[go: up one dir, main page]

JP2011111511A - Regeneration treatment method of carbon compound, gasification apparatus and regeneration treatment system - Google Patents

Regeneration treatment method of carbon compound, gasification apparatus and regeneration treatment system Download PDF

Info

Publication number
JP2011111511A
JP2011111511A JP2009268157A JP2009268157A JP2011111511A JP 2011111511 A JP2011111511 A JP 2011111511A JP 2009268157 A JP2009268157 A JP 2009268157A JP 2009268157 A JP2009268157 A JP 2009268157A JP 2011111511 A JP2011111511 A JP 2011111511A
Authority
JP
Japan
Prior art keywords
furnace
carbon compound
gas
regeneration treatment
generator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009268157A
Other languages
Japanese (ja)
Inventor
Nanao Horiishi
七生 堀石
Yoshiro Hashimoto
芳郎 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MICRO ENERGY KK
Toda Kogyo Corp
Sentec Co Ltd Japan
Original Assignee
MICRO ENERGY KK
Toda Kogyo Corp
Sentec Co Ltd Japan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MICRO ENERGY KK, Toda Kogyo Corp, Sentec Co Ltd Japan filed Critical MICRO ENERGY KK
Priority to JP2009268157A priority Critical patent/JP2011111511A/en
Publication of JP2011111511A publication Critical patent/JP2011111511A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/141Feedstock
    • Y02P20/143Feedstock the feedstock being recycled material, e.g. plastics
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Catalysts (AREA)
  • Coke Industry (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a regeneration treatment method of solid organic waste, wherein tar is not produced and yield of an aqueous gas is not reduced, even when heating temperature in a carbonization furnace is lowered to ≤900°C, a gasification apparatus, and a regeneration treatment system. <P>SOLUTION: The regeneration treatment method of a carbon compound uses the carbonization furnace 5 and a heating temperature of 700-900°C and comprises steps of: replacing air inside the furnace with superheated steam; and subsequently introducing a mixture comprising a raw material containing the carbon compound and a catalyst promoting a reaction represented by formula (A): CO<SB>2</SB>+C→2CO into the furnace together with the superheated steam. As the catalyst, iron oxide having an average particle size of 0.1-2.0 μm is introduced into the furnace in an amount corresponding to 1-20 wt.% in terms of dry matter based on the weight of the carbon compound. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、炭素化合物を含有する原料、例えば、食品残渣、農業残渣、木質バイオマス、活性汚泥、廃プラスチックなどの固形有機廃棄物を、飽和水蒸気温度(638℃)を常圧のままさらに高温度に加熱して得られる熱放射性H2Oガスの過熱水蒸気中で熱分解することにより水素と一酸化炭素を主成分とする水性ガスに再生して、さらにこの水性ガスを液体燃料または電気エネルギーに再生する炭素化合物の再生処理方法、ガス化装置および再生処理システムに関する。 In the present invention, a raw material containing a carbon compound, for example, solid organic waste such as food residue, agricultural residue, woody biomass, activated sludge, waste plastic, etc., is further heated at a saturated steam temperature (638 ° C.) at normal pressure. playing the water gas mainly composed of hydrogen and carbon monoxide by pyrolysis with superheated water vapor in the heat radiating property the H 2 O gas obtained by heating, further the water gas to the liquid fuel or electric energy The present invention relates to a regeneration treatment method, a gasification apparatus, and a regeneration treatment system for a carbon compound to be regenerated.

固形有機廃棄物を過熱水蒸気中で熱分解して、水素と一酸化炭素を主成分とする水性ガスに再生し、さらにその水性ガスを原料にして液体燃料に再生し、または、エンジン式発電機の燃料ガスにして電気エネルギーに再生する方法がある(例えば、特許文献1)。これによれば、固形有機廃棄物を一つの炉内で炭化と同時にガス化およびガス改質ができるとともに、炭化物と有用ガスと液体燃料とを装置規模が小さくとも効率良く再生できる廃棄物再生処理方法および廃棄物再生処理システムである。   Solid organic waste is thermally decomposed in superheated steam and regenerated to water gas mainly composed of hydrogen and carbon monoxide, and further regenerated to liquid fuel using the water gas as raw material, or engine generator There is a method of regenerating the fuel gas into electrical energy (for example, Patent Document 1). According to this, solid organic waste can be gasified and reformed at the same time as carbonization in a single furnace, and waste regeneration processing that can efficiently recycle carbide, useful gas, and liquid fuel even if the equipment scale is small. A method and a waste recycling system.

実施例によれば、有機廃棄物を温度1000〜1100℃の過熱水蒸気中に投入してガス化が行われている。   According to the Example, the organic waste is put into superheated steam at a temperature of 1000 to 1100 ° C., and gasification is performed.

しかしながら、1000℃以上という高温度では、ガス化炉に特殊で高価な炉材が必要であり、消費電力も大きくなるなどの問題がある。   However, at a high temperature of 1000 ° C. or higher, there is a problem that a special and expensive furnace material is required for the gasification furnace, and power consumption is increased.

特開2008−260832号公報JP 2008-260832 A

バイオマス等の有機廃棄物を過熱水蒸気中で水性ガスとして再生する有機廃棄物の再生処理方法においては、乾留炉の加熱温度が1000℃以上の高温であるから、乾留炉には高価な特殊耐熱炉材が用いられており経済的負荷が大きいので、加熱温度の低温化が求められている。しかし、乾留炉の加熱温度を900℃以下に下げることはタールが発生して水性ガス反応を低下させるばかりでなく、乾留炉にダメージを与えて機能を低下させることになり、乾留炉の加熱温度を低温化することは困難であった。   In the organic waste regeneration treatment method for regenerating organic waste such as biomass as water gas in superheated steam, the heating temperature of the dry distillation furnace is a high temperature of 1000 ° C. or higher, so that an expensive special heat resistant furnace is used for the dry distillation furnace. Since the material is used and the economic load is large, the heating temperature is required to be lowered. However, lowering the heating temperature of the carbonization furnace to 900 ° C. or lower not only reduces tar water and reduces the water gas reaction, but also damages the carbonization furnace and reduces its function. It was difficult to lower the temperature.

そこで本発明は、乾留炉の加熱温度を900℃以下に下げてもタールが発生せず水性ガスの生成率が低下しない有機廃棄物(炭素化合物を含有する原料)の再生処理方法、ガス化装置および再生処理システムを提供することを目的とする。   Therefore, the present invention provides a method for regenerating organic waste (raw material containing carbon compound) and a gasification apparatus in which tar is not generated and the production rate of water gas does not decrease even when the heating temperature of the carbonization furnace is lowered to 900 ° C. or lower. And a reproduction processing system.

本発明の炭素化合物の再生処理方法は、乾留炉を用い、加熱温度を700℃〜900℃とし、炉内の空気を過熱水蒸気で置換した後、炭素化合物を含有する原料と下記(A式)の反応を促進する触媒との混合物を過熱水蒸気と共に炉内に投入することを特徴とする。
CO2 + C → 2CO (A式)
The carbon compound regeneration treatment method of the present invention uses a carbonization furnace, the heating temperature is set to 700 ° C. to 900 ° C., the air in the furnace is replaced with superheated steam, the raw material containing the carbon compound, and the following (formula A) A mixture with a catalyst that accelerates the reaction is put into a furnace together with superheated steam.
CO 2 + C → 2CO (Type A)

前記触媒としては、酸化鉄を用いることができる。この場合、前記酸化鉄の平均粒子径は、0.1μm以上、2.0μm以下である方が好ましい。また、前記酸化鉄の添加量が投入する炭素化合物に対して乾燥物換算で1wt%以上20wt%以下である方が好ましい。また、前記酸化鉄は、組成Fe1―XO・Fe2O3 (X<0.5)のマグネタイトである方が好ましい。 As the catalyst, iron oxide can be used. In this case, the average particle diameter of the iron oxide is preferably 0.1 μm or more and 2.0 μm or less. Further, the amount of the iron oxide added is preferably 1 wt% or more and 20 wt% or less in terms of dry matter with respect to the carbon compound to be added. The iron oxide is preferably magnetite having a composition of Fe 1-X O · Fe 2 O 3 (X <0.5).

また、本発明のガス化装置は、炭素化合物を含有する原料から水素及び一酸化炭素を主体とするガスを生成するためのものであって、前記原料に触媒を混合する触媒混合手段と、前記原料を供給するための供給口と前記ガスを排出するための排出口と固形物を外気と遮断して回収するため固形物回収口とを有する乾留炉と、前記乾留炉に過熱水蒸気を供給する過熱水蒸気供給手段と、前記乾留炉を加熱する加熱手段と、を具備することを特徴とする。   Further, the gasifier of the present invention is for generating a gas mainly composed of hydrogen and carbon monoxide from a raw material containing a carbon compound, and a catalyst mixing means for mixing a catalyst with the raw material, A dry distillation furnace having a supply port for supplying a raw material, an exhaust port for discharging the gas, and a solid matter recovery port for collecting the solid matter by blocking it from outside air, and supplying superheated steam to the dry distillation furnace It comprises a superheated steam supply means and a heating means for heating the dry distillation furnace.

また、本発明の再生処理システムは、上述した本発明のガス化装置と、前記ガス化装置で生成された水素及び一酸化炭素を合成して液体燃料を生成する液体燃料合成装置と、を具備することを特徴とする。   The regeneration processing system of the present invention includes the above-described gasifier of the present invention, and a liquid fuel synthesizer that synthesizes hydrogen and carbon monoxide generated by the gasifier to generate liquid fuel. It is characterized by doing.

この場合、当該再生処理システムは、前記液体燃料合成装置に接続される発電機と、前記液体燃料合成装置で生じる余剰ガスを前記発電機の発電用燃料として供給する余剰ガス供給装置と、を具備する方が好ましい。また、更に前記液体燃料を前記発電機に供給する補助燃料供給装置を具備することもできる。なお、前記発電機としては、エンジン式発電機、マイクロガスタービン発電機、燃料電池を用いることができる。   In this case, the regeneration processing system includes a generator connected to the liquid fuel synthesizing device, and a surplus gas supply device that supplies surplus gas generated in the liquid fuel synthesizing device as fuel for power generation of the generator. Is preferred. Further, an auxiliary fuel supply device for supplying the liquid fuel to the generator may be provided. As the generator, an engine generator, a micro gas turbine generator, or a fuel cell can be used.

本発明によれば、乾留炉を用い、加熱温度を700℃〜900℃とし、炉内の空気を過熱水蒸気で置換して無酸素雰囲気とした後、固形有機廃棄物のような炭素化合物を含有する原料と下記(A式)の反応を促進する触媒との混合物を過熱水蒸気と共に炉内に投入する。これにより、タールを発生せず熱分解により生成した炭素と過熱水蒸気が反応する下記(1式)の水性ガス反応と、
C + H2O → H2 + CO (1式)
(1式)の水性ガス反応で生成した一酸化炭素が過熱水蒸気と反応する下記(2式)のシフト反応、
CO + H2O → H2 + CO2 (2式)
および(2式)のシフト反応で生成した二酸化炭素が未反応炭素と反応する(A式)の発生炉ガス反応、
CO2 + C → 2CO (A式)
とを、相互に循環させ、水性ガスの生成率を増大させることができる。また、高価な耐熱性材料が不要で、消費電力も削減できる経済的な乾留炉を用いて、固形有機廃棄物等の炭素化合物を含有する原料を再生処理できる。また、投入した酸化鉄粉は回収してリサイクル使用することができる。
According to the present invention, after using a carbonization furnace, the heating temperature is set to 700 ° C. to 900 ° C., the atmosphere in the furnace is replaced with superheated steam to form an oxygen-free atmosphere, and then a carbon compound such as solid organic waste is contained. A mixture of the starting material and the catalyst for promoting the reaction of the following (formula A) is charged into the furnace together with superheated steam. Thereby, water gas reaction of the following (formula 1) in which superheated steam reacts with carbon generated by thermal decomposition without generating tar,
C + H 2 O → H 2 + CO (1 set)
The shift reaction of (Formula 2) below, in which carbon monoxide generated by the water gas reaction of Formula 1 reacts with superheated steam,
CO + H 2 O → H 2 + CO 2 (2 formulas)
And the reactor gas reaction of (Formula A) in which carbon dioxide produced by the shift reaction of (Formula 2) reacts with unreacted carbon,
CO 2 + C → 2CO (Type A)
Can be circulated with each other to increase the production rate of water gas. Further, a raw material containing a carbon compound such as solid organic waste can be regenerated using an economical dry distillation furnace that does not require an expensive heat-resistant material and can reduce power consumption. In addition, the iron oxide powder that has been charged can be recovered and recycled.

また、本発明の循環反応は、生成する水性ガスの水素成分が増大するので、高カロリーのディーゼル発電機用燃料として、または、液体燃料を合成するフィッシャー・トロプッシュ法の反応性を向上させる等の効果がある。   In addition, since the hydrogen component of the generated water gas increases in the circulation reaction of the present invention, the reactivity of the Fischer-Tropsch method for synthesizing liquid fuel or as a fuel for high-calorie diesel generators is improved. There is an effect.

また、本発明の再生処理システムは、固形有機廃棄物を一つの乾留炉内で熱分解と水性ガス合成反応を行い、生成ガスを熱交換装置、液体燃料合成装置およびエンジン式発電装置に有機的に連結しているので、小規模分散型の固形有機廃棄物の再生処理システムに適している。   Further, the regeneration treatment system of the present invention performs solid-state organic waste pyrolysis and water gas synthesis reaction in one dry distillation furnace, and the produced gas is organically transferred to a heat exchange device, a liquid fuel synthesis device and an engine-type power generation device. Are suitable for a small-scale distributed solid organic waste recycling system.

本発明方法の工程フロー図である。It is a process flow figure of a method of the present invention.

本発明の実施形態を図1により説明する。本発明の炭素化合物の再生処理方法は、乾留炉を用い、加熱温度を700℃〜900℃とし、炉内の空気を過熱水蒸気で置換した後、炭素化合物を含有する原料と下記(A式)の反応を促進する触媒との混合物を過熱水蒸気と共に炉内に投入するものである。
CO2 + C → 2CO (A式)
An embodiment of the present invention will be described with reference to FIG. The carbon compound regeneration treatment method of the present invention uses a carbonization furnace, the heating temperature is set to 700 ° C. to 900 ° C., the air in the furnace is replaced with superheated steam, the raw material containing the carbon compound, and the following (formula A) A mixture with a catalyst that promotes the reaction is put into a furnace together with superheated steam.
CO 2 + C → 2CO (Type A)

なお、炭素化合物とは、炭素を含む化合物を意味し、例えば、有機化合物が該当する。また、炭素化合物を含有する原料とは、例えば、食品残渣、木質バイオマス、廃プラスチック等の固形有機廃棄物等が該当する。   In addition, a carbon compound means the compound containing carbon, for example, corresponds to an organic compound. Moreover, the raw material containing a carbon compound corresponds to solid organic wastes such as food residues, woody biomass, and waste plastics.

触媒としては、(A式)の反応を促進するものであればどのようなものでも良いが、例えば、酸化鉄を用いることができる。酸化鉄としては、ヘマタイトα-Fe2O3、ゲータイトα-FeOOH、マグネタイトFe3O4、マグヘマイトγ-Fe2O3など何れの酸化鉄でも使用できる。好ましくは、乾留炉内は還元性ガス雰囲気で700℃以上の温度であるので、乾留炉へ投入すると何れの酸化鉄も還元されてマグネタイトになるので、最初に投入する酸化鉄はマグネタイトが良い。マグネタイトの組成は、組成Fe1―X O・Fe2O3 (X<0.5)である。Xが0.5以上になると酸化が進み過ぎるので、Xの好ましい範囲は0.05〜0.3である。また、より好ましいのは、投入した酸化鉄を回収して得られるカーボン含有マグネタイト粉をリサイクル使用することである。 Any catalyst may be used as long as it promotes the reaction of formula (A). For example, iron oxide can be used. As the iron oxide, any iron oxide such as hematite α-Fe 2 O 3 , goethite α-FeOOH, magnetite Fe 3 O 4 , maghemite γ-Fe 2 O 3 can be used. Preferably, since the inside of the carbonization furnace is a reducing gas atmosphere at a temperature of 700 ° C. or higher, any iron oxide is reduced to magnetite when it is introduced into the carbonization furnace. Therefore, the iron oxide initially introduced is preferably magnetite. The composition of magnetite is the composition Fe 1−X O · Fe 2 O 3 (X <0.5). Since oxidation proceeds excessively when X is 0.5 or more, the preferable range of X is 0.05 to 0.3. More preferably, the carbon-containing magnetite powder obtained by collecting the input iron oxide is recycled.

また、酸化鉄粉は、平均粒子径が0.1μm以上、2.0μm以下の粒子から成る粉末を用いる方が良い。粉末の粒径は、0.1μm以下では固形有機廃棄物との均一混合が困難であり、2.0μm以上になると化学活性が低下するので好ましくない。したがって、酸化鉄粉の平均粒子径の好ましい範囲は0.1μm〜1.0μm、より好ましくは0.2μm〜0.5μmである。   As the iron oxide powder, it is better to use a powder composed of particles having an average particle size of 0.1 μm or more and 2.0 μm or less. If the particle size of the powder is 0.1 μm or less, uniform mixing with solid organic waste is difficult, and if the particle size is 2.0 μm or more, the chemical activity decreases, which is not preferable. Therefore, the preferable range of the average particle diameter of the iron oxide powder is 0.1 μm to 1.0 μm, more preferably 0.2 μm to 0.5 μm.

また、酸化鉄粉の添加量は1wt%以上、20wt%以下である。1wt%以下では有効な効果が得られない。20wt%以上は生成ガスの収率の向上を妨げるので好ましくない。好ましい範囲は3wt%〜15wt%であり、より好ましい範囲は5wt%〜10wt%である。   Moreover, the addition amount of iron oxide powder is 1 wt% or more and 20 wt% or less. If it is 1 wt% or less, an effective effect cannot be obtained. 20 wt% or more is not preferable because it hinders improvement in the yield of product gas. A preferable range is 3 wt% to 15 wt%, and a more preferable range is 5 wt% to 10 wt%.

このような触媒を、炭素化合物を含有する原料、例えば、固形有機廃棄物と混合する。具体的には、まず、炭素化合物を含む食品残渣、木質バイオマス、廃プラスチック等の固形有機廃棄物を粉砕機1で粉体に加工し、次に触媒混合手段2、例えば一般的に用いられるミキサーで、予め用意した酸化鉄粉を所定量添加混合して混合物を調製すれば良い。   Such a catalyst is mixed with a raw material containing a carbon compound, for example, solid organic waste. Specifically, first, a solid organic waste such as a food residue containing carbon compounds, woody biomass, and waste plastic is processed into powder by a pulverizer 1, and then a catalyst mixing means 2, for example, a commonly used mixer. Then, a predetermined amount of iron oxide powder prepared in advance may be added and mixed to prepare a mixture.

次に、乾留炉5、例えばロータリーキルン型外熱式電気炉の温度を700℃〜900℃に調整し、炉心管内の空気をボイラー4(過熱水蒸気供給手段)により供給される過熱水蒸気で置換して無酸素雰囲気とする。さらに、乾留炉5の入口(供給口)にある投入装置3から、調整した上記混合物を、ボイラー4により供給される過熱水蒸気と共に連続的に乾留炉5の炉心管内に投入する。   Next, the temperature of the dry distillation furnace 5, for example, the rotary kiln type external heating electric furnace is adjusted to 700 ° C. to 900 ° C., and the air in the furnace core tube is replaced with superheated steam supplied by the boiler 4 (superheated steam supply means). Use an oxygen-free atmosphere. Further, the adjusted mixture is continuously fed into the core tube of the dry distillation furnace 5 together with the superheated steam supplied by the boiler 4 from the charging device 3 at the inlet (supply port) of the dry distillation furnace 5.

ここで、乾留炉5は、内部で原料と過熱水蒸気とを空気遮断状態で加熱し、原料を熱分解して水素と一酸化炭素を主体とするガスを生成するための炉で、例えば、供給口から排出口に向かって下向きに傾斜する横長円筒形に形成される。この場合、乾留炉5は、モータ等の回転駆動装置によって回転する回転炉として形成しても良い。また、乾留炉の材質としては、この熱分解を行う際の温度と圧力に耐えられるものであればどのようなものでも良い。   Here, the dry distillation furnace 5 is a furnace for internally heating the raw material and superheated steam in an air-blocked state, and pyrolyzing the raw material to generate a gas mainly composed of hydrogen and carbon monoxide. It is formed in a horizontally long cylindrical shape that inclines downward from the mouth toward the outlet. In this case, the carbonization furnace 5 may be formed as a rotary furnace that is rotated by a rotary drive device such as a motor. The material of the carbonization furnace may be any material as long as it can withstand the temperature and pressure during the thermal decomposition.

また、乾留炉5の供給口には、例えば、空気圧や油圧等で作動するピストン、コンベア、回転するスクリュー等の原料供給手段を設け、これにより、原料を乾留炉5内に定量的に連続供給すれば良い。   Further, the supply port of the dry distillation furnace 5 is provided with raw material supply means such as a piston operated by air pressure or hydraulic pressure, a conveyor, a rotating screw, etc., whereby the raw material is quantitatively continuously supplied into the dry distillation furnace 5. Just do it.

また、ガス化炉内で生成されたガスの圧力を調節するガス圧調節手段(図示せず)と、乾留炉5内の圧力を検出する圧力検出手段と、圧力検出手段が検出した圧力に基づいてガス圧調節手段を制御し、乾留炉5内の圧力を一定範囲に維持する圧力制御手段を設けても良い。例えば、ガス化炉の供給口側近傍や排出口に圧力センサを設けて圧力を検出し、乾留炉5内の圧力を、大気圧に対して0〜0.3kPa陽圧に調節すれば良い。   Further, a gas pressure adjusting means (not shown) for adjusting the pressure of the gas generated in the gasification furnace, a pressure detecting means for detecting the pressure in the dry distillation furnace 5, and a pressure detected by the pressure detecting means. A pressure control means for controlling the gas pressure adjusting means and maintaining the pressure in the dry distillation furnace 5 in a certain range may be provided. For example, a pressure sensor may be provided near the supply port side or the discharge port of the gasification furnace to detect the pressure, and the pressure in the dry distillation furnace 5 may be adjusted to a positive pressure of 0 to 0.3 kPa with respect to the atmospheric pressure.

また、乾留炉5の固形物回収口には、水等の液体によって乾留炉5内を外気と遮断した状態で、排出された炭、灰、触媒等の固形物を回収する固形物回収装置6が設けられる。これにより、乾留炉5内の雰囲気を維持しつつ、使用された触媒を回収することができる。   Further, a solid matter recovery device 6 that recovers the solid matter such as discharged charcoal, ash, catalyst, etc. in a state where the inside of the dry distillation furnace 5 is blocked from the outside air by a liquid such as water is provided at the solid matter recovery port of the dry distillation furnace 5. Is provided. Thereby, the used catalyst can be recovered while maintaining the atmosphere in the dry distillation furnace 5.

乾留炉5内は、電気ヒータ等の加熱手段によって加熱される。ヒータが加熱する温度は700℃以上、900℃以下である。700℃以下では水性ガスの生成率が低下するので好ましくない。また、900℃以上の場合は水性ガスの反応性は問題ないが、高温に耐える炉材が必要となり、そのため高価な乾留炉となるので好ましくない。好ましい温度範囲は750℃〜850℃である。この場合、乾留炉内の温度を検出する温度検出手段や、当該温度検出手段が検出した温度に基づいて加熱手段を制御し、乾留炉内の温度を調節する温度制御手段を設ければ良い。   The inside of the dry distillation furnace 5 is heated by heating means such as an electric heater. The temperature at which the heater is heated is 700 ° C. or higher and 900 ° C. or lower. If it is 700 ° C. or lower, the production rate of water gas is lowered, which is not preferable. Moreover, when the temperature is 900 ° C. or higher, there is no problem with the reactivity of the water gas, but a furnace material that can withstand high temperatures is required. A preferred temperature range is 750 ° C to 850 ° C. In this case, a temperature detection means for detecting the temperature in the carbonization furnace and a temperature control means for controlling the heating means based on the temperature detected by the temperature detection means and adjusting the temperature in the carbonization furnace may be provided.

乾留炉5に投入した固形有機廃棄物と触媒との混合物は、タールを発生せずに熱分解して可燃性ガスと炭素になる。この炭素は過熱水蒸気と接触して下記(1式)の水性ガス反応を生起して、水素と一酸化炭素が生成する。
C + H2O → H2 + CO (1式)
The mixture of the solid organic waste and the catalyst charged into the carbonization furnace 5 is thermally decomposed into flammable gas and carbon without generating tar. This carbon comes into contact with superheated steam to cause the following water gas reaction (formula 1) to produce hydrogen and carbon monoxide.
C + H 2 O → H 2 + CO (1 set)

次に、(1式)で生じた一酸化炭素は水蒸気と接触して下記(2式)のシフト反応を生起して、水素と二酸化炭素が生成する。
CO + H2O → H2 + CO2 (2式)
Next, carbon monoxide generated in (formula 1) comes into contact with water vapor to cause a shift reaction of the following formula (formula 2) to generate hydrogen and carbon dioxide.
CO + H 2 O → H 2 + CO 2 (2 formulas)

しかし、(1式)の反応は、900℃以下の温度では、反応が低下して水性ガスの生成率を低下させるので、従来法では1000℃以上の加熱温度が必要である。   However, since the reaction of (formula 1) decreases at a temperature of 900 ° C. or lower and reduces the production rate of water gas, the conventional method requires a heating temperature of 1000 ° C. or higher.

ところが、本発明方法によれば、900℃以下の加熱温度でも、マグネタイトが触媒する下記(A式)の発生炉ガス反応(Boudouard反応ともいう)が生起する結果、(2式)のシフト反応で生成した二酸化炭素が未反応の炭素と反応して一酸化炭素を生成することにより、未反応の炭素をガス化しながら(2式)のシフト反応を推進する反応相互の循環が生起して、水性ガスの生成率を向上させることができる。
CO2 + C → 2CO (A式)
However, according to the method of the present invention, the following reactor gas reaction (also referred to as Boudouard reaction) catalyzed by magnetite occurs even at a heating temperature of 900 ° C. or lower. The generated carbon dioxide reacts with the unreacted carbon to produce carbon monoxide, thereby causing a reaction mutual circulation that promotes the shift reaction of (Formula 2) while gasifying the unreacted carbon, and is aqueous. The production rate of gas can be improved.
CO 2 + C → 2CO (Type A)

生成した水性ガスは、乾留炉の排出口から移送ラインAを介してガス精製装置7へ移送され、ここでダストを除去した後、移送ラインBで熱交換装置8へ移送する。また、炭化物とマグネタイトを主成分とする固形物は、乾留炉の固形物回収口から回収装置6で回収し、黒色顔料、農地土壌改良材や燃料炭などに有効利用する。もちろん、触媒として再利用することもできる。   The produced water gas is transferred from the outlet of the carbonization furnace to the gas purification device 7 via the transfer line A, and after removing dust here, it is transferred to the heat exchange device 8 via the transfer line B. Moreover, the solid substance which has a carbide | carbonized_material and a magnetite as a main component is collect | recovered with the collection | recovery apparatus 6 from the solid substance collection | recovery port of a carbonization furnace, and it utilizes effectively for a black pigment, agricultural land soil improvement material, fuel charcoal, etc. Of course, it can also be reused as a catalyst.

熱交換装置8へ移送した約800℃の顕熱を有する精製ガスを熱交換器で200℃まで冷却してから、移送ラインCでガス貯蔵タンク11へ移送してストックする。   The purified gas having a sensible heat of about 800 ° C. transferred to the heat exchange device 8 is cooled to 200 ° C. by a heat exchanger and then transferred to the gas storage tank 11 by a transfer line C and stocked.

また、この時に発生する高温ガスを、過熱水蒸気再生装置9へ移送して、過熱水蒸気に再生して乾留炉5へ、過熱水蒸気供給ライン10でリサイクルする。   Further, the high-temperature gas generated at this time is transferred to the superheated steam regenerator 9, regenerated to superheated steam, and recycled to the dry distillation furnace 5 through the superheated steam supply line 10.

ガス貯蔵タンク11の精製ガスは、移送ラインDで液体燃料合成装置12へ移送し、フィッシャー・トロプッシュ合成触媒を用いてC6〜C25でCnH2n+2組成の油を合成する。生成油は油と水を分離して、油は貯蔵タンク(図示せず)にストックし、水は熱交換装置8で温水に再生する。 The refined gas in the gas storage tank 11 is transferred to the liquid fuel synthesizing apparatus 12 through the transfer line D, and oil of C n H 2n + 2 composition is synthesized at C 6 to C 25 using a Fischer-Tropsch synthesis catalyst. The produced oil separates oil and water, the oil is stocked in a storage tank (not shown), and the water is regenerated to warm water by the heat exchanger 8.

液体燃料合成反応で発生する余剰ガスは、移送ラインFでエンジン式発電機等の発電機13へ移送し、ラインEからの精製ガスと混合してディ−ゼルエンジンを作動して発電する。   The surplus gas generated in the liquid fuel synthesis reaction is transferred to a generator 13 such as an engine-type generator through a transfer line F, mixed with purified gas from the line E, and the diesel engine is operated to generate power.

または、ガスの貯蔵タンク11の精製ガスをガス燃料として、移送ラインEでエンジン式発電装置13へ移送しディ−ゼルエンジンを作動して発電するようにしても良い。   Alternatively, the refined gas in the gas storage tank 11 may be used as gas fuel to be transferred to the engine-type power generator 13 through the transfer line E, and the diesel engine may be operated to generate power.

なお、ガス精製装置7、熱交換装置8、液体燃料合成装置12および発電機13は、それぞれにおいて、従来の装置や方法を用いることができる。また、発電機13は、エンジン式発電機の他、マイクロガスタービン発電機、燃料電池等を用いることも可能である。   In addition, the gas refiner | purifier 7, the heat exchange apparatus 8, the liquid fuel synthesizer 12, and the generator 13 can respectively use the conventional apparatus and method. In addition to the engine generator, the generator 13 may be a micro gas turbine generator, a fuel cell, or the like.

[実施例]
次に、本発明の実施例を図1に基づいて詳細に説明する。
[Example]
Next, an embodiment of the present invention will be described in detail with reference to FIG.

ガスおよび合成油の成分分析はガスクロマトグラフ法で、廃棄物の組成は原子吸光法で、構造解析はX線回折法で測定した。粒子の形状は透過型電子顕微鏡で観察した。固形有機廃棄物(炭素化合物を含有する原料)には、主要組成が下記表1のパーム油絞り粕を用いた。   The components of gas and synthetic oil were analyzed by gas chromatography, the waste composition was measured by atomic absorption, and the structural analysis was measured by X-ray diffraction. The shape of the particles was observed with a transmission electron microscope. For solid organic waste (raw material containing a carbon compound), palm oil squeezed potatoes having the main composition shown in Table 1 below were used.

Figure 2011111511
Figure 2011111511

触媒となる酸化鉄粉には、鉄塩水溶液とアルカリを用いる湿式合成法で生成した平均粒子径が、0.12μmのゲータイト(黄色酸化鉄)粉末と、0.35μmのマグネタイト(黒色酸化鉄)粉末を準備して用いた。   The iron oxide powder used as a catalyst is composed of goethite (yellow iron oxide) powder with an average particle size of 0.12 μm and magnetite (black iron oxide) powder with an average particle size of 0.15 μm produced by a wet synthesis method using an iron salt aqueous solution and alkali. Prepared and used.

乾留炉には、ロータリーキルン型の外熱式30KW容量の電気炉5を使用した。電気炉5は、炉心管の直径が200mmφで長さが2mのステンレス製パイプからなり、入口側から出口側に向いて傾斜している。また、入口側には原料の投入装置3とボイラー4から供給される過熱水蒸気の投入パイプを備え、出口側には、炭化物やマグネタイトなど固形排出物の回収装置6と、生成ガスをガス精製工程7へ移送する移送ラインAを備えている。
[実施例1]
As the dry distillation furnace, a rotary kiln type external heating type electric furnace 5 with a capacity of 30 KW was used. The electric furnace 5 is made of a stainless steel pipe having a core tube diameter of 200 mmφ and a length of 2 m, and is inclined from the inlet side toward the outlet side. The inlet side is equipped with a raw material charging device 3 and a superheated steam charging pipe supplied from the boiler 4, and the outlet side is a solid emission recovery device 6 such as carbide and magnetite, and the product gas is a gas purification step. 7 is provided with a transfer line A.
[Example 1]

本発明の工程フローを示す図1において、粉砕機1で表1の被処理物(炭素化合物を含有する原料)を粉砕して、平均粒子径が4.5mmの粉体とした。次に、触媒混合手段2で、準備した平均粒子径が0.35μmのマグネタイト粉(触媒)を、被処理物に対して乾燥物換算で10wt%添加して混合し原料粉(混合物)を得た。次に、乾留炉5のロータリーキルン型外熱式電気炉を、回転数1.5rpmで回転させながら、加熱温度を800℃に調整し、炉心管内の空気をボイラー4により供給される過熱水蒸気で置換して無酸素雰囲気とした。そして、乾留炉5の投入装置3から、ボイラー4により供給される過熱水蒸気と共に、調整した被処理混合物を1時間5kgの速度で連続的に乾留炉5の炉心管内に投入した。   In FIG. 1 which shows the process flow of this invention, the to-be-processed object (raw material containing a carbon compound) of Table 1 was grind | pulverized with the grinder 1, and it was set as the powder with an average particle diameter of 4.5 mm. Next, in the catalyst mixing means 2, 10 wt% of the prepared magnetite powder (catalyst) having an average particle diameter of 0.35 μm was added to the object to be processed in terms of dry matter and mixed to obtain a raw material powder (mixture). . Next, while rotating the rotary kiln type external heating electric furnace of the carbonization furnace 5 at a rotation speed of 1.5 rpm, the heating temperature is adjusted to 800 ° C., and the air in the furnace core tube is replaced with superheated steam supplied by the boiler 4. And an oxygen-free atmosphere. And the adjusted to-be-processed mixture with the superheated steam supplied with the boiler 4 from the charging device 3 of the dry distillation furnace 5 was continuously injected into the core tube of the dry distillation furnace 5 at a rate of 5 kg for 1 hour.

生成ガスは移送ラインAでガス精製装置7へ移送し、ダストなどを除去した後、移送ラインBで熱交換装置8へ移送して、約800℃の顕熱を有する精製ガスを熱交換装置8で200℃まで冷却してから、移送ラインCでガス貯蔵タンク11へ移送してストックした。また、乾留炉5から排出する黒色泥状物を回収装置6で回収した。
[実施例2〜4および比較例1,2]
The produced gas is transferred to the gas purification device 7 through the transfer line A, and after removing dust and the like, it is transferred to the heat exchange device 8 through the transfer line B, and the purified gas having a sensible heat of about 800 ° C. is transferred to the heat exchange device 8. After cooling to 200 ° C., the product was transferred to the gas storage tank 11 through the transfer line C and stocked. Further, the black mud discharged from the carbonization furnace 5 was recovered by the recovery device 6.
[Examples 2 to 4 and Comparative Examples 1 and 2]

酸化鉄粉の種類および添加量と電気炉の加熱温度を変えた以外は、実施例1と同様に実施した。これらの諸条件を表2に示した。   It implemented similarly to Example 1 except having changed the kind and addition amount of iron oxide powder, and the heating temperature of the electric furnace. These conditions are shown in Table 2.

Figure 2011111511
Figure 2011111511

実施例1〜4、比較例1,2の各々について、被処理物を電気炉に投入した時点から60分経過後および120分経過後に、ガス精製装置7から精製ガスを抜き取って組成を分析した。その結果を下記の表3に示した。   For each of Examples 1 to 4 and Comparative Examples 1 and 2, the composition was analyzed by extracting the purified gas from the gas purifier 7 after 60 minutes and 120 minutes from the time when the object to be processed was put into the electric furnace. . The results are shown in Table 3 below.

Figure 2011111511
Figure 2011111511

表3から、実施例は何れも水素と一酸化炭素の比H2 /COが2以上の水素含有量が多いガス組成であった。このことは、良く知られているように、フィッシャー・トロプッシュ反応の反応速度を速める特性があり、ガス燃料としてはカロリーが高いガスであるから液体燃料および電気エネルギーに再生処理するのに適したガスであることを示していた。また、リサイクル使用したカーボン含有マグネタイト粉も、準備したマグネタイト粉と同様の作用効果があることを確認した。 From Table 3, all of the examples had gas compositions with a high hydrogen content in which the ratio H 2 / CO of hydrogen to carbon monoxide was 2 or more. As is well known, this has the characteristic of accelerating the reaction rate of the Fischer-Tropsch reaction, and is suitable for regenerating to liquid fuel and electric energy because it is a gas with high calories as a gas fuel. It was a gas. Further, it was confirmed that the carbon-containing magnetite powder used for recycling had the same effect as the prepared magnetite powder.

一方、比較例は何れも、本発明の請求範囲外では目的は達成できないことを明確に示していた。   On the other hand, any of the comparative examples clearly showed that the object could not be achieved outside the scope of the claims of the present invention.

実施例毎に回収装置6で回収した泥状黒色物を80℃で乾燥して得た黒色粉体をX線分析と電子顕微鏡観察を行った。X線分析の結果は、何れの粉体もマグネタイトとカーボンの混合物であった。また、電子顕微鏡で観察した結果は、マグネタイト粒子は、何れも元の粒子形状を止めていた。   The black powder obtained by drying the muddy black matter recovered by the recovery device 6 for each example at 80 ° C. was subjected to X-ray analysis and electron microscope observation. As a result of X-ray analysis, all powders were a mixture of magnetite and carbon. Moreover, as a result of observing with an electron microscope, all the magnetite particles stopped the original particle shape.

ガス貯蔵タンク11にストックした精製ガスを用いて、フィッシャー・トロプッシュ法の合成実験を従来法によって実施した。ストックタンクのガス組成を分析した結果を下記の表4に示す。   Using the refined gas stocked in the gas storage tank 11, a Fischer-Tropsch synthesis experiment was performed by a conventional method. The results of analyzing the gas composition of the stock tank are shown in Table 4 below.

Figure 2011111511
Figure 2011111511

生成した合成油は約50Vol.%の水との混合油であった。しばらく置くと両液は水と油に分離した。水を分離した油の成分を分析した結果、C11〜C21のCnH2n+2組成の油であった。分離した水は回収して熱交換装置8で温水に再生した。 The resulting synthetic oil was a mixed oil with about 50% by volume of water. After a while, both solutions separated into water and oil. As a result of analyzing the components of the oil from which water was separated, it was an oil having a C 11 -C 21 C n H 2n + 2 composition. The separated water was recovered and regenerated to warm water by the heat exchanger 8.

また、合成反応時に生じた余剰ガスは移送ラインFでエンジン式発電装置に移送し、移送ラインEから送られてくる精製ガスと混合してディーゼルエンジンの燃料に使用した。   In addition, surplus gas generated during the synthesis reaction was transferred to an engine-type power generation device by a transfer line F, mixed with purified gas sent from the transfer line E, and used as fuel for a diesel engine.

ガス貯蔵タンクにストックした精製ガスを移送ラインEでエンジン式発電装置に移送してディーゼルエンジンの燃料に使用し、発電機を駆動して発電した。   The refined gas stocked in the gas storage tank was transferred to the engine-type power generator by the transfer line E and used as fuel for the diesel engine, and the generator was driven to generate electricity.

本発明の炭素化合物の再生処理方法、ガス化装置および再生処理システムは、現在の増大する炭素化合物の各種産業廃棄物や農業廃棄物を、乾留炉の稼動温度を低温化して水性ガス化し、これを、液体燃料や電気エネルギーに再生処置することができるので、設備投資の低減とランニングコストのさらなる低減を実現すると共に、産業界における有機廃棄物の再資源化と社会環境の保全に貢献する。   The carbon compound regeneration treatment method, gasification apparatus, and regeneration treatment system of the present invention is a method for converting various industrial wastes and agricultural wastes of currently increasing carbon compounds into water gas by lowering the operating temperature of the dry distillation furnace. Can be reprocessed into liquid fuel and electric energy, thus reducing capital investment and further reducing running costs, contributing to the recycling of organic waste and the preservation of the social environment in industry.

1 粉砕機
2 触媒混合手段
3 投入装置
4 ボイラー
5 乾留炉
6 固形物回収装置
7 ガス精製装置
8 熱交換装置
9 過熱水蒸気生成装置
10 過熱水蒸気供給ライン
11 ガス貯蔵タンク
12 液体燃料合成装置
13 エンジン式発電機
A〜F ガス移送ライン
DESCRIPTION OF SYMBOLS 1 Crusher 2 Catalyst mixing means 3 Input device 4 Boiler 5 Dry distillation furnace 6 Solid matter recovery device 7 Gas purification device 8 Heat exchange device 9 Superheated steam generator
10 Superheated steam supply line
11 Gas storage tank
12 Liquid fuel synthesizer
13 Engine generator
A ~ F Gas transfer line

Claims (10)

乾留炉を用い、加熱温度を700℃〜900℃とし、炉内の空気を過熱水蒸気で置換した後、炭素化合物を含有する原料と下記(A式)の反応を促進する触媒との混合物を過熱水蒸気と共に炉内に投入することを特徴とする炭素化合物の再生処理方法。
CO2 + C → 2CO (A式)
Using a carbonization furnace, heating temperature is set to 700 ° C. to 900 ° C., air in the furnace is replaced with superheated steam, and then a mixture of a raw material containing a carbon compound and a catalyst that promotes the following reaction (formula A) is superheated. A carbon compound regeneration treatment method, wherein the carbon compound is put into a furnace together with steam.
CO 2 + C → 2CO (Type A)
前記触媒は、酸化鉄であることを特徴とする請求項1記載の炭素化合物の再生処理方法。   The method for regenerating a carbon compound according to claim 1, wherein the catalyst is iron oxide. 前記酸化鉄の平均粒子径が0.1μm以上、2.0μm以下であることを特徴とする請求項2記載の炭素化合物の再生処理方法。   3. The carbon compound regeneration treatment method according to claim 2, wherein an average particle diameter of the iron oxide is 0.1 μm or more and 2.0 μm or less. 前記酸化鉄の添加量が投入する炭素化合物に対して乾燥物換算で1wt%以上20wt%以下であることを特徴とする請求項2又は3記載の炭素化合物の再生処理方法。 The method for regenerating a carbon compound according to claim 2 or 3, wherein the amount of iron oxide added is 1 wt% or more and 20 wt% or less in terms of dry matter with respect to the carbon compound to be added. 前記酸化鉄が、組成Fe1―XO・Fe2O3 (X<0.5)のマグネタイトであることを特徴とする請求項2ないし4のいずれかに記載の炭素化合物の再生処理方法。 5. The carbon compound regeneration treatment method according to claim 2, wherein the iron oxide is magnetite having a composition of Fe 1-X O · Fe 2 O 3 (X <0.5). 炭素化合物を含有する原料から水素及び一酸化炭素を主体とするガスを生成するためのガス化装置であって、
前記原料に触媒を混合する触媒混合手段と、
前記原料を供給するための供給口と、前記ガスを排出するための排出口と、固形物を外気と遮断して回収するため固形物回収口と、を有する乾留炉と、
前記乾留炉に過熱水蒸気を供給する過熱水蒸気供給手段と、
前記乾留炉を加熱する加熱手段と、
を具備することを特徴とするガス化装置。
A gasifier for generating a gas mainly composed of hydrogen and carbon monoxide from a raw material containing a carbon compound,
A catalyst mixing means for mixing a catalyst with the raw material;
A dry distillation furnace having a supply port for supplying the raw material, a discharge port for discharging the gas, and a solid material recovery port for recovering the solid material from outside air; and
Superheated steam supply means for supplying superheated steam to the dry distillation furnace;
Heating means for heating the carbonization furnace;
The gasifier characterized by comprising.
請求項6記載のガス化装置と、
前記ガス化装置で生成された水素及び一酸化炭素を合成して液体燃料を生成する液体燃料合成装置と、
を具備することを特徴とする再生処理システム。
A gasifier according to claim 6;
A liquid fuel synthesizing device that synthesizes hydrogen and carbon monoxide produced in the gasifier to produce a liquid fuel;
A reproduction processing system comprising:
前記液体燃料合成装置に接続される発電機と、
前記液体燃料合成装置で生じる余剰ガスを前記発電機の発電用燃料として供給する余剰ガス供給装置と、を具備することを特徴とする請求項7記載の再生処理システム。
A generator connected to the liquid fuel synthesizer;
The regeneration processing system according to claim 7, further comprising: a surplus gas supply device that supplies surplus gas generated in the liquid fuel synthesizing device as fuel for power generation of the generator.
前記発電機が、エンジン式発電機、マイクロガスタービン発電機、燃料電池のいずれかであることを特徴とする請求項8記載の再生処理システム。   The regeneration processing system according to claim 8, wherein the generator is any one of an engine generator, a micro gas turbine generator, and a fuel cell. 前記液体燃料を前記発電機に供給する補助燃料供給装置を具備することを特徴とする請求項9記載の再生処理システム。   The regeneration processing system according to claim 9, further comprising an auxiliary fuel supply device that supplies the liquid fuel to the generator.
JP2009268157A 2009-11-25 2009-11-25 Regeneration treatment method of carbon compound, gasification apparatus and regeneration treatment system Pending JP2011111511A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009268157A JP2011111511A (en) 2009-11-25 2009-11-25 Regeneration treatment method of carbon compound, gasification apparatus and regeneration treatment system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009268157A JP2011111511A (en) 2009-11-25 2009-11-25 Regeneration treatment method of carbon compound, gasification apparatus and regeneration treatment system

Publications (1)

Publication Number Publication Date
JP2011111511A true JP2011111511A (en) 2011-06-09

Family

ID=44234100

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009268157A Pending JP2011111511A (en) 2009-11-25 2009-11-25 Regeneration treatment method of carbon compound, gasification apparatus and regeneration treatment system

Country Status (1)

Country Link
JP (1) JP2011111511A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013182897A1 (en) 2012-06-08 2013-12-12 Toyota Jidosha Kabushiki Kaisha Heat treatment method, heat-treating furnace, and heat treatment system
CN104232238A (en) * 2013-06-07 2014-12-24 中国海洋石油总公司 Coal catalytic gasification reaction material and preparation method and application thereof
CN106492771A (en) * 2016-11-10 2017-03-15 中南大学 A kind of method of nickel series compounds catalytic regeneration activated carbon
CN106512973A (en) * 2016-11-10 2017-03-22 中南大学 Regeneration method of low-carbon-loss activated carbon
CN107695080A (en) * 2017-10-16 2018-02-16 广州宝狮无线供电技术有限公司 It is a kind of to handle useless circuit board or the method and device of carbon fibre composite
JP2018135451A (en) * 2017-02-22 2018-08-30 環境・エネルギーR&D合同会社 Rotary kiln type gasification furnace
CN108913172A (en) * 2018-06-27 2018-11-30 江苏大学 A kind of seaweed pyrolysis oil preparation system and method
JP2019075263A (en) * 2017-10-16 2019-05-16 国立研究開発法人産業技術総合研究所 System for generating power by decomposing methane into carbon and hydrogen and charging decomposed hydrogen into fuel cell
JP2019148406A (en) * 2018-02-28 2019-09-05 戸田工業株式会社 Method of burning biomass fuel
CN110527536A (en) * 2019-10-14 2019-12-03 姚长利 Produce the method and retort of charcoal
US11999920B2 (en) 2020-09-14 2024-06-04 Ecolab Usa Inc. Cold flow additives for plastic-derived synthetic feedstock
US12031097B2 (en) 2021-10-14 2024-07-09 Ecolab Usa Inc. Antifouling agents for plastic-derived synthetic feedstocks
US12304888B2 (en) 2021-03-10 2025-05-20 Ecolab Usa Inc. Stabilizer additives for plastic-derived synthetic feedstock

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62169887A (en) * 1985-10-04 1987-07-27 アリゾナ ボ−ド オブ リ−ゼンツ Method for producing liquid hydrocarbon fuel from biomass
JP2005161134A (en) * 2003-11-28 2005-06-23 Japan Science & Technology Agency Tar decomposition catalyst of biomass and its utilization
JP2006169309A (en) * 2004-12-14 2006-06-29 Hatta Kankyo Gijutsu Jimusho:Kk Method and apparatus for gasifying organic matter
JP2006206736A (en) * 2005-01-28 2006-08-10 Matsushita Electric Ind Co Ltd Gasification method and gasification apparatus for organic compounds
JP2007238878A (en) * 2006-03-10 2007-09-20 Tokyo Institute Of Technology Energy carrier and conversion material used in woody biomass energy conversion method and system
JP2008006406A (en) * 2006-06-30 2008-01-17 Electric Power Dev Co Ltd Iron-based catalyst for Fischer-Tropsch synthesis reaction, method for producing the same, and method for producing hydrocarbons using the same
JP2008260832A (en) * 2007-04-11 2008-10-30 Micro Energy:Kk Method for waste regeneration treatment and system for waste regeneration treatment
JP2009046554A (en) * 2007-08-17 2009-03-05 Biomass Energy Kk Method and device for manufacturing hydrocarbon from biomass

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62169887A (en) * 1985-10-04 1987-07-27 アリゾナ ボ−ド オブ リ−ゼンツ Method for producing liquid hydrocarbon fuel from biomass
JP2005161134A (en) * 2003-11-28 2005-06-23 Japan Science & Technology Agency Tar decomposition catalyst of biomass and its utilization
JP2006169309A (en) * 2004-12-14 2006-06-29 Hatta Kankyo Gijutsu Jimusho:Kk Method and apparatus for gasifying organic matter
JP2006206736A (en) * 2005-01-28 2006-08-10 Matsushita Electric Ind Co Ltd Gasification method and gasification apparatus for organic compounds
JP2007238878A (en) * 2006-03-10 2007-09-20 Tokyo Institute Of Technology Energy carrier and conversion material used in woody biomass energy conversion method and system
JP2008006406A (en) * 2006-06-30 2008-01-17 Electric Power Dev Co Ltd Iron-based catalyst for Fischer-Tropsch synthesis reaction, method for producing the same, and method for producing hydrocarbons using the same
JP2008260832A (en) * 2007-04-11 2008-10-30 Micro Energy:Kk Method for waste regeneration treatment and system for waste regeneration treatment
JP2009046554A (en) * 2007-08-17 2009-03-05 Biomass Energy Kk Method and device for manufacturing hydrocarbon from biomass

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013182897A1 (en) 2012-06-08 2013-12-12 Toyota Jidosha Kabushiki Kaisha Heat treatment method, heat-treating furnace, and heat treatment system
CN104540605A (en) * 2012-06-08 2015-04-22 丰田自动车株式会社 Heat treatment method, heat-treating furnace, and heat treatment system
US9498807B2 (en) 2012-06-08 2016-11-22 Toyota Jidosha Kabushiki Kaisha Heat treatment method, heat-treating furnace, and heat treatment system
CN104232238A (en) * 2013-06-07 2014-12-24 中国海洋石油总公司 Coal catalytic gasification reaction material and preparation method and application thereof
CN104232238B (en) * 2013-06-07 2016-09-07 中国海洋石油总公司 A kind of catalytic coal gasification material and its preparation method and application
CN106492771A (en) * 2016-11-10 2017-03-15 中南大学 A kind of method of nickel series compounds catalytic regeneration activated carbon
CN106512973A (en) * 2016-11-10 2017-03-22 中南大学 Regeneration method of low-carbon-loss activated carbon
JP2018135451A (en) * 2017-02-22 2018-08-30 環境・エネルギーR&D合同会社 Rotary kiln type gasification furnace
CN107695080A (en) * 2017-10-16 2018-02-16 广州宝狮无线供电技术有限公司 It is a kind of to handle useless circuit board or the method and device of carbon fibre composite
JP2019075263A (en) * 2017-10-16 2019-05-16 国立研究開発法人産業技術総合研究所 System for generating power by decomposing methane into carbon and hydrogen and charging decomposed hydrogen into fuel cell
JP2019148406A (en) * 2018-02-28 2019-09-05 戸田工業株式会社 Method of burning biomass fuel
JP7181497B2 (en) 2018-02-28 2022-12-01 戸田工業株式会社 Combustion method of biomass fuel
CN108913172A (en) * 2018-06-27 2018-11-30 江苏大学 A kind of seaweed pyrolysis oil preparation system and method
CN108913172B (en) * 2018-06-27 2020-08-28 江苏大学 System and method for preparing oil by pyrolyzing seaweed
CN110527536A (en) * 2019-10-14 2019-12-03 姚长利 Produce the method and retort of charcoal
US11999920B2 (en) 2020-09-14 2024-06-04 Ecolab Usa Inc. Cold flow additives for plastic-derived synthetic feedstock
US12304888B2 (en) 2021-03-10 2025-05-20 Ecolab Usa Inc. Stabilizer additives for plastic-derived synthetic feedstock
US12031097B2 (en) 2021-10-14 2024-07-09 Ecolab Usa Inc. Antifouling agents for plastic-derived synthetic feedstocks

Similar Documents

Publication Publication Date Title
JP2011111511A (en) Regeneration treatment method of carbon compound, gasification apparatus and regeneration treatment system
JP5877237B2 (en) Method and apparatus for producing low tar synthesis gas from biomass
JP5965073B2 (en) Oxygen-free gasification method and apparatus by circulating carbon dioxide in biomass fuel
JP4547244B2 (en) Organic gasifier
KR102131373B1 (en) Manufacturing assembly and manufacturing method of biochar
JP5683575B2 (en) A novel method for pyrolysis gasification of organic waste
JP2008260832A (en) Method for waste regeneration treatment and system for waste regeneration treatment
CN105567327B (en) Method for preparing hydrogen-rich fuel gas by gasifying high-humidity sludge based on blast furnace slag waste heat recovery
CN104109560B (en) Method for preparing industrial fuel gas through pyrolysis treatment of garbage
CN110903855A (en) Material pyrolysis gasification process, system and application
CN108315027B (en) Carbonization and pulverization integrated method and system for carbonaceous biomass material
JP5385396B2 (en) Method for producing hydrogen-containing gas
CN110437884B (en) Method for hydrogen production and power generation through biomass charcoal catalysis
JP4218443B2 (en) Ferro-coke manufacturing method
JP6172532B2 (en) Low molecular weight treatment of organic substances and waste treatment method
JP2004141871A (en) Method and plant for microwave treatment of solid residue from pyrolysis of organic-containing feed
JP2004051745A (en) System of gasifying biomass
JP2004204106A (en) Gasifier of organic material
JP2023548607A (en) Conversion of solid waste to synthesis gas and hydrogen
JP3986335B2 (en) High quality fuel production apparatus and production method from organic waste
CN116064985B (en) A method and system for pyrolysis and reforming of organic solid waste coupled with iron ore powder reduction
JP4155507B2 (en) Biomass gasification method and gasification apparatus
JP6590359B1 (en) Hydrogen production method using biomass as raw material
JP2016204235A (en) Gasification apparatus and gas production method
JP2009102594A (en) Gasifier system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130906

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131227