JP2011110476A - Cleaning material - Google Patents
Cleaning material Download PDFInfo
- Publication number
- JP2011110476A JP2011110476A JP2009267787A JP2009267787A JP2011110476A JP 2011110476 A JP2011110476 A JP 2011110476A JP 2009267787 A JP2009267787 A JP 2009267787A JP 2009267787 A JP2009267787 A JP 2009267787A JP 2011110476 A JP2011110476 A JP 2011110476A
- Authority
- JP
- Japan
- Prior art keywords
- powder
- iron
- adjuster
- purification material
- oxide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
- Soil Conditioners And Soil-Stabilizing Materials (AREA)
- Processing Of Solid Wastes (AREA)
- Water Treatment By Sorption (AREA)
Abstract
Description
本発明は、汚染土壌や廃棄物等に含まれる重金属類を吸着して浄化する浄化材に関する。 The present invention relates to a purification material that adsorbs and purifies heavy metals contained in contaminated soil or waste.
ふっ素、ほう素、砒素、クロム、鉛、セレン等の重金属類を含む汚染土壌処理には重金属不溶化剤(浄化材)として、金属鉄粉、酸化鉄粉、酸化セリウム、酸化マグネシウム等が使用されている。このような浄化材を粉体の形で使用すると、飛散しやすく、施工性が悪いという問題がある。
そこで、このような問題の解決を図るものとして、例えば特許文献1に開示された浄化材料がある。
特許文献1に開示された浄化材料は、「土壌に混合し、汚染土壌若しくは廃棄物の下方若しくは側方若しくはその双方に5cm以上の厚みで設置する浄化材料であって、水との接触によって重金属類を吸着可能な鉄、水酸化鉄、酸化鉄若しくはその水和物、水酸化マグネシウム、酸化マグネシウム若しくはその水和物、炭酸フッ化セリウム、水酸化セリウム、酸化セリウム若しくはその水和物、若しくはこれらを一つ以上含む粉体材料を、平均直径1〜1000μm未満の繊維状素材と、繊維状素材/粉体材料=0.33〜3の割合で混合して構成することを特徴とする」ものである。
Metallic iron powder, iron oxide powder, cerium oxide, magnesium oxide, etc. are used as a heavy metal insolubilizer (purifier) for the treatment of contaminated soil containing heavy metals such as fluorine, boron, arsenic, chromium, lead, and selenium. Yes. When such a purification material is used in the form of powder, there is a problem that it is easy to scatter and the workability is poor.
Thus, for example, there is a purification material disclosed in Patent Document 1 as a solution to such a problem.
The purification material disclosed in Patent Document 1 is a purification material that is mixed with soil and installed at a thickness of 5 cm or more below or on the side of the contaminated soil or waste, or both. Iron, iron hydroxide, iron oxide or hydrate thereof, magnesium hydroxide, magnesium oxide or hydrate thereof, cerium carbonate fluoride, cerium hydroxide, cerium oxide or hydrate thereof, or these Characterized in that a powder material containing one or more of the above is mixed with a fibrous material having an average diameter of 1 to less than 1000 μm and a ratio of fibrous material / powder material = 0.33 to 3 ” It is.
一般的に浄化材は、対象とする汚染土壌の汚染物質に合わせてその種類が選択され、例えば砒素、鉛、クロム等が汚染物質の場合には金属鉄粉等が用いられ、ふっ素、ほう素、カドミウム、シアン等が汚染物質の場合には酸化マグネシウム等が用いられる。
しかしながら、金属鉄粉はふっ素、ほう素に対する浄化作用が弱く、酸化マグネシウムは砒素等に対する浄化作用が弱いため、汚染土壌が、例えばふっ素と砒素の両方で汚染されている複合的な汚染の場合には、金属鉄粉や酸化マグネシウムを単独で用いる従来の浄化材では十分な浄化効果を得ることは難しい。
なお、複合的な汚染とは、浄化対象となる土壌が単一の浄化材では浄化できない複数の汚染物質で汚染されていることをいう。
Generally, the type of purification material is selected according to the pollutant in the target contaminated soil. For example, when arsenic, lead, chromium, etc. are pollutants, metallic iron powder is used. When cadmium, cyan, etc. are pollutants, magnesium oxide or the like is used.
However, the metal iron powder has a weak purification action against fluorine and boron, and the magnesium oxide has a weak purification action against arsenic, etc., so that the contaminated soil is contaminated with, for example, both fluorine and arsenic. However, it is difficult to obtain a sufficient purification effect with a conventional purification material using metallic iron powder or magnesium oxide alone.
In addition, complex pollution means that the soil to be purified is contaminated with a plurality of contaminants that cannot be purified with a single purification material.
この点、特許文献1においては、「水酸化鉄、酸化鉄若しくはその水和物、水酸化マグネシウム、酸化マグネシウム若しくはその水和物、・・・、若しくはこれらを一つ以上含む粉体材料」と記載されており、鉄粉と酸化マグネシウムの両方を混合するものを含むような記載がある。
しかし、特許文献1における「発明を実施するための最良の形態」を参照すると分かるように、特許文献1でその浄化作用が検討されているのは、前記粉体材料をそれぞれ単独で用いた場合のみである。
このように、従来の浄化材においては、複合的な汚染に対して効果的なものは知られていない。
In this regard, in Patent Document 1, “iron hydroxide, iron oxide or a hydrate thereof, magnesium hydroxide, magnesium oxide or a hydrate thereof, or a powder material containing one or more of these” and There is a description which includes what mixes both iron powder and magnesium oxide.
However, as can be seen by referring to “Best Mode for Carrying Out the Invention” in Patent Document 1, the purifying action is studied in Patent Document 1 when the powder materials are used alone. Only.
Thus, the conventional purification material is not known to be effective against complex contamination.
本発明はかかる課題を解決するためになされたものであり、広範囲な重金属類を不溶化、吸着することで複合的な汚染に対する浄化が可能で、かつ施工性に優れる浄化材を得ることを目的としている。 The present invention has been made to solve such problems, and it is intended to obtain a purification material that can purify complex contamination by insolubilizing and adsorbing a wide range of heavy metals and that is excellent in workability. Yes.
上記の課題を解決するために、発明者は、複合的な汚染の例としてふっ素と砒素の両方の物質で汚染されている汚染土壌に対する浄化材として、それぞれの汚染物質に対する浄化作用のある金属鉄粉と酸化マグネシウムを混合して用いることを考えた。
しかし、金属鉄粉と酸化マグネシウムでは比重が大きく異なるために粉体のままで混合しても均一に混合するのが困難である。そのため、粉体のまま施工しようとすると、2段階に分けて施工せねばならず、作業が煩雑になるという問題がある。
In order to solve the above-mentioned problems, the inventor, as an example of complex contamination, as a purification material for contaminated soil contaminated with both fluorine and arsenic substances, metallic iron having a purification action against each contaminant. The use of a mixture of powder and magnesium oxide was considered.
However, since specific gravity differs greatly between metallic iron powder and magnesium oxide, it is difficult to uniformly mix even if the powder is mixed as it is. Therefore, if it is intended to construct the powder as it is, it must be constructed in two stages, which causes a problem that the operation becomes complicated.
また、酸化マグネシウムは水和反応により表面に水酸化マグネシウムが形成される際に、重金属を不溶化、吸着し、汚染水のpH値が10〜11に上昇する。他方、pH値が高いと金属鉄粉の表面の電価が負になるため、金属鉄粉が浄化対象とする砒素などの陰イオンに対する不溶化のメカニズムが働かず、浄化作用が発揮できなくなるという問題もある。
このように、複合的な汚染に対して金属鉄粉と酸化マグネシウムを混合して用いる場合には、それ特有の課題が存在する。
しかしながら、このような課題は、従来は全く検討されていなかったものであるが、発明者はこのような課題に着目して、これらの課題を解決するべく鋭意検討して、本発明を完成したものである。
Further, when magnesium hydroxide is formed on the surface by hydration reaction, magnesium oxide insolubilizes and adsorbs heavy metals, and the pH value of contaminated water rises to 10-11. On the other hand, if the pH value is high, the surface valence of metallic iron powder becomes negative, so the mechanism of insolubilization of anions such as arsenic that metallic iron powder is subject to purification does not work, and the purification effect cannot be exhibited. There is also.
Thus, when metal iron powder and magnesium oxide are mixed and used for complex contamination, there is a particular problem.
However, although such problems have not been studied at all in the past, the inventor has paid attention to such problems and has intensively studied to solve these problems and completed the present invention. Is.
まず、金属鉄粉と酸化マグネシウムの比重の違いについては、これらを造粒することで、両者に比重の違いがあっても、一度の施工で均一に施工できると考えた。
また、酸化マグネシウムによるpH値上昇の問題については、pH調整剤を添加して、pH調整剤を含めて造粒することを考えた。pH調整剤を含めて造粒することで、金属鉄粉と酸化マグネシウムが均一に施工できることに加え、金属鉄粉の周辺環境を常に金属鉄粉の浄化作用が発揮できる最適なpH値に維持できるのである。
本発明は係る課題の発見と、この発見した課題を解決するという上記の知見に基づくものであり、具体的には以下の構成からなるものである。
First, regarding the difference in specific gravity between metal iron powder and magnesium oxide, we thought that by granulating these, even if there is a difference in specific gravity between them, it can be applied uniformly in one operation.
Moreover, about the problem of the pH value increase by magnesium oxide, it considered adding the pH adjuster and granulating including a pH adjuster. By granulating with a pH adjuster, in addition to being able to apply metal iron powder and magnesium oxide uniformly, the surrounding environment of the metal iron powder can always be maintained at the optimum pH value that can exert the purification action of the metal iron powder. It is.
The present invention is based on the discovery of such a problem and the above knowledge of solving the discovered problem, and specifically comprises the following configuration.
(1)本発明に係る浄化材は、金属鉄粉及び/又は酸化鉄粉と、水酸化マグネシウム及び/又は酸化マグネシウムと、pH調整剤とをバインダーで造粒してなる浄化材であって、前記pH調整剤は処理対象となる汚染水のpH値を4〜10に調整することを特徴とするものである。 (1) The purification material according to the present invention is a purification material obtained by granulating metal iron powder and / or iron oxide powder, magnesium hydroxide and / or magnesium oxide, and a pH adjuster with a binder, The said pH adjuster adjusts the pH value of the contaminated water used as a process target to 4-10.
(2)また、上記(1)に記載のものにおいて、酸化セリウム及び/又は水酸化セリウムを含んで造粒してなることを特徴とするものである。 (2) Further, in the above (1), it is characterized by being granulated containing cerium oxide and / or cerium hydroxide.
(3)また、上記(1)又は(2)に記載のものにおいて、前記pH調整剤は、水酸化マグネシウム及び/又は酸化マグネシウム100重量部に対して、10〜100重量部含むことを特徴とするものである。 (3) Further, in the above (1) or (2), the pH adjuster contains 10 to 100 parts by weight with respect to 100 parts by weight of magnesium hydroxide and / or magnesium oxide. To do.
(4)また、上記(1)〜(3)のいずれかに記載のものにおいて、前記pH調整剤は、硫酸アルミニウム、硫酸鉄、塩化鉄、酸性白土、クエン酸のうちから選択される一種又は複数種のものであることを特徴とするものである。 (4) Moreover, in the thing in any one of said (1)-(3), the said pH adjuster is 1 type selected from aluminum sulfate, iron sulfate, iron chloride, acidic clay, and a citric acid, or It is characterized by being of multiple types.
本発明においては、金属鉄粉及び/又は酸化鉄粉と、水酸化マグネシウム及び/又は酸化マグネシウムと、pH調整剤とをバインダーで造粒してなる浄化材であって、前記pH調整剤は処理対象となる汚染水のpH値を4〜10に調整するようにしたので、造粒することにより比重の異なる種類のものを一つの粒子の中にいれることができ、処理対象となる複合的な汚染土壌に対して一回の施工で均一散布が可能になる。しかも、pH調整剤を含めて造粒していることから、金属鉄粉の近傍のpH値を常に金属鉄粉にとって最適な値にすることができ、浄化作用を効果的に行うことができる。 In the present invention, it is a purification material obtained by granulating metal iron powder and / or iron oxide powder, magnesium hydroxide and / or magnesium oxide, and a pH adjuster with a binder, and the pH adjuster is treated. Since the pH value of the target contaminated water is adjusted to 4 to 10, it is possible to put different kinds of specific gravity into one particle by granulation, and the complex target to be treated Uniform spraying is possible with a single installation on contaminated soil. And since it granulates including a pH adjuster, the pH value of the vicinity of metal iron powder can always be made into the optimal value for metal iron powder, and a purification effect can be performed effectively.
本実施の形態の浄化材は、金属鉄粉及び/又は酸化鉄粉と、水酸化マグネシウム及び/又は酸化マグネシウムと、PH調整剤とをバインダーで造粒してなる浄化材であって、前記pH調整剤は処理対象となる汚染水のpH値を4〜10に調整することを特徴とするものである。
以下、詳細に説明する。
The purification material of the present embodiment is a purification material obtained by granulating metallic iron powder and / or iron oxide powder, magnesium hydroxide and / or magnesium oxide, and a pH adjuster with a binder, and the pH The adjusting agent adjusts the pH value of the contaminated water to be treated to 4-10.
Details will be described below.
<金属鉄粉>
金属鉄粉は重金属不溶化金属鉄粉の他、微粒状の金属鉄粉、破砕削り合金鉄粉、粉末治金用鉄粉等を使用することができる。
微粒状の金属鉄粉としては、アトマイズ鉄粉、海綿鉄粉、還元鉄粉、電解鉄粉を使用することができる。
また、金属鉄粉粒径としては、平均粒径50〜200μmが好ましい。
<酸化鉄粉>
酸化鉄は重金属不溶化酸化鉄、他、チタン精錬残渣酸化鉄、鉄鉱石、水酸化鉄等を使用することができる。平均粒径は5〜100μm程度が好ましい。
<Metal iron powder>
In addition to heavy metal insolubilized metal iron powder, fine metal metal powder, crushed alloy iron powder, iron powder for powder metallurgy and the like can be used as the metal iron powder.
As fine metal iron powder, atomized iron powder, sponge iron powder, reduced iron powder, and electrolytic iron powder can be used.
Moreover, as a metal iron powder particle diameter, the average particle diameter of 50-200 micrometers is preferable.
<Iron oxide powder>
As the iron oxide, heavy metal insolubilized iron oxide, titanium refining residue iron oxide, iron ore, iron hydroxide and the like can be used. The average particle size is preferably about 5 to 100 μm.
鉄、酸化鉄は、砒素、鉛、クロム、セレンに対する吸着効果が高い。 Iron and iron oxide have a high adsorption effect on arsenic, lead, chromium, and selenium.
<酸化マグネシウム粉>
酸化マグネシウム粉は、ふっ素、ほう素、カドミウム、鉛、シアン、クロムに対する吸着、不溶化作用がある。酸化マグネシウム粉粒径としては平均粒径3〜100μm程度が望ましい。
<Magnesium oxide powder>
Magnesium oxide powder adsorbs and insolubilizes fluorine, boron, cadmium, lead, cyan, and chromium. The average particle size of the magnesium oxide powder is preferably about 3 to 100 μm.
<pH調整剤>
pH調整剤としては、硫酸アルミ、硫酸鉄、塩化鉄、酸性白土、クエン酸等を用いる。
pH調整剤は、水酸化マグネシウム及び/又は酸化マグネシウム100重量部に対して、10〜100重量部含むようにする。
前述したように、酸化マグネシウムは水和反応により表面に水酸化マグネシウムが形成される際に、重金属を不溶化、吸着し、汚染水のpH値を10〜11に上昇させる。そのため、汚染水のpH値を、鉄が浄化作用を発揮できるpHの領域であるpH4〜10より好ましくはpH5〜9.5にするためには、前記の量のpH調整剤を添加する必要がある。
<PH adjuster>
As the pH adjuster, aluminum sulfate, iron sulfate, iron chloride, acidic clay, citric acid or the like is used.
The pH adjuster is contained in an amount of 10 to 100 parts by weight with respect to 100 parts by weight of magnesium hydroxide and / or magnesium oxide.
As described above, when magnesium hydroxide is formed on the surface by hydration reaction, magnesium oxide insolubilizes and adsorbs heavy metals and raises the pH value of contaminated water to 10-11. Therefore, in order to set the pH value of contaminated water to pH 4 to 10, more preferably pH 5 to 9.5, which is a pH range in which iron can exert a purification action, it is necessary to add the above amount of pH adjusting agent. is there.
<バインダー>
粉体の結合剤として用いるバインダーとしては、水性のものとしてポリビニルアルコール(PVA)、カルボキシメチルセルロース(CMC)、でんぷん、ゼラチン、酢酸ビニルなどを用いる。
<Binder>
As a binder used as a powder binder, polyvinyl alcohol (PVA), carboxymethyl cellulose (CMC), starch, gelatin, vinyl acetate and the like are used as an aqueous binder.
<造粒>
造粒は、造粒機を用いて粒状に加工する。
平均粉径は100〜1000ミクロンとする。
<Granulation>
Granulation is processed into granules using a granulator.
The average powder diameter is 100 to 1000 microns.
<混合割合>
金属鉄粉及び/又は酸化鉄粉と、水酸化マグネシウム及び/又は酸化マグネシウムとの混合割合は、浄化対象とする土壌汚染の汚染物質の割合等に合わせて変更し、最適化を行うようにする。
バインダーは、0〜20質量%添加する。
<Mixing ratio>
The mixing ratio of metallic iron powder and / or iron oxide powder and magnesium hydroxide and / or magnesium oxide is changed according to the ratio of soil pollutants to be purified, etc., and optimized. .
The binder is added in an amount of 0 to 20% by mass.
上記のような浄化材の用い方としては、浄化材を処理対象とする汚染土壌に混合して用いてもよいし、あるいは浄化材を所定の厚みに敷き詰めてその上に汚染土壌を盛土するような用い方でもよいし、またあるいは、地盤を掘って、掘った地盤の底面と側面に浄化材を所定の厚みで設置して、浄化材で囲まれた空間に汚染土壌を入れるような用い方をしてもよい。 As a method of using the purification material as described above, the purification material may be mixed with the contaminated soil to be treated, or the purification material is spread over a predetermined thickness and the contaminated soil is embanked thereon. It is also possible to use it, or alternatively, digging the ground, setting the purification material on the bottom and side surfaces of the excavated ground with a predetermined thickness, and putting the contaminated soil into the space surrounded by the purification material You may do.
本発明の効果を確認する実験について、以下の実施例で説明する。 Experiments for confirming the effects of the present invention will be described in the following examples.
実験装置は、図1に示すように、タンクに貯留した模擬汚染水を、ポンプによって浄化材を充填したカラムに通水し、カラムを出た浄化水を採取してpH測定と重金属元素濃度の定量分析を実施した。
<実験装置仕様>
実験に用いた装置の仕様は以下の通りである。
カラム:φ10mm×100mm
浄化材
・粒径:300μm
・組成:
(i)実施例
金属鉄粉 44%、マグネシウム 44%、 硫酸アルミ 9%、 バインダー 3%
(金属鉄粉 100質量部、マグネシウム 100質量部、 硫酸アルミ 20質量部、
バインダー 7質量部)
(ii)比較例
金属鉄粉 48.5%、マグネシウム 48.5%、バインダー 3%
(金属鉄粉 100質量部、マグネシウム 100質量部、バインダー 6質量部)
As shown in FIG. 1, the experimental apparatus passes simulated contaminated water stored in a tank through a column filled with a purification material by a pump, collects purified water from the column, and measures pH and heavy metal element concentration. Quantitative analysis was performed.
<Experimental equipment specifications>
The specifications of the apparatus used for the experiment are as follows.
Column: φ10mm × 100mm
Purifying material ・ Particle size: 300μm
·composition:
(i) Examples Metallic iron powder 44%, Magnesium 44%, Aluminum sulfate 9%, Binder 3%
(100 parts metal iron powder, 100 parts magnesium, 20 parts aluminum sulfate,
7 parts by weight of binder)
(ii) Comparative example
Metal iron powder 48.5%, Magnesium 48.5%, Binder 3%
(Metal iron powder 100 parts by weight, magnesium 100 parts by weight, binder 6 parts by weight)
<実験操作>
カラムに300μmに造粒した浄化材を充填し、模擬汚染水を40ml/日でカラム下方から導入した。40ml/日という量は年間雨量が一日で透過する量に相当する。なお、年間雨量が一日で透過する量を、40ml/日が相当とすることの根拠は以下の通りである。平均降水量を1500ミリ、土壌への透水率を30%とすると、1500(年間降水量mm)÷10(年間降水量をcmに変換)×0.3(透水率)×0.785(カラム断面積cm2)=35.33ml/年が計算された。よって40ml/日で問題ない。
カラム上からカラム内を通過した通過水を回収し、通過水のpH測定と重金属元素濃度の定量分析を実施した。
模擬汚染水の当初(イニシャル)の各重金属元素とpH値及び、カラム通過後の各重金属元素とpH値を表1、2に示す。表1が実施例であり、表2が比較例である。
<Experimental operation>
The column was filled with a purification material granulated to 300 μm, and simulated contaminated water was introduced from the bottom of the column at 40 ml / day. The amount of 40ml / day corresponds to the amount of annual rainfall per day. The grounds that 40ml / day is equivalent to the amount of annual rainfall per day are as follows. If the average precipitation is 1500 mm and the permeability to the soil is 30%, 1500 (annual precipitation mm) ÷ 10 (annual precipitation converted to cm) x 0.3 (permeability) x 0.785 (column cross-sectional area cm2) = 35.33 ml / year was calculated. Therefore, there is no problem at 40ml / day.
The passing water that passed through the column was collected from above the column, and the pH of the passing water was measured and the quantitative analysis of the heavy metal element concentration was performed.
Tables 1 and 2 show each heavy metal element and pH value at the beginning (initial) of the simulated contaminated water, and each heavy metal element and pH value after passing through the column. Table 1 is an example and Table 2 is a comparative example.
実施例では、表1に示すように、イニシャルでは各重金属元素の量が環境基準値を超えていたものが、カラム通過後には、いずれの重金属元素についても環境基準値を大きく下回っている。このことから、金属鉄粉とマグネシウムの両方の吸着作用が共に発揮されていることが確認された。
また、この浄化作用は、90日経過後であっても同様に発揮されている。1日当りの通過水の量が一年の降水量相当であることから、90日であれば90年に相当し、本発明の浄化材が長期間効果を発揮することが確認された。
また、pH値についても、イニシャルではpH10であったものが、pH8.9〜pH9.1になっており、pH低下の効果が確認された。
In the examples, as shown in Table 1, the initial amount of each heavy metal element exceeded the environmental standard value, but after passing through the column, all the heavy metal elements were significantly below the environmental standard value. From this, it was confirmed that the adsorption action of both metallic iron powder and magnesium was exhibited.
In addition, this purifying effect is exhibited even after 90 days. Since the amount of passing water per day is equivalent to the amount of precipitation per year, 90 days corresponds to 90 years, and it was confirmed that the purifying material of the present invention exerts a long-term effect.
In addition, the pH value of the initial value was pH 8.9 to pH 9.1, and the effect of lowering pH was confirmed.
他方、比較例では、表2に示すように、ふっ素、ほう素に関しては、カラム通過後に、実施例と同様に環境基準値を大きく下回っている。しかし、砒素、鉛については、カラム通過後であっても、イニシャルと殆ど変化が見られない。このことは、イニシャルではpH10であったpH値が、カラム通過後にはpH10.8〜10.9になっており、pH値の上昇があったことから、金属鉄粉の吸着効果が発揮できなかったためであると推察される。
換言すれば、pH調整剤である硫酸アルミを添加した実施例では、pH調整剤の効果により、金属鉄粉とマグネシウムの両方の吸着作用が共に発揮され、浄化材として優れたものであることが実証されたと言える。
On the other hand, in the comparative example, as shown in Table 2, with respect to fluorine and boron, after passing through the column, the environmental standard value is greatly lower than in the example. However, with regard to arsenic and lead, even after passing through the column, there is almost no change from the initial. This means that the pH value, which was initially 10 at pH, became pH 10.8 to 10.9 after passing through the column, and since the pH value increased, the metal iron powder adsorption effect could not be exhibited. This is presumed to be because of
In other words, in the example in which aluminum sulfate, which is a pH adjuster, is added, the effect of the pH adjuster exhibits both the adsorption action of both metal iron powder and magnesium, and is excellent as a purification material. It can be said that it has been demonstrated.
なお、造粒に際して、酸化セリウム及び/又は水酸化セリウムを添加するようにしてもよい。酸化セリウム及び水酸化セリウムは、ふっ素、ほう素、砒素、鉛、クロム、セレン等に対して、吸着作用がある。
In the granulation, cerium oxide and / or cerium hydroxide may be added. Cerium oxide and cerium hydroxide have an adsorption action on fluorine, boron, arsenic, lead, chromium, selenium and the like.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009267787A JP5268867B2 (en) | 2009-11-25 | 2009-11-25 | Purification material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009267787A JP5268867B2 (en) | 2009-11-25 | 2009-11-25 | Purification material |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2011110476A true JP2011110476A (en) | 2011-06-09 |
JP5268867B2 JP5268867B2 (en) | 2013-08-21 |
Family
ID=44233249
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009267787A Active JP5268867B2 (en) | 2009-11-25 | 2009-11-25 | Purification material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5268867B2 (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013177575A (en) * | 2012-02-07 | 2013-09-09 | Kobe Steel Ltd | Treatment agent, and method for treating polluted water or polluted soil |
CN103934264A (en) * | 2014-03-18 | 2014-07-23 | 北京国环建邦环保科技有限公司 | In-situ reduction restoration method for chromium contaminated soil |
WO2014136550A1 (en) * | 2013-03-07 | 2014-09-12 | 株式会社神戸製鋼所 | Particulate water treatment agent for environment and method for treating water polluted by harmful substances using same. |
WO2015132860A1 (en) * | 2014-03-03 | 2015-09-11 | 株式会社マエダマテリアル | Water treatment adsorbing agent, manufacturing method therefor, water treatment apparatus, cartridge for water treatment apparatus, and water treatment method |
JP2015206205A (en) * | 2014-04-21 | 2015-11-19 | 株式会社大林組 | Foaming material for foam shield method, and foam shield method |
JP2016169587A (en) * | 2015-03-11 | 2016-09-23 | 鹿島建設株式会社 | Processing method and processing system of excavated soil |
CZ306828B6 (en) * | 2016-08-15 | 2017-07-26 | Technická Univerzita V Košiciach | Filling of a permeable reactive barrier for treatment of contaminated groundwater and the method of its application |
JP2018103133A (en) * | 2016-12-27 | 2018-07-05 | 日鉄住金セメント株式会社 | Soil treatment material and purification method of heavy metal contaminated soil |
KR20180108472A (en) * | 2017-03-24 | 2018-10-04 | 가부시키가이샤 고베 세이코쇼 | Purification treatment agents and purification treatment methods |
JP2022002836A (en) * | 2020-06-23 | 2022-01-11 | リーフエア株式会社 | Neutralization method of improved soil |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108862813B (en) * | 2017-05-12 | 2021-05-28 | 中国石油天然气股份有限公司 | Wastewater treatment method |
KR102711297B1 (en) * | 2021-11-22 | 2024-09-27 | 주식회사 엘앤더블유 | A carrier for removing heavy metals from seaweed using micro mineral crystals |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005028281A (en) * | 2003-07-11 | 2005-02-03 | Kunimine Industries Co Ltd | Composite adsorbent and wastewater treatment method using the same |
JP4187223B1 (en) * | 2008-02-08 | 2008-11-26 | 株式会社ソフィア | Purification material and purification equipment |
-
2009
- 2009-11-25 JP JP2009267787A patent/JP5268867B2/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005028281A (en) * | 2003-07-11 | 2005-02-03 | Kunimine Industries Co Ltd | Composite adsorbent and wastewater treatment method using the same |
JP4187223B1 (en) * | 2008-02-08 | 2008-11-26 | 株式会社ソフィア | Purification material and purification equipment |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013177575A (en) * | 2012-02-07 | 2013-09-09 | Kobe Steel Ltd | Treatment agent, and method for treating polluted water or polluted soil |
CN105008285B (en) * | 2013-03-07 | 2017-03-29 | 株式会社神户制钢所 | Particulate-type water-use for environment inorganic agent and the processing method using its water to being polluted by harmful substance |
WO2014136550A1 (en) * | 2013-03-07 | 2014-09-12 | 株式会社神戸製鋼所 | Particulate water treatment agent for environment and method for treating water polluted by harmful substances using same. |
JP2014171953A (en) * | 2013-03-07 | 2014-09-22 | Kobe Steel Ltd | Granular-type environmental water treatment agent, and method for treating water contaminated with harmful substances by using the same |
CN105008285A (en) * | 2013-03-07 | 2015-10-28 | 株式会社神户制钢所 | Particulate water treatment agent for environment and method for treating water polluted by harmful substances using same |
WO2015132860A1 (en) * | 2014-03-03 | 2015-09-11 | 株式会社マエダマテリアル | Water treatment adsorbing agent, manufacturing method therefor, water treatment apparatus, cartridge for water treatment apparatus, and water treatment method |
CN103934264A (en) * | 2014-03-18 | 2014-07-23 | 北京国环建邦环保科技有限公司 | In-situ reduction restoration method for chromium contaminated soil |
JP2015206205A (en) * | 2014-04-21 | 2015-11-19 | 株式会社大林組 | Foaming material for foam shield method, and foam shield method |
JP2016169587A (en) * | 2015-03-11 | 2016-09-23 | 鹿島建設株式会社 | Processing method and processing system of excavated soil |
CZ306828B6 (en) * | 2016-08-15 | 2017-07-26 | Technická Univerzita V Košiciach | Filling of a permeable reactive barrier for treatment of contaminated groundwater and the method of its application |
JP2018103133A (en) * | 2016-12-27 | 2018-07-05 | 日鉄住金セメント株式会社 | Soil treatment material and purification method of heavy metal contaminated soil |
KR20180108472A (en) * | 2017-03-24 | 2018-10-04 | 가부시키가이샤 고베 세이코쇼 | Purification treatment agents and purification treatment methods |
KR102113144B1 (en) * | 2017-03-24 | 2020-05-20 | 가부시키가이샤 고베 세이코쇼 | Purification treatment agents and purification treatment methods |
JP2022002836A (en) * | 2020-06-23 | 2022-01-11 | リーフエア株式会社 | Neutralization method of improved soil |
JP7554450B2 (en) | 2020-06-23 | 2024-09-20 | リーフエア株式会社 | Improved soil neutralization method |
Also Published As
Publication number | Publication date |
---|---|
JP5268867B2 (en) | 2013-08-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5268867B2 (en) | Purification material | |
Qin et al. | Hexavalent chromium removal by reduction with ferrous sulfate, coagulation, and filtration: a pilot-scale study | |
TWI626092B (en) | New powder, powder composition, method for use thereof and use of the powder and powder composition | |
JP5981863B2 (en) | Granular environmental water treatment agent and method for treating water contaminated with harmful substances using the same | |
JP2009082818A (en) | Treatment agent and treatment method for polluted water containing heavy metals | |
Shi et al. | Functional kaolinite supported Fe/Ni nanoparticles for simultaneous catalytic remediation of mixed contaminants (lead and nitrate) from wastewater | |
Changalvaei et al. | Removal of Ni and Zn heavy metal ions from industrial waste waters using modified slag of electric arc furnace | |
JP2013088237A (en) | Cesium contaminated soil surface solidification method, cesium solidification/insolubilization method, soil solidification agent used therefor, cesium removal method and magnesium-oxide based adsorbent used therefor | |
Zhao et al. | The regeneration characteristics of various red mud granular adsorbents (RMGA) for phosphate removal using different desorption reagents | |
JP2009183907A (en) | Decontaminating material and decontamination facility | |
Deng et al. | Phosphorus removal by Magnesium‐based Cementitious Material: Performance and mechanisms | |
WO2010134573A1 (en) | Treatment agent and process for production thereof, and treatment method | |
WO2016183947A1 (en) | Deep treatment method for polluted wastewater containing thallium and other heavy metal | |
JPH07185499A (en) | Waste treatment material | |
JP2009102708A (en) | Agent and method for treating polluted water containing heavy metals | |
JP2006205152A (en) | Heavy metal treating agent and method for treating heavy metal using the same | |
Yun et al. | Comparative research on phosphorus removal by pilot-scale vertical flow constructed wetlands using steel slag and modified steel slag as substrates | |
JP5502841B2 (en) | Heavy metal treatment material and heavy metal treatment method using the same | |
JP2010253462A (en) | Method of insolubilizing harmful substance | |
JP4756190B2 (en) | Cyanide-containing water and cyanide-containing groundwater treatment method and purification wall | |
Oliveira et al. | Removal of phosphorus from water using active barriers: Al2O3 immobilized on to polyolefins | |
TW200823154A (en) | Iron powder for organic chlorinated compound decomposition and detoxifying treatment method using the same | |
JP4808093B2 (en) | Recycling method of iron powder for arsenic removal | |
Rikabi et al. | Optimization of ecofriendly L-Fe/Ni nanoparticles prepared using extract of black tea leaves for removal of tetracycline antibiotics from groundwater by response surface methodology | |
JP2007296408A (en) | Metal iron-magnetite mixed particle powder for purifying soil/groundwater, purification agent containing metal iron-magnetite mixed particle powder, and method for cleaning soil/groundwater |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20111115 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20120406 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120424 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120621 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130319 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130409 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130507 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130507 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5268867 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |