[go: up one dir, main page]

JP2011125799A - Method for recovering low boiling point organic solvent - Google Patents

Method for recovering low boiling point organic solvent Download PDF

Info

Publication number
JP2011125799A
JP2011125799A JP2009287384A JP2009287384A JP2011125799A JP 2011125799 A JP2011125799 A JP 2011125799A JP 2009287384 A JP2009287384 A JP 2009287384A JP 2009287384 A JP2009287384 A JP 2009287384A JP 2011125799 A JP2011125799 A JP 2011125799A
Authority
JP
Japan
Prior art keywords
desorption
adsorption
organic solvent
recovering
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009287384A
Other languages
Japanese (ja)
Inventor
Zenichi Takano
善一 高野
Masahiro Tanaka
将博 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Morikawa Co Ltd
Original Assignee
Morikawa Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Morikawa Co Ltd filed Critical Morikawa Co Ltd
Priority to JP2009287384A priority Critical patent/JP2011125799A/en
Publication of JP2011125799A publication Critical patent/JP2011125799A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Treating Waste Gases (AREA)
  • Separation Of Gases By Adsorption (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To efficiently recover a solvent from a gas containing a low boiling point organic solvent with a boiling point of 40-110°C by using cleaning air as a purging gas. <P>SOLUTION: To recover the low boiling point organic solvent with a boiling point of 40-110°C contained in exhaust gas by using a pair of adsorption-desorption vessels charged with an adsorbent, a process of switching from adsorption to desorption and vice versa in the pair of adsorption-desorption vessels in 5-20 minutes, a process of feeding the gas containing the organic solvent to the adsorption side of the adsorption-desorption vessels, a process of feeding a purging gas feeding cleaning air in a vacuum state as the purging gas for desorption to the adsorption-desorption vessels, and a process of recovering a solvent by liquefying the desorbed solvent in the purging gas are included. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、排ガス中に含まれ、沸点が凡そ40〜100℃の範囲である低沸点有機溶剤の回収方法の技術分野に関するものである。   The present invention relates to the technical field of a method for recovering a low-boiling organic solvent contained in exhaust gas and having a boiling point in the range of about 40 to 100 ° C.

一般に、この種低沸点有機溶剤(揮発性有機溶剤)としては、ジメチルエーテル、メチルエチルエーテル、ジエチルエーテル、アセトン、メチルエチルケトン、メチルアルコール、エチルアルコール、n−プロピルアルコール、イソプロピルアルコール、ジメチルエチレン、n−ヘキサン、シクロヘキサン、ベンゼン、トルエン等の有機溶剤が例示され、これら有機溶剤が気化して空気中に含まれて有機溶剤含有空気になった場合、そのまま大気に放出することは許されず、回収する必要がある。
このような低沸点有機溶剤は、沸点が低いこともあって単に有機溶剤含有空気を冷却しただけでは回収することが難しい。
そこでシリカゲルやアルミナ等の吸着材を用いて有機溶剤を吸着し、該吸着した有機溶剤を減圧下で脱着させ、回収するようにしたものが知られている(特許文献1参照)。
Generally, this kind of low boiling point organic solvent (volatile organic solvent) includes dimethyl ether, methyl ethyl ether, diethyl ether, acetone, methyl ethyl ketone, methyl alcohol, ethyl alcohol, n-propyl alcohol, isopropyl alcohol, dimethyl ethylene, n-hexane. Organic solvents such as cyclohexane, benzene, and toluene are exemplified, and when these organic solvents are vaporized and contained in the air to become organic solvent-containing air, they are not allowed to be released into the atmosphere as they are and must be recovered. is there.
Such a low boiling point organic solvent has a low boiling point and is difficult to recover by simply cooling the air containing the organic solvent.
Therefore, an organic solvent is adsorbed using an adsorbent such as silica gel or alumina, and the adsorbed organic solvent is desorbed under reduced pressure and recovered (see Patent Document 1).

特開平5−337323号公報JP-A-5-337323

しかしながら前記従来のものは、脱着するためのパージガスとして不活性ガスである窒素を用いている。ところで窒素ガスをパージガスとして用いる場合、窒素ガスボンベや液体窒素を用いた場合、連続的な有機溶剤の回収には不向きである。そこで空気中の窒素を取り出し、これを用いるようにした場合には窒素ガス取り出し装置が必要になる、という問題がある。そこで前記従来のものは、脱着に使用した窒素ガスを回収して再利用するようにしているが、このものは、窒素ガスを回収するため窒素ガス吸脱着槽を設け、ここに吸着している窒素を脱着させて用いるようにしているため、装置自体が複雑大型化するという問題が依然としてある。
そこでパージガスとしてこのような窒素ガスではなく浄化空気を用いた場合の吸脱着条件について検討すれば装置自体の小型コンパクト化が達成できるのでは、という考えに至り、ここに本発明の解決すべき課題がある。
However, the conventional one uses nitrogen which is an inert gas as a purge gas for desorption. By the way, when nitrogen gas is used as a purge gas, when a nitrogen gas cylinder or liquid nitrogen is used, it is not suitable for continuous organic solvent recovery. Therefore, when nitrogen in the air is taken out and used, there is a problem that a nitrogen gas taking out device is required. Therefore, the above-mentioned conventional one collects and reuses the nitrogen gas used for desorption, but this one is provided with a nitrogen gas adsorption / desorption tank for collecting nitrogen gas and adsorbed here. Since nitrogen is used after being desorbed, there is still a problem that the apparatus itself becomes complicated and large.
Accordingly, if the adsorption / desorption conditions when using purified air instead of such nitrogen gas as the purge gas are considered, the idea is that the device itself can be reduced in size and size, and here is the problem to be solved by the present invention. There is.

本発明は、上記の如き実情に鑑みこれらの課題を解決することを目的として創作されたものであって、請求項1の発明は、吸着剤が投入された一対の吸脱着槽を用いて排ガス中に含まれる40〜110℃の低沸点有機溶剤を回収する方法であって、該方法は、前記一対の吸脱着槽の吸脱着切換えを5〜20分のあいだで行う吸脱着切換え工程と、前記有機溶剤を含有するガスを吸着側吸脱着剤槽に供給する含有ガス供給工程と、脱着するためのパージガスとして浄化空気を真空状態にして脱着側吸脱着槽に供給するパージガス供給工程と、溶剤脱着したパージガスから溶剤を液化して回収する溶剤回収工程と、の各工程を備えていることを特徴とする低沸点有機溶剤の回収方法である。
請求項2の発明は、吸着材は、細孔径が5〜60Å、比表面積が400〜1000m/gの疎水性シリカゲルであることを特徴とする請求項1記載の低沸点有機溶剤の回収方法である。
請求項3の発明は、真空度は−0.080〜−0.095MPaであって、かつ吸着材を過熱しないことを特徴とする請求項1または2記載の低沸点有機溶剤の回収方法である。
The present invention was created with the object of solving these problems in view of the above-mentioned circumstances, and the invention of claim 1 is an exhaust gas using a pair of adsorption / desorption tanks charged with an adsorbent. A method of recovering a low-boiling organic solvent having a temperature of 40 to 110 ° C. contained in the adsorption / desorption switching step in which the adsorption / desorption switching of the pair of adsorption / desorption tanks is performed for 5 to 20 minutes; A contained gas supply step for supplying the gas containing the organic solvent to the adsorption side adsorption / desorption agent tank, a purge gas supply step for supplying purified gas to the desorption side adsorption / desorption tank in a vacuum state as a purge gas for desorption, and a solvent A method for recovering a low boiling point organic solvent, comprising: a solvent recovery step of liquefying and recovering a solvent from a desorbed purge gas.
The invention according to claim 2 is the method for recovering a low-boiling organic solvent according to claim 1, wherein the adsorbent is a hydrophobic silica gel having a pore diameter of 5 to 60 mm and a specific surface area of 400 to 1000 m 2 / g. It is.
The invention according to claim 3 is the low boiling point organic solvent recovery method according to claim 1 or 2, wherein the degree of vacuum is -0.080 to -0.095 MPa and the adsorbent is not overheated. .

請求項1の発明とすることにより、パージガスとして浄化空気を用いながら、効率の良い低沸点有機溶剤の回収が連続してできることになる。
請求項2または3の発明とすることにより、さらに効率の良い低沸点有機溶剤の回収が連続してできることになる。
According to the first aspect of the present invention, efficient recovery of the low boiling point organic solvent can be continuously performed while using purified air as the purge gas.
By making the invention of claim 2 or 3, further efficient recovery of the low boiling point organic solvent can be continuously performed.

溶剤回収装置にブロック回路図である。It is a block circuit diagram in a solvent recovery device. 実験例1の実験条件および結果を示す表図である。6 is a table showing experimental conditions and results of Experimental Example 1. FIG. 実験例2の実験条件および結果を示す表図である。10 is a table showing experimental conditions and results of Experimental Example 2. FIG.

以下、本発明の実施の形態について、図面に基づいて説明する。1は低沸点有機溶剤含有空気の吸引流路であって、該吸引流路1は第一、第二の分岐吸引流路1a、1bに分岐され、第一、第二吸脱着槽2、3に接続されている。両吸脱着槽2、3には疎水性シリカゲルが投入されている。
4は吸着用ブロア5が設けられた排気流路であって、該排気流路4は前記第一、第二吸脱着槽2、3にそれぞれ接続される分岐排気流路4a、4bが合流することで構成されている。
Hereinafter, embodiments of the present invention will be described with reference to the drawings. Reference numeral 1 denotes a suction channel for air containing a low-boiling organic solvent, and the suction channel 1 is branched into first and second branched suction channels 1a and 1b. It is connected to the. Both adsorption / desorption tanks 2 and 3 are charged with hydrophobic silica gel.
Reference numeral 4 denotes an exhaust passage provided with an adsorption blower 5. The exhaust passage 4 joins branch exhaust passages 4a and 4b connected to the first and second adsorption / desorption tanks 2 and 3, respectively. It is composed of that.

前記分岐吸引流路1a、1bには、第一、第二吸脱着槽2、3から脱着された脱着ガスが流れる分岐脱着流路6a、6bが各別に接続されているが、該分岐脱着流路6a、6bが合流して脱着流路6となり、凝縮器7に至るようになっているが、脱着流路6には真空ポンプ8が設けられていて、第一、第二吸脱着槽2、3に吸着された有機溶剤を真空状態で脱着するようになっている。凝縮器7には冷凍機9で冷却処理された冷媒が供給され、前記脱着ガスを冷却して脱着溶媒を液化し回収液として回収容器10に回収するようになっている。尚、凝縮器7が排出された被凝縮ガスは、トラップタンク11、還元流路11aを経由して前記吸引流路1に還流されるようになっている。   Branch desorption channels 6a and 6b through which desorption gas desorbed from the first and second adsorption / desorption tanks 2 and 3 flow are connected to the branch suction channels 1a and 1b, respectively. The channels 6a and 6b merge to form a desorption channel 6 and reach the condenser 7. The desorption channel 6 is provided with a vacuum pump 8, and the first and second adsorption / desorption tanks 2 are provided. 3 is desorbed in a vacuum state. The refrigerant cooled by the refrigerator 9 is supplied to the condenser 7, and the desorption gas is cooled to liquefy the desorption solvent and collect it in the recovery container 10 as a recovery liquid. The gas to be condensed discharged from the condenser 7 is returned to the suction flow path 1 via the trap tank 11 and the reduction flow path 11a.

一方、12はパージガス(浄化空気)が供給されるパージガス供給流路であって、該パージガス供給流路12は分岐パージガス供給流路となって前記前記分岐排気流路4a、4bにに接続されている。   On the other hand, reference numeral 12 denotes a purge gas supply passage through which purge gas (purified air) is supplied. The purge gas supply passage 12 serves as a branch purge gas supply passage and is connected to the branch exhaust passages 4a and 4b. Yes.

前記分岐吸引流路1a、1b、分岐排気流路4a、4b、分岐脱着流路6a、6b、分岐パージガス供給流路12a、12bにはそれぞれ開閉弁13、13a、14、14a、15、15a、16、16aが設けられると共に、パージガス供給流路12には真空圧力調整弁17が設けられている。尚、19はパージガス供給流路12に設けられるフィルタである。   The branch suction channels 1a and 1b, the branch exhaust channels 4a and 4b, the branch desorption channels 6a and 6b, and the branch purge gas supply channels 12a and 12b are respectively provided with on-off valves 13, 13a, 14, 14a, 15, 15a, 16 and 16 a are provided, and a vacuum pressure adjusting valve 17 is provided in the purge gas supply flow path 12. Reference numeral 19 denotes a filter provided in the purge gas supply flow path 12.

次に、前述した開閉弁13、13a、14、14a、15、15a、16、16aの開閉制御によって第一、第二吸脱着槽2、3での吸脱着の繰り返しを連続的に行うことになるが、その手順について説明する。尚、前記各開閉弁の開閉制御は、図示しない制御器からの制御指令により自動的に行われるようになっている。   Next, the repetition of adsorption / desorption in the first and second adsorption / desorption tanks 2 and 3 is continuously performed by the opening / closing control of the on-off valves 13, 13a, 14, 14a, 15, 15a, 16, 16a. The procedure will be described. The opening / closing control of each opening / closing valve is automatically performed by a control command from a controller (not shown).

吸着用ブロア5、真空ポンプ8が駆動する状態で第一吸脱着槽2で吸着をし、第二吸脱着槽3で脱着をする場合、開閉弁13、14、15a、16aを開成し、開閉弁13a、14a、15、16を閉成する。これによって吸引流路1から吸引された有機溶剤含有空気は、分岐吸引流路1a、第一吸脱着槽2、分岐排気流路4a、排気流路4を経由して排気されることになるが、前記第一吸脱着槽2で有機溶剤が吸着される。これに対し、パージガスは、パージガス供給流路12、分岐パージガス供給流路12b、第二吸脱着槽3、分岐脱着ガス供給流路6b、脱着ガス供給流路6、凝縮器7、トラップタンク11、還元流路11aを経由して吸引流路1に還元されることになるが、第二吸脱着槽3は真空状態になりながらパージガスによる吸着用材の脱着作用を受け、該脱着ガスは凝縮器7で凝縮されて液化された溶剤が回収容器10に回収される。   When adsorption is performed in the first adsorption / desorption tank 2 while the adsorption blower 5 and the vacuum pump 8 are driven and desorption is performed in the second adsorption / desorption tank 3, the on-off valves 13, 14, 15a and 16a are opened and opened / closed. The valves 13a, 14a, 15, 16 are closed. Thus, the organic solvent-containing air sucked from the suction channel 1 is exhausted via the branch suction channel 1a, the first adsorption / desorption tank 2, the branch exhaust channel 4a, and the exhaust channel 4. The organic solvent is adsorbed in the first adsorption / desorption tank 2. On the other hand, the purge gas includes a purge gas supply channel 12, a branch purge gas supply channel 12b, a second adsorption / desorption tank 3, a branch desorption gas supply channel 6b, a desorption gas supply channel 6, a condenser 7, a trap tank 11, The second adsorption / desorption tank 3 is subjected to desorption action of the adsorbing material by the purge gas while being in a vacuum state, and the desorption gas is condensed into the condenser 7. The solvent condensed and liquefied in step 1 is recovered in the recovery container 10.

これに対し、吸着用ブロア5、真空ポンプ8が駆動する状態で第一吸脱着槽2で脱着をし、第二吸脱着槽3で吸着をする場合、開閉弁13、14、15a、16aを閉成し、開閉弁13a、14a、15、16を開成する。これによって吸引流路1から吸引された有機溶剤含有空気は、分岐吸引流路1b、第二吸脱着槽3、分岐排気流路4b、排気流路4を経由して排気されることになるが、前記第二吸脱着槽2で有機溶剤が吸着される。これに対し、パージガスは、パージガス供給流路12、分岐パージガス供給流路12a、第一吸脱着槽2、分岐脱着ガス供給流路6a、脱着ガス供給流路6、凝縮器7、トラップタンク11、還元流路11aを経由して吸引流路1に還元されることになるが、第一吸脱着槽3は真空状態になりながらパージガスによる吸着用材の脱着作用を受け、該脱着ガスは凝縮器7で凝縮されて液化された溶剤が回収容器10に回収される。   On the other hand, when the adsorption blower 5 and the vacuum pump 8 are driven and desorbed in the first adsorption / desorption tank 2 and adsorbed in the second adsorption / desorption tank 3, the on-off valves 13, 14, 15a and 16a are provided. It closes and the on-off valves 13a, 14a, 15, 16 are opened. As a result, the organic solvent-containing air sucked from the suction channel 1 is exhausted via the branch suction channel 1b, the second adsorption / desorption tank 3, the branch exhaust channel 4b, and the exhaust channel 4. The organic solvent is adsorbed in the second adsorption / desorption tank 2. On the other hand, the purge gas includes a purge gas supply channel 12, a branch purge gas supply channel 12a, a first adsorption / desorption tank 2, a branch desorption gas supply channel 6a, a desorption gas supply channel 6, a condenser 7, a trap tank 11, The first adsorbing / desorbing tank 3 is desorbed by the purge gas while being in a vacuum state, and the desorbing gas is supplied to the condenser 7. The solvent condensed and liquefied in step 1 is recovered in the recovery container 10.

斯かる装置を用いて本発明を実施する場合において、回収する有機溶剤としては、凡そ40〜100℃の範囲である低沸点有機溶剤であって、ジメチルエーテル、メチルエチルエーテル、ジエチルエーテル、アセトン、メチルエチルケトン、メチルアルコール、エチルアルコール、n−プロピルアルコール、イソプロピルアルコール、ジメチルエチレン、n−ヘキサン、シクロヘキサン、ベンゼン、トルエン等が例示される。
本発明に用いられる吸着材としては、シリカゲル、ゼオライト、アルミナ、活性炭等、通常知られた吸着材を用いることができるが、疎水性シリカゲルが好ましい。疎水性シリカゲルとしては、細孔径が5〜60Å、比表面積が400〜1000m/gのシリカゲルであることが好ましい。
また本発明の脱着工程で実施される真空度は−0.080〜−0.095MPaの範囲であることが好ましく、さらに吸着材は過熱しないで室温放置とすることが好ましい。
In carrying out the present invention using such an apparatus, the organic solvent to be recovered is a low-boiling organic solvent in the range of about 40 to 100 ° C., which is dimethyl ether, methyl ethyl ether, diethyl ether, acetone, methyl ethyl ketone. , Methyl alcohol, ethyl alcohol, n-propyl alcohol, isopropyl alcohol, dimethylethylene, n-hexane, cyclohexane, benzene, toluene and the like.
As the adsorbent used in the present invention, commonly known adsorbents such as silica gel, zeolite, alumina, activated carbon and the like can be used, but hydrophobic silica gel is preferred. The hydrophobic silica gel is preferably a silica gel having a pore size of 5 to 60 mm and a specific surface area of 400 to 1000 m 2 / g.
The degree of vacuum performed in the desorption step of the present invention is preferably in the range of -0.080 to -0.095 MPa, and the adsorbent is preferably left at room temperature without overheating.

<実験例1>
吸着材としては富士シリシア化学株式会社製の「Q6」疎水性シリカゲル(平均細孔径:60Å、比表面積:628m/g)を21.3kgずつ両吸脱着槽2、3に投入した。吸着溶剤としてイソプロピルアルコール、処理風量が2m/minになるよう吸着ブロアの流量を調整した。第一、第二吸脱着槽1、2とも装置が設置された室内温度条件に放置された。図2の表図に示す吸着条件、脱着条件、吸脱着切換えのサイクル時間、運転サイクル数(吸脱着回数)の実験条件で吸脱着処理実験を行ったところ、図2の表図に示す排気濃度になった。回収溶剤をガスクロマトグラフィでトラップし、同定したところ、イソプロパノールに少量の水の存在が確認された。
これによると、サイクル時間が20分のものは、排気ガス中に最大で68ppmのイソプロピルアルコールが含まれていることが確認され、これ以上のサイクル時間では回収されない有機溶剤の排出があり、好ましくないといえる。
<Experimental example 1>
As an adsorbent, 21.3 kg of “Q6” hydrophobic silica gel (average pore diameter: 60 mm, specific surface area: 628 m 2 / g) manufactured by Fuji Silysia Chemical Co., Ltd. was charged into both adsorption / desorption tanks 2 and 3 each. The flow rate of the adsorption blower was adjusted so that isopropyl alcohol was used as the adsorption solvent and the treatment air volume was 2 m 3 / min. Both the first and second adsorption / desorption tanks 1 and 2 were left in the room temperature condition where the apparatus was installed. When the adsorption / desorption treatment experiment was conducted under the conditions of adsorption conditions, desorption conditions, cycle time for switching between adsorption / desorption and the number of operation cycles (number of adsorption / desorption times) shown in the table of FIG. 2, the exhaust concentration shown in the table of FIG. Became. When the recovered solvent was trapped and identified by gas chromatography, the presence of a small amount of water was confirmed in isopropanol.
According to this, when the cycle time is 20 minutes, it is confirmed that the exhaust gas contains 68 ppm of isopropyl alcohol at the maximum, and there is discharge of the organic solvent that is not recovered at a cycle time longer than this, which is not preferable. It can be said.

<実験例2>
次に、吸着材、吸着溶剤、処理風量は実験例1と同じ条件とし、図3の表図に示す吸着条件、脱着条件、吸脱着切換えのサイクル時間、運転サイクル数(吸脱着回数)の実験条件で吸脱着処理実験を行ったところ、図3の表図に示す排気濃度になった。回収用材をガスクロマトグラフィでトラップし、同定したところ、イソプロパノールに少量の水の存在が確認された。これによると、真空度が高いほど脱着効率が高いことが確認され、また真空度が−0.0080MPaのものは排気ガス中に最大で25ppmのイソプロピルアルコールが含まれていることが確認され、これ以上の真空度で脱着させることは、好ましくないといえる。
<Experimental example 2>
Next, the adsorbent, the adsorbing solvent, and the treatment air volume are the same as those in Experimental Example 1. When the adsorption / desorption treatment experiment was conducted under the conditions, the exhaust concentration shown in the table of FIG. 3 was obtained. When the recovery material was trapped and identified by gas chromatography, the presence of a small amount of water was confirmed in isopropanol. According to this, it was confirmed that the higher the degree of vacuum, the higher the desorption efficiency, and the one with a degree of vacuum of -0.0080 MPa confirmed that the exhaust gas contained 25 ppm of isopropyl alcohol at the maximum. It can be said that it is not preferable to desorb at the above degree of vacuum.

本発明は、低沸点有機溶剤を含有する空気から該有機溶剤を、パージガスとして空気を用いながら効率よく回収するための産業上の利用可能性がある。   INDUSTRIAL APPLICABILITY The present invention has industrial applicability for efficiently recovering an organic solvent from air containing a low-boiling organic solvent while using air as a purge gas.

1 吸引流路
2 第一吸脱着槽
3 第二吸脱着槽
4 排気流路
5 吸気ブロア
6 脱着流路
7 凝縮器
8 真空ポンプ
10 回収容器
12 パージガス供給流路
17 真空圧力調整弁
DESCRIPTION OF SYMBOLS 1 Suction flow path 2 1st adsorption / desorption tank 3 2nd adsorption / desorption tank 4 Exhaust flow path 5 Intake blower 6 Desorption flow path 7 Condenser 8 Vacuum pump 10 Recovery container 12 Purge gas supply flow path 17 Vacuum pressure control valve

Claims (3)

吸着剤が投入された一対の吸脱着槽を用いて排ガス中に含まれる40〜110℃の低沸点有機溶剤を回収する方法であって、該方法は、
前記一対の吸脱着槽の吸脱着切換えを5〜20分のあいだで行う吸脱着切換え工程と、
前記有機溶剤を含有するガスを吸着側吸脱着剤槽に供給する含有ガス供給工程と、
脱着するためのパージガスとして浄化空気を真空状態にして脱着側吸脱着槽に供給するパージガス供給工程と、
溶剤脱着したパージガスから溶剤を液化して回収する溶剤回収工程と、
の各工程を備えていることを特徴とする低沸点有機溶剤の回収方法。
A method of recovering a low boiling point organic solvent at 40 to 110 ° C. contained in exhaust gas using a pair of adsorption / desorption tanks loaded with an adsorbent,
An adsorption / desorption switching step in which the adsorption / desorption switching of the pair of adsorption / desorption tanks is performed for 5 to 20 minutes;
A containing gas supply step of supplying a gas containing the organic solvent to the adsorption side adsorption / desorption agent tank;
A purge gas supply step of supplying purified gas to the desorption side adsorption / desorption tank in a vacuum state as purge gas for desorption;
A solvent recovery process for liquefying and recovering the solvent from the purge gas desorbed;
A method for recovering a low-boiling organic solvent, comprising the steps of:
吸着材は、細孔径が5〜60Å、比表面積が400〜1000m/gの疎水性シリカゲルであることを特徴とする請求項1記載の低沸点有機溶剤の回収方法。 The method for recovering a low-boiling organic solvent according to claim 1, wherein the adsorbent is hydrophobic silica gel having a pore diameter of 5 to 60 mm and a specific surface area of 400 to 1000 m 2 / g. 真空度は−0.080〜−0.095MPaであって、かつ吸着材を過熱しない事を特徴とする請求項1または2記載の低沸点有機溶剤の回収方法。   The method for recovering a low-boiling organic solvent according to claim 1 or 2, wherein the degree of vacuum is -0.080 to -0.095 MPa and the adsorbent is not overheated.
JP2009287384A 2009-12-18 2009-12-18 Method for recovering low boiling point organic solvent Pending JP2011125799A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009287384A JP2011125799A (en) 2009-12-18 2009-12-18 Method for recovering low boiling point organic solvent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009287384A JP2011125799A (en) 2009-12-18 2009-12-18 Method for recovering low boiling point organic solvent

Publications (1)

Publication Number Publication Date
JP2011125799A true JP2011125799A (en) 2011-06-30

Family

ID=44288984

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009287384A Pending JP2011125799A (en) 2009-12-18 2009-12-18 Method for recovering low boiling point organic solvent

Country Status (1)

Country Link
JP (1) JP2011125799A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106413850A (en) * 2016-01-11 2017-02-15 鹤山市新科达企业有限公司 Device and method for adsorbing and recovery processing waste gas from synthetic leather factories by activated carbon

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0531322A (en) * 1991-07-30 1993-02-09 Kobe Steel Ltd Apparatus for solvent recovery
JPH0947635A (en) * 1995-05-27 1997-02-18 Syst Enji Service:Kk Treatment and recovery device for gaseous hydrogen contained in waste gas and its process
JPH0957060A (en) * 1995-08-29 1997-03-04 Syst Enji Service:Kk Method for treating and recovering gaseous hydrocarbon contained in waste gas
JP2001129392A (en) * 1999-11-08 2001-05-15 Takeda Chem Ind Ltd Adsorbent
JP2002293754A (en) * 2001-03-30 2002-10-09 Syst Enji Service Kk Method and plant for isolating and recovering alcohol from waste gas containing the same
JP2006198604A (en) * 2004-12-22 2006-08-03 Mitsubishi Electric Corp Apparatus and method for treating and recovering gaseous hydrocarbons
JP2008207138A (en) * 2007-02-28 2008-09-11 Jfe Engineering Kk Hydrocarbon removal and recovery equipment

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0531322A (en) * 1991-07-30 1993-02-09 Kobe Steel Ltd Apparatus for solvent recovery
JPH0947635A (en) * 1995-05-27 1997-02-18 Syst Enji Service:Kk Treatment and recovery device for gaseous hydrogen contained in waste gas and its process
JPH0957060A (en) * 1995-08-29 1997-03-04 Syst Enji Service:Kk Method for treating and recovering gaseous hydrocarbon contained in waste gas
JP2001129392A (en) * 1999-11-08 2001-05-15 Takeda Chem Ind Ltd Adsorbent
JP2002293754A (en) * 2001-03-30 2002-10-09 Syst Enji Service Kk Method and plant for isolating and recovering alcohol from waste gas containing the same
JP2006198604A (en) * 2004-12-22 2006-08-03 Mitsubishi Electric Corp Apparatus and method for treating and recovering gaseous hydrocarbons
JP2008207138A (en) * 2007-02-28 2008-09-11 Jfe Engineering Kk Hydrocarbon removal and recovery equipment

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106413850A (en) * 2016-01-11 2017-02-15 鹤山市新科达企业有限公司 Device and method for adsorbing and recovery processing waste gas from synthetic leather factories by activated carbon

Similar Documents

Publication Publication Date Title
AU2012265736B2 (en) Carbon dioxide separating and capturing apparatus
JP5990722B2 (en) Volatile organic compound recovery equipment
JPH0243922A (en) Pressure variable adsorber and device for recovering oil soluble vapor
JP2016019949A (en) Organic solvent recovery system
JPH037413B2 (en)
JP2016195969A (en) Organic solvent recovery system
US8979979B2 (en) Method and device for removing volatile organic substances from the contained air of closed habitats
JP2009160559A (en) Volatile organic matter recovery equipment
JP2011125799A (en) Method for recovering low boiling point organic solvent
JP2005199223A (en) Recovery method and recovery device of gasoline vapor
JP2004243279A (en) Method and apparatus for purifying gases containing organic contaminants
JP2013086024A (en) Organic solvent desorption method and organic solvent desorbing device
TW201834731A (en) Ozone gas concentration method and ozone gas concentration device
JP2840563B2 (en) Method for treating and recovering rich gaseous hydrocarbons contained in emitted gas
JP7236888B2 (en) Operation method of vacuum desorption type volatile organic compound recovery equipment
JP4611355B2 (en) Gas processing method and gas processing equipment
KR20050090774A (en) Apparatus and method for decomposing volatile organic compound of facilities for storing oil
KR101624804B1 (en) Thermal swing adsorption type vapor oil recycling apparatus using heat pump
JPH0584417A (en) Method and equipment for recovering solvent
TWI403354B (en) Recovery device and method for gas - like hydrocarbon
TWI856079B (en) Organic Solvent Recovery System
JP7435933B1 (en) Organic solvent recovery system
IL302930A (en) Method and procedure for controlling VOC pollution using fixed bed and condensation
JP2008119570A (en) Voc recovery apparatus and voc recovery method
JP2006088001A (en) Concentration method of volatile organic gas and volatile organic gas concentration device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121001

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130304

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130321

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131031