[go: up one dir, main page]

JP2011102768A - Measuring method of heat characteristic - Google Patents

Measuring method of heat characteristic Download PDF

Info

Publication number
JP2011102768A
JP2011102768A JP2009258193A JP2009258193A JP2011102768A JP 2011102768 A JP2011102768 A JP 2011102768A JP 2009258193 A JP2009258193 A JP 2009258193A JP 2009258193 A JP2009258193 A JP 2009258193A JP 2011102768 A JP2011102768 A JP 2011102768A
Authority
JP
Japan
Prior art keywords
holding member
temperature
sample
measured
temperature side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009258193A
Other languages
Japanese (ja)
Inventor
Yasukazu Inoue
靖数 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2009258193A priority Critical patent/JP2011102768A/en
Publication of JP2011102768A publication Critical patent/JP2011102768A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To suppress heat radiation from a measuring system using a simple method and match the passage heat flux on the sample high-temperature side with that on the low-temperature side in a method of measuring the heat characteristic such as thermal conductivity or contact thermal resistance in a stationary temperature field. <P>SOLUTION: Protective heating members are arranged at a constant interval while it does not abut on holding members, parallel to the main heat flow direction in the holding members for gripping a sample to be measured. The control temperature of a low-temperature side protective heating member and the longitudinal center temperature of the low-temperature side holding member are controlled equally. The passage heat flux on the high temperature side is compared with that on the low temperature side. When the passage heat flux on the high temperature side is large, the control temperature of the high-temperature side protective heating member is increased. When the passage heat flux on the low temperature side is large, the control temperature of the high-temperature side protective heating member is decreased. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、熱伝導率または接触熱抵抗を定常法で測定する方法に関する。   The present invention relates to a method for measuring thermal conductivity or contact thermal resistance by a steady method.

近年、様々な機器の省エネルギー化に対する要求が高まっており、熱を伝えるべき場所と遮断すべき場所に効果的に部材を配置する設計が求められている。そのため、使用する部材の熱特性を知ることが非常に重要となってきている。特に熱伝導率は熱の伝えやすさを表す指標であり、測定の要望が高い。また、電子機器における伝熱用グリースの熱伝達特性評価のように、部材間の接触面の接触熱抵抗の測定も重要な課題である。   In recent years, demands for energy saving of various devices are increasing, and there is a demand for a design in which members are effectively arranged at a place where heat should be transmitted and a place where heat should be blocked. For this reason, it has become very important to know the thermal characteristics of the members used. In particular, the thermal conductivity is an index representing the ease of heat transfer, and there is a high demand for measurement. In addition, as in the evaluation of heat transfer characteristics of heat transfer grease in electronic devices, measurement of contact thermal resistance of contact surfaces between members is also an important issue.

材料の熱特性を測定する方法は従来から広く研究されており、さまざまな方式が提案されている。大別すると、試料と測定系とを含む温度場を時間的に一定に保持して測定する定常法と、試料の過渡的な温度応答を用いて測定する非定常法に分類することができる。定常法には平板直接法、熱流計法、平板比較法などがある。   Methods for measuring the thermal properties of materials have been extensively studied and various methods have been proposed. Broadly speaking, it can be classified into a stationary method in which the temperature field including the sample and the measurement system is kept constant over time and a non-stationary method in which measurement is performed using the transient temperature response of the sample. The steady method includes a flat plate direct method, a heat flow meter method, and a flat plate comparison method.

定常法で熱伝導率を測定する場合、試料両面に温度差ΔTを与えた状態で、試料を通過する熱流束qを計測する。計測した熱流束qと(式1)を用いて熱抵抗Rを求める。
R=ΔT/q (式1)
また、試料の熱伝導率λは、試料厚みdに対して、(式2)を用いて算出される。
λ=d/R=d・q/ΔT (式2)
これは、熱伝導におけるフーリエの法則を直接利用したものである。また、二つの試料を重ねて同様にΔTとqを決定し、二つの試料を重ねた状態の熱抵抗も求めることができる。二つの試料間の接触熱抵抗は、二つの試料全体の熱抵抗から、個別の試料の熱抵抗を差し引いて求めることができる。
When the thermal conductivity is measured by a steady method, the heat flux q passing through the sample is measured in a state where a temperature difference ΔT is given to both surfaces of the sample. The thermal resistance R is obtained using the measured heat flux q and (Equation 1).
R = ΔT / q (Formula 1)
Further, the thermal conductivity λ of the sample is calculated using (Expression 2) with respect to the sample thickness d.
λ = d / R = d · q / ΔT (Formula 2)
This is a direct use of Fourier's law in heat conduction. Further, ΔT and q are similarly determined by overlapping two samples, and the thermal resistance in a state where the two samples are overlapped can also be obtained. The contact thermal resistance between two samples can be obtained by subtracting the thermal resistance of individual samples from the thermal resistance of the entire two samples.

一方、非定常法には細線加熱法(または熱線法)、フラッシュ法、周期加熱法が分類されるが、フラッシュ法、周期加熱法の測定値は熱拡散率である。熱伝導率は、熱拡散率と、比熱および密度を用いて算出される。比熱および密度の測定には別の測定機が必要でありコストがかかるため、熱伝導率を直接測定することが好ましい。   On the other hand, thin wire heating method (or hot wire method), flash method, and periodic heating method are classified as unsteady methods, and the measured value of flash method and periodic heating method is thermal diffusivity. The thermal conductivity is calculated using the thermal diffusivity, specific heat, and density. Since the measurement of specific heat and density requires another measuring device and is expensive, it is preferable to directly measure the thermal conductivity.

細線加熱法は、細線状の発熱体から周囲試料へ熱が伝わる際の発熱部温度変化を元に熱伝導率を直接測定することができる。ただし、細線を中心とする温度変化が外部との境界面の影響で乱れると測定精度が悪化する。また、同じ理由で接触熱抵抗の測定には原理式の大幅な修正が必要となる。   The fine wire heating method can directly measure the thermal conductivity based on the temperature change of the heat generating part when heat is transferred from the fine wire-shaped heating element to the surrounding sample. However, if the temperature change centered on the thin line is disturbed by the influence of the interface with the outside, the measurement accuracy deteriorates. For the same reason, the measurement of contact thermal resistance requires a significant correction of the principle formula.

以上より、熱伝導率および接触熱抵抗を同一装置において測定できる定常法は有効な測定手法である。   From the above, the steady method that can measure the thermal conductivity and the contact thermal resistance in the same apparatus is an effective measurement method.

定常法の一つである平板比較法は、図3に示すように、被測定試料40を熱伝導率が既知の保持部材11aおよび11bで挟持し、保持部材11aを相対的に高温、保持部材11bを相対的に低温に保つことで、保持部材および被測定試料に熱流を発生させる。試料両端に温度差ΔTを与え、保持部材中の温度分布から熱流束qを求めることで、(式2)より熱伝導率が得られる。ここで、保持部材または試料表面からの放熱が発生すると、試料を通過する熱流束を正確に見積もることができず、熱伝導率を求めることができない。   As shown in FIG. 3, the flat plate comparison method, which is one of the steady methods, sandwiches the sample to be measured 40 between holding members 11a and 11b having a known thermal conductivity and holds the holding member 11a at a relatively high temperature. By maintaining 11b at a relatively low temperature, a heat flow is generated in the holding member and the sample to be measured. By giving a temperature difference ΔT to both ends of the sample and obtaining the heat flux q from the temperature distribution in the holding member, the thermal conductivity can be obtained from (Equation 2). Here, if heat is released from the holding member or the sample surface, the heat flux passing through the sample cannot be accurately estimated, and the thermal conductivity cannot be obtained.

そこで、被測定試料周辺からの放熱を抑制するものとして、環境を真空化し試料周辺の断熱部材を補助的に加熱したものが考えられている(特許文献1)。試料を真空槽内に配置した上で、試料側面を断熱部材で囲んだ構成を有している。試料両端に温度差を与えると試料内に温度分布が生じる。このとき、外部補助加熱装置を用いて試料に発生する温度分布とほぼ同様の温度分布を断熱部材に発生させることによって、試料と断熱部材の対向面の温度差を低減し、放熱を抑制している。   Therefore, as a means for suppressing the heat radiation from the periphery of the sample to be measured, one in which the environment is evacuated and the heat insulating member around the sample is auxiliary heated is considered (Patent Document 1). After the sample is placed in the vacuum chamber, the side surface of the sample is surrounded by a heat insulating member. When a temperature difference is given to both ends of the sample, a temperature distribution is generated in the sample. At this time, by using the external auxiliary heating device to generate a temperature distribution in the heat insulating member that is substantially the same as the temperature distribution generated in the sample, the temperature difference between the opposing surfaces of the sample and the heat insulating member is reduced, and heat dissipation is suppressed Yes.

また、大気中で放熱を抑制した測定をおこなうものとしては、試料周辺の対流を抑制する構造と、保持部材および試料の周囲に複数の補償ヒータを設けたものも考えられている(特許文献2)。図6は、特許文献2に開示されている熱伝導率測定装置の概略図である。試料40および試料保持部材11は縦型に配置され、試料保持部材と保持部材の周囲に設けられた保護加熱部61の対向する位置にそれぞれ温度センサ62が設けられている。保持部材の温度測定点は、保持部材の温度分布から熱流束を求めるために、主熱流の方向に複数設けられている。また、保護加熱部は補償ヒータ63を備え、対向する保持部材と保護加熱部の温度が等しくなるように補償ヒータを温度制御する。また、複数の補償ヒータの温度を独立に制御するために、補償ヒータ同士は断熱された構造を有している。さらに、補償ヒータと保持部材は直接接触せず、すきまの対流を抑制するために、保持部材に接するフィン状の断熱素材64により、保持部材と補償ヒータ部のすきまが高さ方向に細分化された構造となっている。   In addition, as a method for performing measurement while suppressing heat dissipation in the atmosphere, a structure that suppresses convection around the sample and a structure in which a plurality of compensation heaters are provided around the holding member and the sample are also considered (Patent Document 2). ). FIG. 6 is a schematic diagram of a thermal conductivity measuring device disclosed in Patent Document 2. The sample 40 and the sample holding member 11 are arranged vertically, and a temperature sensor 62 is provided at a position where the sample holding member and the protective heating unit 61 provided around the holding member face each other. A plurality of temperature measurement points of the holding member are provided in the direction of the main heat flow in order to obtain the heat flux from the temperature distribution of the holding member. Further, the protection heating unit includes a compensation heater 63, and controls the temperature of the compensation heater so that the temperatures of the holding member and the protection heating unit facing each other become equal. Moreover, in order to control the temperature of a some compensation heater independently, the compensation heaters have the structure insulated. Further, the compensation heater and the holding member are not in direct contact with each other, and the clearance between the holding member and the compensation heater portion is subdivided in the height direction by the fin-like heat insulating material 64 in contact with the holding member in order to suppress convection of the gap. It has a structure.

特登録02832334号Special registration 02832334 特開2006−145446号広報Japanese Unexamined Patent Publication No. 2006-145446

しかしながら特許文献1記載の方法では、熱伝導率の測定を真空槽内で行う技術が開示されているが、真空槽や真空ポンプなどの機器が必要となり、測定が大掛かりになる。また、特許文献2記載の方法では、大気中で熱伝導率と接触熱抵抗を測定できるが、測定部と放熱抑制部の間の空気対流を低減する断熱性のフィンを設けている。このような対策は構造が複雑であり、コストが高くなる。また多数のヒータ温度を独立に制御するために、制御も複雑になり、多数の温度センサを校正するための手間もかかる。   However, in the method described in Patent Document 1, a technique for measuring the thermal conductivity in a vacuum chamber is disclosed, but equipment such as a vacuum chamber and a vacuum pump is required, and the measurement becomes large. Moreover, in the method of patent document 2, although heat conductivity and contact thermal resistance can be measured in air | atmosphere, the heat insulation fin which reduces the air convection between a measurement part and a thermal radiation suppression part is provided. Such measures are complex in structure and costly. In addition, since a large number of heater temperatures are controlled independently, the control is complicated, and it takes time to calibrate a large number of temperature sensors.

さらに、特許文献1、特許文献2記載の保護加熱方法は共に、試料と保護加熱部の対向面の温度を等しく制御し、試料および保持部材からの放熱の発生を抑制するものである。しかしながら、図3で示した熱流束qは、試料を挟んだ両側の保持部材中で一致させる事は非常に困難である。   Furthermore, both the protective heating methods described in Patent Document 1 and Patent Document 2 control the temperature of the opposing surfaces of the sample and the protective heating unit equally to suppress the generation of heat radiation from the sample and the holding member. However, it is very difficult to match the heat flux q shown in FIG. 3 in the holding members on both sides of the sample.

そこで本発明の目的は、高温側および低温側の保持部材中の熱流束qを能動的に一致させることで、熱伝導率や接触熱抵抗などの熱特性の測定方法を提供することにある。   Therefore, an object of the present invention is to provide a method for measuring thermal characteristics such as thermal conductivity and contact thermal resistance by actively matching the heat flux q in the holding member on the high temperature side and the low temperature side.

前記目的を達成するため本発明では、被測定試料を挟持する第1の保持部材と第2の保持部材と、前記第1の保持部材と第2の保持部材の前記被測定試料を挟持する面とは逆の端面に配置され、前記第1の保持部材と第2の保持部材の間に温度差を与える第1、第2の主加熱手段と、前記第1の保持部材と第2の保持部材の周囲に配置され、前記第1の保持部材と第2の保持部材の温度を制御する第1、第2の保護加熱手段と、前記第1の保持部材を通過する熱流束q1と第2の保持部材を通過する熱流束q2を計測する手段と、前記計測した熱流束q1と熱流束q2が等しくなるように前記第1、第2の保護加熱手段の温度を制御する制御手段を有する熱特性の測定装置を提供している。   In order to achieve the above object, in the present invention, a first holding member and a second holding member for holding a sample to be measured, and a surface for holding the sample to be measured of the first holding member and the second holding member. The first and second main heating means are disposed on the end surface opposite to the first and provide a temperature difference between the first holding member and the second holding member, and the first holding member and the second holding member. First and second protective heating means disposed around the member for controlling the temperature of the first holding member and the second holding member, and the heat flux q1 and the second passing through the first holding member Heat having means for measuring the heat flux q2 passing through the holding member, and control means for controlling the temperature of the first and second protective heating means so that the measured heat flux q1 and heat flux q2 are equal. A characteristic measurement device is provided.

また、第1の保持部材と第2の保持部材により被測定試料を挟持し、前記第1の保持部材と第2の保持部材の前記被測定試料を挟持する端面とは逆の面に配置された第1、第2の主加熱手段により、前記第1の保持部材と第2の保持部材を加熱し、第1の保持部材と第2の保持部材の間に温度差を設け、前記第1の保持部材と第2の保持部材の周囲に配置された第1、第2の保護加熱手段の温度を、前記第1の保持部材を通過する熱流束q1と第2の保持部材を通過する熱流束q2が等しくなるように制御し、前記第1の保持部材と第2の保持部材の温度と、前記等しくなるように制御された熱流束q1もしくはq2とから、被測定試料の熱特性を算出する熱特性の測定方法を提供している。   Further, the sample to be measured is sandwiched between the first holding member and the second holding member, and the first holding member and the second holding member are arranged on a surface opposite to the end surface that sandwiches the sample to be measured. The first and second main heating means heat the first holding member and the second holding member to provide a temperature difference between the first holding member and the second holding member. The heat flux q1 passing through the first holding member and the heat flow passing through the second holding member are the temperatures of the first and second protective heating means disposed around the holding member and the second holding member. The bundle q2 is controlled to be equal, and the thermal characteristics of the sample to be measured are calculated from the temperatures of the first holding member and the second holding member and the heat flux q1 or q2 controlled to be equal. A method for measuring thermal properties is provided.

以上説明したように、本出願の発明によれば、試料高温側と低温側の通過熱流束を判定し、保護加熱部材の制御温度を決定するので、試料高温側と低温側それぞれ一つずつの保護加熱を行うことで高温側と低温側の熱流束を等しく制御できる。これにより、大気中で、保持部材と保護加熱部材間に対流抑制方法や多数の保護加熱部材を必要とせず、定常法による熱伝導率または接触熱抵抗などの熱特性の測定を行うことができる。   As described above, according to the invention of the present application, the passing heat flux on the high temperature side and the low temperature side of the sample is determined, and the control temperature of the protective heating member is determined. By performing the protective heating, the heat fluxes on the high temperature side and the low temperature side can be controlled equally. This makes it possible to measure thermal properties such as thermal conductivity or contact thermal resistance by a steady method without requiring a convection suppression method or a large number of protective heating members between the holding member and the protective heating member in the atmosphere. .

第1の実施例にかかる熱伝導率測定装置の構成を説明する図である。It is a figure explaining the structure of the thermal conductivity measuring apparatus concerning a 1st Example. 第1の実施例にかかる熱伝導率測定装置の主熱流方向に垂直な断面の模式図である。It is a schematic diagram of the cross section perpendicular | vertical to the main heat flow direction of the thermal conductivity measuring apparatus concerning a 1st Example. 定常比較法における熱伝導率の測定原理を表す図である。It is a figure showing the measurement principle of the thermal conductivity in a stationary comparison method. 第1の実施例にかかる高温側と低温側の熱流束を一致させる手順を示すフロー図である。It is a flowchart which shows the procedure which matches the heat flux of the high temperature side and low temperature side concerning 1st Example. 第2の実施例にかかる接触熱抵抗測定方法の被測定試料周辺部を説明する図である。It is a figure explaining the to-be-measured sample periphery part of the contact thermal resistance measuring method concerning a 2nd Example. 従来例を説明する図である。It is a figure explaining a prior art example.

本発明者は、さまざまな試料と測定条件に対して熱伝導率と接触熱抵抗等の熱特性を測定するためには、保持部材と保護加熱部の温度を等しく制御することよりも、試料を挟んだ両側で熱流束qを能動的に一致させることのほうが有効であることに着目した。以下、それを実現する本発明の好適な実施形態について図面を参照して説明する。   In order to measure thermal properties such as thermal conductivity and contact thermal resistance for various samples and measurement conditions, the present inventor does not control the temperature of the holding member and the protective heating unit equally, but the sample. It was noted that it is more effective to make the heat flux q actively match on both sides of the sandwich. DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, preferred embodiments of the invention for realizing the above will be described with reference to the drawings.

(第1の実施の形態)
(装置構成)
図1は本発明の実施形態に関する熱伝導率測定装置の構成図である。被測定試料40は保持部材11aと保持部材11bにより挟持されている。熱伝導率既知(λs)の保持部材11a(第1の保持部材)および11b(第2の保持部材)それぞれの被測定試料40と逆の端面には、主加熱部12a(第1の主加熱手段)および12b(第2の主加熱手段)がそれぞれ取り付けられている。主加熱部12aおよび12bは所定の温度に制御可能で、主加熱部12aおよび12bを相異なる温度に保持することで、保持部材11aおよび11bには温度分布と熱流束qが生じる。また、図1中矢印xで表す保持部材の主熱流方向に沿うように、保持部材の周囲に一定間隔で配置された保護加熱部材13a(第1の保護加熱手段)および13b(第2の保護加熱手段)から構成される。
(First embodiment)
(Device configuration)
FIG. 1 is a configuration diagram of a thermal conductivity measuring apparatus according to an embodiment of the present invention. The sample 40 to be measured is sandwiched between the holding member 11a and the holding member 11b. The main heating section 12a (first main heating) is provided on the end surface opposite to the measured sample 40 of each of the holding members 11a (first holding member) and 11b (second holding member) having a known thermal conductivity (λs). Means) and 12b (second main heating means) are respectively attached. The main heating parts 12a and 12b can be controlled to a predetermined temperature. By holding the main heating parts 12a and 12b at different temperatures, a temperature distribution and a heat flux q are generated in the holding members 11a and 11b. Further, the protective heating members 13a (first protective heating means) and 13b (second protective members) arranged at regular intervals around the holding member so as to follow the main heat flow direction of the holding member represented by the arrow x in FIG. Heating means).

前記保持部材11aおよび11bのそれぞれに複数設けられた温度センサ111により、保持部材の主熱流方向xに沿う温度分布が測定される。本実施の形態において、保持部材の長さは60mmであり、温度センサは、主加熱部と非接触側の端面から5、15、25、45mmの位置に設けられている。主加熱部12aおよび12bの保持部材と接続されている反対側の面には、冷却部材14aおよび14bが接続されている。   A temperature distribution along the main heat flow direction x of the holding member is measured by a plurality of temperature sensors 111 provided on each of the holding members 11a and 11b. In the present embodiment, the length of the holding member is 60 mm, and the temperature sensor is provided at 5, 15, 25, and 45 mm from the end surface on the non-contact side with the main heating unit. Cooling members 14a and 14b are connected to the opposite surfaces of the main heating portions 12a and 12b connected to the holding members.

計測部10aは、保持部材11a、加熱部12a、保護加熱部材13a、冷却部材14aにより構成されている。また計測部10bは、保持部材11b、加熱部12b、保護加熱部材13b、冷却部材14bにより構成されている。計測部10aにはロードセル24を介して加圧力発生機構23に接続され、加圧力を測定し、制御可能になっている。加圧力発生機構23は一方の計測部を保持部材の主熱流方向に可動させる。加圧力発生機構は静荷重や空気圧、バネ力などの手段により作動し、任意の加圧力で熱伝導率または接触熱抵抗を測定可能となっている。また、上記計測部10aおよび10bは測定チャンバー31内に収納されており、環境を安定化させて測定することが可能である。   The measuring unit 10a includes a holding member 11a, a heating unit 12a, a protective heating member 13a, and a cooling member 14a. The measuring unit 10b includes a holding member 11b, a heating unit 12b, a protective heating member 13b, and a cooling member 14b. The measuring unit 10a is connected to a pressurizing force generating mechanism 23 via a load cell 24, and can measure and control the pressurizing force. The pressurizing force generation mechanism 23 moves one measuring part in the main heat flow direction of the holding member. The pressurizing force generating mechanism is operated by means such as static load, air pressure, and spring force, and can measure thermal conductivity or contact thermal resistance with an arbitrary pressurizing force. The measurement units 10a and 10b are housed in the measurement chamber 31, and can be measured while stabilizing the environment.

なお、温度センサを配置する位置は任意に選択可能であり、保持部材11aおよびbの主加熱部と非接続側の端面に配置して端面温度を直接測定することができる。また複数備えた温度センサの出力から端面温度を外挿により求めることも可能である。   The position where the temperature sensor is disposed can be arbitrarily selected, and the end surface temperature can be directly measured by disposing it on the end surfaces of the holding members 11a and 11b on the non-connecting side. It is also possible to obtain the end face temperature by extrapolation from the outputs of a plurality of temperature sensors.

また、計測部10aおよび10bは試料保持部を中心として上下対称構成となっているので、上側計測部10aまたは下側計測部10bのどちらを高温側としてもよい。高温側と低温側の主加熱部の温度を適宜調整することで、熱伝導率または接触熱抵抗の温度依存性を測定することができる。   In addition, since the measurement units 10a and 10b are vertically symmetric with respect to the sample holding unit, either the upper measurement unit 10a or the lower measurement unit 10b may be on the high temperature side. The temperature dependency of the thermal conductivity or the contact thermal resistance can be measured by appropriately adjusting the temperatures of the main heating portions on the high temperature side and the low temperature side.

図2は計測部の主熱流に垂直な面の断面図を示す。本実施例の態様では、保持部材11は円柱形状であり、保護加熱部材13は保持部材11と同じ中心軸を有する2つ割型の半円筒状部材となっている。本実施例において、保持部材の断面形状は直径12mmであるが、測定する試料の態様に従い、任意に決定できる。保護加熱部材の保持部材と対向する面は、保持部材と同一素材の高熱伝導性材料で構成されている。本実施例において保持部材はアルミ合金により構成されているが、銅や炭素鋼なども用いることができる。   FIG. 2 shows a cross-sectional view of a plane perpendicular to the main heat flow of the measurement unit. In this embodiment, the holding member 11 has a columnar shape, and the protective heating member 13 is a split half-cylindrical member having the same central axis as the holding member 11. In this embodiment, the holding member has a cross-sectional shape of 12 mm in diameter, but can be arbitrarily determined according to the mode of the sample to be measured. The surface of the protective heating member that faces the holding member is made of the same highly heat conductive material as the holding member. In this embodiment, the holding member is made of an aluminum alloy, but copper, carbon steel, or the like can also be used.

保護加熱部材は保持部材との空間の距離が軸方向に対して一定となるように固定されている。本実施例において、保護加熱部材と保持部材の空間の距離は0.5mmとしている。保護加熱部材には温度センサ131と発熱体132が埋め込みまたは固定されている。温度センサ131の出力は温度制御装置22に導入され、保護加熱部材の温度制御に用いられる。高温側と低温側それぞれの保護加熱部材の温度制御点は各1点であるが、表面部材が高熱伝導性であるため、表面の温度分布は小さくなる。   The protective heating member is fixed so that the distance of the space with the holding member is constant in the axial direction. In this embodiment, the distance between the protective heating member and the holding member is 0.5 mm. A temperature sensor 131 and a heating element 132 are embedded or fixed in the protective heating member. The output of the temperature sensor 131 is introduced into the temperature control device 22 and used for temperature control of the protective heating member. Although the temperature control point of each of the protective heating members on the high temperature side and the low temperature side is one point, the temperature distribution on the surface is small because the surface member has high thermal conductivity.

また、保護加熱部材の発熱体を中心として保持部材側とは反対側に、保護加熱部材を冷却可能な冷却手段15が設けられている。図2では冷媒循環による冷却手段を示したが、ペルチェ素子などを用いることもできる。冷却手段は任意に動作可能であり、必要に応じて保護加熱部材を冷却することができる。   A cooling means 15 capable of cooling the protective heating member is provided on the side opposite to the holding member side with the heating element of the protective heating member as a center. Although FIG. 2 shows the cooling means by refrigerant circulation, a Peltier element or the like can also be used. The cooling means can be arbitrarily operated, and the protective heating member can be cooled as required.

(動作)
次に図4を参考に、測定時における各温度制御部の動作を説明する。保持部材で挟持された被測定試料は、ステップS11で上下の主加熱部に所定の温度差を与え加熱を開始される。
(Operation)
Next, the operation of each temperature control unit during measurement will be described with reference to FIG. In step S11, the sample to be measured sandwiched between the holding members gives a predetermined temperature difference to the upper and lower main heating sections and starts heating.

ステップS12で、高温側と低温側保持部材中の温度が安定し、定常状態に達したか判定される。本実施例では、保持部材中の各温度測定点の温度変化が0.2℃/5分以下のとき、定常状態と判定したが、上記基準は測定目的により選択されるものであり、本実施例記載の値に制限されるものではない。   In step S12, it is determined whether the temperatures in the high temperature side and low temperature side holding members are stable and have reached a steady state. In this example, when the temperature change at each temperature measurement point in the holding member was 0.2 ° C./5 minutes or less, it was determined as a steady state, but the above criteria are selected according to the measurement purpose. It is not limited to the values described in the examples.

ステップS12の判定結果がNOの場合、ステップS16で低温側保護加熱部材の制御温度T4を低温側保持部材の所定の温度Tbsetと等しく設定する。本実施例では、Tbsetを、低温側保持部材の軸方向中央部温度とした。ステップS12とステップS16の繰り返しにより、T4とTbsetは測定中ほぼ同じ温度に制御される。本実施例では、ステップS12の判定を2分間隔で行うことにした。   If the decision result in the step S12 is NO, a control temperature T4 of the low temperature side protection heating member is set equal to a predetermined temperature Tbset of the low temperature side holding member in a step S16. In this example, Tbset was set as the axially central temperature of the low temperature side holding member. By repeating Step S12 and Step S16, T4 and Tbset are controlled to substantially the same temperature during measurement. In this embodiment, the determination in step S12 is performed at 2-minute intervals.

ステップS12の判定結果がYESの場合、ステップS13で高温側保持部材を通過する熱流束(以下、高温側熱流束)q1と低温側保持部材を通過する熱流束(以下、低温側熱流束)q2を比較する。なお、熱流束qは、保持部材11a、11bの温度分布と保持部材の既知の熱伝導率λsを用いて(式3)により算出する。
q=−λs・(dT/dx) (式3)
本実施例では低温側熱流束と高温側熱流束の比q2/q1が0.99〜1.01の場合、高温側と低温側の熱流束が等しいと判定しているが、上記基準は測定目的により選択されるものであり、本実施例記載の値に制限されるものではない。
When the determination result in step S12 is YES, in step S13, the heat flux passing through the high temperature side holding member (hereinafter referred to as high temperature side heat flux) q1 and the heat flux passing through the low temperature side holding member (hereinafter referred to as low temperature side heat flux) q2. Compare The heat flux q is calculated by (Equation 3) using the temperature distribution of the holding members 11a and 11b and the known thermal conductivity λs of the holding member.
q = −λs · (dT / dx) (Formula 3)
In this embodiment, when the ratio q2 / q1 between the low temperature side heat flux and the high temperature side heat flux is 0.99 to 1.01, it is determined that the heat flux on the high temperature side and the low temperature side are equal, but the above standard is measured. It is selected according to the purpose, and is not limited to the values described in the present embodiment.

ステップS13の判定結果がYESの場合、ステップS14で定常状態における保持部材中の温度分布を記録し、ステップS15で終了する。テップS13の判定結果がNOの場合は、q1≠q2であり、さらにステップS17でq1とq2の大小関係が判定される。   If the decision result in the step S13 is YES, a temperature distribution in the holding member in a steady state is recorded in a step S14, and the process ends in a step S15. When the determination result in step S13 is NO, q1 ≠ q2, and in step S17, the magnitude relationship between q1 and q2 is determined.

ステップS17の判定結果がYESの場合はq1>q2であり、ステップS18で高温側保護加熱部材の制御温度T3を所定温度上昇させる。本実施例では、1回目のT3の変更量を3℃とし、ステップS18を繰り返すごとにT3の変更幅を小さくした。変更幅は任意に設定できる。変更幅を小さくすると温度安定までの繰り返し回数が多くなるが、q1<q2となるオーバーシュート状態を避けやすい。   When the determination result in step S17 is YES, q1> q2, and in step S18, the control temperature T3 of the high-temperature side protection heating member is increased by a predetermined temperature. In the present embodiment, the first change amount of T3 is set to 3 ° C., and the change width of T3 is reduced every time step S18 is repeated. The change width can be set arbitrarily. If the change width is reduced, the number of repetitions until the temperature stabilizes increases, but it is easy to avoid an overshoot state where q1 <q2.

ステップS17の判定結果が偽の場合、つまりq1<q2の場合は、T3を所定温度低下させる。本実施例では下降させる所定温度を0.5℃としたが、任意に選択可能である。また数回ステップS17の繰り返しを経過した後には下降させる所定温度幅を小さくすることが有効である。   If the determination result in step S17 is false, that is, if q1 <q2, T3 is decreased by a predetermined temperature. In this embodiment, the predetermined temperature to be lowered is 0.5 ° C., but can be arbitrarily selected. It is also effective to reduce the predetermined temperature range to be lowered after the repetition of step S17 several times.

上記の判定を繰り返し、q1とq2が等しくなった時点の、高温側と低温側保持部材中の温度分布を記録し、測定を終了する(ステップS15)。熱伝導率λは保持部材の温度分布よりΔTおよびqを算出し、(式2)の手順に従って求めることができる。   The above determination is repeated, the temperature distributions in the high temperature side and low temperature side holding members at the time when q1 and q2 become equal are recorded, and the measurement is terminated (step S15). The thermal conductivity λ can be obtained according to the procedure of (Equation 2) by calculating ΔT and q from the temperature distribution of the holding member.

本発明の実施例として、直径12mm、厚さ2mmのセラミックを被測定試料とし、高温側の熱流束q1と低温側熱流束q2の状態の測定した。実施例1では、高温側主加熱部11aの温度T1を80℃に制御した。また低温側の主加熱部は加熱を行わず、冷却部材に冷却水を循環させた。低温側主加熱部12bの表示温度T2は25〜26℃で安定していた。高温保護加熱部材13bの制御温度T3は、高温側保持部材の長さ方向中心位置温度Tasetに対して3.3℃高く設定した。低温側保護加熱部材13bの制御温度T4は、低温側保持部材の長さ方向中心位置の温度Tbsetと等しく制御した。   As an example of the present invention, a sample having a diameter of 12 mm and a thickness of 2 mm was used as a sample to be measured, and the states of the high-temperature side heat flux q1 and the low-temperature side heat flux q2 were measured. In Example 1, the temperature T1 of the high temperature side main heating part 11a was controlled to 80 ° C. The main heating part on the low temperature side was not heated, and cooling water was circulated through the cooling member. The display temperature T2 of the low temperature side main heating portion 12b was stable at 25 to 26 ° C. The control temperature T3 of the high temperature protection heating member 13b was set to be 3.3 ° C. higher than the longitudinal center position temperature Taset of the high temperature side holding member. The control temperature T4 of the low-temperature side protection heating member 13b was controlled to be equal to the temperature Tbset at the longitudinal center position of the low-temperature side holding member.

また実施例2は、高温保護加熱部材13bの制御温度T3の温度を、高温側保持部材13bの長さ方向中心位置温度Tasetに対して5.3℃高く設定した。また同様に実施例3は、高温保護加熱部材13bの制御温度T3の温度を、高温側保持部材13bの長さ方向中心位置温度Tasetに対して5.3℃高く設定した。実施例2、3おいてその他の条件は実施例1と同様である。また比較例1として、実施例1における保護加熱部材による加熱を行わなかった場合、比較例2として、T3をTasetと等しく制御した場合の計測も行った。実施例1、2、3、比較例1、2の測定結果を表1に示す。また、各実施例、比較例について、低温側と高温側熱流束の比q2/q1を求め表1に示した。   In Example 2, the temperature of the control temperature T3 of the high temperature protective heating member 13b was set 5.3 ° C. higher than the longitudinal center position temperature Taset of the high temperature side holding member 13b. Similarly, in Example 3, the temperature of the control temperature T3 of the high temperature protection heating member 13b was set 5.3 ° C. higher than the longitudinal center position temperature Taset of the high temperature side holding member 13b. The other conditions in Examples 2 and 3 are the same as in Example 1. Further, as Comparative Example 1, when heating by the protective heating member in Example 1 was not performed, as Comparative Example 2, measurement was performed when T3 was controlled to be equal to Taset. The measurement results of Examples 1, 2, and 3 and Comparative Examples 1 and 2 are shown in Table 1. Further, for each example and comparative example, the ratio q2 / q1 between the low temperature side and high temperature side heat fluxes was determined and shown in Table 1.

実施例1、2、3では、q2/q1が0.99〜1.00であって、高温側と低温側それぞれ一対の保護加熱部材の温度制御によりq1とq2を等しく制御できることを示している。試料を通過する熱流束qは、q1とq2の平均値で求めた。   In Examples 1, 2, and 3, q2 / q1 is 0.99 to 1.00, which indicates that q1 and q2 can be controlled equally by temperature control of a pair of protective heating members on the high temperature side and the low temperature side, respectively. . The heat flux q passing through the sample was determined by the average value of q1 and q2.

一方、比較例1ではq2/q1は0.87となっており、保護加熱部材で加熱を行わなければ放熱の影響は無視できないことを示している。また、比較例2では、q2/q1が0.96となっており、保護加熱部材温度と保持部材平均温度を等しく制御するだけではq1およびq2を等しくことができない。   On the other hand, in Comparative Example 1, q2 / q1 is 0.87, indicating that the influence of heat radiation cannot be ignored unless heating is performed by the protective heating member. In Comparative Example 2, q2 / q1 is 0.96, and q1 and q2 cannot be made equal by simply controlling the protective heating member temperature and the holding member average temperature equally.

Figure 2011102768
Figure 2011102768

本発明の実施態様による熱伝導率測定の結果を確認する。厚みdの被測定試料に対して、保持部材両端面に温度差ΔTを与えたとき、熱流束qが得られる。実際の測定では、図5(b)に示すように、被測定試料と保持部材の間には接触熱抵抗Rcが存在する。本実施例で用いたセラミック試料では、試料厚み数1mm以下の場合、セラミックと保持部材の接触熱抵抗Rcが熱伝導率計測結果に10%以上の影響を及ぼす。   The result of the thermal conductivity measurement according to the embodiment of the present invention is confirmed. When a temperature difference ΔT is given to the both end faces of the holding member for the sample to be measured having a thickness d, a heat flux q is obtained. In actual measurement, as shown in FIG. 5B, a contact thermal resistance Rc exists between the sample to be measured and the holding member. In the ceramic sample used in this example, when the sample thickness is 1 mm or less, the contact thermal resistance Rc between the ceramic and the holding member affects the thermal conductivity measurement result by 10% or more.

接触熱抵抗Rcと厚みdと熱伝導率λとΔT、qの関係は、(式4)で表される。
ΔT/q=2Rc+d/λ (式4)
Rcの係数2は試料の両側に接触面があることを表す。熱伝導率測定に対するRcの影響を補正するために、同一素材のn個の試料S1、S2、・・・、Sn(個別試料の測定における、厚みdi、両端温度差ΔTi、熱流束qi)を用い、(式4)のRcおよびλを最小二乗法により決定する。このとき、熱伝導率λは、(式5)より求めることができる。
λ={(Σdi)×(Σdi)−n×Σ(di×di)}/{(Σdi)(Σ(ΔTi/qi))−n×Σ(di×ΔTi/qi)} (式5)
表2に示した2種類のセラミックの熱伝導率を、(式5)を用いて測定した結果を示す。測定値の幅は、(式5)の最小二乗法による熱伝導率の決定の結果、信頼区間95%で熱伝導率が含まれると考えられる範囲である。測定はセラミック1が厚み0.5、1、2、3、4mmの試料を各2回の計10回、セラミック2が厚み1、2、3、4mmを各3回の計12回行った。
The relationship between the contact thermal resistance Rc, the thickness d, the thermal conductivity λ, ΔT, and q is expressed by (Expression 4).
ΔT / q = 2Rc + d / λ (Formula 4)
A coefficient of Rc of 2 indicates that there are contact surfaces on both sides of the sample. In order to correct the influence of Rc on the thermal conductivity measurement, n samples S1, S2,..., Sn of the same material (thickness di, temperature difference ΔTi at both ends ΔTi, heat flux qi in the measurement of individual samples) And Rc and λ in (Equation 4) are determined by the method of least squares. At this time, the thermal conductivity λ can be obtained from (Equation 5).
λ = {(Σdi) × (Σdi) −n × Σ (di × di)} / {(Σdi) (Σ (ΔTi / qi)) − n × Σ (di × ΔTi / qi)} (Formula 5)
The result of having measured the thermal conductivity of two types of ceramics shown in Table 2 using (Formula 5) is shown. The range of the measured value is a range in which the thermal conductivity is considered to be included with a confidence interval of 95% as a result of the determination of the thermal conductivity by the least square method of (Equation 5). The measurement was performed a total of 12 times, with the ceramic 1 having a thickness of 0.5, 1, 2, 3, and 4 mm twice each twice, and the ceramic 2 having a thickness of 1, 2, 3, and 4 mm three times each.

Figure 2011102768
Figure 2011102768

以上示したように、厚みの異なる複数の被測定試料を用いる方法によれば、既知の熱伝導率を有するセラミック部材の熱伝導率測定値と文献値との差が7%以内となった。   As described above, according to the method using a plurality of samples to be measured having different thicknesses, the difference between the measured value of the thermal conductivity of the ceramic member having a known thermal conductivity and the literature value is within 7%.

上記実施形態によれば、高温側および低温側の保持部材に対してそれぞれ1系統の温度制御点を有する保護加熱部材を用いて温度制御を行うことで、被測定試料の高温側と低温側の熱流束を等しく制御することができる。これにより、保持部材と保護加熱部材の間に複雑な対流抑制手段や放熱抑制の方法を用いずに、熱伝導率を測定することができる。   According to the above embodiment, by performing temperature control using the protective heating member having one temperature control point for each of the high temperature side and low temperature side holding members, the high temperature side and low temperature side of the sample to be measured are controlled. The heat flux can be controlled equally. Thereby, thermal conductivity can be measured without using a complicated convection suppression means or a heat dissipation suppression method between the holding member and the protective heating member.

図1記載の熱伝導率測定装置を用い、接触熱抵抗の測定も可能である。以下、図5を参考に、図1記載の熱伝導率測定方法を用いて接触熱抵抗を測定する手法について説明する。   It is also possible to measure contact thermal resistance using the thermal conductivity measuring device shown in FIG. Hereinafter, a method for measuring contact thermal resistance using the thermal conductivity measurement method shown in FIG. 1 will be described with reference to FIG.

図5(a)に示すように、保持部材同士を当接させて主加熱部に温度差を与えたとき、保持部材接触面の温度差ΔTと通過熱流束qと接触熱抵抗Rcは、(式1)と同様に(式6)から求めることができる。
Rc=ΔT/q (式6)
上記構成によれば、保持部材の表面形状を変えて接触熱抵抗の違いを測定することができる。また、保持部材表面に熱伝導グリースを塗布して、グリースの熱伝達性評価に用いることが可能である。
As shown in FIG. 5A, when the holding members are brought into contact with each other and a temperature difference is given to the main heating portion, the temperature difference ΔT of the holding member contact surface, the passing heat flux q, and the contact thermal resistance Rc are ( Similar to Equation 1), it can be obtained from Equation 6.
Rc = ΔT / q (Formula 6)
According to the said structure, the difference in contact thermal resistance can be measured by changing the surface shape of a holding member. In addition, it is possible to apply a heat conductive grease to the surface of the holding member and use it for evaluating heat transfer properties of the grease.

また、被測定試料を挟持し、以下の手順に従い、接触熱抵抗を測定することが可能である。図5(b)に示すように、被測定試料(熱伝導率λ、厚みd)を保持部材11a、11bで挟持し、主加熱部材で加熱したときのΔT、q、熱伝導率λ、厚みdと接触熱抵抗Rcの関係は、前述の(式4)で表される。ΔT、q、λ、dがわかれば試料と保持部材の接触熱抵抗を算出できる。   Further, it is possible to measure the contact thermal resistance by sandwiching the sample to be measured according to the following procedure. As shown in FIG. 5B, ΔT, q, thermal conductivity λ, thickness when the sample to be measured (thermal conductivity λ, thickness d) is sandwiched between holding members 11a, 11b and heated by the main heating member. The relationship between d and the contact thermal resistance Rc is expressed by the above-described (Formula 4). If ΔT, q, λ, and d are known, the contact thermal resistance between the sample and the holding member can be calculated.

また、二つの試料X、Y間の接触熱抵抗を求める場合には、以下の手順に従う。第1に、被測定試料X(熱伝導率λX、厚みdX)を用い、所定の圧力で保持部材11a、11bで被測定試料Xを挟持し、所定の被測定試料平均温度で、高温側保持部材の端面と低温側保持部材の端面の温度差ΔTX、熱流束qXを計測する。試料保持の状態は図5(b)のようになる。   Moreover, when calculating | requiring the contact thermal resistance between the two samples X and Y, the following procedures are followed. First, using the sample to be measured X (thermal conductivity λX, thickness dX), the sample X to be measured is held between the holding members 11a and 11b at a predetermined pressure, and held at the high temperature side at a predetermined average temperature of the sample to be measured. A temperature difference ΔTX and a heat flux qX between the end face of the member and the end face of the low temperature side holding member are measured. The sample holding state is as shown in FIG.

第2に、被測定試料Y(熱伝導率λY、厚みdY)を用い、所定の圧力を与え保持部材で試料Yを挟持し、被測定試料Xの測定と同じ被測定試料平均温度において、温度差ΔTY、熱流束qYを計測する。   Second, using the sample to be measured Y (thermal conductivity λY, thickness dY), applying a predetermined pressure and holding the sample Y by the holding member, the temperature of the sample to be measured is the same as the measurement of the sample X to be measured. The difference ΔTY and the heat flux qY are measured.

第3に、図5(c)に示すように、保持部材11aおよびbで、前記被測定試料XおよびYを直列状態で所定の圧力で挟持し、上記被測定試料XおよびYの測定と同じ被測定試料の平均温度において、温度差ΔTZおよび熱流束qZを計測する。ここで、被測定試料X、Yをそれぞれ単独で計測した後に、被測定試料XおよびYを直列に挟持して計測する手順を示しているが、当然逆の順番も考えられる。   Third, as shown in FIG. 5 (c), the measurement samples X and Y are held in series at a predetermined pressure by holding members 11a and 11b, and are the same as the measurement of the measurement samples X and Y. At the average temperature of the sample to be measured, the temperature difference ΔTZ and the heat flux qZ are measured. Here, a procedure is shown in which the measured samples X and Y are individually measured and then the measured samples X and Y are sandwiched and measured in series, but the reverse order is also conceivable.

接触熱抵抗が被測定試料厚みに依存しないとき、被測定試料Xと被測定試料Yの接触熱抵抗Rcは(式7)で求められる。
Rc=ΔTZ/qZ−(ΔTX/qX+ΔTY/qY+dX/λX+dY/λY)/2 (式7)
被測定試料X、Yの熱伝導率は実施例1記載の方法で求めることができる。また、熱拡散率α、密度ρ、比熱cを計測し、熱伝導率λ=α×ρ×cで導出してもよい。
When the contact thermal resistance does not depend on the thickness of the sample to be measured, the contact thermal resistance Rc between the sample to be measured X and the sample to be measured Y is obtained by (Equation 7).
Rc = ΔTZ / qZ− (ΔTX / qX + ΔTY / qY + dX / λX + dY / λY) / 2 (Formula 7)
The thermal conductivity of the samples X and Y to be measured can be obtained by the method described in Example 1. Alternatively, the thermal diffusivity α, the density ρ, and the specific heat c may be measured and derived by the thermal conductivity λ = α × ρ × c.

一例として、表3に示した試験番号1ないし5の接触熱抵抗を測定した結果を示す。上記実施例1のセラミック1とアルミ合金製保持部材との接触熱抵抗を保持部材とセラミック1の間にフッ素グリスを塗布して測定した。試料としてセラミック板のみを用いたので、(式4)を変形すると、接触熱抵抗Rcは(式8)で求められる。
Rc=(ΔT/q−d/λ)/2 (式8)
なお、ここでは、セラミックの熱伝導率として文献値の3.1W/mKを用いた。厚み0.5,1,2,3,4mmのセラミック1を試料とすると、セラミック1と保持部材の間の接触熱抵抗として1.8〜3.7e−5 m2K/Wが得られた。
As an example, the result of measuring the contact thermal resistance of test numbers 1 to 5 shown in Table 3 is shown. The contact thermal resistance between the ceramic 1 of Example 1 and the aluminum alloy holding member was measured by applying fluorine grease between the holding member and the ceramic 1. Since only the ceramic plate is used as the sample, when (Formula 4) is deformed, the contact thermal resistance Rc is obtained by (Formula 8).
Rc = (ΔT / q−d / λ) / 2 (Formula 8)
Here, the literature value of 3.1 W / mK was used as the thermal conductivity of the ceramic. When the ceramics 1 having thicknesses of 0.5, 1, 2, 3, and 4 mm were used as samples, 1.8 to 3.7e-5 m2K / W was obtained as the contact thermal resistance between the ceramic 1 and the holding member.

Figure 2011102768
Figure 2011102768

10 計測部
11 保持部材
12 主加熱部材
13 保護加熱部材
14 冷却部材
15 保護加熱部用冷却部材
21 保持部材温度計測部
22 温度制御装置
23 加圧力発生機構
24 ロードセル
31 測定チャンバー
40 被測定試料
DESCRIPTION OF SYMBOLS 10 Measurement part 11 Holding member 12 Main heating member 13 Protection heating member 14 Cooling member 15 Cooling member 15 for protection heating part 21 Holding member temperature measurement part 22 Temperature control device 23 Pressure generating mechanism 24 Load cell 31 Measurement chamber 40 Sample to be measured

Claims (4)

被測定試料を挟持する第1の保持部材と第2の保持部材と、
前記第1の保持部材と第2の保持部材の前記被測定試料を挟持する面とは逆の端面に配置され、前記第1の保持部材と第2の保持部材の間に温度差を与える第1、第2の主加熱手段と、
前記第1の保持部材と第2の保持部材の周囲に配置され、前記第1の保持部材と第2の保持部材の温度を制御する第1、第2の保護加熱手段と、
前記第1の保持部材を通過する熱流束q1と第2の保持部材を通過する熱流束q2を計測する手段と、前記計測した熱流束q1と熱流束q2が等しくなるように前記第1、第2の保護加熱手段の温度を制御する制御手段を有することを特徴とする熱特性の測定装置。
A first holding member and a second holding member that sandwich the sample to be measured;
The first holding member and the second holding member are arranged on the end surface opposite to the surface that holds the sample to be measured, and provide a temperature difference between the first holding member and the second holding member. 1, a second main heating means;
First and second protective heating means disposed around the first holding member and the second holding member and controlling the temperature of the first holding member and the second holding member;
Means for measuring the heat flux q1 passing through the first holding member and the heat flux q2 passing through the second holding member, and the first and second so that the measured heat flux q1 and heat flux q2 are equal. An apparatus for measuring thermal characteristics, comprising a control means for controlling the temperature of the two protective heating means.
前記熱流束q1、q2を計測する手段は、前記第1の保持部材および第2の保持部材の軸方向に配置された複数の温度センサであることを特徴とする請求項1に記載の熱特性の測定装置。   2. The thermal characteristic according to claim 1, wherein the means for measuring the heat fluxes q <b> 1 and q <b> 2 are a plurality of temperature sensors arranged in the axial direction of the first holding member and the second holding member. Measuring device. 第1の保持部材と第2の保持部材により被測定試料を挟持し、
前記第1の保持部材と第2の保持部材の前記被測定試料を挟持する面とは逆の端面に配置された第1、第2の主加熱手段により、前記第1の保持部材と第2の保持部材を加熱し、第1の保持部材と第2の保持部材の間に温度差を設け、
前記第1の保持部材と第2の保持部材の周囲に配置された第1、第2の保護加熱手段の温度を、前記第1の保持部材を通過する熱流束q1と第2の保持部材を通過する熱流束q2が等しくなるように制御し、
前記第1の保持部材と第2の保持部材の温度と、前記等しくなるように制御された熱流束q1もしくはq2とから、被測定試料の熱特性を算出することを特徴とする熱特性の測定方法。
The sample to be measured is sandwiched between the first holding member and the second holding member,
The first holding member and the second holding member are arranged by the first and second main heating means disposed on the opposite end surfaces of the first holding member and the second holding member to the surface that holds the sample to be measured. Heating the holding member, providing a temperature difference between the first holding member and the second holding member,
The temperature of the first and second protective heating means disposed around the first holding member and the second holding member is set to the heat flux q1 passing through the first holding member and the second holding member. Control the heat flux q2 to pass through to be equal,
The thermal characteristics of the sample to be measured are calculated from the temperature of the first holding member and the second holding member and the heat flux q1 or q2 controlled to be equal to each other. Method.
前記第1の保護加熱手段と第2の保護加熱手段の温度制御は、第1の保持部材と第2の保持部材の軸方向中央部の温度により行われることを特徴とする請求項3に記載の熱特性の測定方法。   The temperature control of said 1st protection heating means and a 2nd protection heating means is performed by the temperature of the axial direction center part of a 1st holding member and a 2nd holding member. Of measuring thermal properties of
JP2009258193A 2009-11-11 2009-11-11 Measuring method of heat characteristic Pending JP2011102768A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009258193A JP2011102768A (en) 2009-11-11 2009-11-11 Measuring method of heat characteristic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009258193A JP2011102768A (en) 2009-11-11 2009-11-11 Measuring method of heat characteristic

Publications (1)

Publication Number Publication Date
JP2011102768A true JP2011102768A (en) 2011-05-26

Family

ID=44193154

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009258193A Pending JP2011102768A (en) 2009-11-11 2009-11-11 Measuring method of heat characteristic

Country Status (1)

Country Link
JP (1) JP2011102768A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102778474A (en) * 2012-08-07 2012-11-14 南京理工大学 Method for testing thermal coefficient by using upper-lower constant temperature parameter identification method
CN102778476A (en) * 2012-08-07 2012-11-14 南京理工大学 Method for measuring heat conduction coefficient by using positive and negative bidirectional heat flow method
CN104359939A (en) * 2014-06-16 2015-02-18 北京航空航天大学 Device for simulating hand heat dissipation capability in high-low temperature low-pressure environment
CN107870179A (en) * 2017-12-15 2018-04-03 扬州大学 Method for measuring thermal contact resistance of asphalt concrete
DE112016004973T5 (en) 2015-10-30 2018-07-26 Mitsubishi Electric Corporation DEVICE FOR MEASURING THE HEAT-CONDUCTIVITY AND HEAT-MEASURING MEASUREMENT METHOD
CN109001251A (en) * 2018-05-25 2018-12-14 扬州大学 A kind of physical method for reducing asphalt skin temperature
US10775329B2 (en) 2017-01-16 2020-09-15 Mitsubishi Electric Corporation Thermal conductivity measurement device and thermal conductivity measurement method
JP2021056036A (en) * 2019-09-27 2021-04-08 明星工業株式会社 Low temperature thermal conductivity measuring device
JP2021183943A (en) * 2020-05-22 2021-12-02 名古屋市 Measuring method and measuring system for physical property value related to thermal conduction of measurement target

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102778474A (en) * 2012-08-07 2012-11-14 南京理工大学 Method for testing thermal coefficient by using upper-lower constant temperature parameter identification method
CN102778476A (en) * 2012-08-07 2012-11-14 南京理工大学 Method for measuring heat conduction coefficient by using positive and negative bidirectional heat flow method
CN102778476B (en) * 2012-08-07 2014-07-16 南京理工大学 Method for measuring heat conduction coefficient by using positive and negative bidirectional heat flow method
CN102778474B (en) * 2012-08-07 2014-09-17 南京理工大学 Method for testing thermal coefficient by using upper-lower constant temperature parameter identification method
CN104359939A (en) * 2014-06-16 2015-02-18 北京航空航天大学 Device for simulating hand heat dissipation capability in high-low temperature low-pressure environment
US10768127B2 (en) 2015-10-30 2020-09-08 Mitsubishi Electric Corporation Thermal conductivity measurement apparatus and thermal conductivity measurement method
DE112016004973T5 (en) 2015-10-30 2018-07-26 Mitsubishi Electric Corporation DEVICE FOR MEASURING THE HEAT-CONDUCTIVITY AND HEAT-MEASURING MEASUREMENT METHOD
DE112016004973B4 (en) 2015-10-30 2021-10-14 Mitsubishi Electric Corporation DEVICE FOR MEASURING THERMAL CONDUCTIVITY AND THERMAL CONDUCTIVITY MEASURING METHOD
US10775329B2 (en) 2017-01-16 2020-09-15 Mitsubishi Electric Corporation Thermal conductivity measurement device and thermal conductivity measurement method
CN107870179A (en) * 2017-12-15 2018-04-03 扬州大学 Method for measuring thermal contact resistance of asphalt concrete
CN109001251A (en) * 2018-05-25 2018-12-14 扬州大学 A kind of physical method for reducing asphalt skin temperature
JP2021056036A (en) * 2019-09-27 2021-04-08 明星工業株式会社 Low temperature thermal conductivity measuring device
JP7332413B2 (en) 2019-09-27 2023-08-23 明星工業株式会社 Low temperature thermal conductivity measuring device
JP7470851B2 (en) 2019-09-27 2024-04-18 明星工業株式会社 Low-temperature thermal conductivity measuring device
JP2021183943A (en) * 2020-05-22 2021-12-02 名古屋市 Measuring method and measuring system for physical property value related to thermal conduction of measurement target
JP7376875B2 (en) 2020-05-22 2023-11-09 名古屋市 Method and system for measuring physical property values related to thermal conduction of a measurement target

Similar Documents

Publication Publication Date Title
JP2011102768A (en) Measuring method of heat characteristic
CN102297877B (en) Device and method for measuring thermoelectric parameters of film
Yazicioğlu et al. Optimum fin spacing of rectangular fins on a vertical base in free convection heat transfer
Wang et al. Determination of thermoelectric module efficiency: A survey
JP6682016B2 (en) Thermal conductivity measuring device and thermal conductivity measuring method
Yüncü et al. An experimental investigation on performance of rectangular fins on a horizontal base in free convection heat transfer
JP6509362B2 (en) Thermal conductivity measuring device and thermal conductivity measuring method
CN110907493B (en) A test method for high temperature thermal conductivity
US20060256834A1 (en) Method and apparatus for conducting performance test to heat pipe
CN110907491B (en) Low heat conduction material high temperature thermal conductivity testing arrangement
KR101898037B1 (en) High temperature structure for measuring of properties of curved thermoelectric device, system for measuring of properties of curved thermoelectric device using the same and method thereof
Fu et al. A steady-state measurement system for total hemispherical emissivity
JP5004842B2 (en) Induction heating device
Pavlasek et al. Hysteresis effects and strain-induced homogeneity effects in base metal thermocouples
WO2018100608A1 (en) Thermal conductivity measurement device, thermal conductivity measurement method, and vacuum evaluation device
Rippe et al. Full-field surface heat flux measurement using non-intrusive infrared thermography
Shaddix A new method to compute the proper radiant heat transfer correction of bare-wire thermocouple measurements.
Hyodo et al. Measurement of thermal and electrical contact resistance between conductive materials
Arpino et al. Design of a calibration system for heat flux meters
Zhang et al. Effects of pressure and temperature on the effective thermal conductivity of oriented silicon steel iron core under atmospheric condition
KR101261627B1 (en) Apparutus and system for measuring heat flux
KR102164075B1 (en) Warm test apparatus
WO2017169462A1 (en) Method for measuring thermophysical property and device for measuring thermophysical property
Anatychuk et al. Method for determining the thermoelectric parameters of materials forming part of thermoelectric cooling modules
Tsai et al. Experimental study of evaporative heat transfer in sintered powder structures at low superheat levels