JP2011136760A - Method for preserving alcoholic beverage - Google Patents
Method for preserving alcoholic beverage Download PDFInfo
- Publication number
- JP2011136760A JP2011136760A JP2010250750A JP2010250750A JP2011136760A JP 2011136760 A JP2011136760 A JP 2011136760A JP 2010250750 A JP2010250750 A JP 2010250750A JP 2010250750 A JP2010250750 A JP 2010250750A JP 2011136760 A JP2011136760 A JP 2011136760A
- Authority
- JP
- Japan
- Prior art keywords
- oxygen
- resin
- absorbing
- polyamide resin
- polyamide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 51
- 235000013334 alcoholic beverage Nutrition 0.000 title claims abstract description 27
- 229920006122 polyamide resin Polymers 0.000 claims abstract description 97
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 92
- 239000001301 oxygen Substances 0.000 claims abstract description 92
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 92
- 229920005989 resin Polymers 0.000 claims abstract description 54
- 239000011347 resin Substances 0.000 claims abstract description 54
- 239000007789 gas Substances 0.000 claims abstract description 38
- 230000004888 barrier function Effects 0.000 claims abstract description 36
- 229910052723 transition metal Inorganic materials 0.000 claims abstract description 34
- 150000003624 transition metals Chemical class 0.000 claims abstract description 33
- 229920005672 polyolefin resin Polymers 0.000 claims abstract description 31
- 125000003277 amino group Chemical group 0.000 claims abstract description 28
- 239000003054 catalyst Substances 0.000 claims abstract description 27
- OFOBLEOULBTSOW-UHFFFAOYSA-N Malonic acid Chemical compound OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 claims abstract description 26
- 150000004984 aromatic diamines Chemical class 0.000 claims abstract description 19
- 229920005992 thermoplastic resin Polymers 0.000 claims abstract description 15
- 238000006068 polycondensation reaction Methods 0.000 claims abstract description 11
- WNLRTRBMVRJNCN-UHFFFAOYSA-N adipic acid Chemical compound OC(=O)CCCCC(O)=O WNLRTRBMVRJNCN-UHFFFAOYSA-N 0.000 claims description 42
- AMFIJXSMYBKJQV-UHFFFAOYSA-L cobalt(2+);octadecanoate Chemical group [Co+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O AMFIJXSMYBKJQV-UHFFFAOYSA-L 0.000 claims description 22
- 239000001361 adipic acid Substances 0.000 claims description 21
- 235000011037 adipic acid Nutrition 0.000 claims description 21
- CXMXRPHRNRROMY-UHFFFAOYSA-N sebacic acid Chemical compound OC(=O)CCCCCCCCC(O)=O CXMXRPHRNRROMY-UHFFFAOYSA-N 0.000 claims description 20
- QQVIHTHCMHWDBS-UHFFFAOYSA-N isophthalic acid Chemical compound OC(=O)C1=CC=CC(C(O)=O)=C1 QQVIHTHCMHWDBS-UHFFFAOYSA-N 0.000 claims description 18
- 239000000203 mixture Substances 0.000 claims description 17
- 238000003860 storage Methods 0.000 claims description 15
- 239000000463 material Substances 0.000 claims description 14
- FDLQZKYLHJJBHD-UHFFFAOYSA-N [3-(aminomethyl)phenyl]methanamine Chemical compound NCC1=CC=CC(CN)=C1 FDLQZKYLHJJBHD-UHFFFAOYSA-N 0.000 claims description 13
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 5
- ISKQADXMHQSTHK-UHFFFAOYSA-N [4-(aminomethyl)phenyl]methanamine Chemical compound NCC1=CC=C(CN)C=C1 ISKQADXMHQSTHK-UHFFFAOYSA-N 0.000 claims description 4
- 238000004321 preservation Methods 0.000 claims description 2
- 239000000796 flavoring agent Substances 0.000 abstract description 15
- 235000019634 flavors Nutrition 0.000 abstract description 14
- 239000000126 substance Substances 0.000 abstract description 3
- 239000010410 layer Substances 0.000 description 80
- 238000006116 polymerization reaction Methods 0.000 description 53
- 239000000123 paper Substances 0.000 description 36
- 239000004952 Polyamide Substances 0.000 description 32
- 229920002647 polyamide Polymers 0.000 description 32
- 238000010521 absorption reaction Methods 0.000 description 28
- -1 polyethylene terephthalate Polymers 0.000 description 24
- 238000002425 crystallisation Methods 0.000 description 23
- 238000002844 melting Methods 0.000 description 23
- 230000008018 melting Effects 0.000 description 23
- 239000007790 solid phase Substances 0.000 description 21
- 230000008025 crystallization Effects 0.000 description 18
- 230000035699 permeability Effects 0.000 description 17
- 239000011342 resin composition Substances 0.000 description 16
- 238000004898 kneading Methods 0.000 description 15
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 12
- 235000020083 shōchū Nutrition 0.000 description 11
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 10
- 230000000052 comparative effect Effects 0.000 description 10
- 238000012360 testing method Methods 0.000 description 10
- 241000209094 Oryza Species 0.000 description 9
- 235000007164 Oryza sativa Nutrition 0.000 description 9
- 238000004519 manufacturing process Methods 0.000 description 9
- 238000004806 packaging method and process Methods 0.000 description 9
- 239000008188 pellet Substances 0.000 description 9
- 235000009566 rice Nutrition 0.000 description 9
- 230000015572 biosynthetic process Effects 0.000 description 8
- 229920000092 linear low density polyethylene Polymers 0.000 description 8
- 239000004707 linear low-density polyethylene Substances 0.000 description 8
- 238000003786 synthesis reaction Methods 0.000 description 8
- 229910052751 metal Inorganic materials 0.000 description 7
- 239000002184 metal Substances 0.000 description 7
- 229920000573 polyethylene Polymers 0.000 description 7
- 230000008569 process Effects 0.000 description 7
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 6
- 229920002292 Nylon 6 Polymers 0.000 description 6
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 6
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 6
- 238000000691 measurement method Methods 0.000 description 6
- 229920001007 Nylon 4 Polymers 0.000 description 5
- 239000004698 Polyethylene Substances 0.000 description 5
- 230000007423 decrease Effects 0.000 description 5
- 229920001684 low density polyethylene Polymers 0.000 description 5
- 239000004702 low-density polyethylene Substances 0.000 description 5
- 230000035484 reaction time Effects 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 4
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 4
- 101000576320 Homo sapiens Max-binding protein MNT Proteins 0.000 description 4
- 239000004594 Masterbatch (MB) Substances 0.000 description 4
- 229920003188 Nylon 3 Polymers 0.000 description 4
- 229920006121 Polyxylylene adipamide Polymers 0.000 description 4
- KKEYFWRCBNTPAC-UHFFFAOYSA-N Terephthalic acid Chemical compound OC(=O)C1=CC=C(C(O)=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-N 0.000 description 4
- 239000002250 absorbent Substances 0.000 description 4
- 230000002745 absorbent Effects 0.000 description 4
- 239000003963 antioxidant agent Substances 0.000 description 4
- 230000005540 biological transmission Effects 0.000 description 4
- 230000006866 deterioration Effects 0.000 description 4
- POULHZVOKOAJMA-UHFFFAOYSA-N dodecanoic acid Chemical compound CCCCCCCCCCCC(O)=O POULHZVOKOAJMA-UHFFFAOYSA-N 0.000 description 4
- 239000011521 glass Substances 0.000 description 4
- 238000002347 injection Methods 0.000 description 4
- 239000007924 injection Substances 0.000 description 4
- 229920000642 polymer Polymers 0.000 description 4
- 239000003381 stabilizer Substances 0.000 description 4
- 230000001954 sterilising effect Effects 0.000 description 4
- 238000004659 sterilization and disinfection Methods 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- WFDIJRYMOXRFFG-UHFFFAOYSA-N Acetic anhydride Chemical compound CC(=O)OC(C)=O WFDIJRYMOXRFFG-UHFFFAOYSA-N 0.000 description 3
- 239000004743 Polypropylene Substances 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 239000006096 absorbing agent Substances 0.000 description 3
- 229920001400 block copolymer Polymers 0.000 description 3
- 229910017052 cobalt Inorganic materials 0.000 description 3
- 239000010941 cobalt Substances 0.000 description 3
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 3
- 230000003247 decreasing effect Effects 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 229920001903 high density polyethylene Polymers 0.000 description 3
- 239000004700 high-density polyethylene Substances 0.000 description 3
- 230000001771 impaired effect Effects 0.000 description 3
- 229910052742 iron Inorganic materials 0.000 description 3
- 239000002655 kraft paper Substances 0.000 description 3
- 229920000139 polyethylene terephthalate Polymers 0.000 description 3
- 239000005020 polyethylene terephthalate Substances 0.000 description 3
- 229920001155 polypropylene Polymers 0.000 description 3
- 229920001384 propylene homopolymer Polymers 0.000 description 3
- 229920005604 random copolymer Polymers 0.000 description 3
- 150000003839 salts Chemical class 0.000 description 3
- 238000007789 sealing Methods 0.000 description 3
- 239000000377 silicon dioxide Substances 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 229920001187 thermosetting polymer Polymers 0.000 description 3
- 229920002799 BoPET Polymers 0.000 description 2
- FERIUCNNQQJTOY-UHFFFAOYSA-N Butyric acid Chemical compound CCCC(O)=O FERIUCNNQQJTOY-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- LGRFSURHDFAFJT-UHFFFAOYSA-N Phthalic anhydride Natural products C1=CC=C2C(=O)OC(=O)C2=C1 LGRFSURHDFAFJT-UHFFFAOYSA-N 0.000 description 2
- 239000004793 Polystyrene Substances 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 230000003078 antioxidant effect Effects 0.000 description 2
- 239000002216 antistatic agent Substances 0.000 description 2
- QMKYBPDZANOJGF-UHFFFAOYSA-N benzene-1,3,5-tricarboxylic acid Chemical compound OC(=O)C1=CC(C(O)=O)=CC(C(O)=O)=C1 QMKYBPDZANOJGF-UHFFFAOYSA-N 0.000 description 2
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid Chemical compound OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 2
- JHIWVOJDXOSYLW-UHFFFAOYSA-N butyl 2,2-difluorocyclopropane-1-carboxylate Chemical compound CCCCOC(=O)C1CC1(F)F JHIWVOJDXOSYLW-UHFFFAOYSA-N 0.000 description 2
- 229910000019 calcium carbonate Inorganic materials 0.000 description 2
- 239000004927 clay Substances 0.000 description 2
- 229910052570 clay Inorganic materials 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000007334 copolymerization reaction Methods 0.000 description 2
- 238000003851 corona treatment Methods 0.000 description 2
- 238000006392 deoxygenation reaction Methods 0.000 description 2
- 150000004985 diamines Chemical class 0.000 description 2
- XBDQKXXYIPTUBI-UHFFFAOYSA-N dimethylselenoniopropionate Natural products CCC(O)=O XBDQKXXYIPTUBI-UHFFFAOYSA-N 0.000 description 2
- 125000003700 epoxy group Chemical group 0.000 description 2
- 229920006242 ethylene acrylic acid copolymer Polymers 0.000 description 2
- 229920005648 ethylene methacrylic acid copolymer Polymers 0.000 description 2
- 239000005038 ethylene vinyl acetate Substances 0.000 description 2
- 229920006244 ethylene-ethyl acrylate Polymers 0.000 description 2
- 229920006225 ethylene-methyl acrylate Polymers 0.000 description 2
- 229920005680 ethylene-methyl methacrylate copolymer Polymers 0.000 description 2
- 238000001125 extrusion Methods 0.000 description 2
- 239000000945 filler Substances 0.000 description 2
- 239000011888 foil Substances 0.000 description 2
- 235000013305 food Nutrition 0.000 description 2
- 125000002485 formyl group Chemical class [H]C(*)=O 0.000 description 2
- 239000005001 laminate film Substances 0.000 description 2
- 238000003475 lamination Methods 0.000 description 2
- 229920005679 linear ultra low density polyethylene Polymers 0.000 description 2
- 229920001179 medium density polyethylene Polymers 0.000 description 2
- 239000004701 medium-density polyethylene Substances 0.000 description 2
- 239000000155 melt Substances 0.000 description 2
- 239000012968 metallocene catalyst Substances 0.000 description 2
- 239000010445 mica Substances 0.000 description 2
- 229910052618 mica group Inorganic materials 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- BDJRBEYXGGNYIS-UHFFFAOYSA-N nonanedioic acid Chemical compound OC(=O)CCCCCCCC(O)=O BDJRBEYXGGNYIS-UHFFFAOYSA-N 0.000 description 2
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 2
- WWZKQHOCKIZLMA-UHFFFAOYSA-N octanoic acid Chemical compound CCCCCCCC(O)=O WWZKQHOCKIZLMA-UHFFFAOYSA-N 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 239000005022 packaging material Substances 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- 239000011574 phosphorus Substances 0.000 description 2
- XNGIFLGASWRNHJ-UHFFFAOYSA-N phthalic acid Chemical compound OC(=O)C1=CC=CC=C1C(O)=O XNGIFLGASWRNHJ-UHFFFAOYSA-N 0.000 description 2
- 239000000049 pigment Substances 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 description 2
- 229920000306 polymethylpentene Polymers 0.000 description 2
- 239000011116 polymethylpentene Substances 0.000 description 2
- 229920002223 polystyrene Polymers 0.000 description 2
- 239000011241 protective layer Substances 0.000 description 2
- 235000019992 sake Nutrition 0.000 description 2
- 239000012748 slip agent Substances 0.000 description 2
- 229920002725 thermoplastic elastomer Polymers 0.000 description 2
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 2
- 238000004448 titration Methods 0.000 description 2
- 239000002699 waste material Substances 0.000 description 2
- 235000014101 wine Nutrition 0.000 description 2
- 125000006839 xylylene group Chemical group 0.000 description 2
- GGAUUQHSCNMCAU-ZXZARUISSA-N (2s,3r)-butane-1,2,3,4-tetracarboxylic acid Chemical compound OC(=O)C[C@H](C(O)=O)[C@H](C(O)=O)CC(O)=O GGAUUQHSCNMCAU-ZXZARUISSA-N 0.000 description 1
- NOGFHTGYPKWWRX-UHFFFAOYSA-N 2,2,6,6-tetramethyloxan-4-one Chemical compound CC1(C)CC(=O)CC(C)(C)O1 NOGFHTGYPKWWRX-UHFFFAOYSA-N 0.000 description 1
- AYKYXWQEBUNJCN-UHFFFAOYSA-N 3-methylfuran-2,5-dione Chemical compound CC1=CC(=O)OC1=O AYKYXWQEBUNJCN-UHFFFAOYSA-N 0.000 description 1
- OFNISBHGPNMTMS-UHFFFAOYSA-N 3-methylideneoxolane-2,5-dione Chemical compound C=C1CC(=O)OC1=O OFNISBHGPNMTMS-UHFFFAOYSA-N 0.000 description 1
- 239000005711 Benzoic acid Substances 0.000 description 1
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- 229920000219 Ethylene vinyl alcohol Polymers 0.000 description 1
- 239000005639 Lauric acid Substances 0.000 description 1
- 229920002302 Nylon 6,6 Polymers 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- 229920001328 Polyvinylidene chloride Polymers 0.000 description 1
- 235000021355 Stearic acid Nutrition 0.000 description 1
- KDYFGRWQOYBRFD-UHFFFAOYSA-N Succinic acid Natural products OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000012790 adhesive layer Substances 0.000 description 1
- OBETXYAYXDNJHR-UHFFFAOYSA-N alpha-ethylcaproic acid Natural products CCCCC(CC)C(O)=O OBETXYAYXDNJHR-UHFFFAOYSA-N 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 235000020054 awamori Nutrition 0.000 description 1
- 235000013405 beer Nutrition 0.000 description 1
- 235000010233 benzoic acid Nutrition 0.000 description 1
- 235000013361 beverage Nutrition 0.000 description 1
- 235000013532 brandy Nutrition 0.000 description 1
- KDYFGRWQOYBRFD-NUQCWPJISA-N butanedioic acid Chemical compound O[14C](=O)CC[14C](O)=O KDYFGRWQOYBRFD-NUQCWPJISA-N 0.000 description 1
- 239000001110 calcium chloride Substances 0.000 description 1
- 229910001628 calcium chloride Inorganic materials 0.000 description 1
- 150000001244 carboxylic acid anhydrides Chemical class 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 150000001805 chlorine compounds Chemical class 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000004040 coloring Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000012792 core layer Substances 0.000 description 1
- QSAWQNUELGIYBC-UHFFFAOYSA-N cyclohexane-1,2-dicarboxylic acid Chemical compound OC(=O)C1CCCCC1C(O)=O QSAWQNUELGIYBC-UHFFFAOYSA-N 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- ZJIPHXXDPROMEF-UHFFFAOYSA-N dihydroxyphosphanyl dihydrogen phosphite Chemical class OP(O)OP(O)O ZJIPHXXDPROMEF-UHFFFAOYSA-N 0.000 description 1
- 235000013399 edible fruits Nutrition 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- ANSXAPJVJOKRDJ-UHFFFAOYSA-N furo[3,4-f][2]benzofuran-1,3,5,7-tetrone Chemical compound C1=C2C(=O)OC(=O)C2=CC2=C1C(=O)OC2=O ANSXAPJVJOKRDJ-UHFFFAOYSA-N 0.000 description 1
- 235000013531 gin Nutrition 0.000 description 1
- 230000009477 glass transition Effects 0.000 description 1
- VANNPISTIUFMLH-UHFFFAOYSA-N glutaric anhydride Chemical compound O=C1CCCC(=O)O1 VANNPISTIUFMLH-UHFFFAOYSA-N 0.000 description 1
- LSACYLWPPQLVSM-UHFFFAOYSA-N isobutyric acid anhydride Chemical compound CC(C)C(=O)OC(=O)C(C)C LSACYLWPPQLVSM-UHFFFAOYSA-N 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 239000012939 laminating adhesive Substances 0.000 description 1
- 235000020094 liqueur Nutrition 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical compound O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 150000002823 nitrates Chemical class 0.000 description 1
- ZWLPBLYKEWSWPD-UHFFFAOYSA-N o-toluic acid Chemical compound CC1=CC=CC=C1C(O)=O ZWLPBLYKEWSWPD-UHFFFAOYSA-N 0.000 description 1
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 235000020075 ouzo Nutrition 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000010525 oxidative degradation reaction Methods 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 238000012536 packaging technology Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- WVDDGKGOMKODPV-ZQBYOMGUSA-N phenyl(114C)methanol Chemical compound O[14CH2]C1=CC=CC=C1 WVDDGKGOMKODPV-ZQBYOMGUSA-N 0.000 description 1
- 235000021317 phosphate Nutrition 0.000 description 1
- ACVYVLVWPXVTIT-UHFFFAOYSA-N phosphinic acid Chemical class O[PH2]=O ACVYVLVWPXVTIT-UHFFFAOYSA-N 0.000 description 1
- AQSJGOWTSHOLKH-UHFFFAOYSA-N phosphite(3-) Chemical class [O-]P([O-])[O-] AQSJGOWTSHOLKH-UHFFFAOYSA-N 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- 150000003018 phosphorus compounds Chemical class 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920001225 polyester resin Polymers 0.000 description 1
- 239000004645 polyester resin Substances 0.000 description 1
- 239000005033 polyvinylidene chloride Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 235000019260 propionic acid Nutrition 0.000 description 1
- IUVKMZGDUIUOCP-BTNSXGMBSA-N quinbolone Chemical compound O([C@H]1CC[C@H]2[C@H]3[C@@H]([C@]4(C=CC(=O)C=C4CC3)C)CC[C@@]21C)C1=CCCC1 IUVKMZGDUIUOCP-BTNSXGMBSA-N 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000002000 scavenging effect Effects 0.000 description 1
- 238000001374 small-angle light scattering Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000008117 stearic acid Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 235000013529 tequila Nutrition 0.000 description 1
- 229920001169 thermoplastic Polymers 0.000 description 1
- 239000004416 thermosoftening plastic Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- SRPWOOOHEPICQU-UHFFFAOYSA-N trimellitic anhydride Chemical compound OC(=O)C1=CC=C2C(=O)OC(=O)C2=C1 SRPWOOOHEPICQU-UHFFFAOYSA-N 0.000 description 1
- 238000007666 vacuum forming Methods 0.000 description 1
- 235000013522 vodka Nutrition 0.000 description 1
- 235000015041 whisky Nutrition 0.000 description 1
Landscapes
- Packages (AREA)
- Wrappers (AREA)
Abstract
Description
本発明は、密封されたアルコール飲料の風味劣化を防止して、アルコール飲料を長期にわたって保存する方法に関する。 The present invention relates to a method for preserving an alcoholic beverage for a long period of time by preventing flavor deterioration of the sealed alcoholic beverage.
日本酒、ワイン、焼酎等のアルコール飲料を、金属缶やガラス瓶に充填し、保存する技術があるが、金属缶やガラス瓶は不燃性廃棄物処理の問題や包装容器の軽量化への要請から、ガスバリア性紙容器等のプラスチック容器への移管が行われている。また、金属缶では、金属成分が内容物中に溶け出す問題もある。 There is technology to fill and store alcoholic beverages such as sake, wine and shochu in metal cans and glass bottles, but metal cans and glass bottles are gas barriers due to the problem of incombustible waste disposal and the demand for lighter packaging containers. Transfer to plastic containers such as plastic paper containers has been carried out. Moreover, in a metal can, there also exists a problem which a metal component melt | dissolves in the contents.
しかし、通常のガスバリア性フィルムを積層したガスバリア性多層体でアルコール飲料を保存した場合、いかにガス置換操作を行っても、包装容器内に残存する微量酸素、またはアルコール飲料に溶存する微量酸素により、アルコール飲料の風味劣化が生じることは避けがたい。 However, when an alcoholic beverage is stored in a gas barrier multilayer body in which ordinary gas barrier films are laminated, no matter how the gas replacement operation is performed, trace oxygen remaining in the packaging container, or trace oxygen dissolved in the alcohol beverage, It is inevitable that flavor deterioration of alcoholic beverages occurs.
一方、食品の保存性向上や風味変化を防止する方法として、脱酸素包装技術が知られている。近年、脱酸素包装技術の一つとして、熱可塑性樹脂に鉄系脱酸素剤等を配合した酸素吸収樹脂組成物からなる酸素吸収層を配した多層材料で容器を構成し、容器のガスバリア性の向上を図ると共に、容器自体に酸素吸収機能を付与した包装容器の開発が行われている。例えば、酸素吸収性多層フィルムは、ヒートシール層及びガスバリア層が積層してなる従来のガスバリア性多層フィルムの間に、場合により熱可塑性樹脂からなる中間層を介して酸素吸収剤を分散した熱可塑性樹脂層である酸素吸収層を加え、外部からの酸素透過を防ぐ機能に容器内の酸素を吸収する機能を付与したものとして利用され、押し出しラミネートや共押し出しラミネート、ドライラミネート等の従来公知の製造方法を利用して製造されている(特許文献1参照)。 On the other hand, a deoxygenation packaging technique is known as a method for improving food storage stability and preventing flavor changes. In recent years, as one of the deoxygenation packaging technologies, a container is constituted by a multilayer material in which an oxygen absorption layer composed of an oxygen absorption resin composition in which an iron-based oxygen absorber is blended with a thermoplastic resin, and the gas barrier property of the container is increased. Development of a packaging container in which an oxygen absorbing function is imparted to the container itself is being promoted. For example, an oxygen-absorbing multilayer film is a thermoplastic in which an oxygen absorbent is dispersed between a conventional gas-barrier multilayer film in which a heat seal layer and a gas barrier layer are laminated, and optionally through an intermediate layer made of a thermoplastic resin. It is used as a resin layer with an oxygen absorption layer added to the outside to prevent oxygen permeation, and to absorb oxygen in the container. It is manufactured using a method (see Patent Document 1).
しかしながら、鉄粉等の酸素吸収剤を用いるものは、食品等の異物検知に使用される金属探知機に検知される、不透明性の問題により内部視認性が不足する、内容物をアルコール飲料とした場合に鉄とアルコールとの反応によりアルデヒドが発生し、異臭が発生するといった課題を有していた。 However, those using oxygen absorbers such as iron powder are detected by metal detectors used to detect foreign substances such as food, the internal visibility is insufficient due to the problem of opacity, the contents are alcoholic beverages In some cases, an aldehyde is generated by the reaction between iron and alcohol, which causes a problem that a bad odor is generated.
また、ポリマーからなり、酸素捕捉特性を有する組成物では、酸化可能有機成分としてポリアミド、特にキシリレン基含有ポリアミドと遷移金属からなる樹脂組成物が知られており、酸素捕捉機能を有する樹脂組成物やその樹脂組成物を成形して得られる酸素吸収剤、包装材料、包装用多層積層フィルムの例示もある(特許文献2〜6参照)。 In addition, in a composition comprising a polymer and having an oxygen scavenging property, a resin composition comprising a polyamide, particularly a xylylene group-containing polyamide and a transition metal, is known as an oxidizable organic component. There are also examples of oxygen absorbers obtained by molding the resin composition, packaging materials, and multilayer laminated films for packaging (see Patent Documents 2 to 6).
しかしながら、遷移金属触媒を含有させ、ポリアミド樹脂等を酸化させ酸素吸収機能を発現させる樹脂組成物は、キシリレン基含有ポリアミド樹脂が酸化するため、樹脂の酸化劣化による強度低下が発生し、包装容器そのものの強度が低下するという問題を有している。 However, a resin composition containing a transition metal catalyst and oxidizing a polyamide resin or the like to develop an oxygen absorbing function oxidizes the xylylene group-containing polyamide resin, resulting in a decrease in strength due to oxidative degradation of the resin, and the packaging container itself There is a problem that the strength of the glass is reduced.
さらに、ポリアミド樹脂と遷移金属触媒にて酸化反応を示すものとして、メタキシリレンジアミンとアジピン酸との重縮合によって得られるポリアミドであるMXD6の例示があるが、MXD6に遷移金属を混合した系では、酸素吸収樹脂組成物として使用し、被保存物を良好に保存するには、酸素吸収能力が低い場合があった。また、MXD6に遷移金属を混合した系は、通常、ポリエチレンテレフタレート(以下、PETと表記する)等のポリエステル樹脂やナイロン6等の比較的高融点の樹脂とのブレンドが使用されていた。 Furthermore, there is an example of MXD6, which is a polyamide obtained by polycondensation of metaxylylenediamine and adipic acid, as an example showing an oxidation reaction with a polyamide resin and a transition metal catalyst. In a system in which transition metal is mixed with MXD6, For use as an oxygen-absorbing resin composition and preserving the material to be stored well, the oxygen-absorbing ability may be low. In addition, a system in which transition metal is mixed with MXD6 usually uses a blend of a polyester resin such as polyethylene terephthalate (hereinafter referred to as PET) or a resin having a relatively high melting point such as nylon 6.
本発明の目的は、アルコール飲料の風味を損なわず、アルコール飲料を長期間保存できる方法を提供することにある。 An object of the present invention is to provide a method capable of storing an alcoholic beverage for a long period of time without impairing the flavor of the alcoholic beverage.
すなわち本発明は、アルコール飲料を、内側から順に、熱可塑性樹脂からなる酸素透過層、ポリオレフィン樹脂、遷移金属触媒、およびポリアミド樹脂を含有する酸素吸収樹脂層、並びにガスバリア性物質からなるガスバリア層の少なくとも3層が積層されてなる酸素吸収多層体を全部または一部に使用した酸素吸収性容器内に保存するアルコール飲料の保存方法であって、該ポリアミド樹脂が、芳香族ジアミンとジカルボン酸との重縮合によって得られる末端アミノ基濃度が30μeq/g以下のポリアミド樹脂であり、且つ酸素吸収樹脂層中の該遷移金属触媒と該ポリアミド樹脂の合計含有量が酸素吸収樹脂層の総量に対して15〜60重量%であるアルコール飲料の保存方法である。 That is, the present invention comprises an alcohol beverage, in order from the inside, an oxygen permeable layer made of a thermoplastic resin, an oxygen absorbing resin layer containing a polyolefin resin, a transition metal catalyst, and a polyamide resin, and a gas barrier layer made of a gas barrier material. A method for preserving an alcoholic beverage, which is stored in an oxygen-absorbing container using all or part of an oxygen-absorbing multilayer body formed by laminating three layers, wherein the polyamide resin is composed of an aromatic diamine and a dicarboxylic acid. A terminal amino group concentration obtained by condensation is a polyamide resin having a concentration of 30 μeq / g or less, and the total content of the transition metal catalyst and the polyamide resin in the oxygen-absorbing resin layer is 15 to This is a method for storing an alcoholic beverage that is 60% by weight.
本発明により、アルコール飲料の風味を損なわず、異臭の発生のない、アルコール飲料を長期間保存できる方法を提供できる。しかも、金属缶やガラス瓶から代替えして、容器の軽量化、廃棄物・不燃物の削減を可能とする。また、長期間保存後も、包装容器は強度を保持している。 INDUSTRIAL APPLICABILITY According to the present invention, it is possible to provide a method capable of storing an alcoholic beverage for a long period of time without impairing the flavor of the alcoholic beverage and generating no off-flavor. In addition, it can replace metal cans and glass bottles, making it possible to reduce the weight of containers and reduce waste and incombustibles. In addition, the packaging container retains strength even after long-term storage.
本発明のアルコール飲料とは、カクテル類などの低アルコール飲料、蒸留酒(ウイスキー、ラム、カシャッサ、ウォッカ、ジン、テキーラ、ブランデー、ラク、アラック、ウーゾ、白酒、焼酎、泡盛)、醸造酒(ビール、果実酒、紹興酒、日本酒)、混成酒(リキュール)、およびこれらを含む飲料が例示される。 The alcoholic beverage of the present invention is a low alcoholic beverage such as a cocktail, distilled liquor (whiskey, rum, cachassa, vodka, gin, tequila, brandy, lac, alac, ouzo, white liquor, shochu, awamori), brewed liquor (beer , Fruit liquor, Shaoxing liquor, Japanese sake), mixed liquor (liqueur), and beverages containing these.
本発明のアルコール飲料の保存方法に用いられる酸素吸収多層体は、酸素透過層、酸素吸収樹脂層、ガスバリア層の少なくとも3層がこの順に積層してなり、酸素吸収樹脂層に、芳香族ジアミンとジカルボン酸との重縮合によって得られる末端アミノ基濃度が30μeq/g以下のポリアミド樹脂(以下、当該ポリアミド樹脂を特に「ポリアミド樹脂A」と称する)と遷移金属触媒とポリオレフィン樹脂とを含有する、酸素吸収多層体である。また、本発明の酸素吸収多層体は、酸素透過層を内側として、容器の本体や蓋、包装材料の全部または一部を構成する用途にも使用できる。酸素吸収多層体について、以下、詳細を説明する。 The oxygen-absorbing multilayer body used in the method for storing an alcoholic beverage according to the present invention comprises an oxygen-permeable layer, an oxygen-absorbing resin layer, and a gas barrier layer laminated in this order, and an oxygen-absorbing resin layer and an aromatic diamine. An oxygen containing a polyamide resin having a terminal amino group concentration of 30 μeq / g or less obtained by polycondensation with a dicarboxylic acid (hereinafter, the polyamide resin is particularly referred to as “polyamide resin A”), a transition metal catalyst, and a polyolefin resin. Absorption multilayer body. The oxygen-absorbing multilayer body of the present invention can also be used for applications that constitute all or part of the container body, lid, and packaging material with the oxygen-permeable layer inside. Details of the oxygen-absorbing multilayer body will be described below.
本発明の酸素吸収多層体の酸素透過層に用いる熱可塑性樹脂とは、高密度ポリエチレン、中密度ポリエチレン、低密度ポリエチレン、直鎖状低密度ポリエチレン、超低密度ポリエチレン、メタロセン触媒によるポリエチレン等の各種ポリエチレン類、ポリスチレン、ポリメチルペンテン、プロピレンホモポリマー、プロピレン−エチレンブロック共重合体、プロピレン−エチレンランダム共重合体等のポリプロピレン類を、単独で、または組み合わせて使用することができる。これらポリオレフィン樹脂には、必要に応じて、エチレン−酢酸ビニル共重合体、エチレン−アクリル酸メチル共重合体、エチレン−アクリル酸エチル共重合体、エチレン−アクリル酸共重合体、エチレン−メタクリル酸共重合体、エチレン−メタクリル酸メチル共重合体、熱可塑性エラストマーを添加してもよい。熱可塑性樹脂のメルトフローレート(以下、MFRと表記する)は、多層体の加工性を考慮すると、200℃で、1〜35g/10分、240℃で、2〜45g/10分のものが好ましく用いられる。なお、本明細書でいうMFRは、特に断りがない限り、JIS K7210に準拠した装置を用いて、特定の温度において、荷重2160gの条件下で測定した当該樹脂のMFRであり、「g/10分」の単位で測定温度と共に表記される。 The thermoplastic resin used in the oxygen permeable layer of the oxygen-absorbing multilayer body of the present invention includes various materials such as high-density polyethylene, medium-density polyethylene, low-density polyethylene, linear low-density polyethylene, ultra-low-density polyethylene, and polyethylene using a metallocene catalyst. Polypropylenes such as polyethylene, polystyrene, polymethylpentene, propylene homopolymer, propylene-ethylene block copolymer, propylene-ethylene random copolymer can be used alone or in combination. These polyolefin resins include ethylene-vinyl acetate copolymer, ethylene-methyl acrylate copolymer, ethylene-ethyl acrylate copolymer, ethylene-acrylic acid copolymer, ethylene-methacrylic acid copolymer, if necessary. A polymer, an ethylene-methyl methacrylate copolymer, or a thermoplastic elastomer may be added. The melt flow rate (hereinafter referred to as MFR) of the thermoplastic resin is 1 to 35 g / 10 min at 200 ° C. and 2 to 45 g / 10 min at 240 ° C., considering the processability of the multilayer body. Preferably used. In addition, MFR as used in this specification is MFR of the said resin measured on the conditions of the load of 2160g in specific temperature using the apparatus based on JISK7210, unless there is particular notice, "g / 10. Expressed with the measured temperature in units of minutes.
また、本発明の酸素吸収多層体の酸素透過層に用いる熱可塑性樹脂には、酸化チタン等の着色顔料、酸化防止剤、スリップ剤、帯電防止剤、安定剤、滑剤等の添加剤、炭酸カルシウム、クレー、マイカ、シリカ等の充填剤、消臭剤等を添加しても良い。特に、製造中に発生した端材をリサイクルし、再加工するためには、酸化防止剤を添加することが好ましい。 The thermoplastic resin used in the oxygen permeable layer of the oxygen-absorbing multilayer body of the present invention includes color pigments such as titanium oxide, antioxidants, slip agents, antistatic agents, stabilizers, additives such as lubricants, calcium carbonate Further, fillers such as clay, mica and silica, deodorizers and the like may be added. In particular, it is preferable to add an antioxidant in order to recycle and reprocess offcuts generated during production.
本発明において、酸素吸収樹脂層に使用されるポリオレフィン樹脂とは、高密度ポリエチレン、中密度ポリエチレン、低密度ポリエチレン、直鎖状低密度ポリエチレン、超低密度ポリエチレン、メタロセン触媒によるポリエチレン等の各種ポリエチレン類、ポリスチレン、ポリメチルペンテン、プロピレンホモポリマー、プロピレン−エチレンブロック共重合体、プロピレン−エチレンランダム共重合体等のポリプロピレン類を、単独で、または組み合わせて使用することができる。これらポリオレフィン樹脂には、必要に応じて、エチレン−酢酸ビニル共重合体、エチレン−アクリル酸メチル共重合体、エチレン−アクリル酸エチル共重合体、エチレン−アクリル酸共重合体、エチレン−メタクリル酸共重合体、エチレン−メタクリル酸メチル共重合体、熱可塑性エラストマーを添加してもよい。酸素吸収樹脂層のポリオレフィン樹脂は、樹脂の加工性、酸素透過層との密着性を考慮すると、酸素透過層のポリオレフィン樹脂と同種のものが、好ましく用いられる。ポリオレフィン樹脂のMFRは、フィルムの加工性を考慮すると、200℃で、1〜35g/10分、240℃で、2〜45g/10分のものが好ましく用いられる。酸素吸収性能の観点では、酸素透過係数が80〜200cc・mm/(m2・日・atm)(23℃・60%RH)が好ましく、この範囲の酸素透過係数を有するポリオレフィン樹脂を使用すると、良好な酸素吸収性能が得られる。 In the present invention, the polyolefin resin used in the oxygen-absorbing resin layer includes various polyethylenes such as high-density polyethylene, medium-density polyethylene, low-density polyethylene, linear low-density polyethylene, ultra-low-density polyethylene, and polyethylene using a metallocene catalyst. Polypropylenes such as polystyrene, polymethylpentene, propylene homopolymer, propylene-ethylene block copolymer, propylene-ethylene random copolymer can be used alone or in combination. These polyolefin resins include ethylene-vinyl acetate copolymer, ethylene-methyl acrylate copolymer, ethylene-ethyl acrylate copolymer, ethylene-acrylic acid copolymer, ethylene-methacrylic acid copolymer, if necessary. A polymer, an ethylene-methyl methacrylate copolymer, or a thermoplastic elastomer may be added. The polyolefin resin of the oxygen-absorbing resin layer is preferably the same type as the polyolefin resin of the oxygen-permeable layer in view of the processability of the resin and the adhesion with the oxygen-permeable layer. The MFR of the polyolefin resin is preferably 1 to 35 g / 10 minutes at 200 ° C. and 2 to 45 g / 10 minutes at 240 ° C. in consideration of film processability. In terms of oxygen absorption performance, the oxygen permeability coefficient is preferably 80 to 200 cc · mm / (m 2 · day · atm) (23 ° C. · 60% RH), and when a polyolefin resin having an oxygen permeability coefficient in this range is used, Good oxygen absorption performance can be obtained.
また、ポリアミド樹脂Aとの混合性を考慮すると、酸素吸収樹脂層に対して無水マレイン酸変性ポリオレフィン樹脂、またはエポキシ基含有変性ポリオレフィン樹脂を添加することが特に好ましい。無水マレイン酸変性ポリオレフィン樹脂、またはエポキシ基含有変性ポリオレフィン樹脂の添加量は、ポリオレフィン樹脂に対し、1〜30wt%が好ましく、3〜20wt%が特に好ましい。 In consideration of miscibility with the polyamide resin A, it is particularly preferable to add a maleic anhydride-modified polyolefin resin or an epoxy group-containing modified polyolefin resin to the oxygen-absorbing resin layer. The addition amount of the maleic anhydride-modified polyolefin resin or the epoxy group-containing modified polyolefin resin is preferably 1 to 30 wt%, particularly preferably 3 to 20 wt% with respect to the polyolefin resin.
また、本発明の酸素吸収多層体の酸素吸収樹脂層に使用されるポリオレフィン樹脂には、酸化チタン等の着色顔料、酸化防止剤、スリップ剤、帯電防止剤、安定剤等の添加剤、炭酸カルシウム、クレー、マイカ、シリカ等の充填剤、消臭剤等を添加しても良い。特に、製造中に発生した端材をリサイクルし、再加工するためには、酸化防止剤を添加することが好ましい。 The polyolefin resin used in the oxygen-absorbing resin layer of the oxygen-absorbing multilayer body of the present invention includes coloring pigments such as titanium oxide, additives such as antioxidants, slip agents, antistatic agents and stabilizers, calcium carbonate Further, fillers such as clay, mica and silica, deodorizers and the like may be added. In particular, it is preferable to add an antioxidant in order to recycle and reprocess offcuts generated during production.
本発明において使用される遷移金属触媒としては、第一遷移元素、例えばFe、Mn、Co、Cu、の化合物が挙げられる。また、遷移金属の有機酸塩、塩化物、燐酸塩、亜燐酸塩、次亜燐酸塩、硝酸塩などの単独、または、それらの混合物等も遷移金属触媒の一例として挙げられる。有機酸としては、例えば、酢酸、プロピオン酸、オクタノイック酸、ラウリン酸、ステアリン酸などC2〜C22の脂肪族アルキル酸の塩、あるいは、マロン酸、コハク酸、アジピン酸、セバシン酸、ヘキサハイドロフタル酸、など2塩基酸の塩、ブタンテトラカルボン酸の塩、安息香酸、トルイック酸、o−フタル酸、イソフタル酸、テレフタル酸、トリメシン酸など芳香族カルボン酸塩の単独、または、混合物が挙げられる。遷移金属触媒の中でも、Coの有機酸塩が酸素吸収性の観点から、好ましく、安全性や加工性からステアリン酸Coが特に好ましい。 Examples of the transition metal catalyst used in the present invention include compounds of a first transition element such as Fe, Mn, Co, and Cu. Further, transition metal organic acid salts, chlorides, phosphates, phosphites, hypophosphites, nitrates and the like alone or a mixture thereof can be cited as examples of transition metal catalysts. Examples of the organic acid include salts of C2-C22 aliphatic alkyl acids such as acetic acid, propionic acid, octanoic acid, lauric acid, stearic acid, or malonic acid, succinic acid, adipic acid, sebacic acid, hexahydrophthalic acid A salt of a dibasic acid, a salt of butanetetracarboxylic acid, benzoic acid, toluic acid, o-phthalic acid, isophthalic acid, terephthalic acid, trimesic acid alone or a mixture thereof. Among the transition metal catalysts, an organic acid salt of Co is preferable from the viewpoint of oxygen absorption, and Co stearate is particularly preferable from the viewpoint of safety and workability.
遷移金属触媒はポリアミド樹脂Aに添加し、その後、ポリオレフィン樹脂と混合することが好ましい。また、遷移金属触媒は、ポリアミド樹脂Aに対する該触媒中の全遷移金属の濃度が、10ppm〜5000ppm、好ましくは50ppm〜3000ppmとなるように添加することが好ましい。この場合、添加量が上記の範囲を外れる場合と比較して、ポリアミド樹脂Aの酸素吸収性能を高めることができるとともに、粘度の低下による樹脂加工性の悪化を防止することができる。 The transition metal catalyst is preferably added to the polyamide resin A and then mixed with the polyolefin resin. The transition metal catalyst is preferably added so that the concentration of all transition metals in the catalyst with respect to the polyamide resin A is 10 ppm to 5000 ppm, preferably 50 ppm to 3000 ppm. In this case, compared with the case where the addition amount is out of the above range, the oxygen absorption performance of the polyamide resin A can be improved, and the deterioration of the resin processability due to the decrease in the viscosity can be prevented.
本発明の酸素吸収樹脂組成物を製造する別の方法としては、ポリオレフィン樹脂及び遷移金属触媒を含むマスターバッチと、ポリアミド樹脂とを溶融混練する酸素吸収樹脂組成物の製造方法が好ましく挙げられる。
遷移金属触媒はポリオレフィン樹脂に混練し、マスターバッチを製造し、その後、ポリアミド樹脂Aと溶融混合し、酸素吸収樹脂組成物とする。遷移金属触媒は、ポリオレフィン樹脂に対する該触媒中の全遷移金属の濃度が、好ましくは200ppm〜5000ppm、より好ましくは300ppm〜3000ppmとなるように添加する。この場合、添加量が上記の範囲を外れる場合と比較して、ポリアミド樹脂Aの酸素吸収性能を高めることができる。また、5000ppmを超える場合、マスターバッチを製造することが困難となる場合があったり、均一な性状を有するものを製造できなくなる場合がある。もし、遷移金属触媒をポリアミド樹脂Aに添加した場合には、ポリアミド樹脂Aの粘度低下による樹脂加工性の悪化が生じる。
Another method for producing the oxygen-absorbing resin composition of the present invention is preferably a method for producing an oxygen-absorbing resin composition in which a masterbatch containing a polyolefin resin and a transition metal catalyst and a polyamide resin are melt-kneaded.
The transition metal catalyst is kneaded with the polyolefin resin to produce a master batch, and then melt mixed with the polyamide resin A to obtain an oxygen-absorbing resin composition. The transition metal catalyst is added so that the concentration of all transition metals in the catalyst with respect to the polyolefin resin is preferably 200 ppm to 5000 ppm, more preferably 300 ppm to 3000 ppm. In this case, the oxygen absorption performance of the polyamide resin A can be enhanced as compared with the case where the addition amount is out of the above range. Moreover, when it exceeds 5000 ppm, it may become difficult to manufacture a masterbatch, and it may become impossible to manufacture what has a uniform property. If a transition metal catalyst is added to the polyamide resin A, the resin processability is deteriorated due to a decrease in the viscosity of the polyamide resin A.
酸素吸収樹脂層のポリアミド樹脂Aは、少なくとも、芳香族ジアミンとジカルボン酸との重縮合によって得られる末端アミノ基濃度が30μeq/g以下のポリアミド樹脂である。ポリアミド樹脂Aについて、詳細を説明する。 The polyamide resin A of the oxygen-absorbing resin layer is at least a polyamide resin having a terminal amino group concentration of 30 μeq / g or less obtained by polycondensation of aromatic diamine and dicarboxylic acid. Details of the polyamide resin A will be described.
酸素吸収樹脂層の酸素吸収性能は、酸素吸収能を有する遷移金属を添加したポリアミド樹脂が多い方が良好と考えられるが、驚くべきことに、ポリアミド樹脂A、遷移金属及びポリオレフィン樹脂を混合し、一定の比率でブレンドした際に高い酸素吸収能力を示すことを見出した。 The oxygen absorption performance of the oxygen absorbing resin layer is considered to be better when there are more polyamide resins to which a transition metal having oxygen absorbing ability is added, but surprisingly, the polyamide resin A, the transition metal and the polyolefin resin are mixed, It has been found that when blended at a certain ratio, it exhibits a high oxygen absorption capacity.
本発明におけるポリアミド樹脂Aは、芳香族ジアミンとジカルボン酸との重縮合で得られる。芳香族ジアミンとジカルボン酸との重縮合は、芳香族ジアミンとジカルボン酸を溶融させる溶融重合や、ポリアミド樹脂のペレットなどを減圧下、加熱する固相重合などにより重合を進行させることができる。 The polyamide resin A in the present invention is obtained by polycondensation of an aromatic diamine and a dicarboxylic acid. The polycondensation of the aromatic diamine and the dicarboxylic acid can be carried out by melt polymerization in which the aromatic diamine and dicarboxylic acid are melted, solid phase polymerization in which the polyamide resin pellets are heated under reduced pressure, or the like.
ポリアミド樹脂Aを得る際の芳香族ジアミンとしては、オルソキシリレンジアミン、パラキシリレンジアミン、メタキシリレンジアミンが挙げられるが、酸素吸収性能の観点からパラキシリレンジアミン、メタキシリレンジアミン又はこれらの混合物が好ましく用いられ、メタキシリレンジアミンが特に好ましく用いられる。また、性能に影響しない範囲で、各種脂肪族ジアミンや芳香族ジアミンを共重合成分として組み込んでもよい。 Examples of the aromatic diamine in obtaining the polyamide resin A include orthoxylylenediamine, paraxylylenediamine, and metaxylylenediamine, but paraxylylenediamine, metaxylylenediamine, or these from the viewpoint of oxygen absorption performance. A mixture is preferably used, and metaxylylenediamine is particularly preferably used. In addition, various aliphatic diamines and aromatic diamines may be incorporated as copolymerization components as long as the performance is not affected.
ポリアミド樹脂Aを得る際のジカルボン酸としては、アジピン酸、アゼライン酸、セバシン酸、ドデカンニ酸、イソフタル酸、テレフタル酸、マロン酸等が挙げられる。これらの中でも、酸素吸収性能の観点から、アジピン酸、セバシン酸、イソフタル酸又はこれらの混合物が好ましく、アジピン酸とセバシン酸の混合物又はアジピン酸とイソフタル酸の混合物が特に好ましい。アジピン酸とセバシン酸の混合物を用いる場合のモル比は、セバシン酸:アジピン酸=0.3〜0.7:0.7〜0.3が好ましく、0.4〜0.6:0.6〜0.4が特に好ましい。また、アジピン酸とイソフタル酸の混合物を用いる場合のアジピン酸:イソフタル酸=0.7〜0.97:0.3〜0.03が好ましく、0.8〜0.95:0.2〜0.05が特に好ましい。なお、性能に影響しない程度で、各種脂肪族ジカルボン酸や芳香族ジカルボン酸を共重合成分として組み込んでもよい。 Examples of the dicarboxylic acid for obtaining the polyamide resin A include adipic acid, azelaic acid, sebacic acid, dodecanoic acid, isophthalic acid, terephthalic acid, and malonic acid. Among these, from the viewpoint of oxygen absorption performance, adipic acid, sebacic acid, isophthalic acid or a mixture thereof is preferable, and a mixture of adipic acid and sebacic acid or a mixture of adipic acid and isophthalic acid is particularly preferable. The molar ratio in the case of using a mixture of adipic acid and sebacic acid is preferably sebacic acid: adipic acid = 0.3-0.7: 0.7-0.3, and 0.4-0.6: 0.6 -0.4 is particularly preferred. Further, when using a mixture of adipic acid and isophthalic acid, adipic acid: isophthalic acid is preferably 0.7 to 0.97: 0.3 to 0.03, and 0.8 to 0.95: 0.2 to 0 .05 is particularly preferred. In addition, various aliphatic dicarboxylic acids and aromatic dicarboxylic acids may be incorporated as copolymerization components as long as the performance is not affected.
本発明におけるポリアミド樹脂Aとは、少なくとも芳香族ジアミンとジカルボン酸との重縮合によって得られる末端アミノ基濃度が30μeq/g以下のポリアミド樹脂であるが、末端アミノ基濃度が25μeq/g以下であると酸素吸収性能が向上するため好ましく、20μeq/g以下であると酸素吸収性能がさらに向上するため、より好ましい。このように酸素吸収性能は、末端アミノ基濃度の低下に伴って向上する傾向があり、出来るだけ当該濃度を低下させることが好ましいが、経済合理性を考慮するとその下限値は5μeq/g以上とすることが好ましい。なお、末端アミノ基濃度が30μeq/gより高いと、良好な酸素吸収性能を得ることができない。 The polyamide resin A in the present invention is a polyamide resin having a terminal amino group concentration of 30 μeq / g or less obtained by polycondensation of at least an aromatic diamine and a dicarboxylic acid, but has a terminal amino group concentration of 25 μeq / g or less. And oxygen absorption performance are improved, and it is more preferably 20 μeq / g or less because oxygen absorption performance is further improved. Thus, the oxygen absorption performance tends to improve as the terminal amino group concentration decreases, and it is preferable to reduce the concentration as much as possible. However, in consideration of economic rationality, the lower limit is 5 μeq / g or more. It is preferable to do. If the terminal amino group concentration is higher than 30 μeq / g, good oxygen absorption performance cannot be obtained.
ポリアミド樹脂の末端アミノ基濃度を30μeq/g以下にするためには、
1)芳香族ジアミンとジカルボン酸のモル比を調整して重縮合を実施する方法
2)ポリアミド樹脂をカルボン酸と反応させて末端アミノ基を封止する方法
3)ポリアミド樹脂を固相重合する方法
等の方法を実施することが好ましく、これらの方法は、単独で若しくは組み合わせて実施することができる。特に、1)と3)、2)と3)の方法を組み合わせて実施すると、酸素吸収性能や多層体作製時の成形性がより優れたポリアミド樹脂が得られるため、好ましい。以下、これらの方法について説明する
In order to reduce the terminal amino group concentration of the polyamide resin to 30 μeq / g or less,
1) Method for carrying out polycondensation by adjusting the molar ratio of aromatic diamine and dicarboxylic acid 2) Method for reacting polyamide resin with carboxylic acid to seal the terminal amino group 3) Method for solid-phase polymerization of polyamide resin These methods are preferably carried out, and these methods can be carried out alone or in combination. In particular, the combination of the methods 1), 3), 2) and 3) is preferable because a polyamide resin having better oxygen absorption performance and moldability at the time of producing a multilayer body can be obtained. The following describes these methods.
1)芳香族ジアミンとジカルボン酸のモル比を調整して重縮合を実施する方法においては、ジカルボン酸を芳香族ジアミンに対して過剰に用いることとし、具体的には、芳香族ジアミンとジカルボン酸のモル比(芳香族ジアミン/ジカルボン酸)を0.985〜0.997とすることが好ましく、特に0.988〜0.995とすることが好ましい。該モル比が0.985を下回ると、ポリアミド樹脂の重合度が上昇しづらくなるため、好ましくない。 1) In the method of carrying out polycondensation by adjusting the molar ratio of aromatic diamine and dicarboxylic acid, dicarboxylic acid is used excessively with respect to aromatic diamine. Specifically, aromatic diamine and dicarboxylic acid are used. The molar ratio (aromatic diamine / dicarboxylic acid) is preferably 0.985 to 0.997, particularly preferably 0.988 to 0.995. When the molar ratio is less than 0.985, it is difficult to increase the degree of polymerization of the polyamide resin.
2)ポリアミド樹脂をカルボン酸と反応させて末端アミノ基を封止する方法においては、ポリアミド樹脂の末端アミノ基とカルボン酸を反応させて、末端アミノ基濃度を調整する。用いるカルボン酸には特に制限がないが、カルボン酸無水物が好ましく、具体的には無水フタル酸、無水マレイン酸、無水安息香酸、無水グルタル酸、無水イタコン酸、無水シトラコン酸、無水酢酸、無水酪酸、無水イソ酪酸、無水トリメリット酸、無水ピロメリット酸、などが例示できる。また、ポリアミド樹脂とカルボン酸は、例えば、溶融重合時に添加する方法や、溶融重合によって得られたポリアミド樹脂に対してカルボン酸を添加後、溶融混練する方法によって反応させることが出来、ポリアミド樹脂の重合度を上げるためには溶融混練が好ましい。 2) In the method of reacting the polyamide resin with carboxylic acid to seal the terminal amino group, the terminal amino group concentration of the polyamide resin is reacted with the carboxylic acid to adjust the terminal amino group concentration. The carboxylic acid to be used is not particularly limited, but a carboxylic anhydride is preferable, and specifically, phthalic anhydride, maleic anhydride, benzoic anhydride, glutaric anhydride, itaconic anhydride, citraconic anhydride, acetic anhydride, anhydrous Examples include butyric acid, isobutyric anhydride, trimellitic anhydride, pyromellitic anhydride, and the like. The polyamide resin and the carboxylic acid can be reacted by, for example, a method of adding at the time of melt polymerization or a method of adding a carboxylic acid to the polyamide resin obtained by melt polymerization and then melt-kneading the polyamide resin. In order to increase the degree of polymerization, melt kneading is preferred.
3)ポリアミド樹脂を固相重合する方法においては、溶融重合によって得られたポリアミド樹脂をさらに固相重合反応に供することによって、末端アミノ基濃度を調整する。固相重合はポリアミド樹脂のペレットを減圧下、加熱することによって進行する。固相重合時の圧力は、100torr以下とすることが好ましく、30torr以下とすることがより好ましい。また、固相重合時の温度は、130℃以上必要で、150℃以上がより好ましく、且つポリアミド樹脂の融点より10℃以上低くすることが好ましく、15℃以上低くすることがより好ましい。固相重合時間は、3時間以上とすることが好ましい。固相重合を実施することによって、ポリアミド樹脂の末端アミノ基濃度が低下する他、分子量が上昇し、また、粘度を調整することができる。 3) In the method of solid-phase polymerization of polyamide resin, the terminal amino group concentration is adjusted by further subjecting the polyamide resin obtained by melt polymerization to a solid-phase polymerization reaction. Solid phase polymerization proceeds by heating polyamide resin pellets under reduced pressure. The pressure during the solid phase polymerization is preferably 100 torr or less, and more preferably 30 torr or less. Further, the temperature at the time of solid phase polymerization needs to be 130 ° C. or higher, more preferably 150 ° C. or higher, and preferably 10 ° C. or higher, more preferably 15 ° C. or lower than the melting point of the polyamide resin. The solid state polymerization time is preferably 3 hours or more. By performing solid phase polymerization, the terminal amino group concentration of the polyamide resin is decreased, the molecular weight is increased, and the viscosity can be adjusted.
本発明のポリアミド樹脂Aには、結晶性の低いものが好ましく用いられる。具体的には、半結晶化時間が150秒以上の結晶性の低いものや、DSCでの融点測定時に融点ピークが見られないものが好ましい。ポリアミド樹脂Aの半結晶化時間が150秒以上であると、より高い酸素吸収性能が得られる。 As the polyamide resin A of the present invention, those having low crystallinity are preferably used. Specifically, those having a low crystallinity with a half-crystallization time of 150 seconds or more, or those having no melting point peak when the melting point is measured by DSC are preferable. When the half crystallization time of the polyamide resin A is 150 seconds or more, higher oxygen absorption performance can be obtained.
また、ポリアミド樹脂Aは、ポリオレフィン樹脂との加工性や酸素吸収性能を考慮すると、融点やガラス転移温度(以下、Tgと表記する)が低いものが好ましく用いられる。ポリアミド樹脂Aの融点は、200℃以下が好ましく、さらに190℃以下または融点を持たないものが特に好ましい。Tgは、90℃以下が好ましく、80℃以下が特に好ましい。 Further, the polyamide resin A preferably has a low melting point and glass transition temperature (hereinafter referred to as Tg) in consideration of processability and oxygen absorption performance with a polyolefin resin. The melting point of the polyamide resin A is preferably 200 ° C. or lower, more preferably 190 ° C. or lower or a resin having no melting point. Tg is preferably 90 ° C. or lower, and particularly preferably 80 ° C. or lower.
ポリアミド樹脂Aの酸素透過係数は、0.2〜1.5cc・mm/(m2・日・atm)(23℃・60%RH)が好ましく、0.3〜1.0cc・mm/(m2・日・atm)(23℃・60%RH)がより好ましい。酸素透過係数が0.2〜1.5cc・mm/(m2・日・atm)(23℃・60%RH)であると、ポリアミド樹脂Aとポリオレフィン樹脂をブレンドした際により高い酸素吸収性能が得られる。 The oxygen permeability coefficient of the polyamide resin A is preferably 0.2 to 1.5 cc · mm / (m 2 · day · atm) (23 ° C. · 60% RH), and 0.3 to 1.0 cc · mm / (m 2 · day · atm) (23 ° C. · 60% RH) is more preferable. When the oxygen permeability coefficient is 0.2 to 1.5 cc · mm / (m 2 · day · atm) (23 ° C. · 60% RH), when the polyamide resin A and the polyolefin resin are blended, higher oxygen absorption performance is obtained. can get.
ポリアミド樹脂Aとポリオレフィン樹脂を混合した際、加工性を考慮すると、ポリアミド樹脂AのMFRは、200℃で、3〜20g/10分、240℃で、4〜25g/10分のものが好ましく用いられる。この場合、ポリオレフィン樹脂のMFRとポリアミド樹脂AのMFRの差が±20g/10分、好ましくは±10g/10分を示す温度にて、樹脂加工すると、混練状態が良好となり、フィルム、シートとした場合、外観に問題のない加工品を得ることができる。ポリアミド樹脂AのMFRは、例えば分子量を調節して調整できる。分子量を調節する方法としては、重合進行剤としてリン系化合物を添加する方法や、ポリアミド樹脂Aを溶融重合後、固相重合する方法が、好適な方法として例示できる。 When polyamide resin A and polyolefin resin are mixed, considering the processability, the MFR of polyamide resin A is preferably 3 to 20 g / 10 min at 200 ° C. and 4 to 25 g / 10 min at 240 ° C. It is done. In this case, when the resin is processed at a temperature where the difference between the MFR of the polyolefin resin and the MFR of the polyamide resin A is ± 20 g / 10 minutes, preferably ± 10 g / 10 minutes, the kneaded state becomes good, and a film or sheet is obtained. In this case, a processed product having no problem in appearance can be obtained. The MFR of the polyamide resin A can be adjusted by adjusting the molecular weight, for example. Examples of a method for adjusting the molecular weight include a method of adding a phosphorus compound as a polymerization accelerator and a method of solid-phase polymerization after melt polymerization of the polyamide resin A.
芳香族ジアミンとジカルボン酸との重縮合で得られたポリアミド樹脂Aは、溶融重合の後、固相重合の2段階を経る方法で合成することが好ましい。ポリアミド樹脂Aの数平均分子量は18000〜27000が好ましく、20000〜26000が特に好ましい。 The polyamide resin A obtained by polycondensation of an aromatic diamine and a dicarboxylic acid is preferably synthesized by a method that undergoes two steps of solid phase polymerization after melt polymerization. The number average molecular weight of the polyamide resin A is preferably 18000 to 27000, particularly preferably 20000 to 26000.
本発明で得られたポリアミド樹脂Aに安定化剤等を適宜添加してもよい。特に、リン化合物は、安定化剤として好ましく用いられ、具体的には、ジ亜リン酸塩が好ましい。リン化合物は、ポリアミド樹脂Aが安定し、酸素吸収性能に影響するため、200ppm以下が好ましく、特に、100ppm以下が好ましい。 You may add a stabilizer etc. to the polyamide resin A obtained by this invention suitably. In particular, phosphorus compounds are preferably used as stabilizers, and specifically, diphosphites are preferable. The phosphorus compound is preferably not more than 200 ppm, particularly preferably not more than 100 ppm because the polyamide resin A is stable and affects the oxygen absorption performance.
酸素吸収樹脂層中の遷移金属触媒とポリアミド樹脂Aの合計含有量は、15〜60重量%であり、17〜60重量%が好ましく、20〜60重量%が更に好ましく、25〜50重量%が特に好ましい。酸素吸収樹脂組成物中の遷移金属触媒を含んだポリアミド樹脂Aの含有量が、15重量%より下回ったり、60重量%を超えた場合は、酸素吸収能力が低くなる。また、60重量%を超えると、ポリアミド樹脂Aの酸化による樹脂劣化が生じ、強度低下等の問題が発生する。 The total content of the transition metal catalyst and the polyamide resin A in the oxygen absorbing resin layer is 15 to 60% by weight, preferably 17 to 60% by weight, more preferably 20 to 60% by weight, and 25 to 50% by weight. Particularly preferred. When the content of the polyamide resin A containing the transition metal catalyst in the oxygen-absorbing resin composition is less than 15% by weight or exceeds 60% by weight, the oxygen-absorbing ability is lowered. On the other hand, if it exceeds 60% by weight, resin degradation due to oxidation of the polyamide resin A occurs, causing problems such as strength reduction.
本発明のマスターバッチとポリアミド樹脂Aを溶融混練する際に、ポリオレフィン樹脂を同時に加えることで、ポリアミド樹脂Aの含有量及び遷移金属濃度を調整することもできる。 When the master batch of the present invention and the polyamide resin A are melt-kneaded, the content of the polyamide resin A and the transition metal concentration can be adjusted by simultaneously adding the polyolefin resin.
本発明のガスバリア層に用いるガスバリア性物質としては、ガスバリア性熱可塑性樹脂や、ガスバリア性熱硬化性樹脂、シリカ、アルミナ、アルミ等の各種蒸着フィルム、アルミ箔等の金属箔を用いることが出来る。ガスバリア性熱可塑性樹脂としては、例えばエチレン−ビニルアルコール共重合体、MXD6、ポリ塩化ビニリデン等が例示できる。また、ガスバリア性熱硬化性樹脂としては、ガスバリア性エポキシ樹脂、例えば、三菱ガス化学(株)製「マクシーブ」等が例示できる。 As the gas barrier material used in the gas barrier layer of the present invention, a gas barrier thermoplastic resin, a gas barrier thermosetting resin, various deposited films such as silica, alumina, and aluminum, and a metal foil such as an aluminum foil can be used. Examples of the gas barrier thermoplastic resin include ethylene-vinyl alcohol copolymer, MXD6, and polyvinylidene chloride. Examples of the gas barrier thermosetting resin include a gas barrier epoxy resin such as “MAXIVE” manufactured by Mitsubishi Gas Chemical Co., Ltd.
酸素吸収樹脂層の厚みは、特に制限はないが、5〜200μmが好ましく、10〜100μmが特に好ましい。この場合、厚みが上記範囲を外れる場合に比べて、酸素吸収樹脂層が酸素を吸収する性能をより高めることができるとともに加工性や経済性が損なわれることを防止することができる。また、酸素透過層の厚みは、酸素透過層が酸素吸収樹脂層との隔離層となるため、少ない方が好ましいが、特に、5〜200μmが好ましく、10〜80μmが特に好ましい。この場合、厚みが上記範囲を外れる場合に比べて、酸素吸収樹脂層の酸素を吸収する速度をより高めることができるとともに加工性が損なわれることを防止することができる。 Although there is no restriction | limiting in particular in the thickness of an oxygen absorption resin layer, 5-200 micrometers is preferable and 10-100 micrometers is especially preferable. In this case, as compared with the case where the thickness is out of the above range, the oxygen absorbing resin layer can further improve the performance of absorbing oxygen and can prevent the workability and the economy from being impaired. Further, the thickness of the oxygen permeable layer is preferably less because the oxygen permeable layer becomes an isolation layer from the oxygen absorbing resin layer, but is preferably 5 to 200 μm, particularly preferably 10 to 80 μm. In this case, as compared with the case where the thickness is out of the above range, the oxygen absorption rate of the oxygen-absorbing resin layer can be further increased, and the workability can be prevented from being impaired.
ガスバリア性樹脂として、熱可塑性樹脂をガスバリア層に用いる際の厚みは、5〜200μmが好ましく、10〜100μmが特に好ましい。また、ガスバリア性樹脂として、アミン−エポキシ硬化剤のような熱硬化性樹脂をガスバリア性接着剤層に使用する場合は、0.1〜100μmが好ましく、0.5〜20μmが特に好ましい。厚みが上記範囲内である場合、これを外れる場合に比べて、ガスバリア性をより高めることができるとともに加工性や経済性が損なわれることを防止することができる。 As the gas barrier resin, the thickness when the thermoplastic resin is used for the gas barrier layer is preferably 5 to 200 μm, particularly preferably 10 to 100 μm. Further, when a thermosetting resin such as an amine-epoxy curing agent is used for the gas barrier adhesive layer as the gas barrier resin, 0.1 to 100 μm is preferable, and 0.5 to 20 μm is particularly preferable. When the thickness is within the above range, the gas barrier property can be further improved and the workability and economy can be prevented from being impaired as compared with the case where the thickness is not within the above range.
酸素吸収多層体の加工性を考慮すると、酸素透過層と酸素吸収樹脂層の厚み比が、1:0.5〜1:3にあることが好ましく、1:1.5〜1:2.5が特に好ましい。さらにまた、加工性を考慮すると、ガスバリア層と酸素吸収樹脂層との層間に、ポリオレフィン樹脂からなる中間層を介在することが好ましい。この中間層の厚みは、加工性から、酸素透過層の厚みとほぼ同一とすることが好ましい。この場合、加工によるバラツキを考慮すると、厚み比が±10%以内であれば、同一とする。 Considering the workability of the oxygen-absorbing multilayer body, the thickness ratio of the oxygen-permeable layer and the oxygen-absorbing resin layer is preferably 1: 0.5 to 1: 3, and 1: 1.5 to 1: 2.5. Is particularly preferred. Furthermore, in consideration of processability, it is preferable to interpose an intermediate layer made of polyolefin resin between the gas barrier layer and the oxygen-absorbing resin layer. The thickness of the intermediate layer is preferably substantially the same as the thickness of the oxygen permeable layer in view of workability. In this case, considering variations due to processing, the thickness is the same if the thickness ratio is within ± 10%.
本発明の酸素吸収多層体は、熱可塑性樹脂からなる酸素透過層、少なくともポリオレフィン樹脂、遷移金属触媒及びポリアミド樹脂Aを含有する酸素吸収樹脂層、並びにガスバリア性物質からなるガスバリア層の少なくとも3層がこの順に積層してなるが、その他の層を付加することは差し支えない。 The oxygen-absorbing multilayer body of the present invention has at least three layers: an oxygen-permeable layer made of a thermoplastic resin, an oxygen-absorbing resin layer containing at least a polyolefin resin, a transition metal catalyst and a polyamide resin A, and a gas barrier layer made of a gas barrier material. Although they are laminated in this order, other layers may be added.
例えば、ガスバリア層の破損やピンホールを防ぐために、ガスバリア層の内側や外側に熱可塑性樹脂からなる保護層を設けることが好ましい。保護層に用いる樹脂としては、例えば、高密度ポリエチレン等のポリエチレン類、プロピレンホモポリマー、プロピレン−エチレンランダム共重合体、プロピレン−エチレンブロック共重合体等のポリプロピレン類、ナイロン6、ナイロン6,6等のポリアミド類、さらに、PET等のポリエステル類及びこれらの組合せが挙げられる。 For example, in order to prevent damage to the gas barrier layer and pinholes, it is preferable to provide a protective layer made of a thermoplastic resin inside and outside the gas barrier layer. Examples of the resin used for the protective layer include polyethylenes such as high density polyethylene, polypropylenes such as propylene homopolymer, propylene-ethylene random copolymer, propylene-ethylene block copolymer, nylon 6, nylon 6,6 and the like. Polyamides, polyesters such as PET, and combinations thereof.
酸素吸収多層体の製造方法については、各種材料の性状、加工目的、加工工程等に応じて、共押出法、各種ラミネート法、各種コーティング法などの公知の方法を利用することができる。例えば、フィルムやシートの成形については、Tダイ、サーキュラーダイ等を通して溶融させた樹脂組成物を付属した押出機から押し出して製造する方法や、酸素吸収フィルムもしくはシートに接着剤を塗布し、他のフィルムやシートと貼り合わせることで製造する方法がある。また、射出機を用い、溶融した樹脂を、多層多重ダイスを通して射出金型中に共射出または逐次射出することによって所定の形状の多層容器に一挙に成形することができる。 About the manufacturing method of an oxygen absorption multilayer body, well-known methods, such as a co-extrusion method, various lamination methods, and various coating methods, can be utilized according to the property of various materials, the process objective, a process process, etc. For example, for film or sheet molding, a resin composition melted through a T die, a circular die, or the like is extruded from an attached extruder, or an oxygen absorbing film or sheet is coated with an adhesive. There is a method of manufacturing by bonding to a film or sheet. In addition, by using an injection machine, molten resin can be molded into a multilayer container having a predetermined shape by co-injection or sequential injection into an injection mold through a multilayer multiple die.
本発明の酸素吸収多層体は、フィルムとして作製し、袋状、蓋材に加工して用いることができる。また、ガスバリア層の外層に紙基材を積層して、酸素吸収性紙容器として用いることもできる。紙基材と積層して紙容器とした時の加工性を考慮すると、ガスバリア層の内側部が60μm以下とすることが好ましく、50μm以下が特に好ましい。ガスバリア層より内部の厚みが大きくなると、紙基材を積層し、容器形状に成形する際、容器への加工性に問題が生じる。 The oxygen-absorbing multilayer body of the present invention can be prepared as a film, processed into a bag shape and a lid material, and used. Moreover, a paper base material can be laminated | stacked on the outer layer of a gas barrier layer, and it can also be used as an oxygen absorptive paper container. In consideration of processability when laminated with a paper base material to obtain a paper container, the inner portion of the gas barrier layer is preferably 60 μm or less, particularly preferably 50 μm or less. When the internal thickness is larger than that of the gas barrier layer, a problem arises in processability to a container when a paper base material is laminated and formed into a container shape.
また、本発明の酸素吸収多層体は、シートとして作製し、真空成形、圧空成形、プラグアシスト成形等の成形方法によりトレイ、カップ、ボトル、チューブ等の所定の形状の酸素吸収性容器に熱成形することができる。また、得られた酸素吸収性容器は、80〜100℃のボイル殺菌処理、100〜135℃のセミレトルト殺菌処理、レトルト殺菌処理、ハイレトルト殺菌処理を行うことができる。 Further, the oxygen-absorbing multilayer body of the present invention is produced as a sheet and thermoformed into an oxygen-absorbing container having a predetermined shape such as a tray, a cup, a bottle, or a tube by a forming method such as vacuum forming, pressure forming, or plug assist forming. can do. Moreover, the obtained oxygen absorptive container can perform 80-100 degreeC boil sterilization process, 100-135 degreeC semi-retort sterilization process, a retort sterilization process, and a high retort sterilization process.
アルコール飲料は、内側から順に、熱可塑性樹脂からなる酸素透過層、ポリアミド樹脂Aと遷移金属触媒とポリオレフィン樹脂とを含有する酸素吸収樹脂層及びガスバリア性物質からなるガスバリア層の少なくとも3層が積層されてなる酸素吸収多層体を全部または一部に使用してなる酸素吸収性容器内に密封し、これを保存する。これにより、容器外からわずかに侵入する酸素の他、容器内の酸素を吸収して、酸素による容器内収納物の変質等を防止することができる。また、透明性を有する部材を使用することで、包装容器を開封することなく、内容物の確認が可能となり、取り扱い性の良い包装容器となる。 Alcohol drinks are laminated in order from the inside, at least three layers: an oxygen permeable layer made of a thermoplastic resin, an oxygen absorbing resin layer containing a polyamide resin A, a transition metal catalyst and a polyolefin resin, and a gas barrier layer made of a gas barrier material. The oxygen-absorbing multilayer body is sealed in an oxygen-absorbing container using all or part of the oxygen-absorbing multilayer body and stored. Thereby, in addition to oxygen that slightly enters from the outside of the container, oxygen in the container can be absorbed, and deterioration of the contents stored in the container due to oxygen can be prevented. In addition, by using a member having transparency, the contents can be confirmed without opening the packaging container, and the packaging container is easy to handle.
以下に実施例と比較例を用いて本発明をさらに詳しく説明するが、本発明はこれによって限定されるものではない。尚、本実施例及び比較例において、各種物性値は以下の測定方法及び測定装置により測定した。 Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited thereto. In the examples and comparative examples, various physical property values were measured by the following measuring methods and measuring apparatuses.
(Tgの測定方法)
Tgは、JIS K7122に準拠して測定した。測定装置は(株)島津製作所製「DSC−60」を使用した。
(Measurement method of Tg)
Tg was measured according to JIS K7122. The measuring apparatus used was “DSC-60” manufactured by Shimadzu Corporation.
(融点の測定方法)
融点は、ISO11357に準拠して、DSC融解ピーク温度を測定した。測定装置は(株)島津製作所製「DSC−60」を使用した。
(Measuring method of melting point)
The melting point was determined by measuring the DSC melting peak temperature according to ISO11357. The measuring apparatus used was “DSC-60” manufactured by Shimadzu Corporation.
(数平均分子量の測定方法)
数平均分子量は、GPC−LALLSにて測定した。測定装置は昭和電工(株)製「Shodex GPC−2001」を使用した。
(Measurement method of number average molecular weight)
The number average molecular weight was measured by GPC-LALLS. As a measuring apparatus, “Shodex GPC-2001” manufactured by Showa Denko KK was used.
(MFRの測定方法)
各樹脂のMFRは、JIS K7210に準拠した装置((株)東洋精機製作所製「メルトインデックサ」)を用いて、特定の温度において、荷重2160gの条件下で測定し、温度と共にその値を記載した(単位:「g/10分」)。なお、JIS K7210に準拠してMFRを測定した場合はその旨、特に記載した。
(Measurement method of MFR)
The MFR of each resin is measured under a load of 2160 g at a specific temperature using an apparatus in accordance with JIS K7210 (“Melt Indexer” manufactured by Toyo Seiki Seisakusho Co., Ltd.), and the value is described together with the temperature. (Unit: “g / 10 min”). In addition, when MFR was measured based on JISK7210, it was described that much.
(酸素透過係数の測定方法)
酸素透過係数は、MOCON社製「OX−TRAN−2/21」を使用し、23℃・60%RH、セル面積50cm2の条件下で測定した。
(Measurement method of oxygen permeability coefficient)
The oxygen transmission coefficient was measured using “OX-TRAN-2 / 21” manufactured by MOCON under the conditions of 23 ° C., 60% RH and a cell area of 50 cm 2 .
(末端アミノ基濃度の測定方法)
試料0.5gを30mLのフェノール/エタノール=4/1(体積比)に溶解させ、メタノール5mL加え、滴定液として0.01規定の塩酸にて自動滴定装置(平沼製作所製「COM−2000」)にて滴定した。試料を加えず滴定した同様の操作をブランクとし、下記式より末端アミノ基濃度を算出した。
末端アミノ基濃度(μeq/g)=(A−B)×f×10/C
(A;滴定量(mL)、B;ブランク滴定量(mL)、f;規定液のファクター、C;試料量(g))。
(Method for measuring terminal amino group concentration)
0.5 g of sample was dissolved in 30 mL of phenol / ethanol = 4/1 (volume ratio), 5 mL of methanol was added, and an automatic titrator with 0.01 N hydrochloric acid as a titrant (“COM-2000” manufactured by Hiranuma Seisakusho) Titration with The same operation titrated without adding a sample was used as a blank, and the terminal amino group concentration was calculated from the following formula.
Terminal amino group concentration (μeq / g) = (A−B) × f × 10 / C
(A: titer (mL), B: blank titer (mL), f: factor of normal solution, C: sample amount (g)).
(末端カルボキシル濃度の測定方法)
試料0.5gを30mLのベンジルアルコールに溶解させ、メタノール10mL加え、滴定液として0.01規定の水酸化ナトリウム溶液にて自動滴定装置(平沼製作所製「COM−2000」)にて滴定した。試料を加えず滴定した同様の操作をブランクとし、下記式より末端カルボキシル濃度を算出した。
末端カルボキシル基濃度(μeq/g)=(A−B)×f×10/C
(A;滴定量(mL)、B;ブランク滴定量(mL)、f;規定液のファクター、C;試料量(g))。
(Measurement method of terminal carboxyl concentration)
0.5 g of a sample was dissolved in 30 mL of benzyl alcohol, 10 mL of methanol was added, and titrated with an automatic titration apparatus (“COM-2000” manufactured by Hiranuma Seisakusho) with 0.01 N sodium hydroxide solution as a titrant. The same operation titrated without adding a sample was used as a blank, and the terminal carboxyl concentration was calculated from the following formula.
Terminal carboxyl group concentration (μeq / g) = (A−B) × f × 10 / C
(A: titer (mL), B: blank titer (mL), f: factor of normal solution, C: sample amount (g)).
(半結晶化時間の測定方法)
各温度にて、ペレットを溶融させ、各温度にて樹脂を結晶化させた場合、すべてが結晶化する時間を結晶化時間といい、結晶化50%到達時間を半結晶化時間という。半結晶化時間の測定は、脱偏光強度法により行った。即ち、溶融したサンプルペレットに光を照射し、サンプルペレットの結晶化とともに、光の透過量が減少して安定した時点を結晶化とし、その時間を結晶化時間とし、光の透過量が50%に到達した時間を半結晶化時間とした。なお、結晶化時間及び半結晶化時間は、測定温度で異なるが、以下の記載においては、各温度の半結晶化時間の内、最も半結晶化時間の短いものを「半結晶化時間」として記載した。また、結晶化時間及び半結晶化時間の測定にはコタキ製「ポリマー結晶化速度測定装置MK−701型」を使用した。
(Measurement method of semi-crystallization time)
When the pellet is melted at each temperature and the resin is crystallized at each temperature, the time for all to crystallize is called the crystallization time, and the time for reaching 50% crystallization is called the semi-crystallization time. The half crystallization time was measured by the depolarized intensity method. That is, when the sample pellets are irradiated with light and the sample pellets are crystallized, the amount of light transmission decreases and becomes stable when the amount of light transmission is stabilized. The time is defined as the crystallization time, and the amount of light transmission is 50%. The time to reach was defined as the half crystallization time. Although the crystallization time and the half crystallization time differ depending on the measurement temperature, in the following description, among the half crystallization times at each temperature, the one with the shortest half crystallization time is referred to as “half crystallization time”. Described. In addition, a “polymer crystallization rate measuring apparatus MK-701 type” manufactured by Kotaki was used to measure the crystallization time and the semi-crystallization time.
(ポリアミド樹脂の溶融重合による合成条件)
反応缶内でジカルボン酸を170℃にて加熱し、溶融した後、内容物を攪拌しながら、芳香族ジアミンをジカルボン酸とのモル比が約1:1となるように徐々に連続的に滴下し、かつ温度を240℃まで上昇させた。滴下終了後、260℃以上に昇温し、反応を継続した。反応終了後、反応缶内を窒素にて微加圧し、穴を有するダイヘッドからストランドを押出し、ペレタイザーでペレット化した。
(Synthesis conditions by melt polymerization of polyamide resin)
After heating and melting the dicarboxylic acid in a reaction can at 170 ° C., the aromatic diamine is gradually and continuously added so that the molar ratio of the dicarboxylic acid to the dicarboxylic acid is about 1: 1 while stirring the contents. And the temperature was raised to 240 ° C. After completion of the dropwise addition, the temperature was raised to 260 ° C. or higher and the reaction was continued. After completion of the reaction, the inside of the reaction can was slightly pressurized with nitrogen, the strand was extruded from a die head having holes, and pelletized with a pelletizer.
(ポリアミド樹脂の固相重合による合成条件)
上記の方法で溶融重合して得られたペレットを加熱装置付き回転式タンブラーに仕込み、回転させながらタンブラー内を1torr以下まで減圧した後、窒素で常圧にする操作を3回行った。その後、タンブラーを回転させながら装置内を30torr以下としながら加熱し、装置内が150℃以上になるよう調整し、その温度で所定時間、反応させた。その後、60℃まで冷却し、ポリアミド樹脂を得た。
(Synthesis conditions by solid phase polymerization of polyamide resin)
The pellets obtained by melt polymerization by the above method were charged into a rotary tumbler equipped with a heating device, the pressure inside the tumbler was reduced to 1 torr or less while rotating, and the operation of bringing the pressure to normal pressure with nitrogen was performed three times. Thereafter, the inside of the apparatus was heated while rotating the tumbler to 30 torr or less, the inside of the apparatus was adjusted to 150 ° C. or more, and the reaction was performed at that temperature for a predetermined time. Then, it cooled to 60 degreeC and obtained the polyamide resin.
(実施例1)
メタキシリレンジアミン:セバシン酸:アジピン酸を0.994:0.4:0.6の割合のモル比で使用し、前記合成条件にて溶融重合及び固相重合を行ってポリアミド樹脂を合成した(以下、当該ポリアミド樹脂をポリアミド1と表記する)。なお、滴下時間は2時間、溶融重合の反応時間は1時間、固相重合時の装置内圧力は1torr以下、重合温度は160℃、重合時間は4時間とした。ポリアミド1は、Tg73℃、融点184℃、半結晶化時間2000秒以上、末端アミノ基濃度17.2μeq/g、末端カルボキシル基濃度65.5μeq/g、数平均分子量は24200、240℃のMFRが10.9g/10分であった。また、得られたポリアミド1単体で未延伸フィルムを作製し、その酸素透過係数を求めたところ、0.34cc・mm/(m2・日・atm)(23℃・60%RH)であった。これらの結果を表1に示した。
(Example 1)
Polyamide resin was synthesized by performing melt polymerization and solid phase polymerization under the above-mentioned synthesis conditions using metaxylylenediamine: sebacic acid: adipic acid in a molar ratio of 0.994: 0.4: 0.6. (Hereinafter, the polyamide resin is referred to as polyamide 1). The dropping time was 2 hours, the reaction time for melt polymerization was 1 hour, the pressure in the apparatus during solid phase polymerization was 1 torr or less, the polymerization temperature was 160 ° C., and the polymerization time was 4 hours. Polyamide 1 has a Tg of 73 ° C., a melting point of 184 ° C., a crystallization time of 2000 seconds or more, a terminal amino group concentration of 17.2 μeq / g, a terminal carboxyl group concentration of 65.5 μeq / g, a number average molecular weight of 24200, and an MFR of 240 ° C. It was 10.9 g / 10 minutes. Moreover, when the unstretched film was produced with the obtained polyamide 1 single-piece | unit and the oxygen permeability coefficient was calculated | required, it was 0.34cc * mm / (m < 2 > * day * atm) (23 degreeC * 60% RH). . These results are shown in Table 1.
ポリアミド1に遷移金属触媒として、ステアリン酸コバルトをコバルト濃度300ppmとなるよう二軸押出機にて、溶融したポリアミド1にサイドフィードにて添加した。さらに、得られたポリアミドとステアリン酸コバルトの混合物(以下、ステアリン酸コバルト含有ポリアミド1と表記する)に、直鎖状低密度ポリエチレン(製品名;日本ポリエチレン(株)製「カーネルKF380」、MFR4.0g/10分(JIS K7210に準拠して測定)、240℃のMFR8.7g/10分、250℃のMFR10.0g/10分、以下LLDPE1と表記する)を、ステアリン酸コバルト含有ポリアミド1:LLDPE1=40:60の重量比で240℃にて溶融混練し、酸素吸収樹脂組成物Aからなるペレットを得た。 Cobalt stearate was added to polyamide 1 as a transition metal catalyst by a side feed to molten polyamide 1 with a twin screw extruder so as to have a cobalt concentration of 300 ppm. Further, a mixture of the obtained polyamide and cobalt stearate (hereinafter referred to as cobalt stearate-containing polyamide 1) was added to a linear low density polyethylene (product name: “Kernel KF380” manufactured by Nippon Polyethylene Co., Ltd.), MFR4. 0 g / 10 min (measured according to JIS K7210), 240 ° C. MFR 8.7 g / 10 min, 250 ° C. MFR 10.0 g / 10 min, hereinafter referred to as LLDPE1), cobalt stearate-containing polyamide 1: LLDPE1 = 40: 60 weight ratio was melt-kneaded at 240 ° C. to obtain pellets composed of the oxygen-absorbing resin composition A.
得られた組成物Aを酸素吸収樹脂層とし、直鎖状低密度ポリエチレン(製品名;ダウケミカル社製「ELITE 5220G」、MFR3.5g/10分(JIS K7210に準拠して測定)、240℃のMFR8.4g/10分、250℃のMFR9.1g/10分、以下LLDPE2と表記する)を酸素透過層および中間層とした、2種3層フィルム(厚さ;中間層LLDPE2層10μm/酸素吸収樹脂層20μm/酸素透過層LLDPE2層10μm)を、幅1000mmで、80m/分で中間層面をコロナ放電処理し、フィルムロールを作製した。フィルムロールにコブ等の偏肉はなく、得られたフィルムの外観は良好で、HAZEは15%であった。このフィルムの中間層面側に、低密度ポリエチレン(製品名;日本ポリエチレン(株)製「ハーモレックス NH745N」)による押し出しラミネートにて積層し、晒クラフト紙(坪量330g/m2)/ウレタン系ドライラミネート用接着剤(製品名;東洋モートン(株)製「AD817/CAT−RT86L−60」、3)/アルミナ蒸着PETフィルム(製品名;凸版印刷(株)製「GL-AEC−F」、12)/ウレタン系アンカーコート剤(東洋モートン(株)製「EL−530A/B」、0.5)/低密度ポリエチレン(20)/LLDPE2(10)/酸素吸収樹脂組成物(20)/LLDPE2(10)の酸素吸収性紙基材積層体を得た。この積層体を用い、底部7cm角、容量1000mLのゲーベルトップ型の酸素吸収性紙容器1を得た。紙容器の加工性は問題なく、製函することができた。 The obtained composition A was used as an oxygen-absorbing resin layer, linear low-density polyethylene (product name; “ELITE 5220G” manufactured by Dow Chemical Company, MFR 3.5 g / 10 minutes (measured in accordance with JIS K7210), 240 ° C. Two-layer three-layer film (thickness; intermediate layer LLDPE2 layer 10 μm / oxygen) using MFR 8.4 g / 10 min, 250 ° C. MFR 9.1 g / 10 min, hereinafter referred to as LLDPE2) as an oxygen permeable layer and an intermediate layer Absorbing resin layer 20 μm / oxygen permeable layer LLDPE2 layer 10 μm) was subjected to corona discharge treatment at a width of 1000 mm and an intermediate layer surface at 80 m / min to produce a film roll. The film roll had no uneven thickness such as bumps, the appearance of the obtained film was good, and the HAZE was 15%. This film is laminated on the intermediate layer side by extrusion lamination with low-density polyethylene (product name: “Harmolex NH745N” manufactured by Nippon Polyethylene Co., Ltd.), and bleached kraft paper (basis weight 330 g / m 2 ) / urethane-based dry Laminating adhesive (Product name: “AD817 / CAT-RT86L-60”, 3) manufactured by Toyo Morton Co., Ltd./Alumina-deposited PET film (Product name: “GL-AEC-F” manufactured by Toppan Printing Co., Ltd.), 12 ) / Urethane anchor coating agent (“EL-530A / B” manufactured by Toyo Morton Co., Ltd., 0.5) / Low density polyethylene (20) / LLDPE2 (10) / Oxygen absorbing resin composition (20) / LLDPE2 ( 10) The oxygen-absorbing paper base laminate was obtained. Using this laminate, a Gobeltop-type oxygen-absorbing paper container 1 having a bottom 7 cm square and a capacity of 1000 mL was obtained. The processability of the paper container could be made without any problem.
この酸素吸収性紙容器1にヘッドスペースの空気量が20ccとなるよう米焼酎を1000mL充填し、40℃下に保管し、7日目のヘッドスペース酸素濃度と1ヶ月後のワイン風味を調査した。また、1ヶ月後のゲーベルトップ型紙容器上部のシール強度を測定した。 This oxygen-absorbing paper container 1 was filled with 1000 mL of rice shochu so that the amount of air in the headspace was 20 cc, and stored at 40 ° C., and the headspace oxygen concentration on the seventh day and the wine flavor after one month were investigated. . In addition, the seal strength of the upper part of the gobeltop paper container after one month was measured.
(実施例2)
溶融混練時の重量比を、ステアリン酸コバルト含有ポリアミド1:LLDPE1=55:45とした以外は実施例1と同様に酸素吸収性紙容器を製函して、米焼酎の風味、ヘッドスペース酸素濃度及び紙容器上部の熱融着強度を調べた。これらの結果を表2に示した。
(Example 2)
The oxygen-absorbing paper container was boxed in the same manner as in Example 1 except that the weight ratio at the time of melt kneading was changed to cobalt stearate-containing polyamide 1: LLDPE1 = 55: 45, and the flavor of the rice shochu and the headspace oxygen concentration And the heat-sealing strength of the upper part of the paper container was examined. These results are shown in Table 2.
(実施例3)
溶融混練時の重量比を、ステアリン酸コバルト含有ポリアミド1:LLDPE1=20:80とした以外は実施例1と同様に酸素吸収性紙容器を製函して、米焼酎の風味、ヘッドスペース酸素濃度及び紙容器上部の熱融着強度を調べた。これらの結果を表2に示した。
(Example 3)
The oxygen-absorbing paper container was made in the same manner as in Example 1 except that the weight ratio at the time of melt kneading was changed to cobalt stearate-containing polyamide 1: LLDPE1 = 20: 80, and the flavor of rice shochu and the headspace oxygen concentration And the heat-sealing strength of the upper part of the paper container was examined. These results are shown in Table 2.
(実施例4)
溶融混練時の重量比を、ステアリン酸コバルト含有ポリアミド1:LLDPE1=17:83とした以外は実施例1と同様に酸素吸収性紙容器を製函して、米焼酎の風味、ヘッドスペース酸素濃度及び紙容器上部の熱融着強度を調べた。これらの結果を表2に示した。
Example 4
The oxygen-absorbing paper container was boxed in the same manner as in Example 1 except that the weight ratio at the time of melt kneading was changed to cobalt stearate-containing polyamide 1: LLDPE1 = 17: 83, and the flavor of rice shochu and headspace oxygen concentration And the heat-sealing strength of the upper part of the paper container was examined. These results are shown in Table 2.
(実施例5)
メタキシリレンジアミン:セバシン酸:アジピン酸を0.994:0.3:0.7の割合のモル比で使用し、前記合成条件にて溶融重合及び固相重合を行ってポリアミド樹脂を合成した(以下、当該ポリアミド樹脂をポリアミド2と表記する)。なお、滴下時間は2時間、溶融重合の反応時間は1時間、固相重合時の装置内圧力は1torr以下、重合温度は160℃、重合時間は4時間とした。ポリアミド2は、Tg78℃、融点194℃、半結晶化時間2000秒以上、末端アミノ基濃度15.4μeq/g、末端カルボキシル基濃度67.1μeq/g、数平均分子量は24200、240℃のMFRは11.0g/10分であった。また、得られたポリアミド2単体で未延伸フィルムを作製し、その酸素透過係数を求めたところ、0.21cc・mm/(m2・日・atm)(23℃・60%RH)であった。これらの結果を表1に示した。
(Example 5)
Polyamide resin was synthesized by performing melt polymerization and solid phase polymerization under the above-mentioned synthesis conditions using metaxylylenediamine: sebacic acid: adipic acid in a molar ratio of 0.994: 0.3: 0.7. (Hereinafter, the polyamide resin is referred to as polyamide 2). The dropping time was 2 hours, the reaction time for melt polymerization was 1 hour, the pressure in the apparatus during solid phase polymerization was 1 torr or less, the polymerization temperature was 160 ° C., and the polymerization time was 4 hours. Polyamide 2 has a Tg of 78 ° C., a melting point of 194 ° C., a semicrystallization time of 2000 seconds or more, a terminal amino group concentration of 15.4 μeq / g, a terminal carboxyl group concentration of 67.1 μeq / g, a number average molecular weight of 24200, and an MFR of 240 ° C. It was 11.0 g / 10 minutes. In addition, an unstretched film was prepared from the obtained polyamide 2 alone, and its oxygen permeability coefficient was determined to be 0.21 cc · mm / (m 2 · day · atm) (23 ° C. · 60% RH). . These results are shown in Table 1.
以後、実施例1と同様にしてステアリン酸コバルトをコバルト濃度300ppmとなるように添加し、得られたポリアミド2とステアリン酸コバルトの混合物(以下、ステアリン酸コバルト含有ポリアミド2と表記する)に、LLDPE1を、ステアリン酸コバルト含有ポリアミド2:LLDPE1=40:60の重量比で、240℃にて溶融混練して酸素吸収樹脂ペレットを得た。さらに、実施例1と同様にして酸素吸収性紙基材積層体を得た後、酸素吸収性紙容器を製函して、実施例1と同様の保存試験を実施した。これらの結果を表2に示した。 Thereafter, in the same manner as in Example 1, cobalt stearate was added so as to have a cobalt concentration of 300 ppm, and the resulting polyamide 2 and cobalt stearate mixture (hereinafter referred to as cobalt stearate-containing polyamide 2) was added to LLDPE1. Was melt-kneaded at a weight ratio of cobalt stearate-containing polyamide 2: LLDPE1 = 40: 60 at 240 ° C. to obtain oxygen-absorbing resin pellets. Furthermore, after obtaining an oxygen-absorbing paper base laminate in the same manner as in Example 1, an oxygen-absorbing paper container was boxed, and the same storage test as in Example 1 was performed. These results are shown in Table 2.
(実施例6)
メタキシリレンジアミン:アジピン酸を0.994:1の割合のモル比で使用し、前記合成条件にて溶融重合及び固相重合を行ってポリアミド樹脂を合成した(以下、当該ポリアミド樹脂をポリアミド3と表記する)。なお、滴下時間は2時間、溶融重合の反応時間は1時間、固相重合時の装置内圧力は1torr以下、重合温度は205℃、重合時間は4時間とした。このポリアミド3は、Tg84℃、融点237℃、半結晶化時間は25秒、末端アミノ基濃度16.0μeq/g、末端カルボキシル基濃度66.9μeq/g、数平均分子量は24100であった。また、240℃では、融点付近であるため、MFRが測定できず、250℃のMFRを測定し、250℃におけるMFRは、14.5g/10分であった。得られたポリアミド3単体で未延伸フィルムを作製し、その酸素透過係数を求めたところ酸素透過係数は、0.09cc・mm/(m2・日・atm)(23℃・60%RH)であった。これらの結果を表1に示した。
(Example 6)
Polyamide resin was synthesized by performing melt polymerization and solid phase polymerization under the above-described synthesis conditions using metaxylylenediamine: adipic acid in a molar ratio of 0.994: 1 (hereinafter, the polyamide resin was referred to as polyamide 3). ). The dropping time was 2 hours, the reaction time for melt polymerization was 1 hour, the pressure in the apparatus during solid phase polymerization was 1 torr or less, the polymerization temperature was 205 ° C., and the polymerization time was 4 hours. This polyamide 3 had a Tg of 84 ° C., a melting point of 237 ° C., a half crystallization time of 25 seconds, a terminal amino group concentration of 16.0 μeq / g, a terminal carboxyl group concentration of 66.9 μeq / g, and a number average molecular weight of 24100. Moreover, since it was near melting | fusing point at 240 degreeC, MFR was not able to be measured, MFR of 250 degreeC was measured, and MFR in 250 degreeC was 14.5 g / 10min. An unstretched film was produced from the obtained polyamide 3 alone, and the oxygen permeability coefficient was determined. The oxygen permeability coefficient was 0.09 cc · mm / (m 2 · day · atm) (23 ° C. · 60% RH). there were. These results are shown in Table 1.
以後、溶融混練時の温度を250℃とした以外は実施例1と同様にして、ポリアミド3へのステアリン酸コバルトの添加、LLDPE1との溶融混練を行い、さらに、実施例1と同様にして酸素吸収性紙基材積層体を得た後、酸素吸収性紙容器を製函して、実施例1と同様の保存試験を実施した。これらの結果を表2に示した。 Thereafter, addition of cobalt stearate to polyamide 3 and melt-kneading with LLDPE 1 were carried out in the same manner as in Example 1 except that the temperature during melt-kneading was changed to 250 ° C. After obtaining the absorbent paper base laminate, an oxygen-absorbing paper container was boxed and the same storage test as in Example 1 was performed. These results are shown in Table 2.
(実施例7)
メタキシリレンジアミンとパラキシリレンジアミンを8:2で混合し、これらのジアミンとアジピン酸を1:1の割合のモル比で使用し、前記合成条件にて溶融重合のみを行ってポリアミド樹脂を合成した後、無水フタル酸0.3wt%添加し、二軸押出機にて270℃で溶融混練し、末端アミノ基を封止した(以下、当該ポリアミド樹脂をポリアミド4と表記する)。ただし、滴下時間は2時間、溶融重合においてジアミン混合物滴下終了後の重合温度は270℃とし、反応時間は30分とした。このポリアミド4は、Tg85℃、融点255℃、半結晶化時間22秒、末端アミノ基濃度23.0μeq/g、末端カルボキシル基濃度65.5μeq/g、数平均分子量は19200であった。また、260℃では、融点付近であるため、MFRが測定できず、270℃のMFRを測定し、270℃におけるMFRは、32.8g/10分であった。得られたポリアミド4単体で未延伸フィルムを作製し、その酸素透過係数を求めたところ酸素透過係数は、0.13cc・mm/(m2・日・atm)(23℃・60%RH)であった。これらの結果を表1に示した。
(Example 7)
Metaxylylenediamine and paraxylylenediamine are mixed at a ratio of 8: 2, these diamines and adipic acid are used in a molar ratio of 1: 1, and only a melt polymerization is performed under the above synthesis conditions to obtain a polyamide resin. After the synthesis, 0.3 wt% of phthalic anhydride was added and melt kneaded at 270 ° C. with a twin-screw extruder to seal the terminal amino group (hereinafter, the polyamide resin is referred to as polyamide 4). However, the dropping time was 2 hours, the polymerization temperature after completion of dropping of the diamine mixture in melt polymerization was 270 ° C., and the reaction time was 30 minutes. Polyamide 4 had a Tg of 85 ° C., a melting point of 255 ° C., a half-crystallization time of 22 seconds, a terminal amino group concentration of 23.0 μeq / g, a terminal carboxyl group concentration of 65.5 μeq / g, and a number average molecular weight of 19,200. Moreover, since it was near melting | fusing point at 260 degreeC, MFR was not able to be measured, MFR of 270 degreeC was measured, and MFR in 270 degreeC was 32.8 g / 10min. An unstretched film was prepared from the obtained polyamide 4 alone, and the oxygen permeability coefficient was determined. The oxygen permeability coefficient was 0.13 cc · mm / (m 2 · day · atm) (23 ° C. · 60% RH). there were. These results are shown in Table 1.
以後、溶融混練時の温度を270℃とした以外は実施例1と同様にして、ポリアミド4へのステアリン酸コバルトの添加、LLDPE1との溶融混練を行い、さらに、実施例1と同様にして酸素吸収性紙基材積層体を得た後、酸素吸収性紙容器を製函して、実施例1と同様の保存試験を実施した。これらの結果を表2に示した。 Thereafter, addition of cobalt stearate to polyamide 4 and melt-kneading with LLDPE 1 were carried out in the same manner as in Example 1 except that the temperature at the time of melt-kneading was changed to 270 ° C. After obtaining the absorbent paper base laminate, an oxygen-absorbing paper container was boxed and the same storage test as in Example 1 was performed. These results are shown in Table 2.
(実施例8)
メタキシリレンジアミン:アジピン酸:イソフタル酸を、0.994:0.95:0.05の割合のモル比で使用し、前記合成条件にて溶融重合及び固相重合を行ってポリアミド樹脂を合成した(以下、当該ポリアミド樹脂をポリアミド5と表記する)。なお、滴下時間は2時間、溶融重合の反応時間は1時間、固相重合時の装置内圧力は1torr以下、重合温度は205℃、重合時間は4時間とした。このポリアミド4は、Tg92℃、融点232℃、半結晶化時間220秒、末端アミノ基濃度16.7μeq/g、末端カルボキシル基濃度64.8μeq/g、数平均分子量は24500であった。240℃では、融点付近であるため、MFRが測定できず、250℃のMFRを測定し、250℃におけるMFRは、12.9g/10分であった。得られたポリアミド5単体で未延伸フィルムを作製し、その酸素透過係数を求めたところ酸素透過係数は、0.08cc・mm/(m2・日・atm)(23℃・60%RH)であった。これらの結果を表1に示した。
(Example 8)
Polyamide resin was synthesized by using melt polymerization and solid phase polymerization under the above-mentioned synthesis conditions using metaxylylenediamine: adipic acid: isophthalic acid in a molar ratio of 0.994: 0.95: 0.05. (Hereinafter, the polyamide resin is referred to as polyamide 5). The dropping time was 2 hours, the reaction time for melt polymerization was 1 hour, the pressure in the apparatus during solid phase polymerization was 1 torr or less, the polymerization temperature was 205 ° C., and the polymerization time was 4 hours. This polyamide 4 had a Tg of 92 ° C., a melting point of 232 ° C., a half crystallization time of 220 seconds, a terminal amino group concentration of 16.7 μeq / g, a terminal carboxyl group concentration of 64.8 μeq / g, and a number average molecular weight of 24,500. Since it was near melting | fusing point in 240 degreeC, MFR was not measurable, MFR of 250 degreeC was measured, and MFR in 250 degreeC was 12.9 g / 10min. An unstretched film was prepared from the obtained polyamide 5 alone, and the oxygen permeability coefficient was determined. The oxygen permeability coefficient was 0.08 cc · mm / (m 2 · day · atm) (23 ° C. · 60% RH). there were. These results are shown in Table 1.
以後、溶融混練時の温度を250℃とした以外は実施例1と同様にして、ポリアミド5へのステアリン酸コバルトの添加、LLDPE1との溶融混練等を行い、さらに実施例1と同様にして酸素吸収性紙基材積層体を得た後、酸素吸収性紙容器を製函して、実施例1と同様の保存試験を実施した。これらの結果を表2に示した。 Thereafter, the addition of cobalt stearate to polyamide 5 and melt-kneading with LLDPE 1 were carried out in the same manner as in Example 1 except that the temperature during melt-kneading was 250 ° C. After obtaining the absorbent paper base laminate, an oxygen-absorbing paper container was boxed and the same storage test as in Example 1 was performed. These results are shown in Table 2.
(実施例9)
LLDPE1にステアリン酸コバルトをコバルト濃度800ppmとなるよう二軸押出機にて、溶融したLLDPE1にサイドフィードにて添加した。さらに得られたLLDPE1とステアリン酸コバルトの混合物に、ポリアミド1を、ポリアミド1:ステアリン酸コバルト含有LLDPE1=40:60の重量比で、240℃にて溶融混練し、酸素吸収樹脂ペレットを得た。
Example 9
Cobalt stearate was added to LLDPE1 by a side feed to the melted LLDPE1 with a twin screw extruder so that the cobalt concentration became 800 ppm. Furthermore, polyamide 1 was melt-kneaded at 240 ° C. in a weight ratio of polyamide 1: cobalt stearate-containing LLDPE1 = 40: 60 to the obtained mixture of LLDPE1 and cobalt stearate to obtain oxygen-absorbing resin pellets.
以後、実施例1と同様にして酸素吸収性紙基材積層体を得た後、酸素吸収性紙容器を製函して、実施例1と同様の保存試験を実施した。これらの結果を表2に示した。 Thereafter, after obtaining an oxygen-absorbing paper base laminate in the same manner as in Example 1, the oxygen-absorbing paper container was boxed, and the same storage test as in Example 1 was performed. These results are shown in Table 2.
(比較例1)
溶融混練時の重量比をステアリン酸コバルト含有ポリアミド1:LLDPE1=80:20とした以外は実施例1と同様に酸素吸収性紙基材積層体を製造した後、酸素吸収性紙容器を製函して、実施例1と同様の保存試験を実施した。これらの結果を表2に示した。
(Comparative Example 1)
The oxygen-absorbing paper base laminate was produced in the same manner as in Example 1 except that the weight ratio at the time of melt-kneading was changed to cobalt stearate-containing polyamide 1: LLDPE1 = 80: 20. Then, the same storage test as in Example 1 was performed. These results are shown in Table 2.
(比較例2)
溶融混練時の重量比をステアリン酸コバルト含有ポリアミド1:LLDPE1=10:90とした以外は実施例1と同様に酸素吸収性紙基材積層体を製造した後、酸素吸収性紙容器を製函して、実施例1と同様の保存試験を実施した。これらの結果を表2に示した。
(Comparative Example 2)
An oxygen-absorbing paper base laminate was produced in the same manner as in Example 1 except that the weight ratio at the time of melt-kneading was changed to cobalt stearate-containing polyamide 1: LLDPE1 = 10: 90. Then, the same storage test as in Example 1 was performed. These results are shown in Table 2.
(比較例3)
メタキシリレンジアミン:アジピン酸を1:1の割合のモル比で使用した以外は、実施例6と同様にしてポリアミド樹脂を合成した(以下、当該ポリアミド樹脂をポリアミド6と表記する)。このポリアミド6は、Tg84℃、融点237℃、半結晶化時間25秒、末端アミノ基濃度41.0μeq/g、末端カルボキシル基濃度42.5μeq/g、数平均分子量は24000であった。また、240℃では、融点付近であるため、MFRが測定できず、250℃のMFRを測定し、250℃におけるMFRは、13.9g/10分であった。得られたポリアミド6単体で未延伸フィルムを作製し、その酸素透過係数を求めたところ酸素透過係数は、0.09cc・mm/(m2・日・atm)(23℃・60%RH)であった。これらの結果を表1に示した。
(Comparative Example 3)
A polyamide resin was synthesized in the same manner as in Example 6 except that metaxylylenediamine: adipic acid was used in a molar ratio of 1: 1 (hereinafter, the polyamide resin is referred to as polyamide 6). This polyamide 6 had a Tg of 84 ° C., a melting point of 237 ° C., a half crystallization time of 25 seconds, a terminal amino group concentration of 41.0 μeq / g, a terminal carboxyl group concentration of 42.5 μeq / g, and a number average molecular weight of 24,000. Moreover, since it was near melting | fusing point at 240 degreeC, MFR was not measurable, MFR of 250 degreeC was measured, and MFR in 250 degreeC was 13.9 g / 10min. An unstretched film was prepared from the obtained polyamide 6 alone, and the oxygen permeability coefficient was determined. The oxygen permeability coefficient was 0.09 cc · mm / (m 2 · day · atm) (23 ° C. · 60% RH). there were. These results are shown in Table 1.
以後、実施例6と同様にして、ポリアミド6へのステアリン酸コバルトの添加、LLDPE1との溶融混練等を行い、実施例1と同様に酸素吸収性紙基材積層体を製造した後、酸素吸収性紙容器を製函して、実施例1と同様の保存試験を実施した。これらの結果を表2に示した。 Thereafter, in the same manner as in Example 6, addition of cobalt stearate to polyamide 6, melt kneading with LLDPE1, etc. were carried out to produce an oxygen-absorbing paper base laminate as in Example 1, and then oxygen absorption The paper container was boxed and the same storage test as in Example 1 was performed. These results are shown in Table 2.
(比較例4)
メタキシリレンジアミン:アジピン酸を0.994:1の割合のモル比で使用し、固相重合の重合時間を1時間とした以外は実施例6と同様にして、ポリアミド樹脂を合成した(以下、当該ポリアミド樹脂をポリアミド7と表記する)。このポリアミド7は、Tg84℃、融点237℃、半結晶化時間25秒、末端アミノ基濃度35.9μeq/g、末端カルボキシル基濃度89.0μeq/g、数平均分子量は16000であった。また、240℃では、融点付近であるため、MFRが測定できず、250℃のMFRを測定し、250℃におけるMFRは、45.2g/10分であった。得られたポリアミド7単体で未延伸フィルムを作製し、その酸素透過係数を求めたところ酸素透過係数は、0.09cc・mm/(m2・日・atm)(23℃・60%RH)であった。これらの結果を表1に示した。
(Comparative Example 4)
A polyamide resin was synthesized in the same manner as in Example 6 except that metaxylylenediamine: adipic acid was used in a molar ratio of 0.994: 1 and the polymerization time for solid phase polymerization was 1 hour (hereinafter referred to as “polyamide resin”). The polyamide resin is expressed as polyamide 7). This polyamide 7 had a Tg of 84 ° C., a melting point of 237 ° C., a half crystallization time of 25 seconds, a terminal amino group concentration of 35.9 μeq / g, a terminal carboxyl group concentration of 89.0 μeq / g, and a number average molecular weight of 16000. Moreover, since it was near melting | fusing point at 240 degreeC, MFR was not able to be measured, MFR of 250 degreeC was measured, and MFR in 250 degreeC was 45.2 g / 10min. An unstretched film was prepared from the obtained polyamide 7 alone, and the oxygen permeability coefficient was determined. The oxygen permeability coefficient was 0.09 cc · mm / (m 2 · day · atm) (23 ° C. · 60% RH). there were. These results are shown in Table 1.
以後、実施例6と同様にして、ポリアミド7へのステアリン酸コバルトの添加、LLDPE1との溶融混練等を行い、実施例1と同様に酸素吸収性紙基材積層体を製造した後、酸素吸収性紙容器を製函して、実施例1と同様の保存試験を実施した。これらの結果を表2に示した。 Thereafter, in the same manner as in Example 6, cobalt stearate was added to polyamide 7 and melt kneading with LLDPE 1 was carried out to produce an oxygen-absorbing paper base laminate in the same manner as in Example 1. The paper container was boxed and the same storage test as in Example 1 was performed. These results are shown in Table 2.
実施例1〜9から明らかなように、本発明の酸素吸収多層体は、酸素吸収性能に優れ、米焼酎の風味が良好に保持され、米焼酎の保存に好適であった。 As is clear from Examples 1 to 9, the oxygen-absorbing multilayer body of the present invention was excellent in oxygen-absorbing performance, satisfactorily maintained in the flavor of rice shochu, and suitable for storing rice shochu.
これに対し、酸素吸収樹脂層中のポリアミド樹脂Aの含有量が、60重量%を超過した比較例1や、酸素吸収樹脂層中のポリアミド樹脂Aの含有量が15重量%未満であった比較例2は酸素吸収機能が不十分であり、米焼酎の風味が低下した。 On the other hand, the comparative example 1 in which the content of the polyamide resin A in the oxygen-absorbing resin layer exceeded 60% by weight and the comparison in which the content of the polyamide resin A in the oxygen-absorbing resin layer was less than 15% by weight In Example 2, the oxygen absorption function was insufficient, and the flavor of rice shochu decreased.
一方、実施例6と比較して、アジピン酸に対するMXDAのモル比を大きくした比較例3や固相重合時間を短くした比較例4においては、末端アミノ基濃度が30μeq/gを超過し、酸素吸収機能が不十分であり、米焼酎の風味が低下した。 On the other hand, compared with Example 6, in Comparative Example 3 in which the molar ratio of MXDA to adipic acid was increased and in Comparative Example 4 in which the solid phase polymerization time was shortened, the terminal amino group concentration exceeded 30 μeq / g, Absorption function was insufficient, and the flavor of rice shochu decreased.
(比較例5)
平均粒径25μmの鉄粉と塩化カルシウムを100:1の割合で混合し、LLDPE1と30:70の重量比で混練して、鉄粉系酸素吸収樹脂組成物Aを得た。鉄粉系酸素吸収樹脂組成物Aをコア層とし、実施例1と同様に2種3層フィルムを作製しようとしたが、フィルム表面に鉄粉の凹凸が発生し、フィルムが得られなかった。そのため、厚さ40μmのLLDPE2フィルムに酸素吸収樹脂層として、鉄粉系酸素吸収樹脂組成物Aを厚さ30μmで押出ラミネートし、酸素吸収樹脂層面をコロナ放電処理したラミネートフィルムを得た。このラミネートフィルムを実施例1同様に晒クラフト紙等と積層し、晒クラフト紙/ウレタン系ドライラミネート用接着剤(3)/アルミナ蒸着PETフィルム(12)/ウレタン系アンカーコート剤(0.5)/低密度ポリエチレン(20)/鉄粉系酸素吸収樹脂組成物A(30)/LLDPE2(40)の酸素吸収性紙基材積層体からなるゲーベルトップ型酸素吸収性紙容器を製函しようとしたが、厚みが厚く、紙容器の角を作製することが困難であった。容器作製速度を落とし、不良品を排除してようやく容器を得た。以下、実施例1と同様に、米焼酎の保存試験を行ったが、開封時アルデヒド臭が発生しており、風味は著しく低下した。
(Comparative Example 5)
Iron powder having an average particle size of 25 μm and calcium chloride were mixed at a ratio of 100: 1 and kneaded at a weight ratio of LLDPE1 of 30:70 to obtain an iron powder-based oxygen-absorbing resin composition A. The iron powder-based oxygen-absorbing resin composition A was used as a core layer, and an attempt was made to produce a two-layer / three-layer film in the same manner as in Example 1. However, irregularities of the iron powder occurred on the film surface, and no film was obtained. Therefore, an iron powder-based oxygen-absorbing resin composition A was extruded and laminated at a thickness of 30 μm as an oxygen-absorbing resin layer onto a 40 μm-thick LLDPE2 film, and a laminate film was obtained in which the oxygen-absorbing resin layer surface was subjected to corona discharge treatment. This laminate film was laminated with bleached kraft paper and the like as in Example 1, and bleached kraft paper / urethane-based dry laminate adhesive (3) / alumina-deposited PET film (12) / urethane-based anchor coating agent (0.5). An attempt was made to produce a gobeltop oxygen-absorbing paper container comprising an oxygen-absorbing paper base laminate of low density polyethylene (20) / iron powder-based oxygen-absorbing resin composition A (30) / LLDPE2 (40). However, the thickness is large, and it is difficult to produce the corners of the paper container. The container production speed was reduced and defective products were finally removed to obtain a container. Thereafter, a preservation test of rice shochu was conducted in the same manner as in Example 1. However, an aldehyde odor was generated at the time of opening, and the flavor was significantly reduced.
本発明は、アルコール飲料を、内側から順に、熱可塑性樹脂からなる酸素透過層、ポリオレフィン樹脂、遷移金属触媒、およびポリアミド樹脂を含有する酸素吸収樹脂層、並びにガスバリア性物質からなるガスバリア層の少なくとも3層が積層されてなる酸素吸収多層体を全部または一部に使用した酸素吸収性容器内に保存するアルコール飲料の保存方法である。 According to the present invention, an alcoholic beverage, in order from the inside, an oxygen permeable layer made of a thermoplastic resin, an oxygen absorbing resin layer containing a polyolefin resin, a transition metal catalyst, and a polyamide resin, and a gas barrier layer made of a gas barrier material. This is a method for storing an alcoholic beverage, which is stored in an oxygen-absorbing container using all or part of an oxygen-absorbing multilayer body in which layers are laminated.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010250750A JP2011136760A (en) | 2009-12-02 | 2010-11-09 | Method for preserving alcoholic beverage |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009274630 | 2009-12-02 | ||
JP2009274630 | 2009-12-02 | ||
JP2010250750A JP2011136760A (en) | 2009-12-02 | 2010-11-09 | Method for preserving alcoholic beverage |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2011136760A true JP2011136760A (en) | 2011-07-14 |
Family
ID=44348613
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010250750A Pending JP2011136760A (en) | 2009-12-02 | 2010-11-09 | Method for preserving alcoholic beverage |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2011136760A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016049727A (en) * | 2014-09-01 | 2016-04-11 | 東洋紡株式会社 | Sealant film |
-
2010
- 2010-11-09 JP JP2010250750A patent/JP2011136760A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016049727A (en) * | 2014-09-01 | 2016-04-11 | 東洋紡株式会社 | Sealant film |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101535321B1 (en) | Oxygen-absorbing resin composition | |
TWI781086B (en) | Laminated Sheets and Formed Containers | |
JP2011136761A (en) | Method for preserving tea-containing article | |
US9844927B2 (en) | Multi-layered container | |
JP5471009B2 (en) | Multi-layer container | |
JP2011132502A (en) | Oxygen-absorbing resin composition | |
JP2011131935A (en) | Deoxidizing packaging container for heat treatment | |
JP2011094021A (en) | Oxygen absorbing resin composition | |
JP2011126270A (en) | Oxygen-absorbing multilayer body | |
JP3969524B2 (en) | Plastic multilayer structure | |
JP2011136155A (en) | Method for preserving content of transfusion container | |
JP5581833B2 (en) | Oxygen absorbing resin composition | |
JP2010013638A (en) | Oxygen-absorbing resin composition | |
JP2011136760A (en) | Method for preserving alcoholic beverage | |
JP2001079996A (en) | Laminated packaging material | |
JP5601118B2 (en) | Oxygen absorbing multilayer and container | |
JP2007216457A (en) | Laminated film | |
JP2011136552A (en) | Oxygen absorbing multilayered body | |
JP5263040B2 (en) | Oxygen absorbing multilayer | |
JP2011131934A (en) | Oxygen absorbing paper container | |
JP2009173033A (en) | Multi-layer container with gas barrier property | |
JP2011236285A (en) | Method for producing oxygen-absorbing resin composition | |
JP2011135870A (en) | Method for preserving flesh of fruit | |
JP2003300293A (en) | Gas-barrier multilayer structure and manufacturing method therefor | |
JP2011136766A (en) | Preservation method of cooked rice |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20120119 |