JP2011145233A - Spectroscopic device - Google Patents
Spectroscopic device Download PDFInfo
- Publication number
- JP2011145233A JP2011145233A JP2010007685A JP2010007685A JP2011145233A JP 2011145233 A JP2011145233 A JP 2011145233A JP 2010007685 A JP2010007685 A JP 2010007685A JP 2010007685 A JP2010007685 A JP 2010007685A JP 2011145233 A JP2011145233 A JP 2011145233A
- Authority
- JP
- Japan
- Prior art keywords
- light
- incident
- wavelength
- optical system
- measurement
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000003287 optical effect Effects 0.000 claims abstract description 14
- 239000006185 dispersion Substances 0.000 claims abstract description 13
- 238000001514 detection method Methods 0.000 claims description 5
- 239000011521 glass Substances 0.000 claims description 2
- 239000013307 optical fiber Substances 0.000 claims description 2
- 238000005259 measurement Methods 0.000 abstract description 33
- 230000003595 spectral effect Effects 0.000 abstract 1
- 238000000926 separation method Methods 0.000 description 2
- 102100025490 Slit homolog 1 protein Human genes 0.000 description 1
- 101710123186 Slit homolog 1 protein Proteins 0.000 description 1
- 102100027340 Slit homolog 2 protein Human genes 0.000 description 1
- 101710133576 Slit homolog 2 protein Proteins 0.000 description 1
- 230000001066 destructive effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J3/00—Spectrometry; Spectrophotometry; Monochromators; Measuring colours
- G01J3/28—Investigating the spectrum
- G01J3/2803—Investigating the spectrum using photoelectric array detector
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J3/00—Spectrometry; Spectrophotometry; Monochromators; Measuring colours
- G01J3/02—Details
- G01J3/0205—Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows
- G01J3/0229—Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows using masks, aperture plates, spatial light modulators or spatial filters, e.g. reflective filters
Landscapes
- Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- General Physics & Mathematics (AREA)
- Spectrometry And Color Measurement (AREA)
Abstract
【課題】試料からの測定光のスペクトル分布を、同時に二次元で計測することができる分光装置を提供すること。
【解決手段】格子状に配列された入射ピンホール配列11と、その複数のピンホールから入射された光を波長分散する回折格子13を含む光学系と、その光学系から出射される光を受光する平面受光素子15を備え、かつ前記光学系は入射ピンホール配列11の配列方向である二方向の少なくともいずれかと、回折格子13の波長分散方向および出射光受光用平面受光素子15の画素配列方向とが、平行または直行とならないように角度をもつように配置されている。
【選択図】図2Disclosed is a spectroscopic device capable of simultaneously measuring two-dimensionally the spectral distribution of measurement light from a sample.
An optical system including an incident pinhole array arranged in a grid, a diffraction grating that wavelength-disperses light incident from the plurality of pinholes, and light emitted from the optical system is received. And the optical system includes at least one of the two directions which are the arrangement directions of the incident pinhole array 11, the wavelength dispersion direction of the diffraction grating 13, and the pixel arrangement direction of the planar light receiving element 15 for receiving outgoing light. Are arranged at an angle so as not to be parallel or perpendicular.
[Selection] Figure 2
Description
本発明は分光装置に関するものであり、より具体的には、光検出手段として、CCD等の2次元マルチチャネル光検出素子(アレイ素子という)を用いた分光装置に関する。 The present invention relates to a spectroscopic device, and more specifically to a spectroscopic device using a two-dimensional multi-channel photodetection element (referred to as an array element) such as a CCD as a photodetection means.
よく知られているように、アレイ素子を利用したいわゆるポリクロメーターは、回折格子を回転させる代わりに波長に応じて回折する光を空間的に配列したアレイ素子で検出する分光装置である。 As is well known, a so-called polychromator using an array element is a spectroscopic device that detects light that is diffracted according to a wavelength with an array element spatially arranged instead of rotating a diffraction grating.
図1は、従来から一般的に用いられているポリクロメーターの一例を示す要部構成図である。図において、スリット1から入射した光はコリメーティングミラー2で平行光束に変えられ、分散素子(ここでは回折格子)3に入る。回折格子3を出た光はフォーカッシングミラー4により集束されアレイ素子5上に照射される。この場合、回折格子を一定の角度で固定しておくと、入射光の波長に応じて回折角が変わり、アレイ素子5に当たる光スポットの位置が変化(移動)する。従って、光スポットの位置により、入射光の波長などを知ることができる。基本は前記のように入射光をスリットから導入し、スリットの幅方向に回折素子により波長分離した光を検出素子で受光する。これに対して、入射スリット上、スリット長手方向に測定対象の1次元像が投影されるように光学系を配置し、測定対象の波長分布の1次元空間分布を同時に測定できるよう改良された分光器も存在する。この方法に基づき、測定対象の波長分布の2次元空間分布を測定することは、前記の1次元空間分布測定を別空間軸方向に走査することで実現されている(例えば、非特許文献1参照)。走査は既存の装置では機械的に行われており、製品化されているものでおよそ1秒を要している。 FIG. 1 is a main part configuration diagram showing an example of a polychromator generally used conventionally. In the figure, light incident from the slit 1 is converted into a parallel light beam by a collimating mirror 2 and enters a dispersive element (here, a diffraction grating) 3. The light exiting the diffraction grating 3 is focused by the focusing mirror 4 and irradiated onto the array element 5. In this case, if the diffraction grating is fixed at a constant angle, the diffraction angle changes according to the wavelength of the incident light, and the position of the light spot that hits the array element 5 changes (moves). Therefore, the wavelength of incident light can be known from the position of the light spot. Basically, as described above, incident light is introduced from the slit, and the light separated by the diffraction element in the width direction of the slit is received by the detection element. On the other hand, an optical system is arranged on the entrance slit so that a one-dimensional image of the measurement object is projected in the longitudinal direction of the slit, and the spectrum is improved so that the one-dimensional spatial distribution of the wavelength distribution of the measurement object can be measured simultaneously. There is also a vessel. Based on this method, measuring the two-dimensional spatial distribution of the wavelength distribution of the measurement object is realized by scanning the one-dimensional spatial distribution measurement in the direction of another spatial axis (for example, see Non-Patent Document 1). ). The scanning is mechanically performed in the existing apparatus, and it takes about 1 second because it is commercialized.
しかしながら、上記した装置では、機構上、走査に有限の時間を要するため、測定対象の波長分布の2次元空間分布を同時には測定できず、高速で変動する現象の観察では、最初に走査する部分と最後に走査する部分で測定時刻のずれが生じ、不正確な測定結果を与える。 However, the above-described apparatus requires a finite time for scanning due to the mechanism, and therefore, the two-dimensional spatial distribution of the wavelength distribution of the measurement target cannot be measured simultaneously. In the last scanning part, the measurement time shifts and gives an inaccurate measurement result.
本発明は、上記した背景に鑑みてなされたもので、その目的とするところは、上記した問題を解決し、測定対象からの測定光の波長分布の2次元空間分布を同時に測定することのできる分光装置を提供し、高速変動現象の測定を可能とすることにある。 The present invention has been made in view of the above-described background. The object of the present invention is to solve the above-described problems and simultaneously measure the two-dimensional spatial distribution of the wavelength distribution of the measurement light from the measurement target. A spectroscopic device is provided to enable measurement of high-speed fluctuation phenomena.
上記した目的を達成するために、本発明に係る分光装置では、格子状に配列された複数の入射口と、その複数の入射口から入射された光を波長分散する分散素子を含む光学系と、前記光学系から出射される光を受光する光検出手段とを備え、前記光検出手段は受光面が二次元平面となり、かつ前記光学系は入射口の配列方向である二方向の少なくともいずれかと、分散素子の波長分散方向とが平行または直行とならないように角度をもつように配置し、構成した(請求項1)。前記入射口は、ピンホール、スリット、光ファイバーの出力端、テーパーガラスの出力端のいずれかとすることができる(請求項2)。 In order to achieve the above-described object, in the spectroscopic device according to the present invention, a plurality of incident apertures arranged in a lattice pattern, and an optical system including a dispersion element that wavelength-disperses light incident from the plurality of incident apertures; A light detecting means for receiving light emitted from the optical system, wherein the light detecting means has a light receiving surface in a two-dimensional plane, and the optical system has at least one of two directions which are the arrangement directions of the incident ports. The dispersive element is disposed and configured so as to have an angle so as not to be parallel or perpendicular to the wavelength dispersion direction of the dispersive element (claim 1). The incident port may be any one of a pinhole, a slit, an output end of an optical fiber, and an output end of a tapered glass.
本発明に係る分光装置では、測定対象からの測定光の波長分布の二次元空間分布を同時に測定することができ、高速度時系列測定にも対応可能である。 The spectroscopic device according to the present invention can simultaneously measure the two-dimensional spatial distribution of the wavelength distribution of the measurement light from the measurement target, and can also cope with high-speed time series measurement.
以下、本発明を実施するための最良の形態の実施例について説明する。 Examples of the best mode for carrying out the present invention will be described below.
図2は、本発明に係る分光装置の好適な一実施の形態を示している。同図に示すように、格子状に配列された入射ピンホール配列11面上に測定対象の二次元像が結像するように測定光を導入する。各ピンホールから入射した光はコリメーティングミラー12により平行光束に変えられ、分散素子(ここでは回折格子)13に入る。その波長分散させた光はフォーカッシングミラー14により集束され、二次元光検出素子15の所定位置に結像させるようにしている。ここで、入射ピンホール配列11の配列方向が回折格子の波長分散方向と一致していれば、二次元光検出素子15上の像は、回折格子の波長分散方向に隣接する他点の波長分散像とすぐに重なり、有効な測定ができない。 FIG. 2 shows a preferred embodiment of the spectroscopic device according to the present invention. As shown in the figure, measurement light is introduced so that a two-dimensional image of the measurement object is formed on the surface of the incident pinhole array 11 arranged in a lattice pattern. Light incident from each pinhole is converted into a parallel light beam by the collimating mirror 12 and enters the dispersive element (here, diffraction grating) 13. The wavelength-dispersed light is focused by a focusing mirror 14 and imaged at a predetermined position of the two-dimensional photodetecting element 15. Here, if the arrangement direction of the incident pinhole array 11 coincides with the chromatic dispersion direction of the diffraction grating, the image on the two-dimensional photodetecting element 15 is chromatic dispersion at other points adjacent to the chromatic dispersion direction of the diffraction grating. Immediately overlaps with the image and no effective measurement is possible.
そこで、本発明では、入射ピンホール配列11の配列方向である二方向の少なくともいずれかと、回折格子の波長分散方向とが平行または直行とならないように角度をもつように配置することにより、二次元光検出素子15上の像をたとえば図3のように結像させ、ある測定点からの光を波長分離した光が、隣接する他点からの光を波長分離した光と二次元光検出素子15上で重ならないように受光できるようにし、測定対象からの測定光の波長分布の二次元空間分布を同時に記録することを可能とする。図3中の(1、1)、(2、1)、…、(m、n)は、対応する入射ピンホール配列11のピンホールの行番号m、列番号nである。 Therefore, in the present invention, the two-dimensional arrangement is made by arranging at an angle so that at least one of the two directions which are the arrangement directions of the incident pinhole array 11 and the wavelength dispersion direction of the diffraction grating are not parallel or orthogonal. For example, an image on the light detection element 15 is formed as shown in FIG. 3, and light obtained by wavelength-separating light from a certain measurement point is converted into light obtained by wavelength-separating light from other adjacent points and the two-dimensional light detection element 15. It is possible to receive light so as not to overlap with each other, and to simultaneously record the two-dimensional spatial distribution of the wavelength distribution of the measurement light from the measurement object. In FIG. 3, (1, 1), (2, 1),..., (M, n) are the row number m and the column number n of the pinhole of the corresponding incident pinhole array 11.
入射ピンホール配列11の格子配列の二方向いずれかの軸と回折格子の波長分散方向との傾き角は、入射ピンホール数と二次元光検出素子15の画素数、および各測定点の波長分解能に影響し、測定の要求に応じてさまざまに設定可能である。 The inclination angle between one of the two axes of the grating array of the incident pinhole array 11 and the wavelength dispersion direction of the diffraction grating is the number of incident pinholes, the number of pixels of the two-dimensional photodetecting element 15, and the wavelength resolution of each measurement point. Can be set in various ways according to measurement requirements.
本発明に係る分光装置の二次元光検出素子15に、時系列連続測定が可能な装置(代表的にはCCD等の2次元マルチチャネル光検出素子)を適用することにより、時系列測定も可能となる。本発明に係る分光装置の二次元光検出素子15上には測定光の波長分布の二次元空間分布が1フレームで記録可能なので、そのときの時間分解能は、二次元光検出素子15の最高フレームレートのみに依存する。 By applying a device capable of continuous time series measurement (typically a two-dimensional multi-channel photodetection device such as a CCD) to the two-dimensional light detection element 15 of the spectroscopic device according to the present invention, time series measurement is also possible. It becomes. Since the two-dimensional spatial distribution of the wavelength distribution of the measurement light can be recorded in one frame on the two-dimensional photodetector 15 of the spectroscopic device according to the present invention, the time resolution at that time is the highest frame of the two-dimensional photodetector 15. It depends only on the rate.
前記光学系全体を入射口光軸にそって回転配置することにより、測定点の配列全体の向きは任意に設定できる。また、測定点の二次元配列形態は、入射ピンホール配列11の格子形状により設定され、二次元光検出素子15上で測定光が重ならない範囲で任意に設定ができ、格子形状の柔軟性は高い。 By rotating the entire optical system along the optical axis of the entrance, the orientation of the entire array of measurement points can be set arbitrarily. Further, the two-dimensional arrangement form of the measurement points is set by the lattice shape of the incident pinhole array 11, and can be arbitrarily set within a range where the measurement light does not overlap on the two-dimensional photodetecting element 15, and the flexibility of the lattice shape is high.
本発明によっても、各測定点に対して二次元光検出素子15上に波長分離方向に割り当てられる画素は有限であるため、測定光の波長分布が広い場合は、隣接測定点の光同士が混合して検出されるケースも考えられるが、二次元光検出素子15の検出可能波長範囲が、それぞれの測定点に割り当てられた検出素子画素で記録可能な波長範囲内に収まるように分散素子の特性を設定することや、あらかじめ光学的バンドパスフィルターにより入射光の波長範囲を制限しておくことで対応可能である。 Also according to the present invention, since the number of pixels allocated in the wavelength separation direction on the two-dimensional photodetector 15 for each measurement point is finite, when the wavelength distribution of the measurement light is wide, the lights at adjacent measurement points are mixed. However, the characteristics of the dispersion element are such that the detectable wavelength range of the two-dimensional photodetecting element 15 falls within the wavelength range recordable by the detecting element pixel assigned to each measurement point. Or by limiting the wavelength range of incident light with an optical bandpass filter in advance.
本装置においては、各測定点の間に不感帯(例えば、図2における入射ピンホール配列11のピンホール間の光の不通過領域)が生じるが、これは光ファイバー束やテーパーガラス束等を入射二次元ピンホール配列11の代わり、もしくは入射二次元ピンホール配列11の前に適切に配置することにより対応可能である。なお、分散素子としては、前述の回折格子以外にプリズムも利用可能である。 In this apparatus, a dead zone (for example, a light non-passing region between the pinholes of the incident pinhole array 11 in FIG. 2) is generated between the measurement points. This can be dealt with by appropriately arranging in place of the two-dimensional pinhole array 11 or in front of the incident two-dimensional pinhole array 11. In addition to the above-described diffraction grating, a prism can also be used as the dispersion element.
たとえば、赤外線や紫外線領域において、波長域を分けて色合成変換することにより、目には見えない光の波長分布を画像化できる。また、目には識別できない色調の違いや変化を測定することにより、機械や電子回路、生物組織、食品、構造物、流体、火炎等の非接触・非破壊検査を可能にする。さらに、それらの高速変動現象についても観察可能である。 For example, the wavelength distribution of light that cannot be seen by the eyes can be imaged by dividing and combining the wavelength regions in the infrared and ultraviolet regions. In addition, by measuring color differences and changes that cannot be discerned by the eyes, non-contact and non-destructive inspection of machines, electronic circuits, biological tissues, foods, structures, fluids, flames, etc. is possible. Furthermore, these high-speed fluctuation phenomena can also be observed.
1 スリット
2 コリメーティングミラー
3 分散素子(ここでは回折格子)
4 フォーカッシングミラー
5 2次元マルチチャネル光検出素子
11 ピンホール配列
12 コリメーティングミラー
13 分散素子(ここでは回折格子)
14 フォーカッシングミラー
15 2次元マルチチャネル光検出素子
1 slit 2 collimating mirror 3 dispersive element (here diffraction grating)
4 Focusing mirror 5 Two-dimensional multi-channel photodetector 11 Pinhole arrangement 12 Collimating mirror 13 Dispersion element (here, diffraction grating)
14 Focusing mirror 15 2D multi-channel photodetector
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010007685A JP2011145233A (en) | 2010-01-18 | 2010-01-18 | Spectroscopic device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010007685A JP2011145233A (en) | 2010-01-18 | 2010-01-18 | Spectroscopic device |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2011145233A true JP2011145233A (en) | 2011-07-28 |
Family
ID=44460209
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010007685A Pending JP2011145233A (en) | 2010-01-18 | 2010-01-18 | Spectroscopic device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2011145233A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013061174A (en) * | 2011-09-12 | 2013-04-04 | Ricoh Co Ltd | Spectral characteristic acquisition device and spectral characteristic acquisition method, image evaluation device, and image formation device |
JP2013186023A (en) * | 2012-03-09 | 2013-09-19 | Ricoh Co Ltd | Spectrum measurement device, image evaluation device and image formation device |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02275326A (en) * | 1989-04-17 | 1990-11-09 | Kuraray Co Ltd | spectrometer |
WO2002050783A1 (en) * | 2000-12-21 | 2002-06-27 | Cambridge Consultants Limited | Optical sensor device and method for spectral analysis |
-
2010
- 2010-01-18 JP JP2010007685A patent/JP2011145233A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02275326A (en) * | 1989-04-17 | 1990-11-09 | Kuraray Co Ltd | spectrometer |
WO2002050783A1 (en) * | 2000-12-21 | 2002-06-27 | Cambridge Consultants Limited | Optical sensor device and method for spectral analysis |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013061174A (en) * | 2011-09-12 | 2013-04-04 | Ricoh Co Ltd | Spectral characteristic acquisition device and spectral characteristic acquisition method, image evaluation device, and image formation device |
JP2013186023A (en) * | 2012-03-09 | 2013-09-19 | Ricoh Co Ltd | Spectrum measurement device, image evaluation device and image formation device |
US8964176B2 (en) | 2012-03-09 | 2015-02-24 | Ricoh Company, Ltd. | Spectrometer, and image evaluating unit and image forming device incorporating the same |
EP2637003A3 (en) * | 2012-03-09 | 2015-09-30 | Ricoh Company, Ltd. | Spectrometer, and image evaluating unit and image forming device incorporating the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108873285B (en) | High resolution scanning microscopy | |
EP2685304A1 (en) | Spectroscopic confocal microscope with aperture stop for increased spatial resolution and parallelized data acquisition | |
KR101768050B1 (en) | Spectroscopic instrument and process for spectral analysis | |
US10114204B2 (en) | Apparatus and method for optical beam scanning microscopy | |
Geelen et al. | A snapshot multispectral imager with integrated tiled filters and optical duplication | |
US20140218731A1 (en) | Confocal spectrometer and method for imaging in confocal spectrometer | |
US9232130B2 (en) | Multispectral camera using zero-mode channel | |
JP5563405B2 (en) | Spectral image acquisition apparatus and method | |
US8189191B2 (en) | Spectroscopic imaging microscopy | |
JP6811708B2 (en) | Spectrometer | |
TWI853816B (en) | Device for optically measuring and imaging a measurement object, and method | |
WO2017150062A1 (en) | Spectrometry device | |
JP6428516B2 (en) | Spectral detector | |
JP2018521304A (en) | Synchrotron radiation measuring instrument and synchrotron radiation measurement method | |
US12072290B2 (en) | Hyperspectral imaging with a spatial heterodyne spectrometer | |
JP7638233B2 (en) | Optical spectrum measuring system and optical spectrum measuring method | |
JP5917572B2 (en) | Spectroscopic measurement apparatus and image partial extraction apparatus | |
JP2011145233A (en) | Spectroscopic device | |
KR101101196B1 (en) | Multichannel Spectrometer Connected to Multiple Fibers | |
JP2009244156A (en) | Spectroscopic device and spectral confocal microscope | |
JP5787151B2 (en) | Spectroscopic unit and scanning microscope | |
JP2007093414A (en) | Spectral device | |
JP2012078200A (en) | Spectroscopic measurement apparatus | |
JP6260157B2 (en) | Spectrometer | |
JP2013083460A (en) | Spectroscopic measurement apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20130116 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130318 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20131025 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20140408 |