部品は、プレス加工等の成形加工によって所定の形状に加工されることが多い。したがって、複雑な形状の自動車部品への成形加工を可能にし、成形加工後の自動車部品について高い寸法精度を確保するには、単に高い強度を有するというだけでは足りず、優れた加工性を具備することが要求される。しかし、強度と加工性とは一般にトレードオフの関係にあり、強度を高めると延性等の加工性が低下する。このため、高い強度と優れた加工性とを両立させることは一般に困難である。 For the purpose of reducing the weight of the vehicle body and improving the safety at the time of collision, the application of high-tensile steel plates to automobile parts is being promoted. Automobile parts are often processed into a predetermined shape by molding such as press processing. Therefore, in order to enable molding into a car part having a complicated shape and to ensure high dimensional accuracy for the car part after molding, it is not necessary to simply have high strength, and it has excellent workability. Is required. However, strength and workability are generally in a trade-off relationship, and when the strength is increased, workability such as ductility is lowered. For this reason, it is generally difficult to achieve both high strength and excellent workability.
このような中で、高い強度を有するとともに優れた延性を有する鋼板として、いわゆる「残留オーステナイト」、すなわち、未変態のまま残留したオーステナイト、の変態誘起塑性(以下、「TRIP」ともいう)を利用した鋼板が知られている。 Under such circumstances, as steel sheet having high strength and excellent ductility, so-called “residual austenite”, that is, transformation-induced plasticity (hereinafter also referred to as “TRIP”) of austenite remaining untransformed is used. Steel plates that have been made are known.
例えば、特開平4−333524号公報(特許文献1)には、重量%でC:0.05〜0.12%、Si:0.5〜3.00%、Mn:0.5〜2.50%を含み、残部Fe及び不可避的不純物からなる鋼材を、冷延後Ac1〜Ae3変態温度の範囲に加熱し、その後1〜10℃/secの冷却速度で550〜700℃の範囲まで冷却し、引き続いて10〜200℃/secの冷却速度で200〜450℃まで冷却した後、300〜450℃の温度範囲で15秒〜20分保持し、室温まで冷却することにより、フェライトとベイナイトを主相とし、更に3〜10%の体積分率の残留オーステナイトを含む高強度鋼板の製造方法が開示されている。 For example, in JP-A-4-333524 (Patent Document 1), by weight, C: 0.05 to 0.12%, Si: 0.5 to 3.00%, Mn: 0.5 to 2. The steel material containing 50% and the balance Fe and inevitable impurities is heated to a range of Ac 1 to Ae 3 transformation temperature after cold rolling, and then to a range of 550 to 700 ° C. at a cooling rate of 1 to 10 ° C./sec. After cooling and subsequently cooling to 200 to 450 ° C. at a cooling rate of 10 to 200 ° C./sec, holding at a temperature range of 300 to 450 ° C. for 15 seconds to 20 minutes, and cooling to room temperature, ferrite and bainite And a method for producing a high-strength steel sheet containing residual austenite having a volume fraction of 3 to 10%.
一方、鋼の強化には、固溶強化、析出強化、変態強化及び細粒化強化(結晶粒の微細化による強化)などが知られている。このうち、結晶粒の微細化は、添加元素に頼ることなく高強度化を可能にすることから、リサイクル性やコストの観点から注目されている強化手法である。しかし、フェライトの結晶粒径を微細化すると、一般に粒界強化によって強度が上昇する一方で、加工硬化が生じ難くなって塑性不安定性が発現し、結果として加工性が劣化するという問題点がある。 On the other hand, for strengthening steel, solid solution strengthening, precipitation strengthening, transformation strengthening, fine grain strengthening (strengthening by crystal grain refinement) and the like are known. Among these, the refinement of crystal grains is a strengthening technique that is attracting attention from the viewpoints of recyclability and cost because it makes it possible to increase the strength without depending on the additive elements. However, when the crystal grain size of ferrite is made finer, the strength generally increases due to grain boundary strengthening, while work hardening hardly occurs and plastic instability appears, resulting in deterioration of workability. .
本発明者らはこれまで、結晶粒の微細化による強化を残留オーステナイトのTRIP現象と組み合わせることで、高い強度と優れた延性とを両立させた「強度−延性バランス」に優れた鋼が製造できることを見出し、その組織形態と製造方法を特開2006−348353号公報(特許文献2)および特開2007−23339号公報(特許文献3)に提案した。しかし、これらの公報に提案されている発明は熱延鋼板およびその製造方法に関するものであり、冷延鋼板において結晶粒の微細化と残留オーステナイトのTRIP現象とを組み合わせる手法については解明できていなかった。 The present inventors have been able to produce a steel having an excellent “strength-ductility balance” that combines high strength and excellent ductility by combining strengthening by crystal grain refinement with the TRIP phenomenon of retained austenite. The structure and manufacturing method thereof were proposed in Japanese Patent Application Laid-Open No. 2006-348353 (Patent Document 2) and Japanese Patent Application Laid-Open No. 2007-23339 (Patent Document 3). However, the inventions proposed in these publications relate to a hot-rolled steel sheet and a method for producing the same, and a method for combining the refinement of crystal grains and the TRIP phenomenon of retained austenite in a cold-rolled steel sheet has not been elucidated. .
冷延鋼板において結晶粒の微細化と残留オーステナイトのTRIP現象を組み合わせる手法については、例えば特開2004−204341号公報(特許文献4)に、質量%で、C:0.03〜0.16%、Si:0.2〜2.0%、Mn:1.0〜3.0%および/またはNi:0.5〜3.0%、Ti:0.2%以下および/またはNb:0.2%以下、Al:0.01〜0.1%、P:0.1%以下、S:0.02%以下およびN:0.005%以下で、かつC、Si、Mn、Ni、TiおよびNbが所定の式をそれぞれ満足する範囲において含有し、残部はFeおよび不可避的不純物という組成を有する鋼素材を、1200℃以上に加熱したのち、熱間圧延し、次いで冷間圧延後、所定の式で求められる温度A3℃以上、(A3+30)℃以下で再結晶焼鈍を施し、酸洗後、所定の式で求められるA1℃以上、(A1+70)℃以下の温度範囲で5〜30秒の熱処理を施し、引き続き溶融亜鉛めっき処理、或いはさらに合金化処理を施す、溶融亜鉛めっき鋼板およびその製造方法が開示されている。上記方法により、フェライトの平均結晶粒径が3.5μm以下で、かつ5vol%以上の残留オーステナイトを含有し、強度−延性バランスに優れた冷延鋼板が得られるとされている。 For a method of combining the refinement of crystal grains and the TRIP phenomenon of retained austenite in a cold-rolled steel sheet, for example, in JP-A-2004-204341 (Patent Document 4), C: 0.03 to 0.16% in mass%. Si: 0.2-2.0%, Mn: 1.0-3.0% and / or Ni: 0.5-3.0%, Ti: 0.2% or less and / or Nb: 0.3% 2% or less, Al: 0.01 to 0.1%, P: 0.1% or less, S: 0.02% or less and N: 0.005% or less, and C, Si, Mn, Ni, Ti And Nb in a range satisfying each of the predetermined formulas, and the balance is Fe and unavoidable impurities, the steel material is heated to 1200 ° C. or higher, then hot-rolled, and then cold-rolled, and then the predetermined Recrystallization at temperature A 3 ° C or higher and (A 3 +30) ° C or lower determined by the formula Annealed, pickled, or A 1 ° C. obtained by a predetermined formula, (A 1 +70) ℃ heat treatment of 5-30 seconds at a temperature range of, subsequently galvanizing treatment, or even alloyed A hot-dip galvanized steel sheet and a method for producing the same are disclosed. According to the above method, a cold-rolled steel sheet having an average crystal grain size of ferrite of 3.5 μm or less and containing 5 vol% or more of retained austenite and having an excellent strength-ductility balance is obtained.
冷延鋼板において結晶粒の微細化と残留オーステナイトのTRIP現象とを組み合わせる他の手法として、特開2006−83403号公報(特許文献5)には、C:0.05〜0.3%、Si:0.01〜2.0%、Mn:1〜3%、P:0.001〜0.05%、S:0.0001〜0.01%、Al:0.10%超〜2.0%、N:0.001〜0.01%を含有し、かつSi/Al=0.01〜10を満足し、残部がFe及び不可避不純物からなる組成を有する冷延鋼板を、雰囲気ガスの露点:−50℃〜0℃、雰囲気ガスの水素濃度:1.0〜100%の条件下で、焼鈍温度:700〜900℃、保持時間:10〜1000秒として加熱後、冷却速度:5〜150℃/秒、冷却停止温度:300〜500℃として冷却を行い、次いで、熱処理温度:300〜500℃、熱処理時間:100〜1400秒として熱処理を行うことにより、平均結晶粒径10μm以下のフェライト相を体積分率で40〜90%、残留オーステナイト相を体積分率で1.0〜20%含み、残部が低温変態相である鋼組織を有し、かつ鋼板表面における最高Si濃度/平均Si濃度が1.1〜4.0である高強度冷延鋼板とその製造方法が開示されている。 As another method of combining the refinement of crystal grains and the TRIP phenomenon of retained austenite in a cold-rolled steel sheet, JP 2006-83403 A (Patent Document 5) includes C: 0.05 to 0.3%, Si : 0.01 to 2.0%, Mn: 1 to 3%, P: 0.001 to 0.05%, S: 0.0001 to 0.01%, Al: more than 0.10% to 2.0 %, N: 0.001 to 0.01%, Si / Al = 0.01 to 10 is satisfied, and a cold-rolled steel sheet having a composition consisting of Fe and inevitable impurities is used as the dew point of the atmospheric gas. : -50 ° C to 0 ° C, hydrogen concentration of atmospheric gas: 1.0 to 100%, annealing temperature: 700 to 900 ° C, holding time: 10 to 1000 seconds, heating, cooling rate: 5 to 150 C./second, cooling stop temperature: 300 to 500 [deg.] C., followed by heat treatment temperature: 3 By performing heat treatment at 0 to 500 ° C. and a heat treatment time of 100 to 1400 seconds, a ferrite phase having an average crystal grain size of 10 μm or less is 40 to 90% in volume fraction and a residual austenite phase is 1.0 to 1.0 in volume fraction. A high-strength cold-rolled steel sheet having a steel structure containing 20% and the balance being a low-temperature transformation phase and having a maximum Si concentration / average Si concentration on the steel sheet surface of 1.1 to 4.0 and a method for producing the same are disclosed. ing.
しかし、結晶粒の微細化と残留オーステナイトのTRIP現象とを組み合わせた従来の冷延鋼板のうち、特許文献4に開示された冷延鋼板には次の問題が存在する。
1)SiおよびAlは、セメンタイトの析出を抑制し、オーステナイトへの炭素濃化を促進する作用を有するので、低炭素鋼で残留オーステナイトを生成させるのに欠かせない重要な元素である。しかし、特許文献4に記載された冷延鋼板では、所定の式により求められるA3の値(鋼のAc3変態点温度の予測値、以下では「A3点」ともいう)が860(℃)以下であることを必須としているため、フェライト安定化元素であるSiの添加量が制限されたり、オーステナイト安定化元素を多量に添加する必要が生じたりする。例えば、実施例でのSi含有量は最大で1.30質量%であるが(鋼種C)、この鋼種では、Mnを2.7質量%、Niを1.00質量%というように、オーステナイト安定化元素を著しく多量に添加することによりA3点を860℃以下にしている。また、Alはオーステナイトへの炭素濃化を促進し、残留オーステナイト相を安定化させる効果がSiよりも高いので、この観点からはSiより有利な元素である。しかし、この特許文献ではAl含有量は0.1質量%以下に制限されている。
However, among the conventional cold-rolled steel sheets that combine the refinement of crystal grains and the TRIP phenomenon of retained austenite, the cold-rolled steel sheet disclosed in Patent Document 4 has the following problems.
1) Si and Al are important elements that suppress the precipitation of cementite and promote the concentration of carbon to austenite, so that residual austenite is generated in low-carbon steel. However, in the cold-rolled steel sheet described in Patent Document 4, the value of A 3 (predicted value of the Ac 3 transformation point temperature of steel, hereinafter also referred to as “A 3 point”) obtained by a predetermined formula is 860 (° C. ) Since the following is essential, the amount of addition of Si as a ferrite stabilizing element is limited, or a large amount of austenite stabilizing element needs to be added. For example, the maximum Si content in the examples is 1.30% by mass (steel type C). In this steel type, Mn is 2.7% by mass and Ni is 1.00% by mass. is a 3 point to 860 ° C. or less by the addition of reduction elements significantly large amount. In addition, Al promotes carbon concentration to austenite and has an effect of stabilizing the retained austenite phase higher than that of Si. From this viewpoint, Al is an element more advantageous than Si. However, in this patent document, the Al content is limited to 0.1% by mass or less.
2)MnやNiはオーステナイト安定化元素であり、A3点を低下させるのに有効な元素である。特許文献4では、(3)式によってMnとNiの合計含有量を1.3質量%以上と規定している。実施例におけるMnとNiの合計含有量は最小で1.3質量%であるが(鋼種D)、この鋼種では、Si含有量が0.40質量%と著しく低く制限されている。SiとAlの合計含有量が0.8質量%以上である実施例として鋼種C、E、Mがあるが、その全てでA3点を860℃以下にするためにMnおよびNiの合計含有量を2.6質量%以上にしている。このように多量のオーステナイト安定化元素を含有すると、フェライトの生成が大きく抑制され、焼鈍中にフェライト主体の組織を得るのが困難になる。また、オーステナイトへの炭素濃化が遅延して、残留オーステナイト量が低下する。 2) Mn and Ni is an austenite stabilizing element and is an effective element for lowering the three points A. In Patent Document 4, the total content of Mn and Ni is defined as 1.3 mass% or more by the expression (3). The total content of Mn and Ni in the examples is 1.3% by mass at the minimum (steel type D), but in this steel type, the Si content is limited to a very low value of 0.40% by mass. Si and Al steels C total content as being examples at least 0.8 wt% of, E, there is a M, the total content of Mn and Ni in order to below 860 ° C. The 3-point A at all Is 2.6 mass% or more. When such a large amount of austenite stabilizing element is contained, the formation of ferrite is greatly suppressed, and it becomes difficult to obtain a structure mainly composed of ferrite during annealing. Moreover, the carbon concentration to austenite is delayed and the amount of retained austenite is reduced.
3)焼鈍を二工程で行うため、生産性とコストの両面で問題がある。さらに、一回目の焼鈍では、A3℃以上、(A3+30)℃以下という非常に狭い範囲での温度制御が必須である。しかし、工業的生産過程においてはある程度の均熱温度の変動が生じるのが普通であるから、このような均熱温度の変動に起因する機械特性の著しい変動が危惧され、材質安定性の面で問題がある。 3) Since annealing is performed in two steps, there are problems in both productivity and cost. Furthermore, in the first annealing, temperature control in a very narrow range of A 3 ° C or more and (A 3 +30) ° C or less is essential. However, it is normal for industrial production processes to cause some fluctuations in the soaking temperature, so there is a concern about the significant fluctuations in mechanical properties caused by such fluctuations in the soaking temperature, and in terms of material stability. There's a problem.
一方、上記特許文献5に開示された冷延鋼板では、実施例において最小で1.7μmのフェライト平均粒径が達成されている。しかし、その細粒化機構は解明されておらず、細粒組織を実現するための条件が規定されていない。12例の発明例のうち、半数の6例ではフェライト平均粒径は3μmを超えており、フェライト平均粒径が3μm以下という細粒組織を確実に得ることはできない。 On the other hand, in the cold rolled steel sheet disclosed in Patent Document 5, a ferrite average particle size of 1.7 μm is achieved at the minimum in the examples. However, the refinement mechanism has not been elucidated, and the conditions for realizing a fine grain structure are not defined. Of the twelve invention examples, half of the six examples have an average ferrite grain size exceeding 3 μm, and a fine grain structure having an average ferrite grain size of 3 μm or less cannot be obtained with certainty.
本発明の目的は、自動車や産業機器の構造部材として好適な、高強度でありがら加工性に優れた微細な組織を有する冷延鋼板と、この冷延鋼板の母材となる熱延鋼板、ならびにそれらの製造方法を提供することである。より具体的な本発明の目的は、Mn≦2.0質量%且つSi+Al≧0.8質量%の成分範囲で、フェライト平均粒径3.0μm以下の微細粒冷延鋼板を提供することである。 The object of the present invention is a cold-rolled steel sheet having a fine structure excellent in workability and high strength, suitable as a structural member for automobiles and industrial equipment, and a hot-rolled steel sheet as a base material of the cold-rolled steel sheet, As well as methods for their production. A more specific object of the present invention is to provide a fine-grain cold-rolled steel sheet having a ferrite average grain size of 3.0 μm or less in a component range of Mn ≦ 2.0 mass% and Si + Al ≧ 0.8 mass%. .
本発明者らは、Tiおよび/またはNbを含有させた鋼について、熱間圧延後の鋼中の固溶Ti量および固溶Nb量ならびに冷間圧延および焼鈍を施した後のフェライト粒径の関係について研究し、以下の新たな知見を得て、本発明を完成させた。 The present inventors, for steel containing Ti and / or Nb, the amount of solute Ti and the amount of solute Nb in the steel after hot rolling, as well as the ferrite grain size after cold rolling and annealing. The relationship was studied and the following new knowledge was obtained, and the present invention was completed.
(a)鋼材の化学組成および熱間圧延条件を適正化することによって、熱延鋼板の段階におけるTiおよび/またはNbの析出を抑制し、一定量以上のTiおよび/またはNbを鋼中に過飽和固溶状態で存在させることができる。これらの過飽和の固溶Tiおよび固溶Nbは熱力学的に不安定であるので、析出の駆動力が大きい。そのため、冷間圧延以降の工程において、材料に歪みや熱が加わると、TiCやNbC等の析出物が鋼中に微細かつ均一に析出する。この微細かつ均一に析出した析出物のピン止め効果によって、焼鈍時のフェライトの粒成長が著しく抑制され、最終製品段階におけるフェライトは平均粒径が3.0μm以下に微細粒化される。 (A) By optimizing the chemical composition and hot rolling conditions of the steel material, precipitation of Ti and / or Nb at the stage of the hot-rolled steel sheet is suppressed, and a certain amount or more of Ti and / or Nb is supersaturated in the steel. It can exist in a solid solution state. Since these supersaturated solid solution Ti and solid solution Nb are thermodynamically unstable, the driving force of precipitation is large. Therefore, when strain or heat is applied to the material in the processes after cold rolling, precipitates such as TiC and NbC precipitate finely and uniformly in the steel. The pinning effect of the finely and uniformly precipitated precipitates remarkably suppresses the ferrite grain growth during annealing, and the ferrite in the final product stage is refined to an average grain size of 3.0 μm or less.
これに対し、熱延鋼板段階でTiおよびNbの析出が完了してしまうと、冷間圧延工程および焼鈍工程において析出物の粗大化と析出物の分布の不均一化が生じるため、十分なピン止め効果が得られず、フェライトの粒成長が容易に進行してしまい、微細粒組織は得られない。 On the other hand, if precipitation of Ti and Nb is completed in the hot-rolled steel sheet stage, the precipitates become coarse and the distribution of the precipitates becomes uneven in the cold rolling process and the annealing process. The stopping effect cannot be obtained, the ferrite grain growth proceeds easily, and a fine grain structure cannot be obtained.
(b)熱力学的な平衡計算(例えばThermo-Calc)によると、TiおよびNbの炭化物の析出は1000℃以上の温度域で開始する。したがって、一般的な熱間圧延完了温度である800〜900℃の温度域では、含有させたTiおよびNbの大部分が析出していると理論的には推測される。 (B) According to thermodynamic equilibrium calculation (for example, Thermo-Calc), precipitation of carbides of Ti and Nb starts in a temperature range of 1000 ° C. or higher. Accordingly, it is theoretically assumed that most of Ti and Nb contained are precipitated in a temperature range of 800 to 900 ° C., which is a general hot rolling completion temperature.
しかし、実際の連続熱間圧延ラインでは、鋼塊または鋼片を高温状態としてから熱間圧延を完了するまでの時間が短時間であるため、平衡析出状態には達しない。実際に900℃で熱間圧延を完了した直後に水焼入れして金属組織を凍結した熱延鋼板について、Tiおよび/またはNbの析出量を調査したところ、平衡計算で求められる析出量の半分以下しか析出しておらず、多量のTiおよび/またはNbが鋼中に過飽和固溶状態で存在していることが明らかとなった。そして、過飽和固溶したTiおよびNbは析出駆動力が高いため、熱間圧延後の冷却および巻取り過程で析出が生じるが、熱間圧延完了後、一定時間以内に750℃以下まで冷却し、さらに650℃以下で巻取ることで、その析出が大幅に抑制され、TiおよびNbのかなりの部分を過飽和固溶状態で熱延鋼板中に存在させることが可能であることを見出した。 However, in an actual continuous hot rolling line, it takes a short time until the hot rolling is completed after the steel ingot or steel slab is brought into a high temperature state, and therefore does not reach the equilibrium precipitation state. When the amount of precipitation of Ti and / or Nb was investigated for a hot-rolled steel sheet that had been quenched by water and immediately after completion of hot rolling at 900 ° C., it was less than half of the amount of precipitation determined by equilibrium calculation. Only a large amount of Ti and / or Nb was found to be present in the supersaturated solid solution state in the steel. And since supersaturated solid solution Ti and Nb have high precipitation driving force, precipitation occurs in the cooling and winding process after hot rolling, but after completion of hot rolling, it is cooled to 750 ° C. or less within a certain time, Further, it has been found that by winding at 650 ° C. or lower, the precipitation is significantly suppressed, and a substantial part of Ti and Nb can be present in the hot-rolled steel sheet in a supersaturated solid solution state.
(c)上記(b)に記載した、過飽和固溶状態のTiおよびNbを含有する熱延鋼板を母材として冷延鋼板を製造すると、冷間圧延およびその後の焼鈍において特殊な処理を施さずとも、工業的生産に適用しうる製造条件により、細粒組織を有する冷延鋼板が得られる。特に焼鈍温度は、フェライト+オーステナイトの二相域であれば、例えば900℃であっても粒成長は抑制され、微細組織が得られるので、焼鈍温度の変動による鋼組織の粒径変化は非常に小さくなる。但し、焼鈍温度がA3温度以上になると、直ちに粒成長が加速度的に進行し、細粒組織は得られない。 (C) When a cold-rolled steel sheet is manufactured using the hot-rolled steel sheet containing Ti and Nb in the supersaturated solid solution state described in (b) above, no special treatment is performed in cold rolling and subsequent annealing. In both cases, a cold-rolled steel sheet having a fine-grained structure can be obtained by manufacturing conditions applicable to industrial production. In particular, if the annealing temperature is in the two-phase region of ferrite + austenite, for example, even if it is 900 ° C., grain growth is suppressed, and a fine structure is obtained. Get smaller. However, when the annealing temperature is more than A 3 temperature, immediately grain growth acceleration to proceed, fine tissue can not be obtained.
以上の知見に基づいて完成した本発明は、次の通りである。
(1)質量%で、C:0.06%以上0.25%以下、Si:0.01%以上2.0%以下、Mn:0.5%以上2.0%以下、およびAl:0.01%以上2.0%以下を含有し、さらに、Ti:0.20%以下およびNb:0.10%以下の1種または2種を含有するとともに、下記式(1)および(2)を満足し、残部がFeおよび不純物からなる化学組成を有し、かつ
体積%で、フェライト:70%以上および残留オーステナイト:3%以上を含有し、残部がベイナイトおよび不可避的マルテンサイトからなり、前記フェライトの鋼板表面から板厚の1/4の深さ位置における平均粒径Dα(μm)が3.0μm以下、前記残留オーステナイトの鋼板表面から板厚の1/4の深さ位置における平均粒径Dγ(μm)が1.0μm以下であるとともに、下記式(3)および(4)を満足し、さらに、前記残留オーステナイトに占めるアスペクト比2以下の残留オーステナイトの割合が60体積%以上である鋼組織を有することを特徴とする冷延鋼板。
The present invention completed based on the above knowledge is as follows.
(1) By mass%, C: 0.06% to 0.25%, Si: 0.01% to 2.0%, Mn: 0.5% to 2.0%, and Al: 0 0.01% or more and 2.0% or less, and further containing one or two of Ti: 0.20% or less and Nb: 0.10% or less, and the following formulas (1) and (2) And the balance has a chemical composition consisting of Fe and impurities, and in volume%, contains ferrite: 70% or more and residual austenite: 3% or more, and the balance consists of bainite and inevitable martensite, The average particle diameter Dα (μm) at a depth position of 1/4 of the sheet thickness from the steel sheet surface of ferrite is 3.0 μm or less, and the average particle diameter at a depth position of 1/4 of the sheet thickness from the steel sheet surface of the retained austenite. Dγ (μm) is 1.0 μm or less, and the following formula (3) Satisfying beauty (4), further, cold-rolled steel sheet the ratio of aspect ratio of 2 or less of residual austenite accounts for the residual austenite is characterized by having a steel structure is 60 vol% or more.
0.8≦Si+Al≦3.0 ・・・・・・ (1)
0.002≦Ti+Nb≦0.20 ・・・ (2)
1.5≦Dα/Dγ≦15 ・・・・・・ (3)
3≦(Dα/Dγ)×(Dα+Dγ)≦30 ・・・ (4)
上記式中の各元素記号は当該元素の含有量(単位:質量%)を意味する。
0.8 ≦ Si + Al ≦ 3.0 (1)
0.002 ≦ Ti + Nb ≦ 0.20 (2)
1.5 ≦ Dα / Dγ ≦ 15 (3)
3 ≦ (Dα / Dγ) × (Dα + Dγ) ≦ 30 (4)
Each element symbol in the above formula means the content (unit: mass%) of the element.
前記化学組成は、Feの一部に代えて、質量%で、Ca:0.01%以下およびZr:0.10%以下の1種または2種を含有していてもよい。
(2)前記化学組成を有し、室温における鋼中の固溶Tiおよび固溶Nbの合計含有量が0.003質量%以上であることを特徴とする熱延鋼板。
The chemical composition may contain one or two of Ca: 0.01% or less and Zr: 0.10% or less in mass%, instead of part of Fe.
(2) A hot-rolled steel sheet having the above-described chemical composition, wherein the total content of solute Ti and solute Nb in the steel at room temperature is 0.003 mass% or more.
好適態様において、この熱延鋼板のフェライトの平均粒径は4μm以下である。
(3)前記化学組成を有する鋼塊または鋼片を1150℃以上1300℃以下の温度にし、これに800℃以上で圧延を完了する熱間圧延を施し、熱間圧延完了から750℃までの冷却時間を10秒以内とする冷却を行った後、この冷却の完了後30秒以内に650℃以下の温度域で巻取ることを特徴とする熱延鋼板の製造方法。
In a preferred embodiment, the average grain size of ferrite of this hot-rolled steel sheet is 4 μm or less.
(3) The steel ingot or steel slab having the above chemical composition is brought to a temperature of 1150 ° C. or higher and 1300 ° C. or lower, hot rolled to complete the rolling at 800 ° C. or higher, and cooled to 750 ° C. after the hot rolling is completed. A method for producing a hot-rolled steel sheet, characterized in that after cooling for 10 seconds or less, winding is performed in a temperature range of 650 ° C. or less within 30 seconds after completion of the cooling.
(4)前記化学組成を有する鋼塊または鋼片を1150℃以上1300℃以下の温度にし、これに800℃以上で圧延を完了する熱間圧延を施し、熱間圧延完了から720℃までの冷却時間を0.7秒以内とする冷却を行った後、この冷却の完了後30秒以内に650℃以下の温度域で巻取ることを特徴とする熱延鋼板の製造方法。 (4) A steel ingot or steel slab having the above chemical composition is brought to a temperature of 1150 ° C. or higher and 1300 ° C. or lower, subjected to hot rolling to complete rolling at 800 ° C. or higher, and cooled from completion of hot rolling to 720 ° C. A method for producing a hot-rolled steel sheet, characterized in that after the cooling is performed for 0.7 seconds or less, winding is performed in a temperature range of 650 ° C. or less within 30 seconds after the completion of the cooling.
(5)前記(2)に記載の熱延鋼板または前記(3)または(4)に記載された方法で製造された熱延鋼板に冷間圧延を施し、冷間圧延された鋼板を700℃以上950℃以下の温度域に30秒以上600秒以下保持した後、650℃から550℃までの温度域における平均冷却速度を5℃/秒以上200℃/秒以下として500℃まで冷却し、300℃以上500℃以下の温度域に30秒以上保持することを特徴とする冷延鋼板の製造方法。 (5) Cold-rolling the hot-rolled steel sheet according to (2) or the hot-rolled steel sheet manufactured by the method according to (3) or (4) above, After holding in the temperature range of 950 ° C. or less for 30 seconds or more and 600 seconds or less, the average cooling rate in the temperature range of 650 ° C. to 550 ° C. is set to 5 ° C./second or more and 200 ° C./second or less and cooled to 500 ° C., 300 The manufacturing method of the cold-rolled steel sheet characterized by hold | maintaining for 30 second or more in the temperature range (degreeC) or more and 500 degrees C or less.
本発明において、「フェライト平均粒径Dα」は、板厚方向断面における鋼板表面から板厚の1/4深さ位置を観察し、切片法により求めたフェライト粒径を1.128倍(=2/√π)した値(即ち、円相当径)である。「残留オーステナイト平均粒径Dγ」も、上記位置を観察して求めたものであるが、その測定は電子線後方散乱回折法(EBSP)により評価し、アスペクト比の大きなフィルム状の結晶粒とアスペクト比の小さな粒状の結晶粒とが存在することから、粒径は円相当径ではなく、短径(例えばフィルム状結晶粒であれば、フィルム厚み)とする。 In the present invention, the “ferrite average particle diameter Dα” is obtained by observing a ¼ depth position of the plate thickness from the surface of the steel plate in the cross section in the plate thickness direction, and the ferrite particle size obtained by the intercept method is 1.128 times (= 2). / √π) (ie equivalent circle diameter). “Residual austenite average particle diameter Dγ” was also determined by observing the above position, and the measurement was evaluated by electron beam backscatter diffraction (EBSP). Since there are granular crystal grains having a small ratio, the particle diameter is not a circle-equivalent diameter but a short diameter (for example, film thickness in the case of film-like crystal grains).
本発明により、自動車や産業機器の構造部材として好適な、高強度でありながら加工性に優れた、微細な組織を有する冷延鋼板、および前記冷延鋼板の母材となる熱延鋼板の製造方法が確立され、このような冷延鋼板および熱延鋼板を確実に工業的に製造することが可能となる。 According to the present invention, a cold-rolled steel sheet having a fine structure suitable for automobiles and industrial equipment, having a high strength and excellent workability, and a hot-rolled steel sheet used as a base material of the cold-rolled steel sheet A method is established, and it is possible to reliably manufacture such cold-rolled steel sheets and hot-rolled steel sheets industrially.
本発明に係る冷延鋼板および熱延鋼板ならびにそれらの製造方法について以下に説明する。以下の説明において、化学組成を示す「%」は「質量%」を、鋼組織を示す「%」は「体積%」をそれぞれ意味する。 The cold-rolled steel sheet and hot-rolled steel sheet according to the present invention and methods for producing them will be described below. In the following description, “%” indicating chemical composition means “mass%”, and “%” indicating steel structure means “volume%”.
(A)鋼の化学組成
C:0.06%以上、0.25%以下
Cは、オーステナイト中に濃化して、オーステナイトを安定化する作用を有するため、オーステナイトを室温まで残留させるために必須の元素である。C含有量が0.06%未満では、残留オーステナイトが十分な量に達せず、所望の機械的特性が得られない場合がある。したがって、C含有量は0.06%以上であり、好ましくは0.10%以上である。一方、C含有量が0.25%を超えると、パーライト生成が促進されて、目的とする残留オーステナイトを確保することが困難になったり、冷延鋼板の溶接性が著しく劣化したりする。したがって、C含有量を0.25%以下とする。好ましくは0.20%以下である。
(A) Chemical composition of steel C: 0.06% or more and 0.25% or less C has an action of concentrating in austenite and stabilizing austenite, and is essential for allowing austenite to remain at room temperature. It is an element. If the C content is less than 0.06%, the retained austenite does not reach a sufficient amount, and desired mechanical properties may not be obtained. Therefore, the C content is 0.06% or more, preferably 0.10% or more. On the other hand, when the C content exceeds 0.25%, the formation of pearlite is promoted, and it becomes difficult to secure the intended retained austenite, or the weldability of the cold-rolled steel sheet is significantly deteriorated. Therefore, the C content is 0.25% or less. Preferably it is 0.20% or less.
Si:0.01%以上、2.0%以下
Siは、フェライトの生成を促進し、さらにオーステナイトからのセメンタイトの析出を遅延させることにより、残留オーステナイト相の生成を促進する作用を有する重要な元素である。また、溶鋼を脱酸する作用やフェライト相を固溶強化する作用も有する。Si含有量が0.01%未満では、これらの作用による効果を十分得ることが困難となる。したがって、Si含有量は0.01%以上とする。一方、Si含有量が2.0%を超えると、延性や溶接性の劣化を招くと共に、A3点の著しい上昇を招いて安定した熱間圧延を困難にする場合がある。したがって、Si含有量は2.0%以下とする。
Si: 0.01% or more and 2.0% or less Si is an important element having an action of promoting the formation of residual austenite phase by promoting the formation of ferrite and further delaying the precipitation of cementite from austenite. It is. Moreover, it has the effect | action which deoxidizes molten steel, and the effect | action which solid-solution strengthens a ferrite phase. If the Si content is less than 0.01%, it is difficult to sufficiently obtain the effects of these actions. Therefore, the Si content is set to 0.01% or more. On the other hand, when the Si content exceeds 2.0%, the leading ductility and weldability occurs, which may make it difficult to stable hot rolling inviting a significant increase in the A 3 point. Therefore, the Si content is 2.0% or less.
Mn:0.5%以上、2.0%以下
Mnは、フェライト相を固溶強化すると共に、オーステナイトを安定化させて残留オーステナイト相の生成を促進する作用を果たす重要な元素である。Mn含有量が0.5%未満では、上記作用による効果を十分に得ることができない場合がある。したがって、Mn含有量は0.5%以上とし、好ましくは0.8%以上である。一方、Mn含有量が2.0%を超えると、過度にオーステナイトが安定化され、焼鈍中にフェライト主体の組織を得るのが困難になると共に、オーステナイトへの炭素濃化が遅延し、残留オーステナイト量が低下する場合がある。したがって、Mn含有量を2.0%以上とする。好ましくは1.8%以下である。
Mn: 0.5% or more and 2.0% or less Mn is an important element that acts to solidify and strengthen the ferrite phase and stabilize the austenite to promote the formation of the retained austenite phase. If the Mn content is less than 0.5%, the above-described effects may not be sufficiently obtained. Therefore, the Mn content is 0.5% or more, preferably 0.8% or more. On the other hand, if the Mn content exceeds 2.0%, austenite is excessively stabilized, and it becomes difficult to obtain a structure mainly composed of ferrite during annealing, and the concentration of carbon to austenite is delayed, so that residual austenite The amount may decrease. Therefore, the Mn content is 2.0% or more. Preferably it is 1.8% or less.
Al:0.01%以上、2.0%以下
Alは、フェライトの生成を促進し、さらにオーステナイトからのセメンタイトの析出を遅らせることにより、残留オーステナイト相の生成を促進する作用を示す重要な元素である。また、溶鋼を脱酸する作用を有する。Al含有量が0.01%未満では、これらの作用による効果を十分に得ることが困難となる。したがって、Al含有量は0.01%以上とする。一方、Al含有量が2.0%を超えると、Siと同様にA3点の著しい上昇を招いて、安定した熱間圧延を困難にする場合がある。したがって、Al含有量は2.0%以下とする。
Al: 0.01% or more and 2.0% or less Al is an important element that promotes the formation of residual austenite phase by accelerating the formation of ferrite and further delaying the precipitation of cementite from austenite. is there. Moreover, it has the effect | action which deoxidizes molten steel. If the Al content is less than 0.01%, it is difficult to sufficiently obtain the effects of these actions. Therefore, the Al content is set to 0.01% or more. On the other hand, when the Al content exceeds 2.0%, inviting a significant increase in the same way A 3 point and Si, which may make it difficult to stable hot rolling. Therefore, the Al content is 2.0% or less.
0.8≦Si+Al≦3.0
SiとAlの合計含有量が0.8%未満では、残留オーステナイト相の安定性や体積率が不充分となり、所望の機械的特性が得られない場合がある。したがって、残留オーステナイト相の生成を促進するため、SiとAlの合計含有量を0.8%以上とする。この量は好ましくは1.0%以上、さらに好ましくは1.2%以上である。一方、SiとAlの合計含有量が3.0%を超えると、冷延鋼板の溶接性や表面性状の劣化が著しくなる。したがって、SiとAlの合計含有量は3.0%以下とする。好ましくは2.5%以下、さらに好ましくは2.0%以下である。
0.8 ≦ Si + Al ≦ 3.0
If the total content of Si and Al is less than 0.8%, the stability and volume ratio of the retained austenite phase become insufficient, and desired mechanical characteristics may not be obtained. Therefore, the total content of Si and Al is set to 0.8% or more in order to promote the formation of the retained austenite phase. This amount is preferably at least 1.0%, more preferably at least 1.2%. On the other hand, when the total content of Si and Al exceeds 3.0%, the weldability and surface properties of the cold-rolled steel sheet deteriorate significantly. Therefore, the total content of Si and Al is 3.0% or less. Preferably it is 2.5% or less, More preferably, it is 2.0% or less.
Ti:0.20%以下および/またはNb:0.10%以下、且つ
0.002≦Ti+Nb≦0.20
TiおよびNbは、本発明において重要な元素である。TiおよびNbの1種または2種を含有することにより、冷間圧延後の焼鈍時において微細炭化物を形成し、フェライトが微細粒化する。また、鋼組織の微細粒化による強化と共に、析出強化によっても高強度化に寄与する。TiとNbの合計含有量が0.002%未満では上記作用効果を十分に得ることが困難となる。したがって、TiおよびNbの合計含有量は0.002%以上とする。この合計含有量は好ましくは0.005%以上、さらに好ましくは0.008%以上である。
Ti: 0.20% or less and / or Nb: 0.10% or less, and 0.002 ≦ Ti + Nb ≦ 0.20
Ti and Nb are important elements in the present invention. By containing one or two of Ti and Nb, fine carbides are formed during annealing after cold rolling, and ferrite is finely grained. In addition to strengthening by refining the steel structure, precipitation strengthening contributes to high strength. When the total content of Ti and Nb is less than 0.002%, it is difficult to sufficiently obtain the above-described effects. Therefore, the total content of Ti and Nb is set to 0.002% or more. This total content is preferably 0.005% or more, more preferably 0.008% or more.
一方、TiとNbの合計含有量が0.20%超になると、上記作用による効果は飽和してしまい、コストが嵩む。また、鋼中の析出物が粗大化するため、冷延鋼板の加工性も劣化する。したがって、TiとNbの合計含有量は0.20%以下とする。この合計含有量は好ましくは0.15%以下、さらに好ましくは0.10%以下である。 On the other hand, if the total content of Ti and Nb exceeds 0.20%, the effect of the above action is saturated and the cost increases. Moreover, since the precipitate in steel coarsens, the workability of a cold-rolled steel sheet also deteriorates. Therefore, the total content of Ti and Nb is set to 0.20% or less. This total content is preferably 0.15% or less, more preferably 0.10% or less.
各々の元素についても、Tiは0.20%超、Nbは0.10%超を含有させても、上記作用による効果が飽和し、コストが嵩むばかりである。また、鋼中の析出物が粗大化するため、冷延鋼板の加工性も劣化する。さらに、炭化物の析出に多量のCが消費されるため、残留オーステナイトの量が減少し、所定の残留オーステナイトの量を確保できなくなる場合がある。したがって、TiおよびNbのそれぞれの含有量は、Tiは0.20%以下、Nbは0.10%以下とする。好ましくは、Tiは0.15%以下、Nbは0.08%以下であり、より好ましくは、Tiは0.10%以下、Nbは0.05%以下である。 For each element, even if Ti is contained in an amount exceeding 0.20% and Nb is contained in an amount exceeding 0.10%, the effect by the above action is saturated and the cost is increased. Moreover, since the precipitate in steel coarsens, the workability of a cold-rolled steel sheet also deteriorates. Furthermore, since a large amount of C is consumed for the precipitation of carbide, the amount of retained austenite decreases, and it may not be possible to secure a predetermined amount of retained austenite. Therefore, the contents of Ti and Nb are set to 0.20% or less for Ti and 0.10% or less for Nb, respectively. Preferably, Ti is 0.15% or less, Nb is 0.08% or less, more preferably, Ti is 0.10% or less, and Nb is 0.05% or less.
残部はFeと不純物である。不純物中のS、P、Nは下記のように規制するのが望ましい。
S:Sは硫化物系介在物を形成して加工性を低下させる不純物元素である。このため、S含有量は0.05%以下とすることが好ましい。一段と優れた加工性を確保しようする場合には、S含有量を0.008%以下とすることが好ましく、さらに好ましくは0.003%以下である。
The balance is Fe and impurities. It is desirable to regulate S, P, and N in the impurities as follows.
S: S is an impurity element that forms sulfide inclusions and reduces workability. For this reason, it is preferable that S content shall be 0.05% or less. In order to secure further excellent workability, the S content is preferably 0.008% or less, and more preferably 0.003% or less.
P:Pは靱性や延性に悪影響を及ぼす不純物元素である。このため、P含有量は0.05%以下とすることが好ましく、さらに好ましくは0.02%以下である。
N:Nは加工性を低下させる不純物元素である。このため、N含有量は0.01%以下とすることが好ましく、さらに好ましくは0.006%以下である。
P: P is an impurity element that adversely affects toughness and ductility. For this reason, the P content is preferably 0.05% or less, and more preferably 0.02% or less.
N: N is an impurity element that reduces workability. For this reason, the N content is preferably 0.01% or less, and more preferably 0.006% or less.
なお、本発明に係る冷延鋼板および熱延鋼板には、上記の成分元素に加え、以下に述べる元素を必要に応じて含有させてもよい。
Ca:0.01%以下および/またはZr:0.10%以下
CaおよびZrは、いずれも介在物の形状を調整して冷間加工性を高める作用を有する。したがって、CaおよびZrの1種または2種を含有させてもよい。しかし、Caについては0.01%を超えて含有させると、Zrについては0.10%を超えて含有させると、鋼中の介在物が過剰となり、却って加工性の低下を招く。したがって、CaおよびZrのそれぞれの含有量は、Caは0.01%以下、Zrは0.10%以下とする。好ましくは、Caが0.005%以下、Zrが0.05%以下である。なお、CaおよびZrはいずれか1種のみ含有させてもよいし、2種を複合で含有させてもよい。上記作用による効果をより確実に得るには、0.0002%以上のCaおよび0.002%以上のZrの少なくとも1種を含有させることが好ましい。0.005%以上のCaおよび0.01%以上のZrの少なくとも1種を含有させることがより好ましい。
In addition to the above component elements, the cold-rolled steel plate and hot-rolled steel plate according to the present invention may contain the following elements as necessary.
Ca: 0.01% or less and / or Zr: 0.10% or less Both Ca and Zr have the effect of adjusting the shape of inclusions to improve cold workability. Therefore, you may contain 1 type or 2 types of Ca and Zr. However, if Ca is contained in an amount exceeding 0.01%, if Zr is contained in an amount exceeding 0.10%, the inclusions in the steel become excessive, leading to a decrease in workability. Therefore, the respective contents of Ca and Zr are 0.01% or less for Ca and 0.10% or less for Zr. Preferably, Ca is 0.005% or less and Zr is 0.05% or less. In addition, Ca and Zr may contain only 1 type, and may contain 2 types in combination. In order to more reliably obtain the effect of the above action, it is preferable to contain at least one of 0.0002% or more of Ca and 0.002% or more of Zr. It is more preferable to contain at least one of 0.005% or more of Ca and 0.01% or more of Zr.
(B)冷延鋼板の組織
本発明に係る冷延鋼板の組織は、フェライト:70%以上および残留オーステナイト:3%以上を含有し、残部がベイナイトおよび不可避的マルテンサイトからなるとともに、前記フェライトの平均粒径が3.0μm以下、前記残留オーステナイトの平均粒径が1.0μm以下であり、さらに、前記残留オーステナイトに占めるアスペクト比2以下の残留オーステナイトの割合が60体積%以上であることで特徴づけられる。
(B) Structure of cold-rolled steel sheet The structure of the cold-rolled steel sheet according to the present invention contains ferrite: 70% or more and retained austenite: 3% or more, and the balance is composed of bainite and inevitable martensite. The average particle size is 3.0 μm or less, the average particle size of the retained austenite is 1.0 μm or less, and the proportion of retained austenite having an aspect ratio of 2 or less in the retained austenite is 60% by volume or more. It is attached.
フェライトは炭素固溶量が小さいため、その割合を増すことでオーステナイト中への炭素濃化を促進し、鋼組織に占める残留オーステナイトの割合を増すことができる。フェライトの体積率が70%未満では、オーステナイト中への炭素濃化が不十分となり、3%以上の残留オーステナイトを確保できない場合がある。したがって、フェライトの体積率を70%以上とするが、この体積率は好ましくは80%以上であり、さらに好ましくは85%以上である。 Since ferrite has a small amount of carbon solid solution, increasing the proportion thereof can promote carbon concentration in austenite and increase the proportion of retained austenite in the steel structure. If the volume fraction of ferrite is less than 70%, carbon concentration in austenite becomes insufficient, and 3% or more of retained austenite may not be ensured. Therefore, although the volume fraction of ferrite is 70% or more, this volume fraction is preferably 80% or more, and more preferably 85% or more.
残留オーステナイトは、TRIPにより延性を向上させる作用を有する。残留オーステナイトが3%未満では、TRIPによる延性向上作用が十分に得られず、目的とする延性を確保することができない場合がある。したがって、残留オーステナイトを3%以上とする。残留オーステナイトの体積率が多いほど延性が向上するので、その上限は特に設けないが、本発明のC含有量で得られる残留オーステナイト体積率の上限はおよそ30%である。 Residual austenite has the effect of improving ductility by TRIP. If the retained austenite is less than 3%, the effect of improving ductility by TRIP cannot be obtained sufficiently, and the target ductility may not be ensured. Therefore, the retained austenite is 3% or more. Since the ductility improves as the volume fraction of retained austenite increases, the upper limit is not particularly set, but the upper limit of the retained austenite volume fraction obtained with the C content of the present invention is approximately 30%.
フェライトの平均粒径が3.0μm超では、十分な細粒化強化が得られない。したがって、フェライトの平均粒径は3.0μm以下とするが、好ましくは2.5μm以下、より好ましくは2.0μm以下である。フェライトは細粒であるほど好ましいので、フェライトの平均粒径の下限は特に規定する必要はない。 When the average grain size of ferrite exceeds 3.0 μm, sufficient refinement and strengthening cannot be obtained. Therefore, the average particle diameter of ferrite is 3.0 μm or less, preferably 2.5 μm or less, more preferably 2.0 μm or less. Since ferrite is preferably as fine as possible, the lower limit of the average grain size of ferrite need not be specified.
残留オーステナイトは、その平均粒径が1.0μm超になると、TRIP現象で生じる硬質な加工誘起マルテンサイトが破壊起点となり、冷延鋼板の加工性が劣化する。したがって、残留オーステナイトの平均粒径は1.0μm以下とする。 When the average grain size of retained austenite exceeds 1.0 μm, hard work-induced martensite generated by the TRIP phenomenon becomes a starting point of fracture, and the workability of the cold-rolled steel sheet deteriorates. Therefore, the average particle size of retained austenite is 1.0 μm or less.
残留オーステナイト全体に占めるアスペクト比2以下の残留オーステナイトの割合は60体積%以上とする。この割合が60体積%未満では、冷延鋼板の機械的特性の異方性が大きくなるとともに、穴拡げ性が劣化する。アスペクト比2以下のオーステナイトとは、一般には前述した粒状のオーステナイトを意味する。前述したフィルム状のオーステナイトは一般にアスペクト比が2を大きく超える。 The proportion of retained austenite having an aspect ratio of 2 or less in the entire retained austenite is 60% by volume or more. When this ratio is less than 60% by volume, the anisotropy of the mechanical properties of the cold-rolled steel sheet increases and the hole expandability deteriorates. Austenite having an aspect ratio of 2 or less generally means the granular austenite described above. The above-described film-like austenite generally has an aspect ratio greatly exceeding 2.
残部組織は基本的にベイナイトとする。不可避的にマルテンサイトが混入する場合もあるが、その体積率が5%以下ならば実害がない。
さらに優れた機械特性を得るために、鋼板表面から板厚の1/4の深さ位置におけるフェライト平均粒径Dα(μm)と残留オーステナイト平均粒径Dγ(μm)とを下記の式(3)および式(4)を満足させる。
The remaining structure is basically bainite. Although martensite may inevitably be mixed, there is no actual harm if the volume ratio is 5% or less.
In order to obtain more excellent mechanical properties, the ferrite average particle diameter Dα (μm) and the retained austenite average particle diameter Dγ (μm) at a depth position of ¼ of the sheet thickness from the steel sheet surface are expressed by the following formula (3): And satisfies equation (4).
1.5≦Dα/Dγ≦15 ・・・ (3)
3≦(Dα/Dγ)×(Dα+Dγ)≦30 ・・・ (4)
上記式(3)および(4)はフェライトと残留オーステナイトそれぞれの平均粒径の関係を規定するものであり、この範囲を満足する場合には一層大きなTRIP効果が得ることができる。
1.5 ≦ Dα / Dγ ≦ 15 (3)
3 ≦ (Dα / Dγ) × (Dα + Dγ) ≦ 30 (4)
The above formulas (3) and (4) define the relationship between the average grain sizes of ferrite and retained austenite. When this range is satisfied, a greater TRIP effect can be obtained.
(C)高張力冷延鋼板の母材となる熱延鋼板とその製造方法
冷間圧延の母材となる熱延鋼板の組織制御は、本発明に係る前述した組織を有する冷延鋼板を得るための重要な因子である。その組織形態と製造方法について以下に説明する。
(C) Hot-rolled steel sheet as a base material for high-tensile cold-rolled steel sheet and manufacturing method thereof The structure control of the hot-rolled steel sheet as a base material for cold rolling obtains the cold-rolled steel sheet having the structure described above according to the present invention. Is an important factor for. The structure and manufacturing method will be described below.
(熱延鋼板中の固溶Ti、Nb量)
熱延鋼板に含有される固溶Tiおよび固溶Nbは、冷間圧延および焼鈍を施した後の冷延鋼板において微細なフェライト粒を生成させ、細粒化強化を達成するのに必要である。室温における熱延鋼板中の固溶Tiと固溶Nbの合計含有量が0.003質量%未満では、十分な細粒化強化は得られない。したがって、室温における熱延鋼板中の固溶Tiおよび固溶Nbの合計含有量は0.003質量%以上とする。この含有量は好ましくは0.01%以上、さらに好ましくは0.02%以上である。室温における熱延鋼板中の固溶Tiと固溶Nbの合計含有量が多いほど冷延鋼板の鋼組織が微細粒化されるので、室温における熱延鋼板中の固溶Tiと固溶Nbの合計含有量の上限は特に規定しない。したがって、この固溶Tiと固溶Nbの合計含有量は、鋼組成におけるTiおよびNbの合計含有量に等しくても構わないが、熱間圧延工程でTiとNbの一部は析出するため、実際にはTiおよびNbの合計含有量よりも少なくなる。
(Solution of Ti and Nb in hot-rolled steel sheet)
The solute Ti and solute Nb contained in the hot-rolled steel sheet are necessary for generating fine ferrite grains in the cold-rolled steel sheet after cold rolling and annealing and achieving fine grain strengthening. . If the total content of solute Ti and solute Nb in the hot-rolled steel sheet at room temperature is less than 0.003 mass%, sufficient fine grain strengthening cannot be obtained. Therefore, the total content of solute Ti and solute Nb in the hot-rolled steel sheet at room temperature is set to 0.003 mass% or more. This content is preferably 0.01% or more, more preferably 0.02% or more. As the total content of solute Ti and solute Nb in the hot-rolled steel sheet at room temperature increases, the steel structure of the cold-rolled steel sheet becomes finer, so the solute Ti and solute Nb in the hot-rolled steel sheet at room temperature There is no particular upper limit on the total content. Therefore, the total content of solute Ti and solute Nb may be equal to the total content of Ti and Nb in the steel composition, but a part of Ti and Nb is precipitated in the hot rolling process. Actually, it is less than the total content of Ti and Nb.
(熱延鋼板のフェライト平均粒径:4μm以下)
熱延鋼板のフェライト粒を微細粒化することは、冷間圧延および焼鈍を施した後においてより微細な鋼組織を得るのに望ましい。冷間圧延後の焼鈍工程においてフェライトの再結晶核生成サイトとなる粒界面が熱延鋼板の微細粒化によって増加するからである。そのため熱延鋼板のフェライト平均粒径は4μm以下であることが望ましい。
(Average ferrite particle diameter of hot-rolled steel sheet: 4 μm or less)
It is desirable to refine the ferrite grains of the hot-rolled steel sheet to obtain a finer steel structure after cold rolling and annealing. This is because the grain interface that becomes the recrystallization nucleation site of ferrite in the annealing process after cold rolling increases due to the refinement of the hot rolled steel sheet. Therefore, it is desirable that the average diameter of ferrite of the hot-rolled steel sheet is 4 μm or less.
(熱間圧延に供する鋼塊または鋼片の温度:1150℃以上、1300℃以下)
熱間圧延に供する鋼塊または鋼片の温度は1150℃以上、1300℃以下とする。前記温度が1150℃未満では、TiやNbを固溶状態とすることが不十分となって、熱間圧延後において十分な固溶Tiや固溶Nbを確保することができず、冷間圧延および焼鈍を施した後において微細粒組織を得ることができない。したがって、熱間圧延に供する鋼塊または鋼片の温度は1150℃以上とする。一方、熱間圧延に供する鋼塊または鋼片の温度が1300℃超では、スケールロスによる歩留りの低下が著しくなる。したがって、熱間圧延に供する鋼塊または鋼片の温度は1300℃以下とする。なお、熱間圧延は、連続鋳造された鋼塊や分塊圧延された鋼片を、常温まで冷却させずに温片のまま加熱炉に装入して加熱した後に圧延する直送圧延、わずかの保熱を行った後に直ちに圧延する直接圧延、一旦鋼素材を常温まで冷却した後に再加熱してから圧延することのいずれによってもよい。
(Temperature of steel ingot or steel slab used for hot rolling: 1150 ° C or higher and 1300 ° C or lower)
The temperature of the steel ingot or steel slab used for hot rolling is 1150 ° C or higher and 1300 ° C or lower. If the temperature is less than 1150 ° C., it is insufficient to make Ti or Nb into a solid solution state, and sufficient hot-melt Ti or solid solution Nb cannot be secured after hot rolling, and cold rolling is performed. In addition, a fine grain structure cannot be obtained after annealing. Therefore, the temperature of the steel ingot or steel slab used for hot rolling is 1150 ° C. or higher. On the other hand, when the temperature of the steel ingot or steel slab subjected to hot rolling exceeds 1300 ° C., the yield decreases due to scale loss. Therefore, the temperature of the steel ingot or steel slab used for hot rolling is 1300 ° C. or less. In addition, hot rolling is a direct-feed rolling in which a continuously cast steel ingot or a piece-rolled steel slab is heated and charged in a heating furnace without being cooled to room temperature. Either direct rolling, which is rolled immediately after heat retention, or rolling after reheating after cooling the steel material to room temperature may be used.
(熱間圧延完了温度:800℃以上)
熱間圧延の圧延完了温度は、800℃以上とする。熱間圧延完了温度が800℃未満では、鋼中のTiおよびNbの大部分が炭化物として析出してしまい、熱延鋼板段階において所定量の固溶Tiおよび固溶Nbを確保することができない。したがって、熱間圧延完了温度は800℃以上とする。熱間圧延完了温度の上限は特に規定する必要はないが、熱間圧延に供する鋼塊または鋼片の温度を上記温度とした場合には通常1100℃以下となる。
(Hot rolling completion temperature: 800 ° C or higher)
The rolling completion temperature of hot rolling is 800 ° C. or higher. When the hot rolling completion temperature is less than 800 ° C., most of Ti and Nb in the steel are precipitated as carbides, and a predetermined amount of solid solution Ti and solid solution Nb cannot be secured in the hot rolled steel sheet stage. Therefore, the hot rolling completion temperature is 800 ° C. or higher. The upper limit of the hot rolling completion temperature does not need to be specified in particular, but is usually 1100 ° C. or lower when the temperature of the steel ingot or steel slab used for hot rolling is the above temperature.
(熱間圧延完了後の冷却条件:熱間圧延完了から750℃までの冷却時間が10秒以内)
熱間圧延完了から750℃までの冷却時間は10秒以内とする。熱間圧延完了から750℃までの冷却時間が10秒を超える条件で冷却すると、鋼中のTiおよびNbの大部分が熱延鋼板中に炭化物として析出してしまい、所定量の固溶Tiや固溶Nbを確保することができなくなる。この冷却は、典型的には水冷により行われる。
(Cooling conditions after completion of hot rolling: cooling time from completion of hot rolling to 750 ° C. within 10 seconds)
The cooling time from completion of hot rolling to 750 ° C. is within 10 seconds. When the cooling time from the completion of hot rolling to 750 ° C. exceeds 10 seconds, most of Ti and Nb in the steel precipitate as carbides in the hot-rolled steel sheet, and a predetermined amount of solute Ti or The solid solution Nb cannot be secured. This cooling is typically performed by water cooling.
(熱間圧延完了後の好適冷却条件:熱間圧延完了から720℃までの冷却時間が0.7秒以内)
熱延鋼板のフェライト粒を微細粒化することは、冷間圧延および焼鈍を施した後においてより微細な鋼組織を得るために望ましい。熱間圧延完了から720℃までの冷却時間を0.7秒以内とすることにより、熱延鋼板のフェライト結晶粒を4μm以下にすることが容易になる。したがって、熱間圧延完了から720℃までの冷却時間を0.7秒以内とすることが好ましい。このような冷却は、圧延機出側直後に取り付けた高圧水噴射装置を用いた水冷により達成することができる。
(Preferable cooling condition after completion of hot rolling: cooling time from completion of hot rolling to 720 ° C. within 0.7 seconds)
It is desirable to refine the ferrite grains of the hot-rolled steel sheet in order to obtain a finer steel structure after cold rolling and annealing. By setting the cooling time from completion of hot rolling to 720 ° C. within 0.7 seconds, it becomes easy to make the ferrite crystal grains of the hot-rolled steel sheet 4 μm or less. Therefore, it is preferable to set the cooling time from the completion of hot rolling to 720 ° C. within 0.7 seconds. Such cooling can be achieved by water cooling using a high-pressure water injection device attached immediately after the rolling mill exit side.
(巻取条件:上記冷却の完了後30秒以内に650℃以下の温度域で巻取る)
上記冷却の完了後30秒以内に650℃以下の温度域で巻取る。上記冷却完了後の巻取りまでの時間が30秒超であるか、および/または巻取温度が650℃超であると、TiおよびNbの大部分が熱延鋼板中に炭化物として析出してしまい、所定合計量の固溶Tiおよび固溶Nbを確保することが困難となる。したがって、上記冷却の完了後30秒以内に650℃以下の温度域で巻取る。上記冷却の完了後巻取りまでの時間は20秒以内とすることが好ましい。また、巻取温度は600℃以下とすることが好ましく、550℃以下とすることがさらに好ましい。上記冷却の完了後巻取りまでの時間が短いほどTiおよびNbの析出を抑制できるので、上記時間の下限は特に規定しない。巻取温度の下限も同様の理由により特に規定する必要はないが、300℃を下回ると硬質なマルテンサイトが生成し、その後の冷間圧延が困難にあるので、300℃以上とすることが操業上好ましい。上記冷却完了から巻取りまでの冷却は、空冷、水冷およびその両者の組み合わせのいずれを用いてもよい。
(Winding condition: Winding in a temperature range of 650 ° C. or less within 30 seconds after completion of the cooling)
It winds up within the temperature range below 650 degreeC within 30 second after completion of the said cooling. When the time until winding after completion of the cooling is more than 30 seconds and / or the winding temperature is more than 650 ° C., most of Ti and Nb are precipitated as carbides in the hot-rolled steel sheet. It is difficult to secure a predetermined total amount of solute Ti and solute Nb. Therefore, it winds in the temperature range below 650 degreeC within 30 second after completion of the said cooling. It is preferable that the time from the completion of the cooling to the winding is within 20 seconds. The coiling temperature is preferably 600 ° C. or less, more preferably 550 ° C. or less. Since the precipitation of Ti and Nb can be suppressed as the time from the completion of the cooling to the winding is shorter, the lower limit of the time is not particularly specified. The lower limit of the coiling temperature is not particularly required for the same reason, but if it is below 300 ° C, hard martensite is generated and subsequent cold rolling is difficult. Above preferred. Any of air cooling, water cooling, and a combination of both may be used for cooling from the completion of cooling to winding.
このように、本発明では、鋼素材の化学組成の調整および熱間圧延条件の適正化によって熱延鋼板におけるTiおよび/またはNbの析出を抑制し、これにより、冷間圧延以降の工程において微細な炭化物を析出させ、フェライトを有効に微細粒化できる。 As described above, in the present invention, the precipitation of Ti and / or Nb in the hot-rolled steel sheet is suppressed by adjusting the chemical composition of the steel material and optimizing the hot rolling conditions. This makes it possible to precipitate fine carbides and effectively refine the ferrite.
(D)熱延鋼板を母材とする冷延鋼板の製造方法
上述した熱間圧延工程を経て得られた固溶Ti量および固溶Nb量の合計が0.002%以上の熱延鋼板は、常法に従って酸洗を施された後に冷間圧延を受け、冷延鋼板とされる。冷間圧延における圧下率は、特に限定を要するものではないが、焼鈍中のオーステナイト粒径を微細にしてフェライト粒径をさらに細粒化するために、30%以上とすることが望ましく、圧延設備の過大な負荷を避けるために90%以下とすることが好ましい。冷間圧延した鋼板には歪取りのために次に述べる条件下で焼鈍を施し、冷却する。焼鈍後の冷延鋼板には、必要に応じて、平坦度を確保するために常法に従ってスキンパスまたは矯正などを適宜施してもよい。
(D) Method for producing cold-rolled steel sheet using hot-rolled steel sheet as a base material A hot-rolled steel sheet having a total amount of solid solution Ti and solid solution Nb obtained through the hot rolling step described above is 0.002% or more. The steel sheet is pickled according to a conventional method and then cold-rolled to obtain a cold-rolled steel sheet. The rolling reduction in the cold rolling is not particularly limited, but is desirably 30% or more in order to make the austenite grain size during annealing finer and further refine the ferrite grain size. In order to avoid an excessive load of 90%, it is preferably 90% or less. The cold-rolled steel sheet is annealed and cooled under the following conditions for strain relief. In order to ensure flatness, the cold-rolled steel sheet after annealing may be appropriately subjected to skin pass or correction according to a conventional method.
(冷延鋼板の焼鈍条件:700℃以上、950℃以下の温度域に30秒以上、600秒以下保持)
冷延鋼板の焼鈍は、700℃以上、950℃以下の温度域に30秒以上、600秒以下保持することにより行う。保持温度が700℃未満では、加工組織が残ってバンド状の組織となり、冷延鋼板の加工性が著しく劣化する。一方、保持温度が950℃超では、フェライトの粗粒化が急速に進行し、所望の細粒組織が得られない。また、保持時間が30秒未満では、置換型元素であるMn等の偏析の均質化が不十分となり、焼鈍後の鋼組織が不均一となって、冷延鋼板の加工性が劣化する。一方、保持時間が600秒超では、焼鈍後のフェライトが粗大化し、所望の細粒組織が得られない。
(Annealing conditions of cold-rolled steel sheet: maintained in a temperature range of 700 ° C. or more and 950 ° C. or less for 30 seconds or more and 600 seconds or less)
The cold-rolled steel sheet is annealed by holding it in a temperature range of 700 ° C. or more and 950 ° C. or less for 30 seconds or more and 600 seconds or less. When the holding temperature is less than 700 ° C., the processed structure remains and becomes a band-shaped structure, and the workability of the cold-rolled steel sheet is significantly deteriorated. On the other hand, if the holding temperature exceeds 950 ° C., the coarsening of ferrite proceeds rapidly, and a desired fine grain structure cannot be obtained. If the holding time is less than 30 seconds, homogenization of segregation of substitutional elements such as Mn becomes insufficient, the steel structure after annealing becomes non-uniform, and the workability of the cold-rolled steel sheet deteriorates. On the other hand, if the holding time exceeds 600 seconds, the ferrite after annealing becomes coarse and a desired fine grain structure cannot be obtained.
(冷延鋼板の焼鈍後の冷却条件:650℃から550℃までの温度域における平均冷却速度を5℃/秒以上、200℃/秒以下として500℃まで冷却)
上記焼鈍の後、650℃から550℃までの温度域における平均冷却速度を5℃/秒以上、200℃/秒以下として500℃まで冷却する。前記平均冷却速度が5℃/秒未満であると、結晶粒が粗大化するだけでなく、パーライトやセメンタイトが生成し、所望の残留オーステナイト体積率が確保できない。前記平均冷却速度が200℃/秒超であると、冷却ムラによる不均一な組織を生じ、材質安定性が低下する場合がある。なお良好な材質安定性が要求されるときは、前記平均冷却速度を5℃/秒以上、80℃/秒以下とするのが好ましい。
(Cooling condition after annealing of cold-rolled steel sheet: cooling to 500 ° C. with an average cooling rate in the temperature range from 650 ° C. to 550 ° C. being 5 ° C./second or more and 200 ° C./second or less)
After the annealing, the average cooling rate in the temperature range from 650 ° C. to 550 ° C. is set to 5 ° C./second or more and 200 ° C./second or less to cool to 500 ° C. When the average cooling rate is less than 5 ° C./second, not only the crystal grains become coarse, but also pearlite and cementite are generated, and a desired retained austenite volume ratio cannot be ensured. When the average cooling rate is more than 200 ° C./second, a non-uniform structure due to uneven cooling may be generated, and the material stability may be lowered. When good material stability is required, the average cooling rate is preferably 5 ° C./second or more and 80 ° C./second or less.
(冷延鋼板の冷却後の保持条件:300℃以上、500℃以下の温度域に30秒以上保持)
焼鈍した冷延鋼板を上記条件で500℃またはそれより低温に冷却した後、300℃以上、500℃以下の温度域に30秒以上保持する。この時の保持温度が500℃を超えるとパーライトの生成が促進され、300℃を下回るとマルテンサイトの生成が促進され、ともにオーステナイト中の炭素濃度の減少をもたらし、目的とする残留オーステナイトの体積割合が得られない場合がある。保持時間が30秒未満の場合も、オーステナイト中で炭素が十分に濃化できず、目的とする残留オーステナイトの体積割合が得られない場合がある。
(Holding condition after cooling of cold-rolled steel sheet: Hold for 30 seconds or more in a temperature range of 300 ° C or higher and 500 ° C or lower)
After the annealed cold-rolled steel sheet is cooled to 500 ° C. or lower under the above conditions, it is held in a temperature range of 300 ° C. or more and 500 ° C. or less for 30 seconds or more. When the holding temperature at this time exceeds 500 ° C., the formation of pearlite is promoted, and when the holding temperature is below 300 ° C., the formation of martensite is promoted, both resulting in a decrease in the carbon concentration in the austenite, and the desired volume fraction of retained austenite. May not be obtained. Even when the holding time is less than 30 seconds, carbon cannot be sufficiently concentrated in austenite, and the target volume fraction of retained austenite may not be obtained.
本発明によれば、鋼の化学組成の調整と、熱間圧延および冷延後焼鈍条件の適正化とを図ることによって、フェライト:70%以上および残留オーステナイト:3%以上を含有し、残部がベイナイトおよび不可避的マルテンサイトからなるとともに、前記フェライトの平均粒径が3.0μm以下、前記残留オーステナイトの平均粒径が1.0μm以下であり、さらに、前記残留オーステナイトに占めるアスペクト比2以下の残留オーステナイトの割合が60体積%以上である鋼組織を有する、加工性にも優れた高張力冷延鋼板を得ることができる。 According to the present invention, by adjusting the chemical composition of the steel and optimizing the hot rolling and annealing conditions after cold rolling, ferrite: 70% or more and retained austenite: 3% or more, with the balance being Residue comprising bainite and inevitable martensite, the ferrite having an average grain size of 3.0 μm or less, the residual austenite having an average grain size of 1.0 μm or less, and an aspect ratio of 2 or less in the residual austenite A high-tensile cold-rolled steel sheet having a steel structure having an austenite ratio of 60% by volume or more and excellent workability can be obtained.
なお、上述した鋼板の表面には、耐食性の向上等を目的としてめっき層を設けて表面処理鋼板としてもよい。めっき層は、電気めっき層と溶融めっき層のいずれであってもよい。電気めっきとしては、電気亜鉛めっき、電気Zn−Ni合金めっき等が例示される。溶融めっきとしては、溶融亜鉛めっき、合金化溶融亜鉛めっき、溶融アルミニウムめっき、溶融Zn−Al合金めっき、溶融Zn−Al−Mg合金めっき、溶融Zn−Al−Mg−Si合金めっき等が例示される。めっき付着量は特に制限されず、従来と同様でよい。また、めっき後に適当な化成処理(例えば、シリケート系のクロムフリー化成処理液の塗布と乾燥)を施して、耐食性をさらに高めることも可能である。 In addition, it is good also as a surface-treated steel plate by providing a plating layer in the surface of the steel plate mentioned above for the purpose of the improvement of corrosion resistance. The plating layer may be either an electroplating layer or a hot dipping layer. Examples of electroplating include electrogalvanizing and electro-Zn-Ni alloy plating. Examples of the hot dip plating include hot dip galvanizing, alloyed hot dip galvanizing, hot dip aluminum plating, hot dip Zn-Al alloy plating, hot dip Zn-Al-Mg alloy plating, hot dip Zn-Al-Mg-Si alloy plating and the like. . The amount of plating adhesion is not particularly limited, and may be the same as the conventional one. Further, it is possible to further improve the corrosion resistance by performing an appropriate chemical conversion treatment (for example, application and drying of a silicate-based chromium-free chemical conversion treatment solution) after plating.
表1に示す化学組成を有する鋼を150kgの高周波真空溶解炉にて溶解し、鋳造することにより鋼塊を得た。得られた各鋼塊を常法により熱間鍛造して、幅200mm、厚さ35mmの鋼片とした。次いで、上記の各鋼片を厚さ30mmまで研削加工した後、表2に示す条件にて加熱炉にて所望の温度まで加熱し、5〜8パスの熱間圧延を行って厚さが3.0mmの鋼板に仕上げた。熱間圧延を完了した後は、表2に示す条件で冷却および巻取処理を行った。冷却は、表2の番号33のみ空冷であり、残りは水冷であった。 Steel ingots were obtained by melting and casting steel having the chemical composition shown in Table 1 in a 150 kg high-frequency vacuum melting furnace. Each obtained steel ingot was hot forged by a conventional method to obtain a steel piece having a width of 200 mm and a thickness of 35 mm. Next, after grinding each steel slab to a thickness of 30 mm, the steel slab is heated to a desired temperature in a heating furnace under the conditions shown in Table 2 and hot rolled in 5 to 8 passes to obtain a thickness of 3 A steel plate of 0.0 mm was finished. After completing the hot rolling, cooling and winding processes were performed under the conditions shown in Table 2. As for cooling, only No. 33 in Table 2 was air-cooled, and the rest was water-cooled.
このようにして得られた熱延鋼板を酸洗後、表3に示す圧下率で冷間圧延を施して冷延鋼板とした。得られた冷延鋼板を表3に示す条件で焼鈍のために熱処理した。すなわち、まず冷延鋼板を10℃/sで表示の焼鈍温度まで加熱して表示の焼鈍時間保持した後に表示の徐冷速度で表示の冷却開始温度まで徐冷し(700℃以上の温度域における保持時間を「700℃以上保持時間」として表中に示す)、続いて表示の速度および停止温度でガス冷却により冷却し、その後は10℃/sで常温までガス冷却した。この冷却時の300〜500℃の温度域での保持時間も表3に示す。得られた冷延鋼板に最後に圧延率0.2%のスキンパスを行った。 The hot-rolled steel sheet thus obtained was pickled and then cold-rolled at the rolling reduction shown in Table 3 to obtain a cold-rolled steel sheet. The obtained cold-rolled steel sheet was heat-treated for annealing under the conditions shown in Table 3. That is, first, the cold-rolled steel sheet is heated at 10 ° C./s to the indicated annealing temperature and held for the indicated annealing time, and then gradually cooled to the indicated cooling start temperature at the indicated slow cooling rate (in a temperature range of 700 ° C. or higher). The holding time was shown in the table as “holding time of 700 ° C. or higher”), followed by gas cooling at the indicated speed and stop temperature, and then gas cooling to room temperature at 10 ° C./s. Table 3 also shows the holding time in the temperature range of 300 to 500 ° C. during cooling. Finally, the obtained cold-rolled steel sheet was subjected to a skin pass at a rolling rate of 0.2%.
このようにして得られた各熱延鋼板および冷延鋼板について以下の評価を行った。
熱延鋼板については、固溶Ti量および固溶Nb量とフェライトの平均粒径を測定した。熱延鋼板中の固溶Ti量および固溶Nb量は、鋼板長手方向中央部の幅方向中央部から試験片を採取し、電解抽出残渣を化学分析することにより測定した。フェライトの平均粒径は、後に述べる冷延鋼板の場合と同様に測定した。これらの測定結果は表2に示す。
Each hot-rolled steel sheet and cold-rolled steel sheet thus obtained were evaluated as follows.
For the hot-rolled steel sheet, the amount of solute Ti and the amount of solute Nb and the average particle diameter of ferrite were measured. The amount of solute Ti and the amount of solute Nb in the hot-rolled steel sheet were measured by collecting a test piece from the central part in the width direction of the central part in the longitudinal direction of the steel sheet and chemically analyzing the electrolytic extraction residue. The average grain size of ferrite was measured in the same manner as in the case of a cold-rolled steel sheet described later. These measurement results are shown in Table 2.
冷延鋼板については、相および組織の特定、フェライトの体積率(Vα)および平均粒径(Dα)、残留オーステナイトの体積率(Vγ)および平均粒径(Dγ)、残留オーステナイトに占めるアスペクト比2以下である残留オーステナイトの体積割合(Vγ<2)を求めた。 For cold-rolled steel sheet, identification of phase and structure, ferrite volume fraction (Vα) and average grain size (Dα), volume fraction of retained austenite (Vγ) and mean grain size (Dγ), aspect ratio 2 in retained austenite The volume fraction of retained austenite (Vγ <2) was determined as follows.
フェライトの体積割合は、板厚方向断面を走査型電子顕微鏡により観察して求めた。
フェライトの平均粒径は、板厚方向断面の鋼板表面から板厚の1/4深さ位置において撮影した走査型電子顕微鏡写真を用いて、切片法によってそれぞれの位置における平均粒切片長を測定し、これらの算術平均値を1.128倍して求めた。
The volume ratio of ferrite was determined by observing the cross section in the plate thickness direction with a scanning electron microscope.
For the average grain size of ferrite, the average grain section length at each position was measured by the section method using a scanning electron micrograph taken at a 1/4 depth position from the steel sheet surface in the section in the thickness direction. These arithmetic average values were obtained by multiplying them by 1.128.
残留オーステナイトの体積割合はX線回折により求めた。
残留オーステナイト平均粒径は、板厚方向断面の鋼板表面から板厚の1/4深さ位置について電子線後方散乱回折法(EBSP)により評価することにより求めた。ここで、残留オーステナイトの粒径は短径(例えばフィルム状であればフィルム厚み)とした。
The volume fraction of retained austenite was determined by X-ray diffraction.
The residual austenite average particle diameter was determined by evaluating the position of a quarter depth of the plate thickness from the steel plate surface in the plate thickness direction cross section by electron beam backscattering diffraction (EBSP). Here, the particle diameter of the retained austenite was a short diameter (for example, a film thickness in the case of a film).
冷延鋼板の機械的特性は、圧延方向にJIS Z 2201(1998)に規定される5号引張試験片を採取して常温で引張試験を行い、引張強度(TS)、上降伏強度(YS)、および全伸び(EL)を測定することにより評価した。 The mechanical properties of the cold-rolled steel sheet were obtained by taking a No. 5 tensile test piece specified in JIS Z 2201 (1998) in the rolling direction and conducting a tensile test at room temperature to obtain a tensile strength (TS) and an upper yield strength (YS). And by measuring the total elongation (EL).
表4に、冷延鋼板の鋼組織と機械的特性の調査結果を示す。 Table 4 shows the investigation results of the steel structure and mechanical properties of the cold-rolled steel sheet.
表4から明らかなように、本発明に係る試験番号1〜5、8、9、12、13、16〜18、21、23〜28の冷延鋼板は、フェライト70%以上、残留オーステナイト3%以上を含有し、フェライトの平均粒径が3.0μm以下と微細粒組織を有し、残留オーステナイト中のアスペクト比2以下のものの体積率が60%以上である。その結果、引張強さTS(MPa)と全伸びEL(%)との積が22000MPa・%以上という、優れた強度および伸び特性を有していた。すなわち、本発明に従った化学組成と鋼組織を有する冷延鋼板は、高強度でありながら加工性にも優れている。 As is apparent from Table 4, the cold-rolled steel sheets of test numbers 1 to 5, 8, 9, 12, 13, 16 to 18, 21, 23 to 28 according to the present invention are 70% ferrite or more and 3% residual austenite. The volume ratio of ferrite having an average particle diameter of ferrite of 3.0 μm or less and a fine grain structure and having an aspect ratio of 2 or less in the retained austenite is 60% or more. As a result, the product of tensile strength TS (MPa) and total elongation EL (%) had excellent strength and elongation characteristics of 22000 MPa ·% or more. That is, the cold-rolled steel sheet having the chemical composition and the steel structure according to the present invention is excellent in workability while having high strength.
これに対して、本発明で定める化学組成を有する場合であっても、熱間圧延条件が本発明で定める規定から外れた試験番号29〜34では、冷延組織が微細粒化できず、降伏強度、引張り強度共に低く、引張強さTS(MPa)と全伸びEL(%)の積は21000MPa・%未満に留まっている。 On the other hand, even in the case of having the chemical composition defined in the present invention, in the test numbers 29 to 34 in which the hot rolling conditions deviate from the regulations defined in the present invention, the cold-rolled structure cannot be refined and yielded. Both the strength and the tensile strength are low, and the product of the tensile strength TS (MPa) and the total elongation EL (%) remains below 21000 MPa ·%.
また、本発明で定める化学組成を有する場合であっても、冷間圧延後の焼鈍条件が本発明で定める規定から外れる試験番号6、7、10、11、14、15、19、20、22では、微細粒組織が得られなかったり、あるいは残留オーステナイト体積率が十分に確保できなかったりして、発明例に比べていずれも強度−延性バランスに劣っている。 Moreover, even if it has a chemical composition defined by this invention, the test numbers 6, 7, 10, 11, 14, 15, 19, 20, 22 in which the annealing conditions after cold rolling deviate from the regulation defined by this invention. Then, a fine grain structure cannot be obtained, or the volume fraction of retained austenite cannot be secured sufficiently, and both are inferior in strength-ductility balance as compared with the inventive examples.
一方、化学組成が本発明で定める規定から外れる試験番号35から45では、特に延性の低下が目立ち、強度−延性バランスは19000MPa・%未満と、発明例に比べて機械的特性が著しく劣る。 On the other hand, in test numbers 35 to 45 where the chemical composition deviates from the provisions stipulated in the present invention, the reduction in ductility is particularly noticeable, and the mechanical property is remarkably inferior to that of the inventive examples, with the strength-ductility balance being less than 19000 MPa ·%.
以上からわかるように、本発明に係る高張力冷延鋼板は、引張強さTS(MPa)と全伸びEl(%)の積TS×El値が22000MPa・%以上と優れているので、特に自動車車体や衝撃吸収用部材などに用いられる高強度構造部材の素材として好適である。この高張力冷延延鋼板は、本発明の方法によって一般的な連続焼鈍設備によって比較的容易に製造することができる。 As can be seen from the above, the high-tensile cold-rolled steel sheet according to the present invention is excellent in that the product TS × El value of the tensile strength TS (MPa) and the total elongation El (%) is 22000 MPa ·% or more. It is suitable as a material for a high-strength structural member used for a vehicle body or a shock absorbing member. This high-tensile cold-rolled steel sheet can be manufactured relatively easily by a general continuous annealing facility by the method of the present invention.
Claims (8)
体積%で、フェライト:70%以上および残留オーステナイト:3%以上を含有し、残部がベイナイトおよび不可避的マルテンサイトからなり、前記フェライトの鋼板表面から板厚の1/4の深さ位置における平均粒径Dα(μm)が3.0μm以下、前記残留オーステナイトの鋼板表面から板厚の1/4の深さ位置における平均粒径Dγ(μm)が1.0μm以下であるとともに、下記式(3)および(4)を満足し、さらに、前記残留オーステナイトに占めるアスペクト比2以下の残留オーステナイトの割合が60体積%以上である鋼組織を有することを特徴とする冷延鋼板。
0.8≦Si+Al≦3.0 ・・・・・・ (1)
0.002≦Ti+Nb≦0.20 ・・・ (2)
1.5≦Dα/Dγ≦15 ・・・・・・ (3)
3≦(Dα/Dγ)×(Dα+Dγ)≦30 ・・・ (4)
上記式中の各元素記号は当該元素の含有量(単位:質量%)を意味する。 In mass%, C: 0.06% to 0.25%, Si: 0.01% to 2.0%, Mn: 0.5% to 2.0%, and Al: 0.01% More than 2.0% is contained, and further, one or two of Ti: 0.20% or less and Nb: 0.10% or less is contained, and the following formulas (1) and (2) are satisfied. And the balance has a chemical composition consisting of Fe and impurities, and contains, by volume, ferrite: 70% or more and residual austenite: 3% or more, and the balance is composed of bainite and unavoidable martensite, The average particle diameter Dα (μm) at a depth position of 1/4 of the sheet thickness from the surface is 3.0 μm or less, and the average particle diameter Dγ (μm at a depth position of 1/4 of the sheet thickness from the steel sheet surface of the retained austenite. ) Is 1.0 μm or less, and the following formula (3) and A cold-rolled steel sheet satisfying (4) and having a steel structure in which the ratio of retained austenite having an aspect ratio of 2 or less to the retained austenite is 60% by volume or more.
0.8 ≦ Si + Al ≦ 3.0 (1)
0.002 ≦ Ti + Nb ≦ 0.20 (2)
1.5 ≦ Dα / Dγ ≦ 15 (3)
3 ≦ (Dα / Dγ) × (Dα + Dγ) ≦ 30 (4)
Each element symbol in the above formula means the content (unit: mass%) of the element.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010012111A JP5549238B2 (en) | 2010-01-22 | 2010-01-22 | Cold rolled steel sheet and method for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010012111A JP5549238B2 (en) | 2010-01-22 | 2010-01-22 | Cold rolled steel sheet and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2011149066A true JP2011149066A (en) | 2011-08-04 |
JP5549238B2 JP5549238B2 (en) | 2014-07-16 |
Family
ID=44536310
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010012111A Active JP5549238B2 (en) | 2010-01-22 | 2010-01-22 | Cold rolled steel sheet and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5549238B2 (en) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011214081A (en) * | 2010-03-31 | 2011-10-27 | Sumitomo Metal Ind Ltd | Cold-rolled steel sheet and method for producing the same |
WO2013046693A1 (en) * | 2011-09-29 | 2013-04-04 | Jfeスチール株式会社 | Hot-rolled steel sheet and method for producing same |
WO2013125400A1 (en) * | 2012-02-22 | 2013-08-29 | 新日鐵住金株式会社 | Cold-rolled steel sheet and manufacturing method for same |
WO2013125399A1 (en) * | 2012-02-22 | 2013-08-29 | 新日鐵住金株式会社 | Cold-rolled steel sheet and manufacturing method for same |
EP2937433A4 (en) * | 2012-12-18 | 2016-02-17 | Jfe Steel Corp | Low-yield-ratio high-strength cold-rolled steel sheet and method for manufacturing same |
WO2016136810A1 (en) * | 2015-02-24 | 2016-09-01 | 新日鐵住金株式会社 | Cold-rolled steel sheet and method for manufacturing same |
WO2018043456A1 (en) * | 2016-08-31 | 2018-03-08 | Jfeスチール株式会社 | High strength cold-rolled steel sheet and method for manufacturing same |
JP6414371B1 (en) * | 2018-03-30 | 2018-10-31 | 新日鐵住金株式会社 | Steel sheet and manufacturing method thereof |
JP6418367B1 (en) * | 2018-03-30 | 2018-11-07 | 新日鐵住金株式会社 | Steel sheet and manufacturing method thereof |
JP6421908B1 (en) * | 2018-03-30 | 2018-11-14 | 新日鐵住金株式会社 | Steel sheet and manufacturing method thereof |
JP2022501504A (en) * | 2018-09-20 | 2022-01-06 | アルセロールミタル | Cold-rolled coated steel sheet and its manufacturing method |
CN114555845A (en) * | 2019-10-23 | 2022-05-27 | 杰富意钢铁株式会社 | High-strength steel sheet and method for producing same |
JP2022535255A (en) * | 2019-06-03 | 2022-08-05 | アルセロールミタル | Cold-rolled and coated steel sheet and method for producing same |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111961967B (en) * | 2020-07-31 | 2021-09-21 | 天津钢铁集团有限公司 | Steel plate for small-compression-ratio thick-specification controlled rolling type Q345GJE building structure and production method thereof |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09263884A (en) * | 1996-03-28 | 1997-10-07 | Kobe Steel Ltd | High strength hot rolled steel plate excellent in pitting corrosion resistance and crushing resistance, high strength galvanized steel plate, and their production |
JPH11189839A (en) * | 1997-12-26 | 1999-07-13 | Nippon Steel Corp | High strength steel sheet having high dynamic deformation resistance and method for producing the same |
JP2001335890A (en) * | 2000-05-30 | 2001-12-04 | Sumitomo Metal Ind Ltd | High strength steel sheet excellent in bendability and method for producing the same |
JP2007246961A (en) * | 2006-03-15 | 2007-09-27 | Jfe Steel Kk | High-strength cold rolled steel sheet having excellent formability, chemical convertibility and corrosion resistance after coating and its production method |
JP2010189738A (en) * | 2009-02-20 | 2010-09-02 | Jfe Steel Corp | High strength hot rolled steel sheet having excellent workability, and method for producing the same |
JP2010285636A (en) * | 2009-06-09 | 2010-12-24 | Kobe Steel Ltd | High-strength cold-rolled steel sheet having elongation, stretch-flange formability and weldability |
JP2011068945A (en) * | 2009-09-25 | 2011-04-07 | Jfe Steel Corp | High strength hot rolled steel sheet, and method for producing the same |
-
2010
- 2010-01-22 JP JP2010012111A patent/JP5549238B2/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09263884A (en) * | 1996-03-28 | 1997-10-07 | Kobe Steel Ltd | High strength hot rolled steel plate excellent in pitting corrosion resistance and crushing resistance, high strength galvanized steel plate, and their production |
JPH11189839A (en) * | 1997-12-26 | 1999-07-13 | Nippon Steel Corp | High strength steel sheet having high dynamic deformation resistance and method for producing the same |
JP2001335890A (en) * | 2000-05-30 | 2001-12-04 | Sumitomo Metal Ind Ltd | High strength steel sheet excellent in bendability and method for producing the same |
JP2007246961A (en) * | 2006-03-15 | 2007-09-27 | Jfe Steel Kk | High-strength cold rolled steel sheet having excellent formability, chemical convertibility and corrosion resistance after coating and its production method |
JP2010189738A (en) * | 2009-02-20 | 2010-09-02 | Jfe Steel Corp | High strength hot rolled steel sheet having excellent workability, and method for producing the same |
JP2010285636A (en) * | 2009-06-09 | 2010-12-24 | Kobe Steel Ltd | High-strength cold-rolled steel sheet having elongation, stretch-flange formability and weldability |
JP2011068945A (en) * | 2009-09-25 | 2011-04-07 | Jfe Steel Corp | High strength hot rolled steel sheet, and method for producing the same |
Cited By (45)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011214081A (en) * | 2010-03-31 | 2011-10-27 | Sumitomo Metal Ind Ltd | Cold-rolled steel sheet and method for producing the same |
TWI502078B (en) * | 2011-09-29 | 2015-10-01 | Jfe Steel Corp | Hot rolled steel sheet and method of manufacturing the same |
WO2013046693A1 (en) * | 2011-09-29 | 2013-04-04 | Jfeスチール株式会社 | Hot-rolled steel sheet and method for producing same |
JP2013076116A (en) * | 2011-09-29 | 2013-04-25 | Jfe Steel Corp | Hot-rolled steel sheet and method for producing the same |
US9574254B2 (en) | 2011-09-29 | 2017-02-21 | Jfe Steel Corporation | Hot-rolled steel sheet and method for producing same |
CN103842538A (en) * | 2011-09-29 | 2014-06-04 | 杰富意钢铁株式会社 | Hot-rolled steel sheet and method for producing same |
KR20140068218A (en) * | 2011-09-29 | 2014-06-05 | 제이에프이 스틸 가부시키가이샤 | Hot-rolled steel sheet and manufacturing method thereof |
EP2762584A4 (en) * | 2011-09-29 | 2015-05-27 | Jfe Steel Corp | Hot-rolled steel sheet and method for producing same |
KR101603175B1 (en) * | 2011-09-29 | 2016-03-14 | 제이에프이 스틸 가부시키가이샤 | Hot-rolled steel sheet and method for producing same |
WO2013125399A1 (en) * | 2012-02-22 | 2013-08-29 | 新日鐵住金株式会社 | Cold-rolled steel sheet and manufacturing method for same |
EP2818568A4 (en) * | 2012-02-22 | 2015-11-18 | Nippon Steel & Sumitomo Metal Corp | COLD LAMINATED STEEL SHEET AND METHOD FOR MANUFACTURING THE SAME |
JPWO2013125400A1 (en) * | 2012-02-22 | 2015-07-30 | 新日鐵住金株式会社 | Cold rolled steel sheet and method for producing the same |
KR101609969B1 (en) | 2012-02-22 | 2016-04-06 | 신닛테츠스미킨 카부시키카이샤 | Cold-rolled steel sheet and manufacturing method for same |
US10526671B2 (en) | 2012-02-22 | 2020-01-07 | Nippon Steel Corporation | Cold-rolled steel sheet and process for manufacturing same |
WO2013125400A1 (en) * | 2012-02-22 | 2013-08-29 | 新日鐵住金株式会社 | Cold-rolled steel sheet and manufacturing method for same |
US9580767B2 (en) | 2012-02-22 | 2017-02-28 | Nippon Steel & Sumitomo Metal Corporation | Cold-rolled steel sheet with controlled microstructure, grain diameters, and texture |
US10407749B2 (en) | 2012-02-22 | 2019-09-10 | Nippon Steel Corporation | Process for manufacturing cold-rolled steel sheet |
EP2937433A4 (en) * | 2012-12-18 | 2016-02-17 | Jfe Steel Corp | Low-yield-ratio high-strength cold-rolled steel sheet and method for manufacturing same |
US10144996B2 (en) | 2012-12-18 | 2018-12-04 | Jfe Steel Corporation | High strength cold rolled steel sheet with low yield ratio and method of manufacturing the same |
WO2016136810A1 (en) * | 2015-02-24 | 2016-09-01 | 新日鐵住金株式会社 | Cold-rolled steel sheet and method for manufacturing same |
CN107429369A (en) * | 2015-02-24 | 2017-12-01 | 新日铁住金株式会社 | Cold-rolled steel sheet and its manufacture method |
US10876181B2 (en) | 2015-02-24 | 2020-12-29 | Nippon Steel Corporation | Cold-rolled steel sheet and method of manufacturing same |
JPWO2016136810A1 (en) * | 2015-02-24 | 2017-10-19 | 新日鐵住金株式会社 | Cold-rolled steel sheet and manufacturing method thereof |
CN107429369B (en) * | 2015-02-24 | 2019-04-05 | 新日铁住金株式会社 | Cold-rolled steel sheet and its manufacturing method |
KR101988148B1 (en) | 2015-02-24 | 2019-06-12 | 닛폰세이테츠 가부시키가이샤 | Cold rolled steel sheet and manufacturing method thereof |
KR20170106414A (en) * | 2015-02-24 | 2017-09-20 | 신닛테츠스미킨 카부시키카이샤 | Cold rolled steel sheet and manufacturing method thereof |
WO2018043456A1 (en) * | 2016-08-31 | 2018-03-08 | Jfeスチール株式会社 | High strength cold-rolled steel sheet and method for manufacturing same |
JP6323627B1 (en) * | 2016-08-31 | 2018-05-16 | Jfeスチール株式会社 | High-strength cold-rolled thin steel sheet and manufacturing method thereof |
US11136644B2 (en) | 2016-08-31 | 2021-10-05 | Jfe Steel Corporation | High-strength cold rolled steel sheet and method for producing the same |
JP6414371B1 (en) * | 2018-03-30 | 2018-10-31 | 新日鐵住金株式会社 | Steel sheet and manufacturing method thereof |
JP6418367B1 (en) * | 2018-03-30 | 2018-11-07 | 新日鐵住金株式会社 | Steel sheet and manufacturing method thereof |
WO2019187090A1 (en) * | 2018-03-30 | 2019-10-03 | 日本製鉄株式会社 | Steel sheet and manufacturing method therefor |
WO2019186997A1 (en) * | 2018-03-30 | 2019-10-03 | 日本製鉄株式会社 | Steel sheet and manufacturing method therefor |
CN111902553A (en) * | 2018-03-30 | 2020-11-06 | 日本制铁株式会社 | Steel sheet and method for producing same |
CN111902554A (en) * | 2018-03-30 | 2020-11-06 | 日本制铁株式会社 | Steel plate and method of making the same |
JP6421908B1 (en) * | 2018-03-30 | 2018-11-14 | 新日鐵住金株式会社 | Steel sheet and manufacturing method thereof |
WO2019187060A1 (en) * | 2018-03-30 | 2019-10-03 | 日本製鉄株式会社 | Steel sheet and manufacturing method therefor |
US11680303B2 (en) | 2018-03-30 | 2023-06-20 | Nippon Steel Corporation | Steel sheet and manufacturing method therefor |
CN111902554B (en) * | 2018-03-30 | 2022-03-29 | 日本制铁株式会社 | Steel sheet and method for producing same |
CN111902553B (en) * | 2018-03-30 | 2022-04-01 | 日本制铁株式会社 | Steel sheet and method for producing same |
US11447848B2 (en) | 2018-03-30 | 2022-09-20 | Nippon Steel Corporation | Steel sheet and manufacturing method of therefor |
JP2022501504A (en) * | 2018-09-20 | 2022-01-06 | アルセロールミタル | Cold-rolled coated steel sheet and its manufacturing method |
JP7422143B2 (en) | 2018-09-20 | 2024-01-25 | アルセロールミタル | Cold rolled coated steel sheet and its manufacturing method |
JP2022535255A (en) * | 2019-06-03 | 2022-08-05 | アルセロールミタル | Cold-rolled and coated steel sheet and method for producing same |
CN114555845A (en) * | 2019-10-23 | 2022-05-27 | 杰富意钢铁株式会社 | High-strength steel sheet and method for producing same |
Also Published As
Publication number | Publication date |
---|---|
JP5549238B2 (en) | 2014-07-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5549238B2 (en) | Cold rolled steel sheet and method for producing the same | |
JP6237900B2 (en) | High-strength cold-rolled steel sheet and manufacturing method thereof | |
TWI502081B (en) | Molten galvanized steel sheet and method of manufacturing the same | |
TWI406966B (en) | High tensile strength galvanized steel sheet excellent in workability and method for manufacturing the same | |
CN102341521B (en) | High-strength steel sheet, hot-dipped steel sheet, and alloy hot-dipped steel sheet that have excellent fatigue, elongation, and collision characteristics, and manufacturing method for said steel sheets | |
JP5315956B2 (en) | High-strength hot-dip galvanized steel sheet with excellent formability and method for producing the same | |
JP7087078B2 (en) | High-strength steel sheet with excellent collision characteristics and formability and its manufacturing method | |
JP5488129B2 (en) | Cold rolled steel sheet and method for producing the same | |
JP5290245B2 (en) | Composite structure steel plate and method of manufacturing the same | |
EP3559299A1 (en) | High-strength cold rolled steel sheet having high formability and a method of manufacturing thereof | |
CN107709598A (en) | High strength cold rolled steel plate, high-strength hot-dip galvanized steel sheet and high-strength and high-ductility galvannealed steel sheet | |
CN109680129A (en) | A kind of 500MPa grades of cold rolling micro-alloy high-strength steel and preparation method thereof | |
WO2013160928A1 (en) | High-strength steel sheet and method for manufacturing same | |
JP7117381B2 (en) | Cold-rolled coated steel sheet and its manufacturing method | |
JP2009102715A (en) | High-strength hot-dip galvanized steel sheet superior in workability and impact resistance, and manufacturing method therefor | |
CN115698365B (en) | Heat-treated cold-rolled steel sheet and method for manufacturing same | |
WO2020162562A1 (en) | Hot-dip zinc-coated steel sheet and method for manufacturing same | |
JP2022535254A (en) | Cold-rolled and coated steel sheet and method for producing same | |
JP2013227635A (en) | High strength cold rolled steel sheet, high strength galvanized steel sheet, method for manufacturing high strength cold rolled steel sheet, and method for manufacturing high strength galvanized steel sheet | |
JP6683291B2 (en) | Steel plate and method for manufacturing steel plate | |
JP6683292B2 (en) | Steel plate and method for manufacturing steel plate | |
JP2018003114A (en) | High strength steel sheet and manufacturing method therefor | |
US20210071278A1 (en) | High yield ratio-type high-strength steel sheet and method for manufacturing same | |
JP5678695B2 (en) | High strength steel plate and manufacturing method thereof | |
CN115151673B (en) | Steel sheet, member, and method for producing same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20120126 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20121011 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20121011 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20130719 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130730 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130927 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20131105 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20131225 |
|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20131225 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140225 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140404 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20140422 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20140505 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 5549238 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |