[go: up one dir, main page]

JP2011129304A - Separator for nonaqueous secondary battery, and nonaqueous secondary battery - Google Patents

Separator for nonaqueous secondary battery, and nonaqueous secondary battery Download PDF

Info

Publication number
JP2011129304A
JP2011129304A JP2009285166A JP2009285166A JP2011129304A JP 2011129304 A JP2011129304 A JP 2011129304A JP 2009285166 A JP2009285166 A JP 2009285166A JP 2009285166 A JP2009285166 A JP 2009285166A JP 2011129304 A JP2011129304 A JP 2011129304A
Authority
JP
Japan
Prior art keywords
secondary battery
separator
aqueous secondary
heat
microporous membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009285166A
Other languages
Japanese (ja)
Inventor
Hiroki Sano
弘樹 佐野
Satoshi Nishikawa
聡 西川
Takashi Yoshitomi
孝 吉冨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP2009285166A priority Critical patent/JP2011129304A/en
Publication of JP2011129304A publication Critical patent/JP2011129304A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Separators (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a separator for a nonaqueous secondary battery having shutdown characteristics, heat resistance, and strength. <P>SOLUTION: In the separator for the nonaqueous secondary battery having a polyolefin micro-porous film and a heat-resistant porous layer formed by including a heat-resistant resin and laminated on one surface or both surfaces of the polyolefin micro-porous film, polyolefin included in the polyolefin micro-porous film includes high density polyethylene with weight-average molecular weight of 50,000-1,000,000, and the high density polyethylene is manufactured by using a chromium oxide catalyst. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、非水系二次電池用セパレータ及び非水系二次電池に関わるものであり、特に非水系二次電池等の安全性を向上させる技術に関するものである。   The present invention relates to a separator for a non-aqueous secondary battery and a non-aqueous secondary battery, and particularly relates to a technique for improving the safety of a non-aqueous secondary battery or the like.

正極にコバルト酸リチウムに代表されるリチウム含有遷移金属酸化物、負極にリチウムをドープ・脱ドープ可能な炭素材料を用いたリチウムイオン二次電池を代表とする非水系二次電池は、高エネルギー密度を有するという特徴から携帯電話に代表される携帯電子機器の電源として重要なものであり、これら携帯電子機器の急速な普及に伴いその需要は高まる一方である。   Non-aqueous secondary batteries such as lithium-ion secondary batteries, which use lithium-containing transition metal oxides typified by lithium cobaltate as the positive electrode and carbon materials that can be doped or dedoped with lithium as the negative electrode, have high energy density. It is important as a power source for portable electronic devices typified by mobile phones because of its characteristics, and demand for these portable electronic devices is increasing with the rapid spread of these portable electronic devices.

また、ハイブリッド自動車など、環境対応を意識した自動車が数多く開発されているが、搭載される電源の一つとして、高エネルギー密度を有するリチウムイオン二次電池が大きく注目されている。   In addition, many automobiles that are environmentally conscious, such as hybrid cars, have been developed, but lithium ion secondary batteries having a high energy density have attracted a great deal of attention as one of the power sources to be mounted.

リチウムイオン二次電池の多くは、正極、電解液を含むセパレータ、負極の積層体から構成されている。セパレータは、主たる機能として正極と負極の短絡防止を担っているが、要求特性として、リチウムイオンの移動度、強度、耐久性などがある。   Many lithium ion secondary batteries are composed of a laminate of a positive electrode, a separator containing an electrolytic solution, and a negative electrode. The separator is responsible for preventing a short circuit between the positive electrode and the negative electrode as a main function, but as required characteristics, there are mobility, strength, durability, and the like of lithium ions.

現在、リチウムイオン二次電池セパレータ用途に適するフィルムとして各種のポリオレフィン微多孔膜が数多く提案されている。ポリオレフィン微多孔膜中でもポリエチレン微多孔膜は、上述にある要求特性を満たし、かつ高温時の安全機能として、高温による孔の閉塞から電流を遮断する事による熱暴走防止機能、いわゆるシャットダウン機能を有している事もあり、リチウムイオン二次電池のセパレータとして幅広く使用されている。   At present, various polyolefin microporous membranes have been proposed as films suitable for lithium ion secondary battery separator applications. Among polyolefin microporous membranes, polyethylene microporous membranes meet the above-mentioned required characteristics, and have a function of preventing thermal runaway by shutting off current from hole blockage due to high temperatures, a so-called shutdown function, as a safety function at high temperatures. It is widely used as a separator for lithium ion secondary batteries.

しかしながら、温度上昇により微多孔膜の孔が閉塞されて電流が一旦遮断されても、電池温度が微多孔膜を構成するポリエチレンの融点を超えて、ポリエチレンの耐熱性の限界を超えると、微多孔膜自体が溶融してシャットダウン機能が失われる。その結果、電極間の短絡をきっかけとして電池の熱暴走がおこり、リチウムイオン二次電池を組み込んだ装置の破壊や、発火による事故発生などを招くおそれがある。このため、さらなる安全性確保のために、高温時でもシャットダウン機能を維持できるセパレータが求められている。   However, even if the pores of the microporous membrane are blocked due to the temperature rise and the current is interrupted once, if the battery temperature exceeds the melting point of polyethylene constituting the microporous membrane and exceeds the heat resistance limit of polyethylene, the microporous membrane The membrane itself melts and the shutdown function is lost. As a result, a short circuit between the electrodes causes a thermal runaway of the battery, which may cause destruction of a device incorporating the lithium ion secondary battery or occurrence of an accident due to ignition. For this reason, in order to ensure further safety, there is a demand for a separator that can maintain a shutdown function even at high temperatures.

そこで、従来、ポリエチレン微多孔膜の表面に、全芳香族ポリアミド等の耐熱性ポリマーからなる耐熱性多孔質層を被覆した非水系二次電池用セパレータが提案されている(例えば特許文献1,2参照)。特許文献1には、ポリエチレン微多孔膜の表面に全芳香族ポリアミドからなる耐熱性多孔質層を被覆したセパレータや、耐熱性多孔質層中にアルミナ等の無機微粒子を含ませて、シャットダウン機能に加えて耐熱性の向上を図った構成が示されている。特許文献2には、耐熱性多孔質層中に水酸化アルミニウム等の金属水酸化物粒子を含ませて、シャットダウン機能および耐熱性に加えて難燃性の向上を図った構成が示されている。これらの構成はいずれも、シャットダウン機能と耐熱性を両立させた点において、電池の安全性という観点において優れた効果が期待できる。   Thus, conventionally, a separator for a non-aqueous secondary battery in which the surface of a polyethylene microporous film is coated with a heat-resistant porous layer made of a heat-resistant polymer such as wholly aromatic polyamide has been proposed (for example, Patent Documents 1 and 2). reference). In Patent Document 1, a separator in which a heat-resistant porous layer made of wholly aromatic polyamide is coated on the surface of a polyethylene microporous membrane, or inorganic fine particles such as alumina in the heat-resistant porous layer is included to provide a shutdown function. In addition, a configuration for improving heat resistance is shown. Patent Document 2 discloses a configuration in which metal hydroxide particles such as aluminum hydroxide are included in the heat-resistant porous layer to improve the flame retardancy in addition to the shutdown function and heat resistance. . Any of these configurations can be expected to have an excellent effect in terms of battery safety in terms of both a shutdown function and heat resistance.

しかし、上記特許文献1,2記載の構成においては、非水系二次電池用セパレータはポリオレフィン微多孔膜を耐熱性多孔質層でコーティングする構造のため、ポリオレフィン微多孔膜の有するシャットダウン機能を抑制する傾向にある。そのため、ポリオレフィン微多孔膜に匹敵するシャットダウン機能を有するには、耐熱性多孔質層の空孔率を高める必要がある。その結果、耐熱性多孔質層自体の機械強度は低下する傾向にあるため、非水系二次電池用セパレータの機械強度はポリオレフィン微多孔膜が主に担うようになる。このため、セパレータ全体の機械強度を高めるためには、ポリオレフィン微多孔膜の機械強度をより高める事が望まれていた。   However, in the configurations described in Patent Documents 1 and 2 above, the separator for non-aqueous secondary batteries has a structure in which the polyolefin microporous membrane is coated with a heat-resistant porous layer, and thus the shutdown function of the polyolefin microporous membrane is suppressed. There is a tendency. Therefore, in order to have a shutdown function comparable to that of a polyolefin microporous membrane, it is necessary to increase the porosity of the heat resistant porous layer. As a result, since the mechanical strength of the heat-resistant porous layer itself tends to decrease, the mechanical strength of the non-aqueous secondary battery separator is mainly borne by the polyolefin microporous membrane. For this reason, in order to increase the mechanical strength of the entire separator, it has been desired to further increase the mechanical strength of the polyolefin microporous membrane.

国際公開第2008/062727号パンフレットInternational Publication No. 2008/062727 Pamphlet 国際公開第2008/156033号パンフレットInternational Publication No. 2008/156033 Pamphlet

本発明の目的は、シャットダウン特性を維持したまま耐熱性及び強度を同時に満足させる非水系二次電池用セパレータを提供することにある。   An object of the present invention is to provide a separator for a non-aqueous secondary battery that simultaneously satisfies heat resistance and strength while maintaining shutdown characteristics.

本発明者らは、シャットダウン特性、耐熱性及び強度を兼ね備えるべく鋭意検討を重ねた結果、ポリオレフィン微多孔膜に使用する高密度量ポリエチレンが特定の触媒によって製造されている事により可能である事を見出し、本発明に到達した。   As a result of intensive studies to combine shutdown characteristics, heat resistance and strength, the present inventors have found that high density polyethylene used for polyolefin microporous membranes can be produced by a specific catalyst. The headline, the present invention has been reached.

すなわち、本発明は、ポリオレフィン微多孔膜と、耐熱性樹脂を含んで形成され前記ポリオレフィン微多孔膜の片面又は両面に積層された耐熱性多孔質層と、を備えた非水系二次電池用セパレータであって、前記ポリオレフィン微多孔膜に含まれるポリオレフィンが、重量平均分子量5万〜100万の高密度ポリエチレンを含み、該高密度ポリエチレンが酸化クロム触媒により製造されたことを特徴とする非水系二次電池用セパレータである。   That is, the present invention provides a separator for a non-aqueous secondary battery comprising a polyolefin microporous membrane and a heat resistant porous layer formed by containing a heat resistant resin and laminated on one or both sides of the polyolefin microporous membrane. The polyolefin microporous membrane contains a high density polyethylene having a weight average molecular weight of 50,000 to 1,000,000, and the high density polyethylene is produced by a chromium oxide catalyst. This is a secondary battery separator.

また、ポリオレフィン微多孔膜と、耐熱性樹脂を含んで形成され前記ポリオレフィン微多孔膜の片面又は両面に積層された耐熱性多孔質層と、を備えた非水系二次電池用セパレータであって、前記ポリオレフィン微多孔膜に含まれるポリオレフィンが、重量平均分子量150万以上の超高分子量ポリエチレンと重量平均分子量5万〜100万の高密度ポリエチレンを含み、該高密度ポリエチレンが酸化クロム触媒により製造されたことを特徴とする非水系二次電池用セパレータである。
また、リチウムのドープ・脱ドープにより起電力を得る非水系二次電池であって、前記非水系二次電池用セパレータを用いたことを特徴とする非水系二次電池である。
Moreover, a separator for a non-aqueous secondary battery comprising a polyolefin microporous membrane and a heat resistant porous layer formed by including a heat resistant resin and laminated on one or both sides of the polyolefin microporous membrane, The polyolefin contained in the polyolefin microporous membrane includes ultra high molecular weight polyethylene having a weight average molecular weight of 1.5 million or more and high density polyethylene having a weight average molecular weight of 50,000 to 1,000,000, and the high density polyethylene was produced by a chromium oxide catalyst. This is a separator for a non-aqueous secondary battery.
Moreover, it is a non-aqueous secondary battery which obtains an electromotive force by doping and dedoping of lithium, wherein the non-aqueous secondary battery separator is used.

本発明では、シャットダウン特性、耐熱性、機械強度を兼ね備えた非水系二次電池用セパレータを提供することができる。本発明の非水系二次電池用セパレータによれば、非水系二次電池の安全性を向上させることができる。   In the present invention, a separator for a non-aqueous secondary battery having both shutdown characteristics, heat resistance, and mechanical strength can be provided. According to the separator for a non-aqueous secondary battery of the present invention, the safety of the non-aqueous secondary battery can be improved.

以下に、本発明の実施の形態について順次説明する。なお、これらの説明及び実施例は本発明を例示するものであり、本発明の範囲を制限するものではない。   Hereinafter, embodiments of the present invention will be sequentially described. In addition, these description and Examples illustrate this invention, and do not restrict | limit the scope of the present invention.

[非水二次電池用セパレータ]
本発明の非水二次電池用セパレータは、ポリオレフィン微多孔膜と、耐熱性樹脂を含んで形成され前記ポリオレフィン微多孔膜の片面又は両面に積層された耐熱性多孔質層と、を備えた非水系二次電池用セパレータであって、前記ポリオレフィン微多孔膜に含まれるポリオレフィンが、重量平均分子量5万〜100万の高密度ポリエチレンを含み、該高密度ポリエチレンが酸化クロム触媒により製造されたことを特徴とする。または、本発明の非水系二次電池用セパレータは、ポリオレフィン微多孔膜と、耐熱性樹脂を含んで形成され前記ポリオレフィン微多孔膜の片面又は両面に積層された耐熱性多孔質層と、を備えた非水系二次電池用セパレータであって、前記ポリオレフィン微多孔膜に含まれるポリオレフィンが、重量平均分子量150万以上の超高分子量ポリエチレンと重量平均分子量5万〜100万の高密度ポリエチレンを含み、該高密度ポリエチレンが酸化クロム触媒により製造されたことを特徴とする。
[Separator for non-aqueous secondary battery]
A separator for a non-aqueous secondary battery of the present invention includes a polyolefin microporous membrane, and a heat-resistant porous layer formed by including a heat-resistant resin and laminated on one or both surfaces of the polyolefin microporous membrane. A separator for an aqueous secondary battery, wherein the polyolefin contained in the polyolefin microporous membrane includes high-density polyethylene having a weight average molecular weight of 50,000 to 1,000,000, and the high-density polyethylene is produced by a chromium oxide catalyst. Features. Alternatively, the non-aqueous secondary battery separator of the present invention includes a polyolefin microporous membrane and a heat resistant porous layer formed by including a heat resistant resin and laminated on one or both sides of the polyolefin microporous membrane. A separator for a non-aqueous secondary battery, wherein the polyolefin contained in the polyolefin microporous membrane includes ultrahigh molecular weight polyethylene having a weight average molecular weight of 1.5 million or more and high density polyethylene having a weight average molecular weight of 50,000 to 1,000,000, The high-density polyethylene is produced with a chromium oxide catalyst.

このような本発明の非水系二次電池用セパレータによれば、基材となるポリオレフィン微多孔膜により優れたシャットダウン機能および機械強度が得られると共に、耐熱性多孔質層によりシャットダウン温度以上の温度においても、ポリオレフィン微多孔膜が保持されるため高温時の安全性を確保できる。従って、本発明のセパレータによれば、安全性に優れた非水系二次電池を得ることができる。   According to such a separator for a non-aqueous secondary battery of the present invention, an excellent shutdown function and mechanical strength can be obtained by the polyolefin microporous membrane as a base material, and at a temperature higher than the shutdown temperature by the heat-resistant porous layer. However, since the polyolefin microporous membrane is retained, safety at high temperatures can be secured. Therefore, according to the separator of the present invention, a non-aqueous secondary battery excellent in safety can be obtained.

本発明の非水系二次電池用セパレータは、全体の膜厚が30μm以下であることが好ましい。セパレータが30μmを超える場合、非水系二次電池のエネルギー密度が低下する傾向があり、好ましくない。   The separator for a non-aqueous secondary battery of the present invention preferably has a total film thickness of 30 μm or less. When a separator exceeds 30 micrometers, there exists a tendency for the energy density of a non-aqueous secondary battery to fall, and it is unpreferable.

本発明の非水系二次電池用セパレータの空孔率は30〜70%であることが好ましい。更に好ましくは、40%〜60%である。空孔率が30%を下回る場合、透過性が低下しリチウムイオンの移動度が低下する場合があるため、好ましくない。一方、空孔率が70%を越える場合、力学強度が不十分となりハンドリング性が低下する場合があるため、好ましくない。   The porosity of the nonaqueous secondary battery separator of the present invention is preferably 30 to 70%. More preferably, it is 40% to 60%. When the porosity is less than 30%, the permeability may decrease and the mobility of lithium ions may decrease, which is not preferable. On the other hand, when the porosity exceeds 70%, the mechanical strength is insufficient and the handling property may be deteriorated.

本発明の非水系二次電池用セパレータのガーレ値(JIS・P8117)は100〜500sec/100ccであることが好ましい。ガーレ値がこの範囲にある時、セパレータの機械強度と膜抵抗のバランスがとれたものとなる。100sec/100cc未満の場合、該セパレータの機械強度が低下する傾向にあり好ましくない。500sec/100ccを超える場合、該非水系二次電池用セパレータの膜抵抗が低下する傾向にあり、好ましくない。   The Gurley value (JIS P8117) of the separator for a non-aqueous secondary battery of the present invention is preferably 100 to 500 sec / 100 cc. When the Gurley value is in this range, the separator mechanical strength and the membrane resistance are balanced. If it is less than 100 sec / 100 cc, the mechanical strength of the separator tends to decrease, which is not preferable. When it exceeds 500 sec / 100 cc, the membrane resistance of the separator for non-aqueous secondary batteries tends to decrease, which is not preferable.

本発明の非水系二次電池用セパレータの膜抵抗は1.5〜10ohm・cmであることが好ましい。非水系二次電池用セパレータの膜抵抗は非水系二次電池の負荷特性に影響するため、小さい方が好ましい。 The membrane resistance of the non-aqueous secondary battery separator of the present invention is preferably 1.5 to 10 ohm · cm 2 . Since the membrane resistance of the non-aqueous secondary battery separator affects the load characteristics of the non-aqueous secondary battery, a smaller one is preferable.

本発明の非水系二次電池用セパレータの突刺強度は300〜1000gであることが好ましい。突刺強度が300g未満の場合、リチウムイオン電池を作成した場合、電極の凹凸や衝撃等でセパレータにピンホール等が発生し、リチウムイオン電池が短絡する可能性があり好ましくない。300gを超えているという事は、非水系二次電池用電池セパレータとして充分な強度を有する事を意味し、製造する際や、加工する際のハンドリング性及び耐久性が高い事を示す。   The puncture strength of the nonaqueous secondary battery separator of the present invention is preferably 300 to 1000 g. When the puncture strength is less than 300 g, when a lithium ion battery is produced, pinholes or the like may be generated in the separator due to unevenness or impact of the electrodes, and the lithium ion battery may be short-circuited. Being over 300 g means having sufficient strength as a battery separator for a non-aqueous secondary battery, and indicates that handling and durability at the time of manufacturing and processing are high.

本発明の非水系二次電池用セパレータの引張強度は10N以上であることが好ましい。10N未満の場合、リチウムイオン電池を作成する時にセパレータを捲回する際に、セパレータが破損する可能性が高くなる。10N以上という事は、非水系二次電池用電池セパレータとして充分な強度を有する事を意味し、製造する際や、加工する際のハンドリング性が高い事を示す。   The tensile strength of the nonaqueous secondary battery separator of the present invention is preferably 10 N or more. If it is less than 10N, the separator is likely to be damaged when the separator is wound when the lithium ion battery is produced. 10N or more means that it has sufficient strength as a battery separator for non-aqueous secondary batteries, and indicates that it is easy to handle and process.

本発明の非水系二次電池用セパレータのシャットダウン温度は130〜155℃であることが好ましい。本発明において、シャットダウン温度は、抵抗値が10ohm・cmとなった温度を差す。シャットダウン温度が130℃未満の場合、同時にポリオレフィン微多孔膜が完全溶融し短絡現象が発生するメルトダウンと呼ばれる現象が低温で発生する事になり、安全上好ましくない。また、シャットダウン温度が155℃より大きい場合、高温時の十分な安全機能が期待できず好ましくない。好ましくは135〜150℃である。なお、本発明の非水系二次電池用セパレータのシャットダウン温度と、これに用いたポリオレフィン微多孔膜単独でのシャットダウン温度との差は、0〜5℃であることが好ましい。 The shutdown temperature of the separator for a non-aqueous secondary battery of the present invention is preferably 130 to 155 ° C. In the present invention, the shutdown temperature is the temperature at which the resistance value becomes 10 3 ohm · cm 2 . When the shutdown temperature is less than 130 ° C., a phenomenon called meltdown, in which the polyolefin microporous film is completely melted and a short-circuit phenomenon occurs at the same time, is not preferable for safety. Moreover, when the shutdown temperature is higher than 155 ° C., a sufficient safety function at a high temperature cannot be expected, which is not preferable. Preferably it is 135-150 degreeC. In addition, it is preferable that the difference of the shutdown temperature of the separator for non-aqueous secondary batteries of this invention and the shutdown temperature of the polyolefin microporous film used for this is 0-5 degreeC.

本発明の非水系二次電池用セパレータの105℃における熱収縮率は0.5〜10%であることが好ましい。熱収縮率がこの範囲にある時、非水系二次電池用セパレータの形状安定性とシャットダウン特性のバランスがとれたものとなる。10%以上の場合、高温時の形状安定性が悪くなり、好ましくない。好ましくは0.5〜5%である。   The thermal contraction rate at 105 ° C. of the separator for a non-aqueous secondary battery of the present invention is preferably 0.5 to 10%. When the heat shrinkage rate is within this range, the shape stability and shutdown characteristics of the non-aqueous secondary battery separator are balanced. When it is 10% or more, the shape stability at high temperature is deteriorated, which is not preferable. Preferably it is 0.5 to 5%.

[ポリオレフィン微多孔膜]
本発明のポリオレフィン微多孔膜において、微多孔膜とは、内部に多数の微細孔を有し、これら微細孔が連結された構造となっており、一方の面から他方の面へと気体あるいは液体が通過可能となった膜を言う。
[Polyolefin microporous membrane]
In the polyolefin microporous membrane of the present invention, the microporous membrane has a structure in which a large number of micropores are connected to each other, and these micropores are connected to each other. Refers to a membrane that can pass through.

本発明におけるポリオレフィン微多孔膜の原料としては、重量平均分子量5万〜100万の高密度ポリエチレンを含んだポリオレフィン、あるいは、重量平均分子量150万以上の超高分子量ポリエチレンと重量平均分子量5万〜100万の高密度ポリエチレンを含んだポリオレフィンである必要がある。ここで、本発明で用いるポリオレフィン微多孔膜は、90重量%以上がポリオレフィンからなるものであればよく、10重量%以下の、電池特性に影響を与えない他の成分を含んでいても構わない。なお、高密度ポリエチレンの重量平均分子量が5万未満であると、メルトダウン温度が低くなり高温時に、非水系二次電池が熱暴走する可能性がある。また、高密度ポリエチレンの重量平均分子量が100万を超えると、シャットダウン温度が高くなり非水系二次電池の安全性が十分に確保できなくなるおそれがある。また、超高分子量ポリエチレンを含む構成の場合は、超高分子量ポリエチレンの重量平均分子量が150万未満であると、ポリオレフィン微多孔膜の引張強度等の機械強度が十分に得られないといった問題がある。   As a raw material of the polyolefin microporous membrane in the present invention, a polyolefin containing high-density polyethylene having a weight average molecular weight of 50,000 to 1,000,000, or an ultrahigh molecular weight polyethylene having a weight average molecular weight of 1,500,000 or more and a weight average molecular weight of 50,000 to 100 are used. It must be a polyolefin containing a million high density polyethylene. Here, the polyolefin microporous membrane used in the present invention may be composed of 90% by weight or more of polyolefin, and may contain other components of 10% by weight or less that do not affect battery characteristics. . If the weight average molecular weight of the high-density polyethylene is less than 50,000, the meltdown temperature is lowered and the nonaqueous secondary battery may run out of heat at a high temperature. Moreover, when the weight average molecular weight of high density polyethylene exceeds 1 million, shutdown temperature becomes high and there exists a possibility that the safety | security of a non-aqueous secondary battery cannot fully be ensured. Further, in the case of a configuration containing ultra high molecular weight polyethylene, if the weight average molecular weight of the ultra high molecular weight polyethylene is less than 1,500,000, there is a problem that sufficient mechanical strength such as tensile strength of the polyolefin microporous membrane cannot be obtained. .

本発明に用いるポリオレフィン微多孔膜の膜厚は、5〜25μmであることが好ましい。5μmを下回る場合、力学強度が不十分となりハンドリング性が低下する場合があるため、好ましくない。25μmを超える場合、非水系二次電池のエネルギー密度が低下し、十分な負荷特性を達成するのが困難になる場合があるため、好ましくない。   The film thickness of the polyolefin microporous membrane used in the present invention is preferably 5 to 25 μm. When the thickness is less than 5 μm, the mechanical strength is insufficient and the handling property may be lowered. When it exceeds 25 μm, the energy density of the non-aqueous secondary battery decreases, and it may be difficult to achieve sufficient load characteristics, which is not preferable.

本発明のポリオレフィン微多孔膜の空孔率は30〜60%であることが好ましい。更に好ましくは、40%〜60%である。空孔率が30%を下回る場合、透過性が低下しリチウムイオンの移動度が低下する場合があるため、好ましくない。一方、空孔率が60%を越える場合、力学強度が不十分となりハンドリング性が低下する場合があるため、好ましくない。   The porosity of the polyolefin microporous membrane of the present invention is preferably 30 to 60%. More preferably, it is 40% to 60%. When the porosity is less than 30%, the permeability may decrease and the mobility of lithium ions may decrease, which is not preferable. On the other hand, when the porosity exceeds 60%, the mechanical strength is insufficient and the handling property may be deteriorated.

本発明のポリオレフィン微多孔膜のガーレ値(JIS・P8117)は50〜500sec/100ccであることが好ましい。ガーレ値がこの範囲にある時、セパレータの機械強度と膜抵抗のバランスがとれたものとなる。50sec/100cc未満の場合、該セパレータの機械強度が低下する傾向にあり好ましくない。500sec/100ccを超える場合、ポリオレフィン微多孔膜の膜抵抗が低下する傾向にあり、好ましくない。   The Gurley value (JIS P8117) of the polyolefin microporous membrane of the present invention is preferably 50 to 500 sec / 100 cc. When the Gurley value is in this range, the separator mechanical strength and the membrane resistance are balanced. If it is less than 50 sec / 100 cc, the mechanical strength of the separator tends to decrease, which is not preferable. When it exceeds 500 sec / 100 cc, the membrane resistance of the polyolefin microporous membrane tends to decrease, which is not preferable.

本発明のポリオレフィン微多孔膜の膜抵抗は0.5〜5ohm・cmであることが好ましい。ポリオレフィン微多孔膜の膜抵抗は、これを加工して得た非水系二次電池用セパレータ及び非水系二次電池の負荷特性に影響するため、小さい方が好ましい。 The membrane resistance of the microporous polyolefin membrane of the present invention is preferably 0.5 to 5 ohm · cm 2 . Since the membrane resistance of the polyolefin microporous membrane affects the load characteristics of the non-aqueous secondary battery separator and non-aqueous secondary battery obtained by processing the polyolefin microporous membrane, a smaller one is preferable.

本発明のポリオレフィン微多孔膜の突刺強度は300g以上であることが好ましい。300gを下回る場合、非水系二次電池を作成した場合、電極の凹凸や衝撃等でセパレータにピンホール等が発生し、非水系二次電池が短絡する可能性が高くなる。300g以上という事は、電池セパレータとして充分な強度を有する事を意味し、製造する際や、加工する際のハンドリング性及び耐久性が高い事を示す。   The puncture strength of the polyolefin microporous membrane of the present invention is preferably 300 g or more. When it is less than 300 g, when a non-aqueous secondary battery is produced, pinholes or the like are generated in the separator due to the unevenness of the electrode or impact, and the possibility that the non-aqueous secondary battery is short-circuited increases. 300 g or more means having sufficient strength as a battery separator, and indicates that handling and durability at the time of manufacturing and processing are high.

本発明のポリオレフィン微多孔膜の引張強度は10N以上であることが好ましい。10Nを下回る場合、非水系二次電池を作成する時にセパレータを捲回する際に、セパレータが破損する可能性が高くなる。10N以上という事は、電池セパレータとして充分な強度を有する事を意味し、製造する際や、加工する際のハンドリング性が高い事を示す。   The tensile strength of the polyolefin microporous membrane of the present invention is preferably 10 N or more. When less than 10N, when winding a separator when producing a non-aqueous secondary battery, possibility that a separator will be damaged becomes high. 10N or more means having sufficient strength as a battery separator, and indicates high handling properties when manufacturing or processing.

本発明のポリオレフィン微多孔膜の105℃における熱収縮率は5〜25%以下であることが好ましい。熱収縮率がこの範囲にある時、ポリオレフィン微多孔膜を加工して得た非水系二次電池用セパレータの形状安定性とシャットダウン特性のバランスがとれたものとなる。熱収縮率が5%未満の場合、ポリオレフィンの流動性が悪い事を意味し、シャットダウン特性が低下し、好ましくない。熱収縮率が25%を越える場合、高温時の形状安定性が悪くなり、好ましくない。   The heat shrinkage ratio at 105 ° C. of the polyolefin microporous membrane of the present invention is preferably 5 to 25% or less. When the thermal shrinkage is in this range, the shape stability and shutdown characteristics of the separator for a non-aqueous secondary battery obtained by processing the polyolefin microporous membrane are balanced. When the heat shrinkage rate is less than 5%, it means that the polyolefin has poor fluidity, and the shutdown characteristics are lowered, which is not preferable. When the thermal shrinkage rate exceeds 25%, the shape stability at high temperature is deteriorated, which is not preferable.

[ポリオレフィンの重合触媒]
本発明では、高密度ポリエチレンあるいは超高分子量ポリエチレンの重合触媒として、酸化クロム触媒を使用する。
ここで、ポリオレフィン微多孔膜と耐熱性多孔質層を複合化する際、複合した非水系二次電池用セパレータの機械強度は主にポリオレフィン微多孔膜に担われる傾向にある。そのため、セパレータ全体の機械強度を高めるためにはポリオレフィン微多孔膜の機械強度を向上するのが好ましい。
[Polyolefin polymerization catalyst]
In the present invention, a chromium oxide catalyst is used as a polymerization catalyst for high-density polyethylene or ultrahigh molecular weight polyethylene.
Here, when the polyolefin microporous membrane and the heat-resistant porous layer are combined, the mechanical strength of the combined non-aqueous secondary battery separator tends to be mainly borne by the polyolefin microporous membrane. Therefore, in order to increase the mechanical strength of the entire separator, it is preferable to improve the mechanical strength of the polyolefin microporous membrane.

しかし、一般的にポリオレフィンの重合に主に使用されるチーグラー・ナッタ触媒は、高分子量で分子量分布が広く、結晶サイズの分布が広いポリオレフィンが得られる特徴がある。このため、これを用いて微多孔膜とした時、成形性に優れるものの、高い機械強度を得にくい傾向がある。   However, the Ziegler-Natta catalyst, which is generally used mainly for the polymerization of polyolefin, is characterized in that a polyolefin having a high molecular weight, a wide molecular weight distribution, and a wide crystal size distribution can be obtained. For this reason, when it is used as a microporous film, although it is excellent in moldability, it tends to be difficult to obtain high mechanical strength.

一方、酸化クロム触媒は、比較的低分子量で分子量分布が広く、結晶サイズがそろっているポリオレフィンが得られる特徴がある。このため、これを用いて微多孔膜とした時、機械強度に優れた微多孔膜を得ることができる。また、分子量分布が比較的低い事から、耐熱性多孔質層と組合わせても、シャットダウン特性を比較的低温で発現する事ができる。   On the other hand, the chromium oxide catalyst is characterized in that a polyolefin having a relatively low molecular weight, a wide molecular weight distribution, and a uniform crystal size can be obtained. For this reason, when it is used as a microporous membrane, a microporous membrane excellent in mechanical strength can be obtained. In addition, since the molecular weight distribution is relatively low, the shutdown characteristics can be exhibited at a relatively low temperature even in combination with the heat-resistant porous layer.

本発明において、重合に用いる酸化クロム触媒は特に限定は無いが、具体的には例えばシリカ、アルミナ等の担体に、クロム化合物(例えばクロムの酸化物、ハロゲン化物、オキシハロゲン化物、リン酸塩、硫酸塩、シュウ酸塩、アルコラート、有機化合物等)を、例えば含浸、蒸留、昇華等の種々の方法によって担持させ、その後焼成することによって容易に調製することができる。好ましいクロム化合物としては、酸化クロム(IV)、酢酸クロム(III)、硝酸クロム(III)、アセトン酸クロム(III)、硫酸クロム(III)、塩化クロム(III)、塩化クロミル、クロム酸カリウム、クロム酸アンモニウム、重クロム酸カリウム、トリス(2−エチルヘキサノエート)クロム、クロムアセチルアセトネート、ビス(1,1−ジメチルエチル)クロメート、ブチルクロメート等が挙げられ、中でも酸化クロム(IV)、硝酸クロム(III)、酢酸クロム(III)、クロムアセチルアセトネートが特に好ましい。   In the present invention, the chromium oxide catalyst used for the polymerization is not particularly limited. Specifically, for example, a chromium compound (for example, chromium oxide, halide, oxyhalide, phosphate, Sulfates, oxalates, alcoholates, organic compounds, etc.) can be easily prepared by, for example, supporting them by various methods such as impregnation, distillation, sublimation and the like, followed by calcination. Preferred chromium compounds include chromium (IV) oxide, chromium (III) acetate, chromium (III) nitrate, chromium (III) acetoneate, chromium (III) sulfate, chromium (III) chloride, chromyl chloride, potassium chromate, Ammonium chromate, potassium dichromate, tris (2-ethylhexanoate) chromium, chromium acetylacetonate, bis (1,1-dimethylethyl) chromate, butylchromate, etc., among others, chromium (IV) oxide, Particularly preferred are chromium (III) nitrate, chromium (III) acetate, and chromium acetylacetonate.

[ポリオレフィン微多孔膜の製造法]
以下本発明で用いられるポリオレフィン微多孔膜の好ましい製造法について述べる。
本発明のポリオレフィン微多孔膜の製造法に、特に制限は無いが、具体的には下記(1)〜(6)の工程を経て製造できる。
[Polyolefin microporous membrane production method]
Hereinafter, a preferred method for producing a polyolefin microporous membrane used in the present invention will be described.
Although there is no restriction | limiting in particular in the manufacturing method of the polyolefin microporous film of this invention, Specifically, it can manufacture through the process of following (1)-(6).

(1)ポリオレフィン溶液の調整
ポリオレフィンをパラフィン、流動パラフィン、パラフィン油、鉱油、ひまし油、テトラリン、エチレングリコール、グリセリン、デカリン、トルエン、キシレン、ジエチレントリアミン、エチルジアミン、ジメチルスルホキシド、ヘキサン等の溶剤に溶解させた溶液を調整する。この時、溶剤を混合して溶液を作成しても構わない。ポリオレフィン溶液の濃度は1〜40重量%が好ましく、より好ましくは10〜35重量%である。ポリオレフィン溶液の濃度が1重量%未満では、冷却ゲル化して得られるゲル状成形物が溶媒で高度に膨潤されるため変形し易く、取扱いに支障をきたす場合がある。一方、40重量%を越えると押し出しの際の圧力が高くなるため吐出量が低くなり生産性が上げられない場合がある。また、押し出し工程での配向が進み、延伸性や均一性が確保できなくなる場合がある。
(1) Preparation of polyolefin solution Polyolefin was dissolved in a solvent such as paraffin, liquid paraffin, paraffin oil, mineral oil, castor oil, tetralin, ethylene glycol, glycerin, decalin, toluene, xylene, diethylenetriamine, ethyldiamine, dimethylsulfoxide, hexane, etc. Adjust the solution. At this time, a solution may be prepared by mixing solvents. The concentration of the polyolefin solution is preferably 1 to 40% by weight, more preferably 10 to 35% by weight. When the concentration of the polyolefin solution is less than 1% by weight, the gel-like molded product obtained by cooling and gelation is highly swollen with a solvent, so that it is easily deformed, which may hinder handling. On the other hand, if it exceeds 40% by weight, the pressure at the time of extrusion becomes high, so the discharge amount becomes low and the productivity may not be improved. Moreover, the orientation in the extrusion process proceeds, and stretchability and uniformity may not be ensured.

(2)ポリオレフィン溶液の押出
調整した溶液を一軸押出機、もしくは二軸押出機で混練し、融点以上かつ融点+60℃以下の温度でTダイもしくはIダイで押し出す。好ましくは二軸押出機を用いる。そして、押し出した溶液をチルロールまたは冷却浴に通過させてゲル状組成物を形成する。この際、ゲル化温度以下に急冷しゲル化することが好ましい。
(2) Extrusion of polyolefin solution The adjusted solution is kneaded with a single screw extruder or a twin screw extruder, and extruded with a T die or an I die at a temperature not lower than the melting point and not higher than the melting point + 60 ° C. A twin screw extruder is preferably used. Then, the extruded solution is passed through a chill roll or a cooling bath to form a gel composition. At this time, it is preferable to rapidly cool below the gelation temperature to cause gelation.

(3)ゲル状組成物の乾燥
延伸温度で揮発する溶剤を使用する場合、ゲル状組成物を乾燥する。
(3) Drying of gel-like composition When using the solvent which volatilizes at extending | stretching temperature, a gel-like composition is dried.

(4)ゲル状組成物の延伸
ゲル状組成物を延伸する。ここで、延伸処理の前に弛緩処理を行っても良い。延伸処理は、ゲル状成形物を加熱し、通常のテンター法、ロール法、圧延法もしくはこれらの方法の組合せによって所定の倍率で2軸延伸する。2軸延伸は、同時または逐次のどちらであってもよい。また縦多段延伸や3、4段延伸とすることもできる。
延伸温度は、90℃〜ポリオレフィンの融点未満であることが好ましく、さらに好ましくは100〜120℃である。加熱温度がポリオレフィンの融点を越える場合は、ゲル状成形物が溶解するために延伸できない場合がある。又、加熱温度が90℃未満の場合は、ゲル状成形物の軟化が不十分で延伸において破膜し易く高倍率の延伸が困難となる場合がある。
また、延伸倍率は、原反の厚さによって異なるが、1軸方向で少なくとも2倍以上、好ましくは4〜20倍で行う。
延伸後、必要に応じて熱固定を行い熱寸法安定性を持たせる。
(4) Stretching of the gel composition The gel composition is stretched. Here, a relaxation treatment may be performed before the stretching treatment. In the stretching treatment, the gel-like molded product is heated and biaxially stretched at a predetermined magnification by a normal tenter method, roll method, rolling method, or a combination of these methods. Biaxial stretching may be simultaneous or sequential. Moreover, it can also be set as longitudinal multistage extending | stretching, 3 or 4 steps | stretching.
The stretching temperature is preferably 90 ° C. to less than the melting point of the polyolefin, more preferably 100 to 120 ° C. When the heating temperature exceeds the melting point of the polyolefin, the gel-like molded product is dissolved and may not be stretched. On the other hand, when the heating temperature is less than 90 ° C., the gel-like molded product is not sufficiently softened, and the film is likely to be broken during stretching, making it difficult to stretch at a high magnification.
Moreover, although a draw ratio changes with thickness of an original fabric, it carries out by at least 2 times or more in a uniaxial direction, Preferably it is 4-20 times.
After stretching, heat setting is performed as necessary to provide thermal dimensional stability.

(5)溶剤の抽出・除去
延伸後のゲル状組成物を抽出溶剤に浸漬して、溶媒を抽出する。抽出溶剤としてはペンタン、ヘキサン、ヘプタン、シクロヘキサン、デカリン、テトラリンなどの炭化水素、塩化メチレン、四塩化炭素、メチレンクロライドなどの塩素化炭化水素、三フッ化エタンなどのフッ化炭化水素、ジエチルエーテル、ジオキサン等のエーテル類など易揮発性のものを用いることができる。これらの溶剤はポリオレフィン組成物の溶解に用いた溶媒に応じて適宜選択し、単独もしくは混合して用いることができる。溶媒の抽出は、微多孔膜中の溶媒を1重量%未満に迄除去する。
(5) Extraction and removal of solvent The stretched gel composition is immersed in an extraction solvent to extract the solvent. Extraction solvents include hydrocarbons such as pentane, hexane, heptane, cyclohexane, decalin and tetralin, chlorinated hydrocarbons such as methylene chloride, carbon tetrachloride and methylene chloride, fluorinated hydrocarbons such as ethane trifluoride, diethyl ether, Easily volatile substances such as ethers such as dioxane can be used. These solvents are appropriately selected according to the solvent used for dissolving the polyolefin composition, and can be used alone or in combination. Solvent extraction removes the solvent in the microporous membrane to less than 1% by weight.

(6)微多孔膜のアニール
微多孔膜をアニールにより熱セットする。アニールは80〜150℃で実施することが好ましい。
(6) Annealing of microporous film The microporous film is heat-set by annealing. The annealing is preferably performed at 80 to 150 ° C.

[耐熱性多孔質層]
本発明において、耐熱性多孔質層としては、微多孔膜状、不織布状、紙状、その他三次元ネットーワーク状の多孔質構造を有した層を挙げることができるが、より優れた耐熱性が得られる点で、微多孔膜状の層であることが好ましい。ここで、微多孔膜状の層とは、内部に多数の微細孔を有し、これら微細孔が連結された構造となっており、一方の面から他方の面へと気体あるいは液体が通過可能となった層のことを言う。
[Heat-resistant porous layer]
In the present invention, examples of the heat-resistant porous layer include microporous film-like, non-woven fabric, paper-like, and other layers having a three-dimensional network-like porous structure. From the viewpoint of being obtained, the layer is preferably a microporous film. Here, the microporous film-like layer has a large number of micropores inside, and has a structure in which these micropores are connected. Gas or liquid can pass from one surface to the other. It says the layer that became.

本発明で用いられる耐熱性樹脂は、融点200℃以上のポリマーあるいは融点を有しないが分解温度が200℃以上のポリマーが適当であり、好ましくは、全芳香族ポリアミド、ポリイミド、ポリアミドイミド、ポリスルホン、ポリケトン、ポリエーテルケトン、ポリエーテルイミドおよびセルロースからなる群から選ばれる少なくとも1種の樹脂である。特に、耐久性の観点から全芳香族ポリアミドが好適であり、多孔質層を形成しやすく耐酸化還元性に優れるという観点から、メタ型全芳香族ポリアミドであるポリメタフェニレンイソフタルアミドがさらに好適である。   As the heat-resistant resin used in the present invention, a polymer having a melting point of 200 ° C. or higher or a polymer having no melting point but having a decomposition temperature of 200 ° C. or higher is suitable, preferably a wholly aromatic polyamide, polyimide, polyamideimide, polysulfone, It is at least one resin selected from the group consisting of polyketone, polyetherketone, polyetherimide and cellulose. In particular, wholly aromatic polyamides are preferable from the viewpoint of durability, and polymetaphenylene isophthalamide, which is a meta-type wholly aromatic polyamide, is more preferable from the viewpoint of easy formation of a porous layer and excellent redox resistance. is there.

本発明において、耐熱性多孔質層はポリオレフィン微多孔膜の両面または片面に形成すればよいが、ハンドリング性、耐久性および熱収縮の抑制効果の観点から、ポリオレフィン微多孔膜の表裏両面に形成した方が好ましい。なお、耐熱性多孔質層をポリオレフィン微多孔膜上に固定するためには、耐熱性多孔質層を塗工法によりポリオレフィン微多孔膜上に直接形成する手法が好ましいが、これに限らず、別途製造した耐熱性多孔質層のシートをポリオレフィン微多孔膜上に接着剤等を用いて接着する手法や、熱融着や圧着などの手法も採用することができる。   In the present invention, the heat-resistant porous layer may be formed on both sides or one side of the polyolefin microporous membrane, but it is formed on both sides of the polyolefin microporous membrane from the viewpoint of handling properties, durability and the effect of suppressing heat shrinkage. Is preferred. In order to fix the heat-resistant porous layer on the polyolefin microporous membrane, a method in which the heat-resistant porous layer is directly formed on the polyolefin microporous membrane by a coating method is preferable. A technique of adhering the heat-resistant porous layer sheet to the polyolefin microporous film using an adhesive or the like, or a technique such as heat fusion or pressure bonding can also be employed.

本発明において、耐熱性多孔質層の厚みについては、耐熱性多孔質層がポリオレフィン微多孔膜の両面に形成されている場合は、耐熱性多孔質層の厚みの合計が3μm以上12μm以下であることが好ましく、耐熱性多孔質層がポリオレフィン微多孔膜の片面にのみ形成されている場合は耐熱性多孔質層の厚みが3μm以上12μm以下であることが好ましい。耐熱性多孔質層の空孔率は60〜90%の範囲が好適である。   In the present invention, regarding the thickness of the heat resistant porous layer, when the heat resistant porous layer is formed on both surfaces of the polyolefin microporous membrane, the total thickness of the heat resistant porous layer is 3 μm or more and 12 μm or less. In the case where the heat resistant porous layer is formed only on one side of the polyolefin microporous membrane, the thickness of the heat resistant porous layer is preferably 3 μm or more and 12 μm or less. The porosity of the heat resistant porous layer is preferably in the range of 60 to 90%.

[無機フィラー]
本発明において、耐熱性多孔質層には無機フィラーが含まれていることが好ましい。この場合、耐熱性多孔質層中の無機フィラーは、耐熱性多孔質層が微多孔膜状である場合は耐熱性樹脂に捕捉された状態で存在しており、耐熱性多孔質層が不織布等の場合は構成繊維中に存在するか、樹脂などのバインダーにより不織布表面等に固定されていればよい。
[Inorganic filler]
In the present invention, the heat resistant porous layer preferably contains an inorganic filler. In this case, the inorganic filler in the heat resistant porous layer is present in a state of being captured by the heat resistant resin when the heat resistant porous layer is in the form of a microporous film, and the heat resistant porous layer is a nonwoven fabric or the like. In this case, it may be present in the constituent fibers or fixed to the surface of the nonwoven fabric with a binder such as a resin.

本発明における無機フィラーとしては、特に限定されるものではないが、例えば金属水酸化物、金属酸化物、金属窒化物、炭酸塩、硫酸塩、粘土鉱物、もしくは、これらの二種以上を組合せたもの等を好適に用いることができる。金属水酸化物の具体例としては、水酸化アルミニウム、水酸化マグネシウム、水酸化カルシウム、水酸化クロム、水酸化ジルコニウム、水酸化ニッケル、水酸化ホウ素、ベーマイト等が挙げられる。金属酸化物の具体例としては、酸化アルミニウム、酸化チタン、酸化亜鉛、酸化珪素、 酸化イットリウム、酸化セリウム、酸化錫、酸化鉄等が挙げられる。金属窒化物の具体例としては、窒化アルミニウム、窒化ホウ素、窒化チタニウム等が挙げられる。炭酸塩の具体例としては、炭酸カルシウム、炭酸マグネシウム、炭酸バリウム等が挙げられる。硫酸塩の具体例としては、硫酸バリウム、硫酸カルシウム等が上げられる。粘土鉱物の具体例としては、ケイ酸カルシウム、タルク、マイカ、モンモリロナイト、ハイドロタルサイト、ベントナイト、ゼオライト、セピオライト、カオリン、ヘクトライト、サポナイト、スチブンサイト、バイデライト等が挙げられる。   The inorganic filler in the present invention is not particularly limited, but for example, metal hydroxide, metal oxide, metal nitride, carbonate, sulfate, clay mineral, or a combination of two or more of these. A thing etc. can be used conveniently. Specific examples of the metal hydroxide include aluminum hydroxide, magnesium hydroxide, calcium hydroxide, chromium hydroxide, zirconium hydroxide, nickel hydroxide, boron hydroxide, boehmite and the like. Specific examples of the metal oxide include aluminum oxide, titanium oxide, zinc oxide, silicon oxide, yttrium oxide, cerium oxide, tin oxide, and iron oxide. Specific examples of the metal nitride include aluminum nitride, boron nitride, and titanium nitride. Specific examples of the carbonate include calcium carbonate, magnesium carbonate, barium carbonate and the like. Specific examples of the sulfate include barium sulfate and calcium sulfate. Specific examples of the clay mineral include calcium silicate, talc, mica, montmorillonite, hydrotalcite, bentonite, zeolite, sepiolite, kaolin, hectorite, saponite, stevensite, beidellite and the like.

本発明における無機フィラーとしては、上述した無機フィラーの中でも200〜400℃において吸熱反応を生じるものが、電池に難燃性を付与できる点で好ましい。このような無機フィラーとしては、金属水酸化物、硼素塩化合物または粘土鉱物等からなる無機フィラーであって、200〜400℃において吸熱反応を生じるものが挙げられる。具体的には、例えば、水酸化アルミニウムや水酸化マグネシウム、アルミン酸カルシウム、ドーソナイト、硼酸亜鉛等が挙げられ、これらは単独若しくは2種以上を組合せて用いることができる。また、これらの難燃性の無機フィラーには、アルミナやジルコニア、シリカ、マグネシア、チタニア等の金属酸化物、金属窒化物、金属炭化物、金属炭酸塩などの他の無機フィラーを適宜混合して用いることもできる。   As the inorganic filler in the present invention, among the above-mentioned inorganic fillers, those that cause an endothermic reaction at 200 to 400 ° C. are preferable in that they can impart flame retardancy to the battery. Examples of such inorganic fillers include inorganic fillers made of metal hydroxides, boron salt compounds, clay minerals, and the like, which cause an endothermic reaction at 200 to 400 ° C. Specific examples include aluminum hydroxide, magnesium hydroxide, calcium aluminate, dosonite, zinc borate and the like, and these can be used alone or in combination of two or more. In addition, these flame retardant inorganic fillers are appropriately mixed with other inorganic fillers such as metal oxides such as alumina, zirconia, silica, magnesia, and titania, metal nitrides, metal carbides, and metal carbonates. You can also.

ここで、非水系二次電池では、正極の分解に伴う発熱が最も危険と考えられており、この分解は300℃近傍で起こる。このため、吸熱反応の発生温度が200℃〜400℃の範囲であれば、非水系二次電池の発熱を防ぐ上で有効である。なお、200℃以上においては、負極はほぼ活性を失っているので、金属水酸化物から発生した水と反応して発熱を引き起こすことはなく安全である。また、無機フィラーの吸熱反応温度が400℃を超える場合、非水系二次電池の発熱を好適に防止できないおそれがあるため好ましくない。例えば、水酸化アルミニウムやドーソナイト、アルミン酸カルシウムは200〜300℃の範囲において脱水反応が起こり、また、水酸化マグネシウムや硼酸亜鉛は300〜400℃の範囲において脱水反応が起こるため、これらの無機フィラーのうち少なくともいずれか一種を用いることが好ましい。   Here, in the non-aqueous secondary battery, heat generation accompanying the decomposition of the positive electrode is considered to be the most dangerous, and this decomposition occurs in the vicinity of 300 ° C. For this reason, if the generation | occurrence | production temperature of endothermic reaction is the range of 200 to 400 degreeC, it is effective in preventing the heat_generation | fever of a non-aqueous secondary battery. It should be noted that at 200 ° C. or higher, since the negative electrode almost loses its activity, it does not react with water generated from the metal hydroxide to cause heat generation and is safe. Moreover, when the endothermic reaction temperature of an inorganic filler exceeds 400 degreeC, since there exists a possibility that the heat_generation | fever of a non-aqueous secondary battery cannot be prevented suitably, it is unpreferable. For example, aluminum hydroxide, dawsonite, and calcium aluminate undergo a dehydration reaction in the range of 200 to 300 ° C, and magnesium hydroxide and zinc borate undergo a dehydration reaction in the range of 300 to 400 ° C. It is preferable to use at least one of them.

特に本発明では、無機フィラーは金属水酸化物からなることが好ましい。金属水酸化物は、加熱により大きな吸熱を伴う脱水反応が起こるため、水の放出と吸熱の双方による難燃性の向上効果が得られる。水の放出は、可燃性の電解液を希釈して、電池そのものも難燃化する上で有効である。また、金属水酸化物はアルミナ等のような金属酸化物と比較して軟らかい材料であるため、セパレータに含まれる無機フィラーによって製造時の各工程で使用する部品が磨耗してしまうといったハンドリング上の問題が発生しない。また、耐熱性多孔質層に水酸化アルミニウムや水酸化マグネシウム等の金属水酸化物を添加した場合は、帯電した電荷の減衰が速くなるため、帯電を低いレベルに保つことが可能となり、ハンドリング性が改善される。さらに、水酸化アルミニウムや水酸化マグネシウムはフッ酸を吸着・共沈させる機能があるため、電解液中のフッ酸濃度を低いレベルに維持することが可能であり、非水系二次電池の耐久性を改善することが可能となる。よって、無機フィラーは金属水酸化物であることが好ましく、中でも水酸化アルミニウムまたは水酸化マグネシウムであることが好ましい。   In particular, in the present invention, the inorganic filler is preferably made of a metal hydroxide. Since the metal hydroxide undergoes a dehydration reaction accompanied by a large endotherm by heating, an effect of improving flame retardancy due to both the release of water and endotherm can be obtained. The release of water is effective in diluting the flammable electrolyte and making the battery itself incombustible. In addition, since metal hydroxide is a softer material than metal oxides such as alumina, the parts used in each process at the time of manufacturing are worn by the inorganic filler contained in the separator. There is no problem. In addition, when a metal hydroxide such as aluminum hydroxide or magnesium hydroxide is added to the heat-resistant porous layer, the charged charge decays quickly, so that the charge can be kept at a low level and handling properties are improved. Is improved. Furthermore, aluminum hydroxide and magnesium hydroxide have the function of adsorbing and co-precipitating hydrofluoric acid, so it is possible to maintain the hydrofluoric acid concentration in the electrolyte at a low level, and the durability of non-aqueous secondary batteries Can be improved. Therefore, the inorganic filler is preferably a metal hydroxide, and particularly preferably aluminum hydroxide or magnesium hydroxide.

本発明において、無機フィラーの平均粒子径は0.1〜2μmの範囲が好ましい。無機フィラーの平均粒子径が2μmを超えると、耐熱性多孔質層の高温時の耐短絡性が低下するため好ましくない。さらに、耐熱性多孔質層を適切な厚みで成形する上で支障をきたすといった不具合もある。また、無機フィラーの平均粒子径が0.1μm未満であると、塗膜強度が低下し粉落ちの課題が生じるだけでなく、このように小さいものを用いることはコスト上の観点から実質的に困難である。   In the present invention, the average particle size of the inorganic filler is preferably in the range of 0.1 to 2 μm. When the average particle diameter of the inorganic filler exceeds 2 μm, the short circuit resistance at high temperature of the heat resistant porous layer is lowered, which is not preferable. Further, there is a problem that it hinders the formation of the heat-resistant porous layer with an appropriate thickness. In addition, when the average particle size of the inorganic filler is less than 0.1 μm, not only does the coating film strength decrease and the problem of powder falling occurs, but using such a small one is substantially from the viewpoint of cost. Have difficulty.

本発明において、耐熱性多孔質層における無機フィラーの含有量は50〜95重量%であることが好ましい。無機フィラーの含有量が50重量%未満であると、無機フィラーによる耐熱性向上の効果が十分に得られない場合があるため好ましくない。また、無機フィラーの含有量が95重量%を超えると、耐熱性多孔質層が緻密化されすぎてイオン透過性が低下したり、耐熱性多孔質層が脆くなってハンドリング性が低下する場合があるため好ましくない。   In this invention, it is preferable that content of the inorganic filler in a heat resistant porous layer is 50 to 95 weight%. If the content of the inorganic filler is less than 50% by weight, the effect of improving heat resistance by the inorganic filler may not be sufficiently obtained, which is not preferable. On the other hand, if the content of the inorganic filler exceeds 95% by weight, the heat-resistant porous layer may be excessively densified and ion permeability may be reduced, or the heat-resistant porous layer may become brittle and handling properties may be reduced. This is not preferable.

[耐熱性多孔質層の製造法]
本発明において、非水系二次電池用セパレータの製造法は、上述した構成の本発明のセパレータが製造できれば特に限定されないが、例えば下記(1)〜(5)の工程を経て製造することが可能である。
[Method for producing heat-resistant porous layer]
In the present invention, the method for producing a separator for a non-aqueous secondary battery is not particularly limited as long as the separator of the present invention having the above-described configuration can be produced. For example, it can be produced through the following steps (1) to (5). It is.

(1)塗工用スラリーの作製
耐熱性樹脂を溶剤に溶かし、必要に応じてこれに無機フィラーを分散させて、塗工用スラリーを作製する。溶剤は耐熱性樹脂を溶解するものであればよく、特に限定は無いが、具体的には極性溶剤が好ましく、例えばN−メチルピロリドン、ジメチルアセトアミド、ジメチルホルムアミド、ジメチルスルホキシドなどが挙げられる。また、当該溶剤はこれらの極性溶剤に加えて耐熱性樹脂に対して貧溶剤となる溶剤も加えることができる。このような貧溶剤を適用することでミクロ相分離構造が誘発され、耐熱性多孔質層を形成する上で多孔化が容易となる。貧溶剤としては、アルコールの類が好適であり、特にグリコールのような多価アルコールが好適である。塗工用スラリー中の耐熱性樹脂の濃度は4〜9重量%が好ましい。塗工用スラリー中に無機フィラーを分散させるに当たって、無機フィラーの分散性が好ましくないときは、無機フィラーをシランカップリング剤などで表面処理し、分散性を改善する手法も適用可能である。
(1) Preparation of coating slurry A heat-resistant resin is dissolved in a solvent, and an inorganic filler is dispersed in the solvent as necessary to prepare a coating slurry. The solvent is not particularly limited as long as it dissolves the heat-resistant resin, but specifically, a polar solvent is preferable, and examples thereof include N-methylpyrrolidone, dimethylacetamide, dimethylformamide, and dimethylsulfoxide. Moreover, the said solvent can add the solvent used as a poor solvent with respect to heat resistant resin in addition to these polar solvents. By applying such a poor solvent, a microphase separation structure is induced and the formation of a heat-resistant porous layer is facilitated. As the poor solvent, alcohols are preferable, and polyhydric alcohols such as glycol are particularly preferable. The concentration of the heat resistant resin in the coating slurry is preferably 4 to 9% by weight. In dispersing the inorganic filler in the coating slurry, when the dispersibility of the inorganic filler is not preferable, a method of improving the dispersibility by surface-treating the inorganic filler with a silane coupling agent or the like is also applicable.

(2)スラリーの塗工
スラリーをポリオレフィン微多孔膜の少なくとも一方の表面に塗工する。ポリオレフィン微多孔膜の両面に耐熱性多孔質層を形成する場合は、基材の両面に同時に塗工することが、工程の短縮という観点で好ましい。塗工用スラリーを塗工する方法としては、ナイフコーター法、グラビアコーター法、スクリーン印刷法、マイヤーバー法、ダイコーター法、リバースロールコーター法、インクジェット法、スプレー法、ロールコーター法などが挙げられる。この中でも、塗膜を均一に形成するという観点において、リバースロールコーター法が好適である。ポリオレフィン微多孔膜の両面に同時に塗工する場合は、例えば、ポリオレフィン微多孔膜を一対のマイヤーバーの間に通すことでポリオレフィン微多孔膜の両面に過剰な塗工用スラリーを塗布し、これを一対のリバースロールコーターの間に通して過剰なスラリーを掻き落すことで精密計量するという方法が挙げられる。
(2) Coating of slurry The slurry is coated on at least one surface of the polyolefin microporous membrane. When forming a heat-resistant porous layer on both surfaces of a polyolefin microporous film, it is preferable from a viewpoint of shortening of a process to apply simultaneously on both surfaces of a base material. Examples of the method for coating the slurry for coating include a knife coater method, a gravure coater method, a screen printing method, a Meyer bar method, a die coater method, a reverse roll coater method, an ink jet method, a spray method, and a roll coater method. . Among these, the reverse roll coater method is preferable from the viewpoint of uniformly forming a coating film. When simultaneously coating both surfaces of the polyolefin microporous membrane, for example, by passing the polyolefin microporous membrane between a pair of Meyer bars, an excess coating slurry is applied to both surfaces of the polyolefin microporous membrane. There is a method of precise measurement by scraping off excess slurry through a pair of reverse roll coaters.

(3)スラリーの凝固
スラリーが塗工されたポリオレフィン微多孔膜を、前記耐熱性樹脂を凝固させることが可能な凝固液で処理する。これにより、耐熱性樹脂を凝固させて、耐熱性樹脂からなる耐熱性多孔質層あるいは、耐熱性樹脂に無機フィラーが結着された耐熱性多孔質層を形成する。凝固液で処理する方法としては、塗工用スラリーを塗工したポリオレフィン微多孔膜に対して凝固液をスプレーで吹き付ける方法や、当該基材を凝固液の入った浴(凝固浴)中に浸漬する方法などが挙げられる。ここで、凝固浴を設置する場合は、塗工装置の下方に設置することが好ましい。凝固液としては、当該耐熱性樹脂を凝固できるものであれば特に限定されないが、水、または、スラリーに用いた溶剤に水を適当量混合させたものが好ましい。ここで、水の混合量は凝固液に対して40〜80重量%が好適である。水の量が40重量%より少ないと、耐熱性樹脂を凝固するのに必要な時間が長くなったり、凝固が不十分になったりという問題が生じ得る。また、水の量が80重量%より多いと、溶剤回収においてコスト高となったり、凝固液と接触する表面の凝固が速くなりすぎて表面が十分に多孔化されなかったりという問題が生じる場合がある。
(3) Solidification of slurry The polyolefin microporous film coated with the slurry is treated with a coagulation liquid capable of coagulating the heat-resistant resin. Thereby, the heat resistant resin is solidified to form a heat resistant porous layer made of the heat resistant resin or a heat resistant porous layer in which the inorganic filler is bound to the heat resistant resin. As a method of treating with the coagulating liquid, a method of spraying the coagulating liquid on the polyolefin microporous film coated with the coating slurry, or immersing the substrate in a bath (coagulating bath) containing the coagulating liquid. The method of doing is mentioned. Here, when installing a coagulation bath, it is preferable to install it below the coating apparatus. The coagulation liquid is not particularly limited as long as it can coagulate the heat-resistant resin, but water or a solution obtained by mixing an appropriate amount of water with the solvent used in the slurry is preferable. Here, the mixing amount of water is preferably 40 to 80% by weight with respect to the coagulation liquid. When the amount of water is less than 40% by weight, there may be a problem that the time required for solidifying the heat-resistant resin becomes long or the solidification becomes insufficient. Also, if the amount of water is more than 80% by weight, there may be a problem that the cost for solvent recovery becomes high, or the surface that comes into contact with the coagulation liquid becomes too fast to solidify and the surface is not sufficiently porous. is there.

(4)凝固液の除去
凝固液を水洗することによって除去する。
(4) Removal of coagulating liquid The coagulating liquid is removed by washing with water.

(5)乾燥
シートから水を乾燥して除去する。乾燥方法は特に限定は無いが、乾燥温度は50〜80℃が好適であり、高い乾燥温度を適用する場合は熱収縮による寸法変化が起こらないようにするためにロールに接触させるような方法を適用することが好ましい。
(5) Drying Dry and remove water from the sheet. Although there is no particular limitation on the drying method, the drying temperature is preferably 50 to 80 ° C. When a high drying temperature is applied, a method of contacting with a roll to prevent dimensional change due to heat shrinkage. It is preferable to apply.

[非水系二次電池]
本発明の非水系二次電池は、リチウムのドープ・脱ドープにより起電力を得る非水系二次電池であって、上述した構成の非水系二次電池用セパレータを用いたことを特徴とする。非水系二次電池は、負極と正極がセパレータを介して対向している電池要素に電解液が含浸され、これが外装に封入された構造となっている。
[Non-aqueous secondary battery]
The non-aqueous secondary battery of the present invention is a non-aqueous secondary battery that obtains an electromotive force by doping or dedoping lithium, and is characterized by using the separator for a non-aqueous secondary battery having the above-described configuration. The non-aqueous secondary battery has a structure in which a battery element in which a negative electrode and a positive electrode face each other with a separator interposed therebetween is impregnated with an electrolytic solution, and this is enclosed in an exterior.

負極は、負極活物質、導電助剤およびバインダーからなる負極合剤が、集電体上に成形された構造となっている。負極活物質としては、リチウムを電気化学的にドープすることが可能な材料が挙げられ、例えば炭素材料、シリコン、アルミニウム、スズ、ウッド合金などが挙げられる。導電助剤は、アセチレンブラック、ケッチェンブラックといった炭素材料が挙げられる。バインダーは有機高分子からなり、例えばポリフッ化ビニリデン、カルボキシメチルセルロースなどが挙げられる。集電体には銅箔、ステンレス箔、ニッケル箔などを用いることが可能である。   The negative electrode has a structure in which a negative electrode mixture composed of a negative electrode active material, a conductive additive and a binder is formed on a current collector. Examples of the negative electrode active material include materials capable of electrochemically doping lithium, and examples thereof include carbon materials, silicon, aluminum, tin, and wood alloys. Examples of the conductive assistant include carbon materials such as acetylene black and ketjen black. The binder is made of an organic polymer, and examples thereof include polyvinylidene fluoride and carboxymethyl cellulose. As the current collector, a copper foil, a stainless steel foil, a nickel foil, or the like can be used.

正極は、正極活物質、導電助剤およびバインダーからなる正極合剤が、集電体上に成形された構造となっている。正極活物質としては、リチウム含有遷移金属酸化物等が挙げられ、具体的にはLiCoO、LiNiO、LiMn0.5Ni0.5、LiCo1/3Ni1/3Mn1/3、LiMn、LiFePO等が挙げられる。導電助剤はアセチレンブラック、ケッチェンブラックといった炭素材料が挙げられる。バインダーは有機高分子からなり、例えばポリフッ化ビニリデンなどが挙げられる。集電体にはアルミ箔、ステンレス箔、チタン箔などを用いることが可能である。 The positive electrode has a structure in which a positive electrode mixture composed of a positive electrode active material, a conductive additive and a binder is formed on a current collector. Examples of the positive electrode active material include lithium-containing transition metal oxides. Specifically, LiCoO 2 , LiNiO 2 , LiMn 0.5 Ni 0.5 O 2 , LiCo 1/3 Ni 1/3 Mn 1/3 O 2, LiMn 2 O 4, LiFePO 4 , and the like. Examples of the conductive assistant include carbon materials such as acetylene black and ketjen black. The binder is made of an organic polymer, and examples thereof include polyvinylidene fluoride. As the current collector, aluminum foil, stainless steel foil, titanium foil, or the like can be used.

電解液は、リチウム塩を非水系溶媒に溶解した構成である。リチウム塩としては、LiPF、LiBF、LiClOなどが挙げられる。非水系溶媒としては、プロピレンカーボネート、エチレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、γ−ブチロラクトン、ビニレンカーボネートなどが挙げられ、これらは単独で用いても混合して用いてもよい。 The electrolytic solution has a structure in which a lithium salt is dissolved in a non-aqueous solvent. Examples of the lithium salt include LiPF 6 , LiBF 4 , LiClO 4 and the like. Examples of the non-aqueous solvent include propylene carbonate, ethylene carbonate, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, γ-butyrolactone, vinylene carbonate, and the like. These may be used alone or in combination.

外装材は、金属缶またはアルミラミネートパック等が挙げられる。電池の形状は角型、円筒型、コイン型などがあるが、本発明のセパレータはいずれの形状においても好適に適用することが可能である。   Examples of the exterior material include a metal can or an aluminum laminate pack. The shape of the battery includes a square shape, a cylindrical shape, a coin shape, and the like, but the separator of the present invention can be suitably applied to any shape.

以下に実施例を示すが、本発明はこれらに制限されるものではない。
[測定方法]
なお、本実施例における各値は、以下の方法に従って求めた。
Examples are shown below, but the present invention is not limited thereto.
[Measuring method]
In addition, each value in a present Example was calculated | required according to the following method.

(1)ポリオレフィン微多孔膜及び非水系二次電池用セパレータの膜厚は、接触式の膜厚計(ミツトヨ社製)にて20点測定し、これを平均することで求めた。ここで接触端子は底面が直径0.5cmの円柱状のものを用いた。 (1) The film thickness of the polyolefin microporous membrane and the separator for a non-aqueous secondary battery was determined by measuring 20 points with a contact-type film thickness meter (manufactured by Mitutoyo Corporation) and averaging them. Here, the contact terminal used was a cylindrical one having a bottom surface of 0.5 cm in diameter.

(2)ポリオレフィン微多孔膜及び非水系二次電池用セパレータの目付は、サンプルを10cm×10cmに切り出し重量を測定する。この重量を面積で割ることで1m当たりの重量である目付を求めた。 (2) The basis weight of the polyolefin microporous membrane and the separator for a non-aqueous secondary battery is obtained by cutting a sample into 10 cm × 10 cm and measuring the weight. By dividing this weight by the area, the basis weight which is the weight per 1 m 2 was obtained.

(3)ポリオレフィン微多孔膜の空孔率は、
ε={1−Ws/(ds・t)}×100 から求めた。
ここで、ε:空隙率(%)、Ws:目付(g/m)、ds:真密度(g/cm)、t:膜厚(μm)である。
(3) The porosity of the microporous polyolefin membrane is
It calculated | required from (epsilon) = {1-Ws / (ds * t)} * 100.
Here, ε: porosity (%), Ws: basis weight (g / m 2 ), ds: true density (g / cm 3 ), and t: film thickness (μm).

(4)ポリオレフィン微多孔膜及び非水系二次電池用セパレータのガーレ値はJIS P8117に従って求めた。 (4) The Gurley values of the polyolefin microporous membrane and the non-aqueous secondary battery separator were determined according to JIS P8117.

(5)ポリオレフィン微多孔膜及び非水系二次電池用セパレータの膜抵抗は、以下の方法で求めた。
サンプルを2.6cm×2.0cmのサイズに切り出す。非イオン性界面活性剤(花王社製エマルゲン210P)を3重量%溶解したメタノール溶液(メタノール:和光純薬社製)に切り出したサンプルを浸漬し、風乾する。厚さ20μmのアルミ箔を2.0cm×1.4cmに切り出しリードタブを付ける。このアルミ箔を2枚用意して、アルミ箔間に切り出したサンプルをアルミ箔が短絡しないように挟む。サンプルに電解液である1MのLiBFプロピレンカーボネート/エチレンカーボネート(1/1重量比)を含浸させる。これをアルミラミネートパック中にタブがアルミパックの外に出るようにして減圧封入する。このようなセルをアルミ箔中にセパレータが1枚、2枚、3枚となるようにそれぞれ作製する。該セルを20℃の恒温槽中に入れ、交流インピーダンス法で振幅10mV、周波数100kHzにて該セルの抵抗を測定する。測定されたセルの抵抗値をセパレータの枚数に対してプロットし、このプロットを線形近似し傾きを求める。この傾きに電極面積である2.0cm×1.4cmを乗じてセパレータ1枚当たりの膜抵抗(ohm・cm)を求めた。
(5) The membrane resistance of the polyolefin microporous membrane and the non-aqueous secondary battery separator was determined by the following method.
Cut the sample to a size of 2.6 cm × 2.0 cm. A sample cut out in a methanol solution (methanol: manufactured by Wako Pure Chemical Industries, Ltd.) in which 3% by weight of a nonionic surfactant (Emalgen 210P manufactured by Kao Corporation) is dissolved is immersed and air-dried. A 20 μm thick aluminum foil is cut into 2.0 cm × 1.4 cm and a lead tab is attached. Two aluminum foils are prepared, and a sample cut between the aluminum foils is sandwiched so that the aluminum foils are not short-circuited. The sample is impregnated with 1M LiBF 4 propylene carbonate / ethylene carbonate (1/1 weight ratio) as an electrolyte. This is sealed under reduced pressure in an aluminum laminate pack so that the tab comes out of the aluminum pack. Such cells are prepared so that there are one, two, and three separators in the aluminum foil, respectively. The cell is placed in a constant temperature bath at 20 ° C., and the resistance of the cell is measured by an AC impedance method at an amplitude of 10 mV and a frequency of 100 kHz. The measured resistance value of the cell is plotted against the number of separators, and the plot is linearly approximated to obtain the slope. The film resistance (ohm · cm 2 ) per separator was determined by multiplying the inclination by 2.0 cm × 1.4 cm which is the electrode area.

(6)ポリオレフィン微多孔膜及び非水系二次電池用セパレータの突刺強度は、カトーテック社製KES−G5ハンディー圧縮試験器を用いて、針先端の曲率半径0.5mm、突刺速度2mm/secの条件で突刺試験を行い、最大突刺荷重を突刺強度とした。ここでサンプルはΦ11.3mmの穴があいた金枠(試料ホルダー)にシリコンゴム製のパッキンも一緒に挟み固定した。 (6) The piercing strength of the polyolefin microporous membrane and the separator for the non-aqueous secondary battery was measured using a KES-G5 handy compression tester manufactured by Kato Tech Co., with a radius of curvature of the needle tip of 0.5 mm and a piercing speed of 2 mm / sec. The puncture test was performed under the conditions, and the maximum puncture load was defined as the puncture strength. Here, the sample was fixed by sandwiching a silicon rubber packing in a metal frame (sample holder) having a hole of Φ11.3 mm.

(7)ポリオレフィン微多孔膜及び非水系二次電池用セパレータの引張強度は、10×100mmに調整したサンプルを引張試験機(A&D社製、RTC−1225A)を用い、ロードセル荷重5kgf、チャック間距離50mmの条件で測定した。 (7) Tensile strength of polyolefin microporous membrane and non-aqueous secondary battery separator was adjusted to 10 × 100 mm using a tensile tester (A & D, RTC-1225A), load cell load 5 kgf, distance between chucks Measurement was performed under the condition of 50 mm.

(8)ポリオレフィン微多孔膜及び非水系二次電池用セパレータのシャットダウン温度は、以下の方法で求めた。
サンプルをΦ19mmに打ち抜き、非イオン性界面活性剤(花王社製エマルゲン210P)を3重量%溶解したメタノール溶液(メタノール:和光純薬社製)に切り出したサンプルを浸漬し、風乾した。サンプルをΦ15.5mmのSUS板に挟んだ。サンプルに電解液である1MのLiBFプロピレンカーボネート/エチレンカーボネート(1/1重量比)(キシダ化学社製)を含浸させた。これを2032型コインセルに封入した。コインセルからリード線をとり、熱電対を付けてオーブンの中に入れた。昇温速度1.6℃/分で昇温させ、同時に交流インピーダンス法で振幅10mV、周波数100kHzにて該セルの抵抗を測定した。抵抗値が10ohm・cm以上となった温度をシャットダウン温度とした。
(8) The shutdown temperature of the polyolefin microporous membrane and the non-aqueous secondary battery separator was determined by the following method.
The sample was punched into Φ19 mm, and the sample cut out in a methanol solution (methanol: manufactured by Wako Pure Chemical Industries, Ltd.) in which 3% by weight of a nonionic surfactant (Emulgen 210P manufactured by Kao Corporation) was dissolved was immersed and air-dried. The sample was sandwiched between SUS plates with a diameter of 15.5 mm. The sample was impregnated with 1M LiBF 4 propylene carbonate / ethylene carbonate (1/1 weight ratio) (manufactured by Kishida Chemical Co., Ltd.) as an electrolyte. This was enclosed in a 2032 type coin cell. I took the lead from the coin cell, put a thermocouple, and put it in the oven. The temperature of the cell was increased at a rate of temperature increase of 1.6 ° C./min, and the resistance of the cell was measured at the same time by the AC impedance method at an amplitude of 10 mV and a frequency of 100 kHz. The temperature at which the resistance value reached 10 3 ohm · cm 2 or more was taken as the shutdown temperature.

(9)ポリオレフィン微多孔膜及び非水系二次電池用セパレータの熱収縮率は、サンプルを105℃で時間加熱することによって測定した。なお、測定方向は機械方向である。 (9) The thermal contraction rate of the polyolefin microporous membrane and the separator for the non-aqueous secondary battery was measured by heating the sample at 105 ° C. for an hour. Note that the measurement direction is the machine direction.

(10)非水系二次電池の放電性評価を、以下の方法で実施した。
1.6mA、4.2Vで8時間定電流・定電圧充電、1.6mA、2.75Vで定電流放電の充放電サイクルを10サイクル実施し、10サイクル目に得られた放電容量をこの電池の放電容量とした。次に、1.6mA、4.2Vで8時間定電流・定電圧充電、16mA、2.75Vで定電流放電を行った。このとき得られた容量を10サイクル目の電池の放電容量で割り、得られた数値を負荷特性の指標とした。
(10) The discharge property evaluation of the non-aqueous secondary battery was performed by the following method.
10 cycles of constant current / constant voltage charging at 1.6 mA, 4.2 V for 8 hours, and constant current discharge at 1.6 mA, 2.75 V were carried out 10 cycles, and the discharge capacity obtained at the 10th cycle was determined for this battery. Discharge capacity. Next, constant current / constant voltage charging was performed at 1.6 mA and 4.2 V for 8 hours, and constant current discharging was performed at 16 mA and 2.75 V. The capacity obtained at this time was divided by the discharge capacity of the battery at the 10th cycle, and the obtained value was used as an index of load characteristics.

[参考例1]
ポリエチレンパウダーとして酸化クロム触媒を使用して製造された重量平均分子量50万のポリエチレンパウダー(以後ポリエチレンAと称す)を用いた。ポリエチレン濃度が30重量%となるように流動パラフィン(松村石油研究所社製スモイルP−350:沸点480℃)とデカリン(和光純薬社製、沸点193℃)の混合溶媒中に溶解させ、ポリエチレン溶液を作製した。該ポリエチレン溶液の組成はポリエチレン:流動パラフィン:デカリン=30:45:25(重量比)である。
このポリエチレン溶液を148℃でダイから押し出し、水浴中で冷却してゲル状テープ(ベーステープ)を作製した。該ベーステープを60℃で8分、95℃で15分乾燥し、該ベーステープを縦延伸、横延伸を逐次行う2軸延伸にて延伸した。ここで、縦延伸5.5倍、延伸温度は90℃、横延伸は延伸倍率11.0倍、延伸温度は105℃とした。横延伸の後に125℃で熱固定を行った。次にこれを塩化メチレン浴に浸漬し、流動パラフィンとデカリンを抽出した。その後、50℃で乾燥し、120℃でアニール処理することでポリオレフィン微多孔膜を得た。得られたポリエチレン微多孔膜はフィブリル状ポリオレフィンが網目状に交絡し、細孔を構成する構造を有するものであった。
得られたポリオレフィン微多孔膜の特性(膜厚、目付、ガーレ値、空孔率、膜抵抗、突刺強度、引張強度、シャットダウン温度、熱収縮率)の測定結果を表1に示す。
[Reference Example 1]
A polyethylene powder having a weight average molecular weight of 500,000 (hereinafter referred to as polyethylene A) produced using a chromium oxide catalyst was used as the polyethylene powder. It is dissolved in a mixed solvent of liquid paraffin (Sumoyl P-350: boiling point 480 ° C. by Matsumura Oil Research Co., Ltd.) and decalin (Wako Pure Chemical Industries, boiling point 193 ° C.) so that the polyethylene concentration is 30% by weight. A solution was made. The composition of the polyethylene solution is polyethylene: liquid paraffin: decalin = 30: 45: 25 (weight ratio).
This polyethylene solution was extruded from a die at 148 ° C. and cooled in a water bath to prepare a gel tape (base tape). The base tape was dried at 60 ° C. for 8 minutes and at 95 ° C. for 15 minutes, and the base tape was stretched by biaxial stretching in which longitudinal stretching and lateral stretching were sequentially performed. Here, the longitudinal stretching was 5.5 times, the stretching temperature was 90 ° C., the transverse stretching was 11.0 times the stretching ratio, and the stretching temperature was 105 ° C. After transverse stretching, heat setting was performed at 125 ° C. Next, this was immersed in a methylene chloride bath to extract liquid paraffin and decalin. Then, the polyolefin microporous film was obtained by drying at 50 degreeC and annealing at 120 degreeC. The obtained polyethylene microporous membrane had a structure in which fibrillar polyolefins were entangled in a network and constituted pores.
Table 1 shows the measurement results of the properties (film thickness, basis weight, Gurley value, porosity, membrane resistance, puncture strength, tensile strength, shutdown temperature, thermal shrinkage rate) of the obtained polyolefin microporous membrane.

[参考例2]
ポリエチレンパウダーとして、チーグラー・ナッタ触媒を使用して製造された重量平均分子量415万の超高分子量ポリエチレンパウダー(以後ポリエチレンBと称す)と、ポリエチレンAを1:9(重量比)で混合したものを使用した事以外、参考例1と同様にポリエチレン微多孔膜を得た。得られたポリオレフィン微多孔膜の特性(膜厚、目付、ガーレ値、空孔率、膜抵抗、突刺強度、引張強度、シャットダウン温度、熱収縮率)の測定結果を表1に示す。
[Reference Example 2]
A polyethylene powder prepared by using a Ziegler-Natta catalyst with an ultra-high molecular weight polyethylene powder (hereinafter referred to as polyethylene B) having a weight average molecular weight of 41.50 million and polyethylene A mixed at 1: 9 (weight ratio). A polyethylene microporous membrane was obtained in the same manner as in Reference Example 1 except that it was used. Table 1 shows the measurement results of the properties (film thickness, basis weight, Gurley value, porosity, membrane resistance, puncture strength, tensile strength, shutdown temperature, thermal shrinkage rate) of the obtained polyolefin microporous membrane.

[実施例1]
参考例1で得られたポリオレフィン微多孔膜を用い、これに耐熱性樹脂と無機フィラーからなる耐熱性多孔質層を積層させて、本発明の非水系二次電池用セパレータを製造した。
具体的に、耐熱性樹脂としてメタ型芳香族ポリアミドであるポリメタフェニレンイソフタルアミド(帝人テクノプロダクツ社製、コーネックス)を用いた。この耐熱性樹脂を、ジメチルアセトアミド(DMAc)とトリプロピレングリコール(TPG)が重量比50:50となっている混合溶媒に溶解させた。このポリマー溶液に、無機フィラーとしての水酸化マグネシウム(平均粒子径1μm)を分散させて、塗工用スラリーを作製した。なお、塗工用スラリーにおけるポリメタフェニレンイソフタルアミドの濃度は5.5重量%となるようにし、かつ、ポリメタフェニレンイソフタルアミドと無機フィラーの重量比は25:75となるように調整した。そして、マイヤーバーを2本対峙させ、その間に塗工液を適量のせた。この後、ポリオレフィン微多孔膜を、塗工液がのっているマイヤーバー間を通過させて、ポリエチレン微多孔膜の表裏面に塗工液を塗工した。ここで、マイヤーバー間のクリアランスは20μmに設定し、マイヤーバーの番手は2本とも#6を用いた。これを重量比で水:DMAc:TPG=50:25:25で40℃となっている凝固液中に浸漬し、次いで水洗・乾燥を行った。これにより、ポリオレフィン微多孔膜の表裏両面に耐熱性多孔質層が形成された非水系二次電池用セパレータを得た。
得られた非水系二次電池用セパレータの特性(膜厚、目付、ガーレ値、空孔率、膜抵抗、突刺強度、引張強度、シャットダウン温度、熱収縮率)の測定結果を表2に示す。
[Example 1]
The polyolefin microporous membrane obtained in Reference Example 1 was used, and a heat-resistant porous layer made of a heat-resistant resin and an inorganic filler was laminated thereon to produce the non-aqueous secondary battery separator of the present invention.
Specifically, polymetaphenylene isophthalamide (manufactured by Teijin Techno Products Ltd., Conex), which is a meta-type aromatic polyamide, was used as the heat resistant resin. This heat resistant resin was dissolved in a mixed solvent of dimethylacetamide (DMAc) and tripropylene glycol (TPG) in a weight ratio of 50:50. In this polymer solution, magnesium hydroxide (average particle diameter: 1 μm) as an inorganic filler was dispersed to prepare a coating slurry. The concentration of polymetaphenylene isophthalamide in the coating slurry was adjusted to 5.5% by weight, and the weight ratio of polymetaphenylene isophthalamide to inorganic filler was adjusted to 25:75. Then, two Meyer bars were opposed to each other, and an appropriate amount of coating liquid was put between them. Thereafter, the polyolefin microporous film was passed between Mayer bars on which the coating liquid was placed, and the coating liquid was applied to the front and back surfaces of the polyethylene microporous film. Here, the clearance between the Meyer bars was set to 20 μm, and # 6 was used for both the Mayer bars. This was immersed in a coagulating liquid having a weight ratio of water: DMAc: TPG = 50: 25: 25 and 40 ° C., followed by washing and drying. This obtained the separator for non-aqueous secondary batteries in which the heat resistant porous layer was formed in the both surfaces of the polyolefin microporous film.
Table 2 shows the measurement results of the characteristics (film thickness, basis weight, Gurley value, porosity, membrane resistance, puncture strength, tensile strength, shutdown temperature, heat shrinkage rate) of the obtained nonaqueous secondary battery separator.

[実施例2]
ポリオレフィン微多孔膜として参考例2で得られたものを使用した以外は、実施例1と同様に非水系二次電池用セパレータを得た。
得られた非水系二次電池用セパレータの特性(膜厚、目付、ガーレ値、空孔率、膜抵抗、突刺強度、引張強度、シャットダウン温度、熱収縮率)の測定結果を表2に示す。
[Example 2]
A separator for a nonaqueous secondary battery was obtained in the same manner as in Example 1 except that the polyolefin microporous film obtained in Reference Example 2 was used.
Table 2 shows the measurement results of the characteristics (film thickness, basis weight, Gurley value, porosity, membrane resistance, puncture strength, tensile strength, shutdown temperature, heat shrinkage rate) of the obtained nonaqueous secondary battery separator.

[実施例3]
コバルト酸リチウム(LiCoO:日本化学工業社製)89.5重量部、アセチレンブラック(電気化学工業社製デンカブラック)4.5重量部、ポリフッ化ビニリデン(クレハ化学社製)6重量部となるように、N−メチル−ピロリドンを用いてこれらを混練し、スラリーを作製した。得られたスラリーを厚さが20μmのアルミ箔上に塗布乾燥後プレスし、100μmの正極を得た。
メソフェーズカーボンマイクロビーズ(MCMB:大阪瓦斯化学社製)87重量部、アセチレンブラック(電気化学工業社製商品名デンカブラック)3重量部、ポリフッ化ビニリデン(クレハ化学社製)10重量部となるようにN−メチル−2ピロリドンを用いてこれらを混練し、スラリーを作製した。得られたスラリーを厚さが18μmの銅箔上に塗布乾燥後プレスし、90μmの負極を得た。
上記正極及び負極を、実施例2で作製した非水系二次電池用セパレータを介して対向させた。これに電解液を含浸させアルミラミネートフィルムからなる外装に封入して非水系二次電池を作製した。ここで、電解液には1M LiPF エチレンカーボネート/エチルメチルカーボネート(3/7重量比)(キシダ化学社製)を用いた。
ここで、この試作電池は正極面積が2×1.4cm、負極面積は2.2×1.6cmで、設定容量は8mAh(4.2V−2.75Vの範囲)である。
得られた非水系二次電池の特性(放電容量、負荷特性)の測定結果を表3に示す。
[Example 3]
Lithium cobalt oxide (LiCoO 2 : manufactured by Nippon Chemical Industry Co., Ltd.) 89.5 parts by weight, acetylene black (Denka Black manufactured by Denki Kagaku Kogyo Co., Ltd.) 4.5 parts by weight, polyvinylidene fluoride (manufactured by Kureha Chemical Co., Ltd.) 6 parts by weight Thus, these were kneaded using N-methyl-pyrrolidone to prepare a slurry. The obtained slurry was applied onto an aluminum foil having a thickness of 20 μm, dried and pressed to obtain a positive electrode having a thickness of 100 μm.
87 parts by weight of mesophase carbon micro beads (MCMB: manufactured by Osaka Gas Chemical Co., Ltd.), 3 parts by weight of acetylene black (trade name Denka Black, manufactured by Denki Kagaku Kogyo Co., Ltd.) and 10 parts by weight of polyvinylidene fluoride (manufactured by Kureha Chemical Co., Ltd.) These were kneaded using N-methyl-2pyrrolidone to prepare a slurry. The obtained slurry was applied onto a copper foil having a thickness of 18 μm, dried and pressed to obtain a negative electrode having a thickness of 90 μm.
The positive electrode and the negative electrode were opposed to each other through the non-aqueous secondary battery separator produced in Example 2. This was impregnated with an electrolytic solution and sealed in an exterior made of an aluminum laminate film to produce a non-aqueous secondary battery. Here, 1M LiPF 6 ethylene carbonate / ethyl methyl carbonate (3/7 weight ratio) (manufactured by Kishida Chemical Co., Ltd.) was used as the electrolytic solution.
Here, this prototype battery has a positive electrode area of 2 × 1.4 cm 2 , a negative electrode area of 2.2 × 1.6 cm 2 , and a set capacity of 8 mAh (in the range of 4.2V-2.75V).
Table 3 shows the measurement results of the characteristics (discharge capacity, load characteristics) of the obtained nonaqueous secondary battery.

[実施例4]
非水系二次電池用セパレータとして実施例2で得られたものを使用した以外は、実施例3と同様に非水系二次電池を得た。
得られた非水系二次電池の特性(放電容量、負荷特性)の測定結果を表3に示す。
[Example 4]
A nonaqueous secondary battery was obtained in the same manner as in Example 3 except that the separator obtained in Example 2 was used as the separator for the nonaqueous secondary battery.
Table 3 shows the measurement results of the characteristics (discharge capacity, load characteristics) of the obtained nonaqueous secondary battery.

[参考例3]
ポリエチレンパウダーとして、チーグラー・ナッタ触媒を使用して製造された重量平均分子量55万の高密度ポリエチレンパウダー(以降、ポリエチレンCと称す)を使用した事以外、参考例1と同様にポリオレフィン微多孔膜を得た。
得られたポリオレフィン微多孔膜の特性(膜厚、目付、ガーレ値、空孔率、膜抵抗、突刺強度、引張強度、シャットダウン温度、熱収縮率)の測定結果を表1に示す。
[Reference Example 3]
A polyolefin microporous membrane was prepared in the same manner as in Reference Example 1 except that high-density polyethylene powder (hereinafter referred to as polyethylene C) having a weight average molecular weight of 550,000 produced using a Ziegler-Natta catalyst was used as the polyethylene powder. Obtained.
Table 1 shows the measurement results of the properties (film thickness, basis weight, Gurley value, porosity, membrane resistance, puncture strength, tensile strength, shutdown temperature, thermal shrinkage rate) of the obtained polyolefin microporous membrane.

[参考例4]
ポリエチレンパウダーとして、ポリエチレンBとポリエチレンCを1:9(重量比)で混合したものを使用した事以外、参考例1と同様にポリオレフィン微多孔膜を得た。
得られたポリオレフィン微多孔膜の特性(膜厚、目付、ガーレ値、空孔率、膜抵抗、突刺強度、引張強度、シャットダウン温度、熱収縮率)の測定結果を表1に示す。
[Reference Example 4]
A polyolefin microporous membrane was obtained in the same manner as in Reference Example 1 except that polyethylene powder and polyethylene C mixed at 1: 9 (weight ratio) were used as polyethylene powder.
Table 1 shows the measurement results of the properties (film thickness, basis weight, Gurley value, porosity, membrane resistance, puncture strength, tensile strength, shutdown temperature, thermal shrinkage rate) of the obtained polyolefin microporous membrane.

[比較例1]
ポリオレフィン微多孔膜として参考例3で得られたものを使用した以外は、実施例1と同様に非水系二次電池用セパレータを得た。
得られた非水系二次電池用セパレータの特性(膜厚、目付、ガーレ値、空孔率、膜抵抗、突刺強度、引張強度、シャットダウン温度、熱収縮率)の測定結果を表2に示す。
[Comparative Example 1]
A separator for a non-aqueous secondary battery was obtained in the same manner as in Example 1 except that the polyolefin microporous film obtained in Reference Example 3 was used.
Table 2 shows the measurement results of the characteristics (film thickness, basis weight, Gurley value, porosity, membrane resistance, puncture strength, tensile strength, shutdown temperature, heat shrinkage rate) of the obtained nonaqueous secondary battery separator.

[比較例2]
ポリオレフィン微多孔膜として参考例4で得られたものを使用した以外は、実施例1と同様に非水系二次電池用セパレータを得た。
得られた非水系二次電池用セパレータの特性(膜厚、目付、ガーレ値、空孔率、膜抵抗、突刺強度、引張強度、シャットダウン温度、熱収縮率)の測定結果を表2に示す。
[Comparative Example 2]
A non-aqueous secondary battery separator was obtained in the same manner as in Example 1 except that the polyolefin microporous film obtained in Reference Example 4 was used.
Table 2 shows the measurement results of the characteristics (film thickness, basis weight, Gurley value, porosity, membrane resistance, puncture strength, tensile strength, shutdown temperature, heat shrinkage rate) of the obtained nonaqueous secondary battery separator.

[比較例3]
非水系二次電池用セパレータとして比較例1で得られたものを使用した以外は、実施例3と同様に非水系二次電池を得た。
得られた非水系二次電池の特性(放電容量、負荷特性)の測定結果を表3に示す。
[Comparative Example 3]
A non-aqueous secondary battery was obtained in the same manner as in Example 3 except that the separator obtained in Comparative Example 1 was used as the separator for the non-aqueous secondary battery.
Table 3 shows the measurement results of the characteristics (discharge capacity, load characteristics) of the obtained nonaqueous secondary battery.

[比較例4]
非水系二次電池用セパレータとして比較例2で得られたものを使用した以外は、実施例3と同様に非水系二次電池を得た。
得られた非水系二次電池の特性(放電容量、負荷特性)の測定結果を表3に示す。
[Comparative Example 4]
A non-aqueous secondary battery was obtained in the same manner as in Example 3 except that the separator obtained in Comparative Example 2 was used as the separator for the non-aqueous secondary battery.
Table 3 shows the measurement results of the characteristics (discharge capacity, load characteristics) of the obtained nonaqueous secondary battery.

Figure 2011129304
Figure 2011129304

Figure 2011129304
Figure 2011129304

Figure 2011129304
Figure 2011129304

Claims (7)

ポリオレフィン微多孔膜と、耐熱性樹脂を含んで形成され前記ポリオレフィン微多孔膜の片面又は両面に積層された耐熱性多孔質層と、を備えた非水系二次電池用セパレータであって、
前記ポリオレフィン微多孔膜に含まれるポリオレフィンが、重量平均分子量5万〜100万の高密度ポリエチレンを含み、該高密度ポリエチレンが酸化クロム触媒により製造されたことを特徴とする非水系二次電池用セパレータ。
A non-aqueous secondary battery separator comprising a polyolefin microporous membrane, and a heat-resistant porous layer formed by including a heat-resistant resin and laminated on one or both sides of the polyolefin microporous membrane,
The polyolefin contained in the polyolefin microporous membrane contains high-density polyethylene having a weight average molecular weight of 50,000 to 1,000,000, and the high-density polyethylene is produced by a chromium oxide catalyst. .
ポリオレフィン微多孔膜と、耐熱性樹脂を含んで形成され前記ポリオレフィン微多孔膜の片面又は両面に積層された耐熱性多孔質層と、を備えた非水系二次電池用セパレータであって、
前記ポリオレフィン微多孔膜に含まれるポリオレフィンが、重量平均分子量150万以上の超高分子量ポリエチレンと重量平均分子量5万〜100万の高密度ポリエチレンを含み、該高密度ポリエチレンが酸化クロム触媒により製造されたことを特徴とする非水系二次電池用セパレータ。
A non-aqueous secondary battery separator comprising a polyolefin microporous membrane, and a heat-resistant porous layer formed by including a heat-resistant resin and laminated on one or both sides of the polyolefin microporous membrane,
The polyolefin contained in the polyolefin microporous membrane includes ultra high molecular weight polyethylene having a weight average molecular weight of 1.5 million or more and high density polyethylene having a weight average molecular weight of 50,000 to 1,000,000, and the high density polyethylene was produced by a chromium oxide catalyst. A separator for a non-aqueous secondary battery.
前記耐熱性樹脂が、全芳香族ポリアミド、ポリイミド、ポリアミドイミド、ポリスルホン、ポリケトン、ポリエーテルケトン、ポリエーテルイミドおよびセルロースからなる群から選ばれる少なくとも1種の樹脂であることを特徴とする請求項1または2に記載の非水系二次電池用セパレータ。   2. The heat-resistant resin is at least one resin selected from the group consisting of wholly aromatic polyamide, polyimide, polyamideimide, polysulfone, polyketone, polyetherketone, polyetherimide, and cellulose. Or the separator for non-aqueous secondary batteries of 2. 前記耐熱性多孔質層には無機フィラーが含まれていることを特徴とする請求項1〜3のいずれかに記載の非水系二次電池用セパレータ。   The separator for a non-aqueous secondary battery according to any one of claims 1 to 3, wherein the heat-resistant porous layer contains an inorganic filler. 前記無機フィラーは200〜400℃において吸熱反応を生じる無機フィラーであることを特徴とする請求項4に記載の非水系二次電池用セパレータ。   The separator for a non-aqueous secondary battery according to claim 4, wherein the inorganic filler is an inorganic filler that generates an endothermic reaction at 200 to 400 ° C. 前記無機フィラーは水酸化アルミニウムまたは水酸化マグネシウムであることを特徴とする請求項5に記載の非水系二次電池用セパレータ。   The separator for a non-aqueous secondary battery according to claim 5, wherein the inorganic filler is aluminum hydroxide or magnesium hydroxide. リチウムのドープ・脱ドープにより起電力を得る非水系二次電池であって、請求項1〜6のいずれか1項に記載の非水系二次電池用セパレータを用いたことを特徴とする非水系二次電池。   A non-aqueous secondary battery for obtaining an electromotive force by doping and dedoping of lithium, wherein the non-aqueous secondary battery separator according to any one of claims 1 to 6 is used. Secondary battery.
JP2009285166A 2009-12-16 2009-12-16 Separator for nonaqueous secondary battery, and nonaqueous secondary battery Pending JP2011129304A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009285166A JP2011129304A (en) 2009-12-16 2009-12-16 Separator for nonaqueous secondary battery, and nonaqueous secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009285166A JP2011129304A (en) 2009-12-16 2009-12-16 Separator for nonaqueous secondary battery, and nonaqueous secondary battery

Publications (1)

Publication Number Publication Date
JP2011129304A true JP2011129304A (en) 2011-06-30

Family

ID=44291691

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009285166A Pending JP2011129304A (en) 2009-12-16 2009-12-16 Separator for nonaqueous secondary battery, and nonaqueous secondary battery

Country Status (1)

Country Link
JP (1) JP2011129304A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013037778A (en) * 2011-08-03 2013-02-21 Teijin Ltd Separator for nonaqueous electrolyte battery and nonaqueous electrolyte battery
JP2013161634A (en) * 2012-02-03 2013-08-19 Toyota Industries Corp Electrode housing separator, electrode body, electricity storage device and vehicle
JP2019157060A (en) * 2018-03-16 2019-09-19 東レ株式会社 Polyolefin microporous film
CN110854342A (en) * 2019-11-15 2020-02-28 上海化工研究院有限公司 Preparation method of high-efficiency high-performance lithium battery diaphragm
JPWO2020179294A1 (en) * 2019-03-07 2020-09-10
WO2021033736A1 (en) * 2019-08-22 2021-02-25 東レ株式会社 Polyolefin microporous membrane

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013037778A (en) * 2011-08-03 2013-02-21 Teijin Ltd Separator for nonaqueous electrolyte battery and nonaqueous electrolyte battery
JP2013161634A (en) * 2012-02-03 2013-08-19 Toyota Industries Corp Electrode housing separator, electrode body, electricity storage device and vehicle
JP2019157060A (en) * 2018-03-16 2019-09-19 東レ株式会社 Polyolefin microporous film
JPWO2020179294A1 (en) * 2019-03-07 2020-09-10
WO2020179294A1 (en) * 2019-03-07 2020-09-10 東レ株式会社 Polyolefin microporous membrane and battery
JP7540336B2 (en) 2019-03-07 2024-08-27 東レ株式会社 Polyolefin microporous membrane, battery
WO2021033736A1 (en) * 2019-08-22 2021-02-25 東レ株式会社 Polyolefin microporous membrane
JP7639341B2 (en) 2019-08-22 2025-03-05 東レ株式会社 Polyolefin microporous membrane
CN110854342A (en) * 2019-11-15 2020-02-28 上海化工研究院有限公司 Preparation method of high-efficiency high-performance lithium battery diaphragm
CN110854342B (en) * 2019-11-15 2022-11-08 上海化工研究院有限公司 A kind of preparation method of high-efficiency and high-performance lithium battery separator

Similar Documents

Publication Publication Date Title
JP4920122B2 (en) Polyolefin microporous membrane, separator for nonaqueous secondary battery, nonaqueous secondary battery, and method for producing polyolefin microporous membrane
JP4806735B1 (en) Polyolefin microporous membrane and production method thereof, separator for non-aqueous secondary battery, and non-aqueous secondary battery
JP4653849B2 (en) Non-aqueous secondary battery separator
JP5172047B2 (en) Nonaqueous electrolyte battery separator and nonaqueous electrolyte battery
JP2010278018A (en) Adsorbent for nonaqueous secondary battery, porous membrane for nonaqueous secondary battery, separator for nonaqueous secondary battery, and nonaqueous secondary battery
JP2011210436A (en) Polyolefin microporous film, separator for nonaqueous secondary battery, and nonaqueous secondary battery
JP2011210574A (en) Polyolefin microporous film, separator for nonaqueous secondary battery, and the nonaqueous secondary battery
JP5400671B2 (en) Polyolefin microporous membrane, non-aqueous secondary battery separator and non-aqueous secondary battery
JP2011198553A (en) Polyolefin fine porous membrane, separator for nonaqueous secondary battery, and nonaqueous secondary battery
JP2011192528A (en) Polyolefin microporous film, separator for nonaqueous secondary battery, and nonaqueous secondary battery
JP2011129304A (en) Separator for nonaqueous secondary battery, and nonaqueous secondary battery
JP2012128979A (en) Separator for nonaqueous electrolyte battery and nonaqueous electrolyte battery
JP2011192529A (en) Polyolefin microporous film, separator for nonaqueous secondary battery, and nonaqueous secondary battery
JP2012048987A (en) Polyolefin microporous film, nonaqueous secondary battery separator, and nonaqueous secondary battery
JP2011124177A (en) Separator for nonaqueous secondary battery, and nonaqueous secondary battery
JP2011204587A (en) Separator for nonaqueous secondary battery, nonaqueous secondary battery, and method of manufacturing separator for nonaqueous secondary battery
JP5583998B2 (en) Polyolefin microporous membrane, non-aqueous secondary battery separator and non-aqueous secondary battery
JP2011113921A (en) Separator for nonaqueous secondary battery, and nonaqueous secondary battery
JP2012099324A (en) Separator for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
JP2011028947A (en) Separator for nonaqueous secondary battery, and nonaqueous secondary battery
JP2012129116A (en) Separator for nonaqueous electrolyte battery and nonaqueous electrolyte battery
JP2012099370A (en) Separator for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
JP2011202105A (en) Polyolefin microporous film, separator for nonaqueous secondary battery, and nonaqueous secondary battery
JP2012099349A (en) Separator for nonaqueous secondary battery, and nonaqueous secondary battery
JP2011134563A (en) Separator for nonaqueous secondary battery, and nonaqueous secondary battery

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110701

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20110701