[go: up one dir, main page]

JP2011132394A - Biaxially stretched hollow container - Google Patents

Biaxially stretched hollow container Download PDF

Info

Publication number
JP2011132394A
JP2011132394A JP2009294050A JP2009294050A JP2011132394A JP 2011132394 A JP2011132394 A JP 2011132394A JP 2009294050 A JP2009294050 A JP 2009294050A JP 2009294050 A JP2009294050 A JP 2009294050A JP 2011132394 A JP2011132394 A JP 2011132394A
Authority
JP
Japan
Prior art keywords
acid
dicarboxylic acid
mol
polyester resin
hollow container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009294050A
Other languages
Japanese (ja)
Inventor
Tomonori Kato
智則 加藤
Ryoji Otaki
良二 大滝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP2009294050A priority Critical patent/JP2011132394A/en
Publication of JP2011132394A publication Critical patent/JP2011132394A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Blow-Moulding Or Thermoforming Of Plastics Or The Like (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a biaxially stretched hollow container which excels in a gas barrier property, and consists of a polyester resin composition which has improved transparency. <P>SOLUTION: The biaxially stretched hollow container comprises molding a polyester resin composition (C) which includes: a copolyester resin (A) which has a sulfonic acid metal salt group, and mainly consists of an aromatic dicarboxylic acid unit and an aliphatic diol unit; and a polyamide resin (B) which consists of a diamine unit including a meta-xylylene diamine unit of at least 70 mol% and a dicarboxylic acid unit including a 4-20C α, ω-straight chain aliphatic dicarboxylic acid unit of at least 70 mol%. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、ポリエステル樹脂とポリアミド樹脂からなる樹脂組成物からなる二軸延伸中空容器に関する。詳しくは、ポリエステルのみでは不十分であったガスバリア性を改善しつつ、従来問題であった透明性を改善することが可能なポリエステル樹脂組成物から成る二軸延伸中空容器に関する。   The present invention relates to a biaxially stretched hollow container comprising a resin composition comprising a polyester resin and a polyamide resin. Specifically, the present invention relates to a biaxially stretched hollow container made of a polyester resin composition capable of improving the transparency which has been a problem in the past while improving the gas barrier properties that were insufficient with only polyester.

芳香族ジカルボン酸と脂肪族ジオール化合物をモノマーとして使用して得られるポリマー、例えばポリエチレンテレフタレート樹脂(PET)等に代表されるポリエステル樹脂は、透明性、機械的性能、溶融安定性、保香性、リサイクル性等に優れるという特徴を有している。そのため、芳香族ポリエステル樹脂は、フィルム、シート、中空容器等の各種包装材料に広く利用されている。しかしながら、ポリエステル樹脂は酸素、炭酸ガス等に対するガスバリア性が必ずしも十分ではないため、ポリエステル樹脂からなる包装容器の利用範囲には制限があった。ポリエステル樹脂のガスバリア性を改善する手法としては、酸化アルミニウムや酸化珪素をポリエステル樹脂からなる成形体や包装容器に蒸着したり、あるいはポリエステル樹脂よりも高いガスバリア性能を有する樹脂をポリエステル樹脂からなる成形体や包装容器に塗布あるいは積層する等の手段が挙げられるが、複雑な製造工程を必要としたり、リサイクル性や機械的性能が損なわれる等の問題点があるため、その利用範囲は限定されたものであった。   Polymers obtained by using aromatic dicarboxylic acid and aliphatic diol compounds as monomers, for example, polyester resins represented by polyethylene terephthalate resin (PET), have transparency, mechanical performance, melt stability, flavor retention, It is characterized by excellent recyclability. Therefore, aromatic polyester resins are widely used for various packaging materials such as films, sheets, and hollow containers. However, since the polyester resin does not necessarily have sufficient gas barrier properties against oxygen, carbon dioxide gas, etc., the range of use of the packaging container made of the polyester resin has been limited. As a method for improving the gas barrier property of the polyester resin, aluminum oxide or silicon oxide is vapor-deposited on a molded body made of a polyester resin or a packaging container, or a molded body made of a polyester resin with a gas barrier performance higher than that of the polyester resin. Although there are means such as coating or laminating on packaging containers, etc., there are problems such as requiring complicated manufacturing processes and impaired recyclability and mechanical performance, so the range of use is limited Met.

上記のような問題を解決しつつ、ポリエステル樹脂のガスバリア性を改善する手段として、高いガスバリア性を有する熱可塑性樹脂をポリエステル樹脂に溶融混合する方法が挙げられる。高いガスバリア性を有する樹脂の一つとしてエチレン−ビニルアルコール共重合体樹脂が挙げられるが、エチレン−ビニルアルコール共重合体樹脂は、その分子構造の特徴からポリエステル樹脂との相溶性に乏しく、両樹脂を混合して成る樹脂組成物は白濁し、ポリエステル樹脂の特徴である透明性を損なう欠点があった。またポリエステル樹脂における最適な加工温度では、エチレン−ビニルアルコール共重合体樹脂は急激に熱劣化する傾向にあるため、ポリエステル樹脂の加工安定性を損なう等の問題点があった。   As a means for improving the gas barrier property of the polyester resin while solving the above problems, there is a method in which a thermoplastic resin having a high gas barrier property is melt mixed with the polyester resin. One of the resins having high gas barrier properties is ethylene-vinyl alcohol copolymer resin. However, ethylene-vinyl alcohol copolymer resin is poor in compatibility with polyester resin due to the characteristics of its molecular structure. The resin composition formed by mixing turbidity has a drawback that it impairs the transparency that is characteristic of polyester resins. Further, at the optimum processing temperature in the polyester resin, the ethylene-vinyl alcohol copolymer resin has a tendency to rapidly deteriorate due to heat, so that there is a problem that the processing stability of the polyester resin is impaired.

エチレン−ビニルアルコール共重合体樹脂以外のガスバリア性樹脂としては、ナイロン6、ナイロン6,6等に代表されるポリアミド樹脂が挙げられるが、とりわけメタキシリレンジアミンを主成分とするジアミン成分とアジピン酸を主成分とするカルボン酸成分とを重合して得られるポリメタキシリレンアジパミドはガスバリア性に優れるポリアミド樹脂であり好適である。ポリメタキシレンアジパミドは他のポリアミド樹脂と比較して高いガスバリア性を有する上に、ポリエステル樹脂の中でも広く利用されているポリエチレンテレフタレート樹脂とガラス転移温度、融点、結晶性が近似していることから、ポリエステル樹脂のガスバリア性を改善するための材料として、ポリメタキシレンアジパミドは非常に適した樹脂であるといえる。   Examples of the gas barrier resin other than the ethylene-vinyl alcohol copolymer resin include polyamide resins represented by nylon 6, nylon 6, 6, and the like, and in particular, a diamine component mainly composed of metaxylylenediamine and adipic acid. Polymetaxylylene adipamide obtained by polymerizing a carboxylic acid component having a main component of is a polyamide resin excellent in gas barrier properties and is suitable. Polymetaxylene adipamide has a high gas barrier property compared to other polyamide resins, and has a glass transition temperature, melting point, and crystallinity similar to those of polyethylene terephthalate resins widely used among polyester resins. Therefore, it can be said that polymetaxylene adipamide is a very suitable resin as a material for improving the gas barrier property of the polyester resin.

これまでに、主たる繰り返し単位がエチレンテレフタレートであるポリエステル樹脂にポリアミド樹脂を含有させたガスバリア性の優れた中空成形体が提案されているが、当該発明は単にポリアミド樹脂によりガスバリア性の改善を提案したものであり、色調や透明性の改善に関する記載は一切されていない(特許文献1参照)。また透明性を改善する方法として、ポリエステル樹脂の共重合成分としてスルホン酸金属を用いる方法(特許文献2)や低分子量のポリアミド樹脂を用いる方法(特許文献3)が開示されているが、二軸延伸中空容器においては未延伸部分では透明性は良好であるものの、胴部延伸部分において曇り度の改善効果は不十分であった。   So far, a hollow molded article having excellent gas barrier properties in which a polyamide resin is contained in a polyester resin whose main repeating unit is ethylene terephthalate has been proposed, but the present invention simply proposed improvement of gas barrier properties by using a polyamide resin. However, there is no description regarding improvement of color tone and transparency (see Patent Document 1). Further, as a method for improving transparency, a method using a sulfonic acid metal as a copolymer component of a polyester resin (Patent Document 2) and a method using a low molecular weight polyamide resin (Patent Document 3) are disclosed. In the stretched hollow container, the transparency in the unstretched part is good, but the effect of improving the haze is insufficient in the stretched part of the trunk.

特開昭58−160344号公報JP 58-160344 A 特開平2−135259号公報JP-A-2-135259 特表2003−527457号公報JP-T-2003-527457

本発明は、上記の課題を解消し、ガスバリア性に優れ、かつ透明性を改善したポリエステル系樹脂組成物からなる二軸延伸中空容器を提供することにある。   An object of the present invention is to provide a biaxially stretched hollow container made of a polyester resin composition that solves the above-described problems, has excellent gas barrier properties, and has improved transparency.

本発明者らは上記課題の解決方法について鋭意検討した結果、ポリエステル樹脂とメタキシリレン基含有ポリアミド樹脂を混合して得られたポリエステル樹脂組成物を用いて二軸延伸中空容器を得るにあたり、特定のポリエステル樹脂と特定の分子量であるメタキシリレン基含有ポリアミド樹脂を用いることにより、上記課題を解決しうることを見いだし、本発明を完成するに至った。   As a result of intensive studies on the solution of the above problems, the present inventors have obtained a specific polyester in obtaining a biaxially stretched hollow container using a polyester resin composition obtained by mixing a polyester resin and a metaxylylene group-containing polyamide resin. It has been found that the above problems can be solved by using a resin and a metaxylylene group-containing polyamide resin having a specific molecular weight, and the present invention has been completed.

すなわち本発明は、共重合ポリエステル樹脂(A)80〜99重量%と、メタキシリレンジアミン単位を70モル%以上含むジアミン単位と、炭素数4〜20のα,ω−直鎖脂肪族ジカルボン酸単位を70モル%以上含むジカルボン酸単位からなるポリアミド樹脂(B)1〜20重量(%)(重量%の合計は100重量%である)からなるポリエステル樹脂組成物(C)を成形した二軸延伸中空容器であって、共重合ポリエステル樹脂(A)が、ジカルボン酸構成単位の70モル%以上が芳香族ジカルボン酸からなり、ジオール構成単位の70モル%以上が脂肪族ジオールからなり、かつジカルボン酸構成単位の0.01〜5モル%がスルホン酸金属塩基を有し、ポリアミド樹脂(B)の数平均分子量が6000〜15000であることを特徴とする二軸延伸中空容器に関する。 That is, the present invention relates to a copolymer polyester resin (A) 80 to 99% by weight, a diamine unit containing 70% by mole or more of metaxylylenediamine units, and an α, ω-linear aliphatic dicarboxylic acid having 4 to 20 carbon atoms. Biaxial molded polyester resin composition (C) comprising 1 to 20% by weight (%) of a polyamide resin (B) comprising a dicarboxylic acid unit containing 70 mol% or more of units (total of 100% by weight). In the stretched hollow container, the copolymerized polyester resin (A) comprises 70 mol% or more of an aromatic dicarboxylic acid, 70 mol% or more of a diol structural unit, an aliphatic diol, and dicarboxylic acid. 0.01-5 mol% of the acid structural unit has a sulfonic acid metal base, and the number average molecular weight of the polyamide resin (B) is 6000-15000. To a biaxially stretched hollow container.

本発明によれば、ガスバリア性に優れ、かつ透明性を改善したポリエステル組成物からなるパリソン、二軸延伸中空容器が得られる。 According to the present invention, a parison and biaxially stretched hollow container made of a polyester composition having excellent gas barrier properties and improved transparency can be obtained.

以下に、本発明について詳しく説明する。本発明で用いられるパリソンあるいは二軸延伸中空容器を構成するポリエステル樹脂組成物(C)は、共重合ポリエステル樹脂(A)とポリアミド樹脂(B)からなる。   The present invention is described in detail below. The polyester resin composition (C) constituting the parison or biaxially stretched hollow container used in the present invention comprises a copolyester resin (A) and a polyamide resin (B).

本発明の二軸延伸中空容器を構成する共重合ポリエステル樹脂(A)は、ジカルボン酸構成単位の70モル%以上、好ましくは80モル%以上、より好ましくは90モル%以上が芳香族ジカルボン酸単位からなり、ジオール構成単位の70モル%以上、好ましくは80モル%以上、より好ましくは90モル%以上が脂肪族ジオール単位からなるポリエステル樹脂である。芳香族ジカルボン酸単位や脂肪族ジオール単位の割合を多くすることにより、共重合ポリエステル樹脂(A)の結晶性が高くなり、使用前の乾燥が容易になる。また、共重合ポリエステル樹脂(A)は、ジカルボン酸構成単位の0.01〜5モル%がスルホン酸金属塩基を有する。後述するように、スルホン酸金属塩基を有するポリエステル樹脂(A)を得るには2種以上のジカルボン酸成分を共重合する必要がある。スルホン酸金属塩基はポリアミド樹脂(B)との相溶性を改有するために肝要であり、ポリアミド樹脂(B)を微細に分散させ、該ポリエステル樹脂組成物(C)から得られる二軸延伸中空容器の透明性を著しく向上させるものである。ポリエステル樹脂(A)におけるスルホン酸金属塩基の比率は、ジカルボン酸構成単位の0.01〜5モル%であることが好ましく、さらに好ましくは0.03〜2モル%、更に好ましくは0.06〜1.0モル%である。この範囲とすることでポリエステル樹脂(A)の特性を損なうことなく相溶性を高めることができる。ポリエステル樹脂(A)は、2種以上を併用しても良い。   In the copolymerized polyester resin (A) constituting the biaxially stretched hollow container of the present invention, the aromatic dicarboxylic acid unit is 70 mol% or more, preferably 80 mol% or more, more preferably 90 mol% or more of the dicarboxylic acid structural unit. A polyester resin in which 70 mol% or more, preferably 80 mol% or more, more preferably 90 mol% or more of the diol structural unit is composed of an aliphatic diol unit. By increasing the proportion of the aromatic dicarboxylic acid unit or the aliphatic diol unit, the crystallinity of the copolyester resin (A) increases, and drying before use becomes easy. In the copolymerized polyester resin (A), 0.01 to 5 mol% of the dicarboxylic acid structural unit has a sulfonic acid metal base. As will be described later, in order to obtain a polyester resin (A) having a sulfonic acid metal base, it is necessary to copolymerize two or more kinds of dicarboxylic acid components. The sulfonic acid metal base is essential for improving compatibility with the polyamide resin (B), and the biaxially stretched hollow container obtained from the polyester resin composition (C) by finely dispersing the polyamide resin (B). This significantly improves the transparency. The ratio of the sulfonic acid metal base in the polyester resin (A) is preferably 0.01 to 5 mol%, more preferably 0.03 to 2 mol%, still more preferably 0.06 to 0.06 mol% of the dicarboxylic acid structural unit. 1.0 mol%. By setting it as this range, compatibility can be improved, without impairing the characteristic of a polyester resin (A). Two or more polyester resins (A) may be used in combination.

前記芳香族ジカルボン酸として、テレフタル酸、イソフタル酸等のベンゼンジカルボン酸;2,6−ナフタレンジカルボン酸、1,5−ナフタレンジカルボン酸、2,7−ナフタレンジカルボン酸等のナフタレンジカルボン酸;4,4’−ビフェニルジカルボン酸、3,4’−ビフェニルジカルボン酸等のビフェニルジカルボン酸等、およびこれらのエステル形成性誘導体が例示できる。これらの中でもテレフタル酸を使用することが好ましい。また、テレフタル酸と他の芳香族ジカルボン酸を併用する場合にはイソフタル酸が好ましく用いられる。イソフタル酸を併用する場合、その割合はジカルボン酸成分の1〜10モル%、好ましくは1〜8モル%、更に好ましくは1〜6モル%である。この範囲でイソフタル酸を共重合したポリエステル樹脂は結晶化速度が遅くなり、成形性を向上させることが可能となる。更に、本発明の目的を損なわない範囲でアジピン酸、アゼライン酸、セバシン酸等の脂肪族ジカルボン酸や安息香酸、プロピオン酸、酪酸等のモノカルボン酸を用いることができる。   Examples of the aromatic dicarboxylic acid include benzene dicarboxylic acids such as terephthalic acid and isophthalic acid; naphthalenedicarboxylic acids such as 2,6-naphthalenedicarboxylic acid, 1,5-naphthalenedicarboxylic acid and 2,7-naphthalenedicarboxylic acid; Examples thereof include biphenyl dicarboxylic acids such as' -biphenyl dicarboxylic acid and 3,4'-biphenyl dicarboxylic acid, and ester-forming derivatives thereof. Among these, it is preferable to use terephthalic acid. When terephthalic acid and other aromatic dicarboxylic acid are used in combination, isophthalic acid is preferably used. When isophthalic acid is used in combination, the proportion is 1 to 10 mol%, preferably 1 to 8 mol%, more preferably 1 to 6 mol% of the dicarboxylic acid component. In this range, the polyester resin copolymerized with isophthalic acid has a low crystallization rate and can improve moldability. Furthermore, aliphatic dicarboxylic acids such as adipic acid, azelaic acid, and sebacic acid, and monocarboxylic acids such as benzoic acid, propionic acid, and butyric acid can be used within the range not impairing the object of the present invention.

前記脂肪族ジオールとして、エチレングリコール、1,3―プロピレンジオール、1,4−ブタンジオール、1,4−シクロヘキサンジメタノール、1,6−ヘキサンジオール等およびこれらのエステル形成性誘導体が例示できる。これらの中でもエチレングリコールを使用することが好ましい。更に、本発明の目的を損なわない範囲でブチルアルコール、ヘキシルアルコール、オクチルアルコール等のものアルコール類や、トリメチロールプロパン、グリセリン、ペンタエリスリトール等の多価アルコール類を用いることもできる。 Examples of the aliphatic diol include ethylene glycol, 1,3-propylene diol, 1,4-butanediol, 1,4-cyclohexanedimethanol, 1,6-hexanediol, and ester-forming derivatives thereof. Among these, it is preferable to use ethylene glycol. Furthermore, alcohols such as butyl alcohol, hexyl alcohol and octyl alcohol, and polyhydric alcohols such as trimethylolpropane, glycerin and pentaerythritol can be used within the range not impairing the object of the present invention.

スルホン酸金属塩基を有するポリエステル樹脂(A)を得るには、該スルホン酸金属塩の金属イオンとしてリチウム、ナトリウム、カリウム等のアルカリ金属イオン;マグネシウム、カルシウム等のアルカリ土類金属イオン;亜鉛等の遷移金属イオン、スルホン酸としてスルホフタル酸、スルホテレフタル酸、スルホイソフタル酸、4−スルホナフタレン−2,7−ジカルボン酸及びそれらの誘導体を組み合わせたジカルボン酸化合物をジカルボン酸成分として共重合することが好ましい。該ジカルボン酸化合物としては、5−スルホイソフタル酸ナトリウム、5−スルホイソフタル酸リチウム及び5−スルホイソフタル酸亜鉛が好ましい。   In order to obtain a polyester resin (A) having a sulfonic acid metal base, the metal ions of the sulfonic acid metal salt include alkali metal ions such as lithium, sodium and potassium; alkaline earth metal ions such as magnesium and calcium; zinc and the like It is preferable to copolymerize a dicarboxylic acid component in which a transition metal ion and sulfosulfonic acid, sulfoterephthalic acid, sulfoisophthalic acid, 4-sulfonaphthalene-2,7-dicarboxylic acid and their derivatives are combined as a dicarboxylic acid component. . As the dicarboxylic acid compound, sodium 5-sulfoisophthalate, lithium 5-sulfoisophthalate and zinc 5-sulfoisophthalate are preferable.

ポリエステル樹脂(A)の製造には、公知の方法である直接エステル化法やエステル交換法を適用することができる。ポリエステル樹脂(A)の製造時に使用する重縮合触媒としては、公知の三酸化アンチモン、五酸化アンチモン等のアンチモン化合物、酸化ゲルマニウム等のゲルマニウム化合物、酢酸チタン等のチタン化合物、塩化アルミニウム等のアルミニウム化合物等が例示できるが、これらに限定されない。また必要に応じて分子量を高めるために従来公知の方法によって固相重合しても良い。   For the production of the polyester resin (A), a direct esterification method or a transesterification method, which are known methods, can be applied. Polycondensation catalysts used in the production of the polyester resin (A) include known antimony compounds such as antimony trioxide and antimony pentoxide, germanium compounds such as germanium oxide, titanium compounds such as titanium acetate, and aluminum compounds such as aluminum chloride. However, the present invention is not limited to these. Moreover, in order to raise molecular weight as needed, you may carry out solid-phase polymerization by a conventionally well-known method.

本発明に用いるポリエステル樹脂(A)は、使用する前のポリマー中の水分率が200ppm以下、好ましくは100ppm以下、更に好ましくは50ppm以下であることが好ましい。この場合、ポリエステル樹脂を乾燥し上記水分率としてもよい。水分率が上記範囲内であると、溶融混合工程においてポリエステルが加水分解して分子量が極端に低下することがない。   The polyester resin (A) used in the present invention preferably has a moisture content in the polymer before use of 200 ppm or less, preferably 100 ppm or less, more preferably 50 ppm or less. In this case, the polyester resin may be dried to obtain the above moisture content. When the moisture content is within the above range, the polyester does not hydrolyze in the melt mixing step and the molecular weight does not extremely decrease.

本発明で用いるポリエステル樹脂(A)の固有粘度(フェノール/1,1,2,2−テトラクロロエタン=60/40重量比混合溶媒中、25℃で測定した値)は0.5〜2.0dl/g、好ましくは0.6〜1.5dl/gであることが望ましい。固有粘度が上記範囲内であると、これを使用して得られるポリエステル樹脂組成物(C)においてポリアミド樹脂(B)が微細に分散することにより透明性が向上し、かつ二軸延伸中空容器が構造物として必要な機械的性質を発現することができる。 The intrinsic viscosity (value measured at 25 ° C. in a mixed solvent of phenol / 1,1,2,2-tetrachloroethane = 60/40 weight ratio) of the polyester resin (A) used in the present invention is 0.5 to 2.0 dl. / G, preferably 0.6 to 1.5 dl / g. When the intrinsic viscosity is within the above range, the polyamide resin (B) is finely dispersed in the polyester resin composition (C) obtained by using this, whereby the transparency is improved, and the biaxially stretched hollow container is The mechanical properties required for the structure can be expressed.

次に、ポリアミド樹脂(B)について説明する。
本発明におけるポリアミド樹脂(B)は、ポリエステル樹脂(A)のガスバリア性を改善する効果を付与するものである。ポリアミド樹脂(B)におけるジアミン単位としては、メタキシリレンジアミン単位を70モル%以上(100モル%含む)、好ましくは80モル%以上、更に好ましくは90モル%以上含む。メタキシリレンジアミン単位をジアミン単位の主成分とすることで得られるポリアミド樹脂(B)のガスバリア性を効率よく高めることができる。メタキシリレンジアミン以外に使用できるジアミンとしては、パラキシリレンジアミン、1,3−ビス(アミノメチル)シクロヘキサン、1,4−ビス(アミノメチル)シクロヘキサン、テトラメチレンジアミン、ヘキサメチレンジアミン、ノナンメチレンジアミン、2−メチル−1,5−ペンタンジアミン等が例示できるが、これらに限定されるものではない。
Next, the polyamide resin (B) will be described.
The polyamide resin (B) in the present invention imparts an effect of improving the gas barrier properties of the polyester resin (A). As a diamine unit in a polyamide resin (B), a metaxylylene diamine unit is 70 mol% or more (100 mol% is included), Preferably it is 80 mol% or more, More preferably, it contains 90 mol% or more. The gas barrier property of the polyamide resin (B) obtained by using a metaxylylenediamine unit as a main component of a diamine unit can be improved efficiently. Examples of diamines that can be used in addition to metaxylylenediamine include paraxylylenediamine, 1,3-bis (aminomethyl) cyclohexane, 1,4-bis (aminomethyl) cyclohexane, tetramethylenediamine, hexamethylenediamine, and nonanemethylenediamine. , 2-methyl-1,5-pentanediamine and the like, but are not limited thereto.

ポリアミド樹脂(B)におけるジカルボン酸単位としては、α、ω−脂肪族ジカルボン酸単位を70モル%以上(100モル%含む)、好ましくは75モル%以上、更に好ましくは80モル%以上含む。α、ω−脂肪族ジカルボン酸単位の含有量を70モル%以上とすることで、ガスバリア性の低下や結晶性の過度の低下を避けることができる。α、ω−脂肪族ジカルボン酸としてはスベリン酸、アジピン酸、アゼライン酸、セバシン酸等が挙げられるが、アジピン酸が好ましく用いられる。α、ω−脂肪族ジカルボン酸以外のジカルボン酸単位としては、1,3−シクロヘキサンジカルボン酸、1,4−シクロヘキサンジカルボン酸等の脂環族ジカルボン酸、テレフタル酸、イソフタル酸、オルソフタル酸、キシリレンジカルボン酸、ナフタレンジカルボン酸などの芳香族ジカルボン酸等が例示できるが、これらに限定されるものではない。また前記のジアミン単位、ジカルボン酸単位以外にも、ポリアミド樹脂(B)を構成する単位として、本発明の効果を損なわない範囲でε−カプロラクタムやラウロラクタム等のラクタム類、アミノカプロン酸、アミノウンデカン酸等の脂肪族アミノカルボン酸類、パラ−アミノメチル安息香酸のような芳香族アミノカルボン酸等も共重合単位として使用できる。   As a dicarboxylic acid unit in the polyamide resin (B), an α, ω-aliphatic dicarboxylic acid unit is contained in an amount of 70 mol% or more (including 100 mol%), preferably 75 mol% or more, and more preferably 80 mol% or more. By setting the content of the α, ω-aliphatic dicarboxylic acid unit to 70 mol% or more, it is possible to avoid a decrease in gas barrier properties and an excessive decrease in crystallinity. Examples of the α, ω-aliphatic dicarboxylic acid include suberic acid, adipic acid, azelaic acid, sebacic acid and the like, and adipic acid is preferably used. Examples of dicarboxylic acid units other than α, ω-aliphatic dicarboxylic acids include alicyclic dicarboxylic acids such as 1,3-cyclohexanedicarboxylic acid and 1,4-cyclohexanedicarboxylic acid, terephthalic acid, isophthalic acid, orthophthalic acid, and xylylene diene. Examples thereof include aromatic dicarboxylic acids such as carboxylic acid and naphthalenedicarboxylic acid, but are not limited thereto. In addition to the diamine unit and the dicarboxylic acid unit, as a unit constituting the polyamide resin (B), lactams such as ε-caprolactam and laurolactam, aminocaproic acid, and aminoundecanoic acid as long as the effects of the present invention are not impaired. Aliphatic aminocarboxylic acids such as para-aminomethylbenzoic acid and the like can also be used as copolymerized units.

ポリアミド樹脂(B)は溶融重縮合(溶融重合)法により製造される。溶融重合法としては、例えばジアミンとジカルボン酸からなるナイロン塩を水の存在下に、加圧下で昇温し、加えた水および縮合水を除きながら溶融状態で重合させる方法がある。また、ジアミンを溶融状態のジカルボン酸へ直接加えて、重縮合する方法によっても製造される。この場合、反応温度が生成するオリゴアミド及びポリアミドの融点よりも下回らないように反応系を昇温しつつ、重縮合が進められる。溶融重合で得られたポリアミド樹脂(B)は一旦取り出され、ペレット化された後、乾燥して使用される。   The polyamide resin (B) is produced by a melt polycondensation (melt polymerization) method. As the melt polymerization method, for example, there is a method in which a nylon salt composed of diamine and dicarboxylic acid is heated in the presence of water under pressure and polymerized in a molten state while removing added water and condensed water. It can also be produced by a method in which diamine is directly added to a molten dicarboxylic acid and polycondensed. In this case, the polycondensation proceeds while raising the temperature of the reaction system so that the reaction temperature does not fall below the melting point of the generated oligoamide and polyamide. The polyamide resin (B) obtained by melt polymerization is once taken out, pelletized, and dried before use.

ポリアミド樹脂(B)の重縮合系内にはアミド化反応を促進する効果や、重縮合時の着色を防止する効果を得るために、リン原子含有化合物を添加しても良い。リン原子含有化合物としては、ジメチルホスフィン酸、フェニルメチルホスフィン酸、次亜リン酸、次亜リン酸ナトリウム、次亜リン酸カリウム、次亜リン酸リチウム、次亜リン酸エチル、フェニル亜ホスホン酸、フェニル亜ホスホン酸ナトリウム、フェニルホスホン酸カリウム、フェニルホスホン酸リチウム、フェニル亜ホスホン酸エチル、フェニルホスホン酸、エチルホスホン酸、フェニルホスホン酸ナトリウム、フェニルホスホン酸カリウム、フェニルホスホン酸リチウム、フェニルホスホン酸ジエチル、エチルホスホン酸ナトリウム、エチルホスホン酸カリウム、亜リン酸、亜リン酸水素ナトリウム、亜リン酸ナトリウム、亜リン酸トリエチル、亜リン酸トリフェニル、ピロ亜リン酸等が挙げられ、これらの中でも特に次亜リン酸ナトリウム、次亜リン酸カリウム、次亜リン酸リチウム等の次亜リン酸金属塩がアミド化反応を促進する効果が高く、かつ着色防止効果にも優れるため好ましく用いられ、特に次亜リン酸ナトリウムが好ましい。本発明で使用できるリン原子含有化合物はこれらの化合物に限定されない。   In the polycondensation system of the polyamide resin (B), a phosphorus atom-containing compound may be added in order to obtain an effect of promoting an amidation reaction and an effect of preventing coloring during polycondensation. Examples of phosphorus atom-containing compounds include dimethylphosphinic acid, phenylmethylphosphinic acid, hypophosphorous acid, sodium hypophosphite, potassium hypophosphite, lithium hypophosphite, ethyl hypophosphite, phenylphosphonous acid, Sodium phenylphosphonite, potassium phenylphosphonate, lithium phenylphosphonate, ethyl phenylphosphonite, phenylphosphonic acid, ethylphosphonic acid, sodium phenylphosphonate, potassium phenylphosphonate, lithium phenylphosphonate, diethyl phenylphosphonate, Examples thereof include sodium ethylphosphonate, potassium ethylphosphonate, phosphorous acid, sodium hydrogen phosphite, sodium phosphite, triethyl phosphite, triphenyl phosphite, pyrophosphorous acid, etc. Na phosphite Hypophosphite metal salts such as lithium, potassium hypophosphite, lithium hypophosphite and the like are preferably used because they have a high effect of promoting amidation reaction and are excellent in anti-coloring effect, especially sodium hypophosphite. Is preferred. The phosphorus atom-containing compounds that can be used in the present invention are not limited to these compounds.

ポリアミド樹脂(B)の重縮合系内に添加するリン原子含有化合物の添加量は、ポリアミド樹脂(B)中のリン原子濃度換算で1〜200ppm以下が好ましく、5〜190ppmがより好ましく、10〜160ppmがさらに好ましい。上述の範囲内にリン原子含有化合物の添加量を設定することで重縮合中のポリアミド樹脂の着色を防止するとともに、アンチモン系触媒を利用して製造されたポリエステル樹脂と溶融混合する際にポリエステル樹脂中にわずかに残存するアンチモン系触媒の還元に起因する黒ずみが防止される。 The amount of the phosphorus atom-containing compound added to the polycondensation system of the polyamide resin (B) is preferably 1 to 200 ppm or less, more preferably 5 to 190 ppm in terms of the phosphorus atom concentration in the polyamide resin (B). More preferred is 160 ppm. By setting the amount of the phosphorus atom-containing compound within the above range, the polyamide resin is prevented from being colored during polycondensation, and the polyester resin is melt-mixed with a polyester resin produced using an antimony catalyst. Blackening due to the reduction of the antimony catalyst slightly remaining therein is prevented.

ポリアミド樹脂(B)の重縮合系内には、リン原子含有化合物と併用してアルカリ金属化合物を添加することが好ましい。重縮合中のポリアミドの着色を防止するためにはリン原子含有化合物を十分な量存在させる必要があるが、場合によってはポリアミドのゲル化を促進する恐れがあるため、アミド化反応速度を調整するためにもアルカリ金属化合物またはアルカリ土類金属化合物を共存させることが好ましい。例えば、水酸化リチウム、水酸化ナトリウム、水酸化カリウム、水酸化ルビジウム、水酸化セリウム、水酸化マグネシウム、水酸化カルシウム、水酸化バリウム等のアルカリ金属/アルカリ土類金属水酸化物や、酢酸リチウム、酢酸ナトリウム、酢酸カリウム、酢酸ルビジウム、酢酸セシウム、酢酸マグネシウム、酢酸カルシウム、酢酸バリウム等のアルカリ金属/アルカリ土類金属酢酸塩等が挙げられるが、これらの化合物に限定されることなく用いることができる。   In the polycondensation system of the polyamide resin (B), it is preferable to add an alkali metal compound in combination with the phosphorus atom-containing compound. To prevent coloring of the polyamide during polycondensation, a sufficient amount of phosphorus atom-containing compound needs to be present, but in some cases it may promote gelation of the polyamide, so the amidation reaction rate is adjusted. Therefore, it is preferable to coexist an alkali metal compound or an alkaline earth metal compound. For example, lithium hydroxide, sodium hydroxide, potassium hydroxide, rubidium hydroxide, cerium hydroxide, magnesium hydroxide, calcium hydroxide, barium hydroxide and other alkali metal / alkaline earth metal hydroxides, lithium acetate, Examples include sodium acetate, potassium acetate, rubidium acetate, cesium acetate, magnesium acetate, calcium acetate, barium acetate, and other alkali metal / alkaline earth metal acetates, etc., but these compounds can be used without limitation. .

ポリアミド樹脂(B)の重縮合系内にアルカリ金属化合物を添加する場合、該化合物のモル数をリン原子含有化合物(A)のモル数で除した値が0.5〜2.0となるようにすることが好ましく、より好ましくは0.6〜1.8であり、更に好ましくは0.7〜1.5である。上述の範囲とすることでリン原子含有化合物によるアミド化反応促進効果を得つつゲルの生成を抑制することが可能となる。なおポリアミド樹脂(B)には上述のリン原子含有化合物やアルカリ金属化合物の他に本発明の効果を損なわない範囲で滑剤、艶消剤、耐熱安定剤、耐候安定剤、紫外線吸収剤、核剤、可塑剤、難燃剤、耐電防止剤、着色防止剤、ゲル化防止剤、その他の添加剤を加えることもできる。   When an alkali metal compound is added to the polycondensation system of the polyamide resin (B), the value obtained by dividing the number of moles of the compound by the number of moles of the phosphorus atom-containing compound (A) is 0.5 to 2.0. Preferably, it is 0.6 to 1.8, more preferably 0.7 to 1.5. By setting it as the above-mentioned range, it becomes possible to suppress the formation of gel while obtaining the amidation reaction promoting effect by the phosphorus atom-containing compound. The polyamide resin (B) includes a lubricant, a matting agent, a heat stabilizer, a weather stabilizer, an ultraviolet absorber, and a nucleating agent as long as the effects of the present invention are not impaired in addition to the phosphorus atom-containing compound and alkali metal compound described above. Plasticizers, flame retardants, antistatic agents, anti-coloring agents, anti-gelling agents, and other additives can also be added.

ポリアミド樹脂(B)の水分率は0.15重量%以下が好ましく、より好ましくは0.1重量%以下、更に好ましくは0.08重量%以下である。この場合、ポリアミド樹脂を乾燥し上記水分率としてもよい。ポリアミド樹脂(B)の水分率を上述の範囲とすることで、ポリエステル樹脂(A)との溶融混合時にポリアミド樹脂(B)から発生する水分によって生じるポリエステル樹脂(A)の加水分解を抑制することができる。ポリアミド樹脂(B)を乾燥する場合は、公知の方法により行うことができる。例えば、ポリアミド樹脂(B)を真空ポンプ付きの加熱可能なタンブラー(回転式真空槽)中や減圧乾燥機中に仕込み、減圧下でポリマーの融点以下、好ましくは160℃以下の温度で乾燥する方法が挙げられるが、これに限定されるものではない。   The moisture content of the polyamide resin (B) is preferably 0.15% by weight or less, more preferably 0.1% by weight or less, and still more preferably 0.08% by weight or less. In this case, the polyamide resin may be dried to obtain the above moisture content. By controlling the moisture content of the polyamide resin (B) within the above range, the hydrolysis of the polyester resin (A) caused by the moisture generated from the polyamide resin (B) during melt mixing with the polyester resin (A) is suppressed. Can do. When drying a polyamide resin (B), it can carry out by a well-known method. For example, the polyamide resin (B) is charged in a heatable tumbler (rotary vacuum tank) equipped with a vacuum pump or in a vacuum dryer, and dried at a temperature below the melting point of the polymer, preferably below 160 ° C. under reduced pressure. However, it is not limited to this.

ポリアミド樹脂(B)の数平均分子量は6000〜15000であることが好ましく、より好ましくは7000〜14000、更に好ましくは8000〜13000である。ポリアミド樹脂(B)の数平均分子量を上述の範囲とすることで、ポリエステル樹脂組成物(C)からなる二軸延伸中空容器においてポリエステル樹脂(A)の海にポリアミド樹脂(B)が微細に分散することにより該容器の透明度は優れたものとなる。   The number average molecular weight of the polyamide resin (B) is preferably from 6000 to 15000, more preferably from 7000 to 14000, still more preferably from 8000 to 13000. By setting the number average molecular weight of the polyamide resin (B) within the above range, the polyamide resin (B) is finely dispersed in the sea of the polyester resin (A) in the biaxially stretched hollow container made of the polyester resin composition (C). By doing so, the transparency of the container becomes excellent.

ポリエステル樹脂組成物(C)におけるポリエステル樹脂(A)とポリアミド樹脂(B)の配合割合は、ポリエステル樹脂(A)80〜99重量%、ポリアミド樹脂(B)1〜20重量%(重量%の合計は100重量%)が好ましく、より好ましくはポリエステル樹脂(A)85〜99重量%、ポリアミド樹脂(B)1〜15重量%、更に好ましくはポリエステル樹脂(A)90〜98重量%、ポリアミド樹脂(B)2〜10重量%である。上述の範囲内にポリアミド樹脂の含有量を設定することで、二軸延伸中空容器の透明性を損なうことなくガスバリア性を改善することができる。   The blending ratio of the polyester resin (A) and the polyamide resin (B) in the polyester resin composition (C) is 80 to 99% by weight of the polyester resin (A) and 1 to 20% by weight (total of the weight%) of the polyamide resin (B). Is preferably 100% by weight), more preferably 85 to 99% by weight of the polyester resin (A), 1 to 15% by weight of the polyamide resin (B), and still more preferably 90 to 98% by weight of the polyester resin (A). B) 2 to 10% by weight. By setting the content of the polyamide resin within the above range, the gas barrier property can be improved without impairing the transparency of the biaxially stretched hollow container.

また、本発明で用いるポリエステル樹脂組成物(C)には、本発明の効果を損なわない範囲で、他の樹脂、具体的にはポリエチレンテレフタレート樹脂、ポリエチレンナフタレート樹脂、ポリブチレンテレフタレート樹脂等のポリエステル樹脂、ナイロン6、ナイロン−6IT、ナイロン66等のポリアミド樹脂、ポリエチレン、ポリプロピレン等のポリオレフィン等が配合されていてもよい。またはそれらの溶融混合物等のリサイクル樹脂が配合されていてもよい。また顔料、染料、滑剤、艶消剤、耐熱安定剤、耐候安定剤、紫外線吸収剤、蛍光増白剤、核剤、可塑剤、難燃剤、耐電防止剤、ポリアミド樹脂のゲル化防止を目的としたアルカリ化合物等の添加剤を加えることもできる。   Further, the polyester resin composition (C) used in the present invention includes other resins such as polyethylene terephthalate resin, polyethylene naphthalate resin, and polybutylene terephthalate resin as long as the effects of the present invention are not impaired. Resin, polyamide resin such as nylon 6, nylon-6IT and nylon 66, polyolefin such as polyethylene and polypropylene may be blended. Or recycled resins, such as those molten mixtures, may be mix | blended. Also intended to prevent gelation of pigments, dyes, lubricants, matting agents, heat stabilizers, weathering stabilizers, UV absorbers, fluorescent brighteners, nucleating agents, plasticizers, flame retardants, antistatic agents, and polyamide resins Additives such as alkaline compounds can also be added.

ポリエステル樹脂組成物(C)を製造する方法としては、従来公知の方法により混合される。例えば、ポリエステル樹脂(A)とポリアミド樹脂(B)とをタンブラー、V型ブレンダー、ヘンシェルミキサー等でドライブレンドしたもの、さらにドライブレンドした混合物を一軸押出機、二軸押出機、ニーダー等で1回以上溶融混合したもの、さらには必要に応じて溶融混合物を高真空下または不活性ガス雰囲気下で加熱することにより乾燥及び結晶化する方法が挙げられる。 As a method for producing the polyester resin composition (C), it is mixed by a conventionally known method. For example, polyester resin (A) and polyamide resin (B) are dry blended with a tumbler, V-type blender, Henschel mixer, etc., and the dry blended mixture is once with a single screw extruder, twin screw extruder, kneader, etc. Examples include a method of drying and crystallization by melting and mixing the above, and further heating the molten mixture under a high vacuum or an inert gas atmosphere as necessary.

本発明の二軸延伸中空容器は、上記ポリエステル樹脂組成物(C)を射出シリンダーから金型ホットランナーを通して、射出成形機の金型キャビティ内に射出してパリソンを得、該パリソンを更に二軸延伸ブロー成形することにより得られる。   In the biaxially stretched hollow container of the present invention, the polyester resin composition (C) is injected from an injection cylinder through a mold hot runner into a mold cavity of an injection molding machine to obtain a parison, and the parison is further biaxially formed. It can be obtained by stretch blow molding.

本発明の二軸延伸中空容器の前駆体であるパリソンを得るための射出成形条件は、下記(a)〜(e)の条件を満たすことが好ましい。
(a)樹脂温度:260〜290℃
(b)スクリュー背圧:2.5〜5.0MPa
(c)スクリュー回転数:80〜250rpm
(d)射出速度:80〜180cc/sec
(e)金型温度:10〜25℃
The injection molding conditions for obtaining a parison that is a precursor of the biaxially stretched hollow container of the present invention preferably satisfy the following conditions (a) to (e).
(A) Resin temperature: 260-290 ° C
(B) Screw back pressure: 2.5 to 5.0 MPa
(C) Screw rotation speed: 80 to 250 rpm
(D) Injection speed: 80 to 180 cc / sec
(E) Mold temperature: 10-25 ° C

前記射出条件は、射出成形装置の計器に示す値である。射出成形装置に計器が設置されていない場合は、射出成形機の仕様と射出成形時の各設定値から算出することも出来る。   The injection condition is a value shown on the meter of the injection molding apparatus. When no instrument is installed in the injection molding apparatus, it can be calculated from the specifications of the injection molding machine and the set values at the time of injection molding.

ポリエステル樹脂組成物(C)中のポリアミド樹脂(B)の分散粒子径は主に計量時および射出時の条件がそれぞれ影響する。すなわち、計量時にスクリューの背圧を高く、スクリュー回転数を速くすることで溶融樹脂の混練が進み分散粒子径が小さくなる。また、射出速度を速くすることで溶融樹脂に剪断がかかり分散粒子径が小さくなる。そのため、上述の範囲でパリソンを成形することにより、ポリエステル樹脂組成物(C)中のポリアミド樹脂(B)の分散粒径が小さく、かつ分散粒径のばらつきが少なくなることにより、二軸延伸中空容器の透明性が良好となる。射出条件(a)〜(e)は、成形する樹脂の溶融粘度等に合わせて適宜選択することができる。   The dispersion particle size of the polyamide resin (B) in the polyester resin composition (C) is mainly affected by the conditions during measurement and injection. That is, the kneading of the molten resin proceeds and the dispersed particle size decreases by increasing the back pressure of the screw during measurement and increasing the rotational speed of the screw. Also, by increasing the injection speed, the molten resin is sheared and the dispersed particle size is reduced. Therefore, by forming the parison within the above-mentioned range, the dispersed particle diameter of the polyamide resin (B) in the polyester resin composition (C) is small and the dispersion of the dispersed particle diameter is reduced, so that biaxially stretched hollow The transparency of the container is improved. The injection conditions (a) to (e) can be appropriately selected according to the melt viscosity of the resin to be molded.

樹脂温度が260〜290℃であると、パリソンに未溶融物が析出したり透明性が低下したりすることを防ぐことができる。また、パリソンの黄色化を抑制し、二軸延伸中空容器の外観の悪化を防ぐことができる。金型温度が10〜25℃であると、パリソンの結晶化に起因する外観の悪化を防ぐことができる。また二軸延伸中空容器の透明性がよくなる。   When the resin temperature is 260 to 290 ° C., it is possible to prevent the unmelted material from being deposited in the parison or the transparency from being lowered. Moreover, yellowing of a parison can be suppressed and deterioration of the external appearance of a biaxially stretched hollow container can be prevented. When the mold temperature is 10 to 25 ° C., it is possible to prevent the appearance from deteriorating due to the crystallization of the parison. Moreover, the transparency of the biaxially stretched hollow container is improved.

得られたパリソンを二軸延伸中空容器に成形する方法は、一般的なブロー成形機を用いればよい。例えば、二軸延伸ブロー成形機を用いて、遠赤外線ヒーターで15秒〜4分程度加熱してパリソンの表面温度を90〜120℃にし、ストレッチロッド及び0.5〜3.5MPaの圧力でブロー成形することにより得られる。   As a method for forming the obtained parison into a biaxially stretched hollow container, a general blow molding machine may be used. For example, using a biaxial stretch blow molding machine, heat for about 15 seconds to 4 minutes with a far-infrared heater to bring the surface temperature of the parison to 90 to 120 ° C., blow with a stretch rod and a pressure of 0.5 to 3.5 MPa. Obtained by molding.

本発明の二軸延伸中空容器は、ガスバリア性に優れ、かつ透明性に優れたものであり、例えば、水、ジュース、果汁、お茶、紅茶、コーヒー、健康飲料、ゼリー飲料等の各種飲料、日本酒、焼酎、ワイン、ビール、リキュール等のアルコール飲料、調味液、ソース、醤油、ドレッシング、液体だし、みりん、酢、マヨネーズ、ケチャップ、たれ等の各種調味料、液体及びペースト状の医薬品、化粧水、化粧クリーム、化粧乳液、整髪料、染毛剤、シャンプー、石鹸、洗剤等、種々の物品を収納することができる。   The biaxially stretched hollow container of the present invention is excellent in gas barrier properties and excellent in transparency, for example, water, juice, fruit juice, tea, tea, coffee, health drinks, jelly drinks and other beverages, sake Alcoholic beverages such as shochu, wine, beer, liqueur, seasoning liquid, sauce, soy sauce, dressing, liquid soup, various seasonings such as mirin, vinegar, mayonnaise, ketchup, sauce, liquid and paste pharmaceuticals, lotion, Various articles such as cosmetic cream, cosmetic emulsion, hair conditioner, hair dye, shampoo, soap and detergent can be stored.

以下に実施例および比較例を示し、本発明を具体的に説明するが、本発明はこれら実施例に限定されるものではない。以下に実施例等に使用した材料、分析・測定方法及び二軸延伸中空容器の製造方法について記す。   EXAMPLES The present invention will be specifically described below with reference to examples and comparative examples, but the present invention is not limited to these examples. The materials used in the examples, the analysis / measurement methods, and the biaxially stretched hollow container manufacturing methods are described below.

1.材料
実施例及び比較例では以下の材料を使用した。
(1)ポリエステル1
インビスタ社製イソフタル酸共重合PET樹脂(商品名:Polyshield 2400、固有粘度=0.8dl/g、融点=242℃、イソフタル酸3.3モル%共重合、ジカルボン酸成分における5−スルホン酸ナトリウム量=0.09モル%)を使用した。使用に際しては除湿乾燥機にて150℃6時間乾燥したものを用いた。
(2)ポリエステル2
インビスタ社製イソフタル酸共重合PET樹脂(商品名:Polyclear 1101E、固有粘度=0.8dl/g、融点=244℃、イソフタル酸2.8モル%共重合、スルホン酸金属塩基を有さない)を使用した。使用に際しては除湿乾燥機にて150℃6時間乾燥したものを用いた。
(3)ポリアミド1
攪拌機、分縮器、冷却器、温度計、滴下槽および窒素ガス導入管を備えたジャケット付きの50L反応缶に、アジピン酸15kg、次亜リン酸ナトリウム一水和物13gを仕込み、十分窒素置換し、さらに少量の窒素気流下にて180℃に昇温し、アジピン酸を均一に溶融させた後、系内を撹拌しつつ、これにメタキシリレンジアミン13.7kgを、170分を要して滴下した。この間、内温は連続的に245℃まで上昇させた。なお重縮合により生成する水は、分縮器および冷却器を通して系外に除いた。メタキシリレンジアミンの滴下終了後、内温をさらに260℃まで昇温し、1時間反応を継続した後、ポリマーを反応缶下部のノズルからストランドとして取り出し、水冷後ペレット化してポリマーを得た。次に、上記操作にて得たポリマーを100℃で48時間真空乾燥することにより乾燥及び結晶化したペレットを得た。得られたポリアミド1は、融点=238℃、末端カルボキシル基濃度=155.7μeq/g、末端アミノ基濃度=25.3μeq/g、数平均分子量=11050であった。
(4)ポリアミド2
攪拌機、分縮器、冷却器、温度計、滴下槽および窒素ガス導入管を備えたジャケット付きの50L反応缶に、アジピン酸15kg、次亜リン酸ナトリウム一水和物15gを仕込み、十分窒素置換し、さらに少量の窒素気流下にて180℃に昇温し、アジピン酸を均一に溶融させた後、系内を撹拌しつつ、これにメタキシリレンジアミン13.6kgを、170分を要して滴下した。この間、内温は連続的に245℃まで上昇させた。なお重縮合により生成する水は、分縮器および冷却器を通して系外に除いた。メタキシリレンジアミンの滴下終了後、内温をさらに260℃まで昇温し、1時間反応を継続した後、ポリマーを反応缶下部のノズルからストランドとして取り出し、水冷後ペレット化してポリマーを得た。次に、上記操作にて得たポリマーを100℃で48時間真空乾燥することにより乾燥及び結晶化したペレットを得た。得られたポリアミド2は、融点=238℃、末端カルボキシル基濃度=167.5μeq/g、末端アミノ基濃度=27.3μeq/g、数平均分子量=10250であった。
(5)ポリアミド3
攪拌機、分縮器、冷却器、温度計、滴下槽および窒素ガス導入管を備えたジャケット付きの50L反応缶に、アジピン酸15kg、次亜リン酸ナトリウム一水和物15gを仕込み、十分窒素置換し、さらに少量の窒素気流下にて180℃に昇温し、アジピン酸を均一に溶融させた後、系内を撹拌しつつ、これにメタキシリレンジアミン13.6kgを、170分を要して滴下した。この間、内温は連続的に245℃まで上昇させた。なお重縮合により生成する水は、分縮器および冷却器を通して系外に除いた。メタキシリレンジアミンの滴下終了後、内温をさらに260℃まで昇温し、1時間反応を継続した後、ポリマーを反応缶下部のノズルからストランドとして取り出し、水冷後ペレット化してポリマーを得た。次に、上記操作にて得たポリマーを100℃で48時間真空乾燥することにより乾燥及び結晶化したペレットを得た。得られたポリアミド3は、融点=238℃、末端カルボキシル基濃度=189.4μeq/g、末端アミノ基濃度=27.0μeq/g、数平均分子量=9200であった。
(6)ポリアミド4
攪拌機、分縮器、冷却器、温度計、滴下槽および窒素ガス導入管を備えたジャケット付きの50L反応缶に、アジピン酸15kg、次亜リン酸ナトリウム一水和物15gを仕込み、十分窒素置換し、さらに少量の窒素気流下にて180℃に昇温し、アジピン酸を均一に溶融させた後、系内を撹拌しつつ、これにメタキシリレンジアミン13.8kgを、170分を要して滴下した。この間、内温は連続的に245℃まで上昇させた。なお重縮合により生成する水は、分縮器および冷却器を通して系外に除いた。メタキシリレンジアミンの滴下終了後、内温をさらに260℃まで昇温し、1時間反応を継続した後、ポリマーを反応缶下部のノズルからストランドとして取り出し、水冷後ペレット化してポリマーを得た。次に、上記操作にて得たポリマーを100℃で48時間真空乾燥することにより乾燥及び結晶化したペレットを得た。得られたポリアミド1は、融点=238℃、末端カルボキシル基濃度=83.3μeq/g、末端アミノ基濃度=34.0μeq/g、数平均分子量=17050であった。
(7)ポリアミド5
攪拌機、分縮器、冷却器、温度計、滴下槽および窒素ガス導入管を備えたジャケット付きの50L反応缶に、アジピン酸15kg、次亜リン酸ナトリウム一水和物15gを仕込み、十分窒素置換し、さらに少量の窒素気流下にて180℃に昇温し、アジピン酸を均一に溶融させた後、系内を撹拌しつつ、これにメタキシリレンジアミン13.8kgを、170分を要して滴下した。この間、内温は連続的に245℃まで上昇させた。なお重縮合により生成する水は、分縮器および冷却器を通して系外に除いた。メタキシリレンジアミンの滴下終了後、内温をさらに260℃まで昇温し、1時間反応を継続した後、ポリマーを反応缶下部のノズルからストランドとして取り出し、水冷後ペレット化してポリマーを得た。
次に、上記の操作にて得たポリマーを加熱ジャケット、窒素ガス導入管、真空ラインを備えた50L回転式タンブラーに入れ、回転させつつ系内を減圧にした後、純度99容量%以上の窒素で常圧にする操作を3回行った。その後、窒素流通下にて系内を140℃まで昇温させた。次に系内を減圧にし、さらに190℃まで連続的に昇温し、190℃で30分保持した後、窒素を導入して系内を常圧に戻した後、冷却してポリアミド5を得た。得られたポリアミド5は、融点=238℃、末端カルボキシル基濃度=66.5μeq/g、末端アミノ基濃度=17.6μeq/g、数平均分子量=23800であった。
1. Materials The following materials were used in Examples and Comparative Examples.
(1) Polyester 1
Isovisic acid copolymerized PET resin (trade name: Polyshield 2400, intrinsic viscosity = 0.8 dl / g, melting point = 242 ° C., isophthalic acid 3.3 mol% copolymerization, amount of sodium 5-sulfonate in dicarboxylic acid component = 0.09 mol%). In use, a product dehydrated in a dehumidifying dryer at 150 ° C. for 6 hours was used.
(2) Polyester 2
Invista isophthalic acid copolymerized PET resin (trade name: Polyclear 1101E, intrinsic viscosity = 0.8 dl / g, melting point = 244 ° C., isophthalic acid 2.8 mol% copolymer, no sulfonic acid metal base) used. In use, a product dehydrated in a dehumidifying dryer at 150 ° C. for 6 hours was used.
(3) Polyamide 1
A 50-liter reactor equipped with a stirrer, a condenser, a cooler, a thermometer, a dripping tank, and a nitrogen gas introduction tube was charged with 15 kg of adipic acid and 13 g of sodium hypophosphite monohydrate, and sufficiently substituted with nitrogen. Then, the temperature was raised to 180 ° C. under a small amount of nitrogen stream, and adipic acid was uniformly melted. Then, 13.7 kg of metaxylylenediamine was required for 170 minutes while stirring the system. And dripped. During this time, the internal temperature was continuously raised to 245 ° C. Water generated by polycondensation was removed from the system through a condenser and a cooler. After completion of the dropwise addition of metaxylylenediamine, the internal temperature was further raised to 260 ° C., and the reaction was continued for 1 hour. Then, the polymer was taken out from the nozzle at the bottom of the reaction can as a strand, cooled with water, and pelletized. Next, the polymer obtained by the above operation was vacuum dried at 100 ° C. for 48 hours to obtain dried and crystallized pellets. Polyamide 1 thus obtained had a melting point = 238 ° C., a terminal carboxyl group concentration = 155.7 μeq / g, a terminal amino group concentration = 25.3 μeq / g, and a number average molecular weight = 11050.
(4) Polyamide 2
A 50-liter reactor equipped with a stirrer, a condenser, a cooler, a thermometer, a dripping tank, and a nitrogen gas introduction tube was charged with 15 kg of adipic acid and 15 g of sodium hypophosphite monohydrate, and sufficiently substituted with nitrogen Then, the temperature was raised to 180 ° C. under a small amount of nitrogen flow, and adipic acid was uniformly melted. Then, 13.6 kg of metaxylylenediamine was required for 170 minutes while stirring the system. And dripped. During this time, the internal temperature was continuously raised to 245 ° C. Water generated by polycondensation was removed from the system through a condenser and a cooler. After completion of the dropwise addition of metaxylylenediamine, the internal temperature was further raised to 260 ° C., and the reaction was continued for 1 hour. Then, the polymer was taken out from the nozzle at the bottom of the reaction can as a strand, cooled with water, and pelletized. Next, the polymer obtained by the above operation was vacuum dried at 100 ° C. for 48 hours to obtain dried and crystallized pellets. Polyamide 2 obtained had a melting point of 238 ° C., a terminal carboxyl group concentration of 167.5 μeq / g, a terminal amino group concentration of 27.3 μeq / g, and a number average molecular weight of 10250.
(5) Polyamide 3
A 50-liter reactor equipped with a stirrer, a condenser, a cooler, a thermometer, a dripping tank, and a nitrogen gas introduction tube was charged with 15 kg of adipic acid and 15 g of sodium hypophosphite monohydrate, and sufficiently substituted with nitrogen Then, the temperature was raised to 180 ° C. under a small amount of nitrogen flow, and adipic acid was uniformly melted. Then, 13.6 kg of metaxylylenediamine was required for 170 minutes while stirring the system. And dripped. During this time, the internal temperature was continuously raised to 245 ° C. Water generated by polycondensation was removed from the system through a condenser and a cooler. After completion of the dropwise addition of metaxylylenediamine, the internal temperature was further raised to 260 ° C., and the reaction was continued for 1 hour. Then, the polymer was taken out from the nozzle at the bottom of the reaction can as a strand, cooled with water, and pelletized. Next, the polymer obtained by the above operation was vacuum dried at 100 ° C. for 48 hours to obtain dried and crystallized pellets. Polyamide 3 obtained had a melting point = 238 ° C., a terminal carboxyl group concentration = 189.4 μeq / g, a terminal amino group concentration = 27.0 μeq / g, and a number average molecular weight = 9200.
(6) Polyamide 4
A 50-liter reactor equipped with a stirrer, a condenser, a cooler, a thermometer, a dripping tank, and a nitrogen gas introduction tube was charged with 15 kg of adipic acid and 15 g of sodium hypophosphite monohydrate, and sufficiently substituted with nitrogen Then, the temperature was raised to 180 ° C. under a small amount of nitrogen stream, and adipic acid was uniformly melted. Then, 13.8 kg of metaxylylenediamine was required for 170 minutes while stirring the system. And dripped. During this time, the internal temperature was continuously raised to 245 ° C. Water generated by polycondensation was removed from the system through a condenser and a cooler. After completion of the dropwise addition of metaxylylenediamine, the internal temperature was further raised to 260 ° C., and the reaction was continued for 1 hour. Then, the polymer was taken out from the nozzle at the bottom of the reaction can as a strand, cooled with water, and pelletized. Next, the polymer obtained by the above operation was vacuum dried at 100 ° C. for 48 hours to obtain dried and crystallized pellets. Polyamide 1 obtained had a melting point = 238 ° C, a terminal carboxyl group concentration = 83.3 µeq / g, a terminal amino group concentration = 34.0 µeq / g, and a number average molecular weight = 17050.
(7) Polyamide 5
A 50-liter reactor equipped with a stirrer, a condenser, a cooler, a thermometer, a dripping tank, and a nitrogen gas introduction tube was charged with 15 kg of adipic acid and 15 g of sodium hypophosphite monohydrate, and sufficiently substituted with nitrogen Then, the temperature was raised to 180 ° C. under a small amount of nitrogen stream, and adipic acid was uniformly melted. Then, 13.8 kg of metaxylylenediamine was required for 170 minutes while stirring the system. And dripped. During this time, the internal temperature was continuously raised to 245 ° C. Water generated by polycondensation was removed from the system through a condenser and a cooler. After completion of the dropwise addition of metaxylylenediamine, the internal temperature was further raised to 260 ° C., and the reaction was continued for 1 hour. Then, the polymer was taken out from the nozzle at the bottom of the reaction can as a strand, cooled with water, and pelletized.
Next, after putting the polymer obtained by the above operation into a 50 L rotary tumbler equipped with a heating jacket, a nitrogen gas introduction tube, and a vacuum line, the system was depressurized while rotating, and then nitrogen with a purity of 99% by volume or more was obtained. The operation to bring the pressure to normal was performed 3 times. Thereafter, the temperature inside the system was raised to 140 ° C. under a nitrogen flow. Next, the system was depressurized, and the temperature was continuously raised to 190 ° C., and maintained at 190 ° C. for 30 minutes. Then, nitrogen was introduced to return the system to normal pressure, followed by cooling to obtain polyamide 5. It was. Polyamide 5 obtained had a melting point of 238 ° C., a terminal carboxyl group concentration of 66.5 μeq / g, a terminal amino group concentration of 17.6 μeq / g, and a number average molecular weight of 23800.

2.分析方法及び測定方法
実施例及び比較例で使用したポリエステルやポリアミドの性状、および成形して得たポリエステル系容器の性状は以下の方法によって分析及び測定を行った。
(1)ポリアミドの末端基濃度
(a)末端アミノ基濃度([NH]μeq/g)
ポリアミド0.2〜0.5gを精秤し、フェノール/エタノール=4/1容量溶液30mlにポリアミドを撹拌下に溶解した。ポリアミドが完全に溶解した後、N/100塩酸で中和滴定して求めた。
(b)末端カルボキシル基濃度([COOH]μeq/g)
ポリアミド0.2〜0.5gを精秤し、ベンジルアルコール30mlに窒素気流下160〜180℃でポリアミドを撹拌下に溶解した。ポリアミドが完全に溶解した後、窒素気流下80℃まで冷却し、撹拌しながらメタノール10mlを加え、N/100水酸化ナトリウム水溶液で中和滴定して求めた。
(2)ポリアミドの数平均分子量
ポリアミドのアミノ基濃度([NH]μeq/g)とカルボキシル基濃度([COOH]μeq/g)から、次式(イ)により数平均分子量(Mn)を算出した。
Mn=2×10/([NH]+[COOH]) (イ)
(3)ポリエステル及びポリアミドの融点
島津製作所(株)製、DSC−60を用い、窒素気流下にて昇温速度10℃/minにて測定を行い、融解ピーク温度を融点とした。
(4)二軸延伸中空容器の酸素透過率測定
MOCON社製OX−TRAN2/61を使用し、容器内部湿度が100%RH、外湿度が50%RH、温度が23℃の条件にて酸素透過率(ml/(day・0.21atm))の測定を行った。
(5)二軸延伸中空容器のヘーズ測定
JIS K−7105に準じた。測定装置は、日本電色工業製の測定装置(COH−300)を使用した。
2. Analysis method and measurement method The properties of polyester and polyamide used in Examples and Comparative Examples, and the properties of polyester-based containers obtained by molding were analyzed and measured by the following methods.
(1) Polyamide terminal group concentration (a) Terminal amino group concentration ([NH 2 ] μeq / g)
0.2-0.5 g of polyamide was precisely weighed, and the polyamide was dissolved in 30 ml of phenol / ethanol = 4/1 volume solution with stirring. After the polyamide was completely dissolved, neutralization titration with N / 100 hydrochloric acid was performed.
(B) Terminal carboxyl group concentration ([COOH] μeq / g)
0.2 to 0.5 g of polyamide was precisely weighed, and polyamide was dissolved in 30 ml of benzyl alcohol at 160 to 180 ° C. under nitrogen flow with stirring. After the polyamide was completely dissolved, it was cooled to 80 ° C. under a nitrogen stream, 10 ml of methanol was added with stirring, and neutralization titration with an aqueous N / 100 sodium hydroxide solution was performed.
(2) Number average molecular weight of polyamide The number average molecular weight (Mn) is calculated from the amino group concentration ([NH 2 ] μeq / g) and the carboxyl group concentration ([COOH] μeq / g) of the polyamide by the following formula (A). did.
Mn = 2 × 10 6 / ([NH 2 ] + [COOH]) (A)
(3) Melting | fusing point of polyester and polyamide Using Shimadzu Corporation DSC-60, it measured with the temperature increase rate of 10 degree-C / min under nitrogen stream, and made melting peak temperature into melting | fusing point.
(4) Oxygen permeability measurement of biaxially stretched hollow container Using OX-TRAN 2/61 manufactured by MOCON, oxygen permeation was performed under the conditions of 100% RH inside, 50% RH outside, and 23 ° C. temperature. The rate (ml / (day · 0.21 atm)) was measured.
(5) Haze measurement of a biaxially stretched hollow container According to JIS K-7105. As a measuring device, a measuring device (COH-300) manufactured by Nippon Denshoku Industries Co., Ltd. was used.

3.二軸延伸中空容器の製造
ポリエステル樹脂(A)とポリアミド樹脂(B)を所定量計量後、タンブラーに入れ、10分間混合した。次いで、この混合物を射出成形装置((株)名機製作所製 M200PDM−MJ)により射出して長さ96mm、肉厚4.0mm、外形直径22.5mm、重量27gのパリソンを得た。射出条件は、背圧4.0MPa、スクリュー回転数150rpm、射出速度155cc/sec、樹脂温度275℃、金型温度15℃である。
このパリソンを、ブロー成形装置((株)フロンティア製EFB1000ET)により二軸延伸ブロー成形して、高さ223mm、胴径65mm、容量500ml、平均厚さ約300μmの二軸延伸中空容器を成形した。
3. Production of Biaxially Stretched Hollow Container A predetermined amount of polyester resin (A) and polyamide resin (B) were weighed and placed in a tumbler and mixed for 10 minutes. Subsequently, this mixture was injected with an injection molding apparatus (M200PDM-MJ, manufactured by Meiki Seisakusho Co., Ltd.) to obtain a parison having a length of 96 mm, a wall thickness of 4.0 mm, an outer diameter of 22.5 mm, and a weight of 27 g. The injection conditions are a back pressure of 4.0 MPa, a screw rotation speed of 150 rpm, an injection speed of 155 cc / sec, a resin temperature of 275 ° C., and a mold temperature of 15 ° C.
The parison was biaxially stretched and blow molded by a blow molding apparatus (EFB1000ET manufactured by Frontier Co., Ltd.) to form a biaxially stretched hollow container having a height of 223 mm, a body diameter of 65 mm, a capacity of 500 ml, and an average thickness of about 300 μm.

実施例1〜3、比較例1〜6
表1に示したポリエステル樹脂(A)とポリアミド樹脂(B)の組み合わせからなる二軸延伸中空容器を成形し、容器の酸素透過率測定、及び胴部のヘーズ測定を行った。容器材料組成及び各種評価結果を表1に示す。
Examples 1-3, Comparative Examples 1-6
A biaxially stretched hollow container composed of a combination of the polyester resin (A) and the polyamide resin (B) shown in Table 1 was molded, and the oxygen permeability measurement of the container and the haze measurement of the trunk were performed. Table 1 shows the container material composition and various evaluation results.

表1から明らかなように、本発明の構成要件を満足する実施例の二軸延伸中空容器は胴部ヘーズが5%未満と透明性が良好であり、酸素透過率も比較例1と比較して低いものであった。一方、比較例2〜6では容器胴部のヘーズが高く、透明性に劣るものであった。また比較例1はポリエステル単体であることから透明性は良好も、酸素透過率に劣るものであった。   As is clear from Table 1, the biaxially stretched hollow container of the example satisfying the constitutional requirements of the present invention has good transparency with a haze of less than 5%, and the oxygen permeability is also compared with Comparative Example 1. It was low. On the other hand, in Comparative Examples 2-6, the haze of the container trunk | drum was high and it was inferior to transparency. Moreover, since Comparative Example 1 was a polyester simple substance, the transparency was good but the oxygen permeability was poor.

Figure 2011132394
Figure 2011132394

Claims (3)

共重合ポリエステル樹脂(A)80〜99重量%と、メタキシリレンジアミン単位を70モル%以上含むジアミン単位と、炭素数4〜20のα,ω−直鎖脂肪族ジカルボン酸単位を70モル%以上含むジカルボン酸単位からなるポリアミド樹脂(B)1〜20重量(%)(重量%の合計は100重量%である)からなるポリエステル樹脂組成物(C)を成形した二軸延伸中空容器であって、共重合ポリエステル樹脂(A)が、ジカルボン酸構成単位の70モル%以上が芳香族ジカルボン酸単位からなり、ジオール構成単位の70モル%以上が脂肪族ジオール単位からなり、かつジカルボン酸構成単位の0.01〜5モル%がスルホン酸金属塩基を有し、ポリアミド樹脂(B)の数平均分子量が6000〜15000であることを特徴とする二軸延伸中空容器。 Copolyester resin (A) 80 to 99% by weight, diamine unit containing 70% by mole or more of metaxylylenediamine units, and 70% by mole of α, ω-linear aliphatic dicarboxylic acid unit having 4 to 20 carbon atoms This is a biaxially stretched hollow container formed from a polyester resin composition (C) comprising 1 to 20% by weight (%) of a polyamide resin (B) comprising the above-mentioned dicarboxylic acid units (total weight is 100% by weight). In the copolymer polyester resin (A), 70 mol% or more of the dicarboxylic acid structural unit is composed of an aromatic dicarboxylic acid unit, 70 mol% or more of the diol structural unit is composed of an aliphatic diol unit, and the dicarboxylic acid structural unit is 0.01-5 mol% of sulfonic acid metal base is included, and the number average molecular weight of the polyamide resin (B) is 6000-15000 Stretched hollow container. 前記芳香族ジカルボン酸がテレフタル酸であり、前記脂肪族ジオールがエチレングリコールである請求項1記載の二軸延伸中空容器。 The biaxially stretched hollow container according to claim 1, wherein the aromatic dicarboxylic acid is terephthalic acid and the aliphatic diol is ethylene glycol. 前記芳香族ジカルボン酸が、テレフタル酸90〜99モル%及びイソフタル酸1〜10モル%からなる請求項1記載の二軸延伸中空容器。 The biaxially stretched hollow container according to claim 1, wherein the aromatic dicarboxylic acid comprises 90 to 99 mol% terephthalic acid and 1 to 10 mol% isophthalic acid.
JP2009294050A 2009-12-25 2009-12-25 Biaxially stretched hollow container Pending JP2011132394A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009294050A JP2011132394A (en) 2009-12-25 2009-12-25 Biaxially stretched hollow container

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009294050A JP2011132394A (en) 2009-12-25 2009-12-25 Biaxially stretched hollow container

Publications (1)

Publication Number Publication Date
JP2011132394A true JP2011132394A (en) 2011-07-07

Family

ID=44345491

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009294050A Pending JP2011132394A (en) 2009-12-25 2009-12-25 Biaxially stretched hollow container

Country Status (1)

Country Link
JP (1) JP2011132394A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013154848A (en) * 2012-01-31 2013-08-15 Bridgestone Corp Tire
WO2013133352A1 (en) 2012-03-09 2013-09-12 三菱瓦斯化学株式会社 Polyester-based resin composition, method for producing same, and molding using resin composition
JP2014526439A (en) * 2011-08-29 2014-10-06 フューチャーフューエル ケミカル カンパニー 5-sulfoisophthalates and methods for producing them
WO2015098862A1 (en) * 2013-12-25 2015-07-02 三菱瓦斯化学株式会社 Polyester-based resin composition, and molded body using the resin composition
WO2017150109A1 (en) * 2016-02-29 2017-09-08 三菱瓦斯化学株式会社 Container for chlorine-based liquid bleaching agent composition, and bleaching agent article
WO2020250794A1 (en) * 2019-06-11 2020-12-17 三菱瓦斯化学株式会社 Container for chlorine-based liquid bleaching agent compositions, and bleaching agent article

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02135259A (en) * 1988-11-17 1990-05-24 Toyobo Co Ltd Blow molded article of polyester
JPH04366161A (en) * 1991-06-14 1992-12-18 Polyplastics Co Polyester resin composition
JP2002086471A (en) * 2000-09-19 2002-03-26 Toray Ind Inc Method for manufacturing polyester resin sheet
JP2002114892A (en) * 2000-10-06 2002-04-16 Mitsubishi Gas Chem Co Inc Polyester resin composition
JP2003527457A (en) * 1999-07-30 2003-09-16 イーストマン ケミカル カンパニー Polyester-polyamide blends with reduced gas permeability and low haze
WO2003102079A1 (en) * 2002-06-03 2003-12-11 Toyo Boseki Kabushiki Kaisha Polyester composition and packaging material comprising the same
JP2004285194A (en) * 2003-03-20 2004-10-14 Mitsubishi Gas Chem Co Inc Polyester resin composition and molded form
JP2009513768A (en) * 2005-10-25 2009-04-02 エンメ エ ジ・ポリメリ・イタリア・ソチエタ・ペル・アツィオーニ Improved dispersion of high carboxyl polyamide in polyester using interfacial tension reducing agent

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02135259A (en) * 1988-11-17 1990-05-24 Toyobo Co Ltd Blow molded article of polyester
JPH04366161A (en) * 1991-06-14 1992-12-18 Polyplastics Co Polyester resin composition
JP2003527457A (en) * 1999-07-30 2003-09-16 イーストマン ケミカル カンパニー Polyester-polyamide blends with reduced gas permeability and low haze
JP2002086471A (en) * 2000-09-19 2002-03-26 Toray Ind Inc Method for manufacturing polyester resin sheet
JP2002114892A (en) * 2000-10-06 2002-04-16 Mitsubishi Gas Chem Co Inc Polyester resin composition
WO2003102079A1 (en) * 2002-06-03 2003-12-11 Toyo Boseki Kabushiki Kaisha Polyester composition and packaging material comprising the same
JP2004285194A (en) * 2003-03-20 2004-10-14 Mitsubishi Gas Chem Co Inc Polyester resin composition and molded form
JP2009513768A (en) * 2005-10-25 2009-04-02 エンメ エ ジ・ポリメリ・イタリア・ソチエタ・ペル・アツィオーニ Improved dispersion of high carboxyl polyamide in polyester using interfacial tension reducing agent
JP2009513769A (en) * 2005-10-25 2009-04-02 エンメ エ ジ・ポリメリ・イタリア・ソチエタ・ペル・アツィオーニ Stable polyamide for simultaneous solid state polymerization of polyester and polyamide

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9212133B2 (en) 2011-08-29 2015-12-15 Futurefuel Chemical Company 5-sulfoisophthalic acid salts and process for the preparation thereof
JP2014526439A (en) * 2011-08-29 2014-10-06 フューチャーフューエル ケミカル カンパニー 5-sulfoisophthalates and methods for producing them
JP2013154848A (en) * 2012-01-31 2013-08-15 Bridgestone Corp Tire
WO2013133352A1 (en) 2012-03-09 2013-09-12 三菱瓦斯化学株式会社 Polyester-based resin composition, method for producing same, and molding using resin composition
KR20140135970A (en) 2012-03-09 2014-11-27 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 Polyester-based resin composition, method for producing same, and molding using resin composition
EP2824145A4 (en) * 2012-03-09 2015-10-21 Mitsubishi Gas Chemical Co POLYESTER RESIN COMPOSITION, PROCESS FOR PREPARING THE SAME, AND MOLDING USING THE RESIN COMPOSITION
KR20160103004A (en) * 2013-12-25 2016-08-31 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 Polyester-based resin composition, and molded body using the resin composition
JP5817949B1 (en) * 2013-12-25 2015-11-18 三菱瓦斯化学株式会社 POLYESTER RESIN COMPOSITION AND MOLDED BODY USING THE RESIN COMPOSITION
WO2015098862A1 (en) * 2013-12-25 2015-07-02 三菱瓦斯化学株式会社 Polyester-based resin composition, and molded body using the resin composition
US10066099B2 (en) 2013-12-25 2018-09-04 Mitsubishi Gas Chemical Company, Inc. Polyester-based resin composition, and molded body using the resin composition
KR102200506B1 (en) 2013-12-25 2021-01-08 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 Polyester-based resin composition, and molded body using the resin composition
WO2017150109A1 (en) * 2016-02-29 2017-09-08 三菱瓦斯化学株式会社 Container for chlorine-based liquid bleaching agent composition, and bleaching agent article
JPWO2017150109A1 (en) * 2016-02-29 2018-12-20 三菱瓦斯化学株式会社 Chlorine-based liquid bleach composition container and bleach article
WO2020250794A1 (en) * 2019-06-11 2020-12-17 三菱瓦斯化学株式会社 Container for chlorine-based liquid bleaching agent compositions, and bleaching agent article
JPWO2020250794A1 (en) * 2019-06-11 2020-12-17
CN113906101A (en) * 2019-06-11 2022-01-07 三菱瓦斯化学株式会社 Containers and bleach articles for chlorine-based liquid bleach compositions
EP3984913A4 (en) * 2019-06-11 2022-05-11 Mitsubishi Gas Chemical Company, Inc. CONTAINER FOR CHLORINE-BASED LIQUID BLEACH COMPOSITIONS AND BLEACH ARTICLE
JP7472907B2 (en) 2019-06-11 2024-04-23 三菱瓦斯化学株式会社 Container for chlorine-based liquid bleach composition and bleach article

Similar Documents

Publication Publication Date Title
EP1046674B1 (en) Polyester resin composition
JP6028343B2 (en) Polyester resin composition
JP6168261B1 (en) Multilayer container and method for producing the same, method for producing single-layer container, and method for producing recycled polyester resin
JP5609039B2 (en) Polyester container
JP2011132394A (en) Biaxially stretched hollow container
JP5867391B2 (en) Polyamide compound
JP5446571B2 (en) Polyester container
JP2004285194A (en) Polyester resin composition and molded form
JP5625312B2 (en) Multilayer bottle
JP2006176571A (en) Polyester packaging material
JP5585024B2 (en) Polyester container
US8597750B2 (en) Polyester resin composition, method for producing same and molded body
JP5564851B2 (en) Polyester container
JP5076565B2 (en) Biaxially stretched hollow container
JP5505289B2 (en) Polyester molding
WO2022039004A1 (en) Single-layer container, manufacturing method thereof, and recycled polyester manufacturing method
JP2002332397A (en) Polyester-based resin composition and molded body formed therefrom
WO2022039086A1 (en) Multi-layer container, method for producing same, and method for producing reclaimed polyester
JP5549046B2 (en) Polyester resin composition
JP2004210997A (en) Polyester composition and use of the same
JP2018053033A (en) Polyamide resin composition and multilayer molded body
JP2004002804A (en) Polyester composition and molded product composed thereof
JP2003327809A (en) Polyester resin composition and blow molded product composed of the same composition
JP2004155994A (en) Polyester composition and molding composed of the same
JP4710484B2 (en) Polyester composition and polyester packaging material comprising the same

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120119

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130724

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130820

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131210