[go: up one dir, main page]

JP2011099009A - Method for producing fatty acid ester - Google Patents

Method for producing fatty acid ester Download PDF

Info

Publication number
JP2011099009A
JP2011099009A JP2009253124A JP2009253124A JP2011099009A JP 2011099009 A JP2011099009 A JP 2011099009A JP 2009253124 A JP2009253124 A JP 2009253124A JP 2009253124 A JP2009253124 A JP 2009253124A JP 2011099009 A JP2011099009 A JP 2011099009A
Authority
JP
Japan
Prior art keywords
catalyst
fatty acid
mol
calcium oxide
oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009253124A
Other languages
Japanese (ja)
Inventor
Kimihisa Fukunaga
公寿 福永
Yurie Yabuuchi
友里恵 籔内
Takafumi Tanaka
尚文 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamaguchi University NUC
Original Assignee
Yamaguchi University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamaguchi University NUC filed Critical Yamaguchi University NUC
Priority to JP2009253124A priority Critical patent/JP2011099009A/en
Publication of JP2011099009A publication Critical patent/JP2011099009A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Landscapes

  • Catalysts (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Fats And Perfumes (AREA)

Abstract

【課題】 安価で、分離が容易な酸化カルシウム触媒を用い、油脂と一価アルコールから効率よく、脂肪酸エステルを製造することを目的とする。
【解決手段】 酸化カルシウム触媒を用い、油脂と一価アルコールを反応させ脂肪酸エステルを製造するにあたり、反応時に水を触媒1モル当り、1.0〜14モル存在させることを特徴とする。
【選択図】なし
PROBLEM TO BE SOLVED: To produce a fatty acid ester efficiently from fats and oils and monohydric alcohol using a calcium oxide catalyst that is inexpensive and easily separated.
SOLUTION: When a fatty acid ester is produced by reacting fats and oils with a monohydric alcohol using a calcium oxide catalyst, 1.0 to 14 mol of water is present per mol of the catalyst during the reaction.
[Selection figure] None

Description

本発明は油脂を原料とし、一価のアルコールを用いたアルコリシスによって、脂肪酸エステルを製造する方法に関する。   The present invention relates to a method for producing a fatty acid ester by alcoholysis using a monohydric alcohol using fats and oils as a raw material.

油脂を原料とし、アルコリシスによるバイオ燃料(特にディーゼルエンジン用燃料)を製造する技術は、環境意識の高まりの中で、すでに多く研究されている。これらの多くは、水酸化ナトリウムや、水酸化カリウム等のアルカリ金属水酸化物を触媒として用い、大豆油、向日葵油、米油等の植物油、或いは鯨油、牛油、豚油等の動物油、更には食用の廃油等を用い、メタノール等の脂肪族アルコールにより、トリグリセリドをエステル交換して脂肪酸エステルとするものである。   Much research has already been conducted on the technology for producing biofuels (especially diesel engine fuels) by using alcoholysis from fats and oils as the environmental awareness increases. Many of these use sodium hydroxide or alkali metal hydroxides such as potassium hydroxide as catalysts, vegetable oils such as soybean oil, sunflower oil, rice oil, or animal oils such as whale oil, cow oil, pig oil, Uses edible waste oil or the like, and transesterifies triglycerides with fatty alcohols such as methanol to obtain fatty acid esters.

この場合、反応に伴い、副生する脂肪酸アルカリ金属塩が界面活性剤として働き、目的とする脂肪酸エステルと副生するグリセリンとの分離が面倒になったり、得られる脂肪酸エステル中に触媒成分が比較的多く残存する等の問題があり、製品(得られた脂肪酸エステル)を水洗等を行うことにより、これらの夾雑物を取り除かねばならず、その廃液もアルカリ分を含むため、中和処理を必要とするなど工程上種々の問題があった。   In this case, the fatty acid alkali metal salt produced as a by-product acts as a surfactant during the reaction, making it difficult to separate the desired fatty acid ester and glycerin produced as a by-product, and comparing the catalyst components in the resulting fatty acid ester. The product (obtained fatty acid ester) must be washed away with water to remove these contaminants, and the waste liquid also contains an alkali component. There were various problems in the process.

そこで、触媒として溶解度の小さいアルカリ土類金属酸化物(又は水酸化物)を用いる試みもなされている。かかる触媒は実質的に固体状態で、その表面において触媒作用を生ずると考えられ、ほとんど製品である脂肪酸エステル中には、アルカリが残留しない。また例え多少のアルカリ成分が残ったとしても、少量のキレート化剤処理により沈殿除去することができる。このためアルカリ土類金属酸化物として酸化カルシウムが注目されているが、一般にアルカリ土類金属酸化物は、水酸化アルカリに較べて活性が低い。そこで、活性を改善する多くの試みがなされている。例えば、生石灰、炭酸カルシウム、酢酸カルシウム、及び消石灰を水、炭酸ガスを含まない気体中で焼成し、該焼成物の塩強度を15pKBH(pKBHはアルカリ強度を表す。)以上、塩基量を0.1mmol/g以上とし、これを大気に触れさせることなく、反応に供する方法(特許文献1)、BET比表面積が20m/g以上、直径2〜100nmの細孔が0.15ml/gに調製した酸化カルシウムを用いる方法(特許文献2)、更に粒径20〜40nm、比表面積20〜90m/gの如きナノ粒子を触媒とする方法(非特許文献1)、重質炭酸カルシウムをヘリウム気流中、900℃で1.5時間焼成し、ただちにアルコリシス反応に供する方法(非特許文献2)、或いは酸化カルシウムが、大気中の水分や二酸化炭素により、その表面が数分間で水和や炭酸化されること、及び120時間大気中に放置した酸化カルシウムについて種々の温度での脱ガス実験により、触媒活性化の変化を調べ、大気に曝露することにより水分及び二酸化炭素の作用に基づく触媒活性に対する悪影響を述べた研究(非特許文献3)などがある。 Therefore, an attempt has been made to use an alkaline earth metal oxide (or hydroxide) having a low solubility as a catalyst. Such a catalyst is substantially in a solid state and is considered to produce a catalytic action on the surface thereof, and almost no alkali remains in the product fatty acid ester. Moreover, even if some alkali components remain, they can be removed by precipitation with a small amount of chelating agent treatment. For this reason, calcium oxide has attracted attention as an alkaline earth metal oxide, but generally alkaline earth metal oxides are less active than alkali hydroxides. Thus, many attempts have been made to improve the activity. For example, quicklime, calcium carbonate, calcium acetate, and the hydrated lime water, and baked in a gas containing no carbon dioxide, 15PK BH salt strength of the calcination product (pK BH represents an alkali strength.) Or more, the amount of base A method of subjecting the reaction to 0.1 mmol / g or more without exposing it to the atmosphere (Patent Document 1), BET specific surface area of 20 m 2 / g or more, and pores having a diameter of 2 to 100 nm of 0.15 ml / g A method using calcium oxide prepared in (Patent Document 2), a method using nanoparticles such as a particle size of 20 to 40 nm and a specific surface area of 20 to 90 m 2 / g (Non-Patent Document 1), and heavy calcium carbonate A method in which it is calcined in a helium stream at 900 ° C. for 1.5 hours and immediately subjected to an alcoholysis reaction (Non-patent Document 2), or calcium oxide is exposed to moisture or carbon dioxide in the atmosphere. Changes in catalyst activation were investigated by degassing experiments at various temperatures for calcium oxide that had been hydrated or carbonated for several minutes and left in the atmosphere for 120 hours, and then exposed to the atmosphere for moisture and dioxide. There is a study (Non-patent Document 3) that describes an adverse effect on catalytic activity based on the action of carbon.

以上の如く、固体塩基触媒である酸化カルシウム触媒の活性向上の研究の多くは、一つはその表面積の増大化であり、他は脱水、脱炭酸化である。   As described above, much of the research on improving the activity of the calcium oxide catalyst, which is a solid base catalyst, is to increase its surface area, and the other is dehydration and decarboxylation.

これらの活性化手段にあっては、特殊な粉砕手段や不活性ガス下での焼成或いは触媒として使用するまで大気に触れさせないためのやっかいな手段等、相当の配慮や費用が必要となり、安価であるはずの酸化カルシウムのメリットが減殺されるという不利があった。   These activation means require special considerations and costs, such as special grinding means, troublesome means for preventing them from being exposed to the atmosphere until they are used as a catalyst or calcined under an inert gas. There was the disadvantage that the benefits of calcium oxide that would have been reduced.

WO 2006/134845 A1WO 2006/134845 A1 WO 2008/090987 A1WO 2008/090987 A1

Energy&Fuels,Vol.20,No.3(2006)1310−1314頁Energy & Fuels, Vol. 20, no. 3 (2006) 1310-1314 J.Petrol.Inst.,Vol.50,No.2(2007)79−86頁J. et al. Petrol. Inst. , Vol. 50, no. 2 (2007) 79-86 Applied Catalysis B:Environmental,73(2007)317−326頁Applied Catalysis B: Environmental, 73 (2007) 317-326.

本発明の目的は、油脂のアルコリシスによるディーゼル油等の燃料を製造する方法であって、安価な固体塩基である酸化カルシウムを触媒とするにあたり、極めて簡単な方法で高い活性を付与することができる脂肪酸エステルの製造方法を提供することにある。   An object of the present invention is a method for producing a fuel such as diesel oil by fat and oil alcoholysis, and can impart high activity by an extremely simple method when calcium oxide, which is an inexpensive solid base, is used as a catalyst. It is providing the manufacturing method of fatty acid ester.

本発明の第1の態様は、酸化カルシウムを触媒とし、油脂と一価のアルコールを原料として、脂肪酸エステルを製造するにあたり、水を触媒1モル当り1.0〜14モル存在させることを特徴とする脂肪酸エステルの製造方法である。   The first aspect of the present invention is characterized in that water is present in an amount of 1.0 to 14 moles per mole of catalyst in the production of a fatty acid ester using calcium oxide as a catalyst and fats and oils and monohydric alcohols as raw materials. It is a manufacturing method of fatty acid ester.

本発明の第2の態様は、触媒1モル当り、水2〜5モル存在させることを特徴とする前記第1の態様に記載の脂肪酸エステルの製造方法である。   A second aspect of the present invention is the method for producing a fatty acid ester according to the first aspect, wherein 2 to 5 moles of water are present per mole of the catalyst.

更に本発明の第3の態様は、酸化カルシウムを一旦、500℃〜850℃の温度で焼成した後、触媒として用いることを特徴とする第1の態様又は第2の態様に記載の脂肪酸エステルの製造方法である。   Further, according to a third aspect of the present invention, the fatty acid ester according to the first aspect or the second aspect is characterized in that calcium oxide is once calcined at a temperature of 500 ° C. to 850 ° C. and then used as a catalyst. It is a manufacturing method.

更に本発明の第4の態様は、触媒を原料油脂に対して1/100倍モル以上存在させ、50℃乃至原料アルコールの沸点以下又は還流温度で反応させることを特徴とする第1の態様乃至第3の態様のいずれかに記載の脂肪族エステルの製造方法である。   Furthermore, the fourth aspect of the present invention is the first aspect or the first aspect characterized in that the catalyst is present at 1/100 times mole or more with respect to the raw oil and fat, and reacted at 50 ° C. to the boiling point of the raw alcohol or at the reflux temperature. It is the manufacturing method of the aliphatic ester in any one of 3rd aspects.

また、本発明の第5の態様は、原料アルコールがメタノールである第1の態様乃至第4の態様のいずれかに記載の脂肪酸エステルの製造方法である。   Moreover, the 5th aspect of this invention is a manufacturing method of the fatty acid ester in any one of the 1st aspect thru | or 4th aspect whose raw material alcohol is methanol.

本発明は、従来触媒を毒するとされて忌避されていた水を特定の範囲で用いることにより、極めて容易に酸化カルシウム触媒を賦活することができ、延いては、安価にバイオ燃料を製造することを可能にする。   The present invention can activate a calcium oxide catalyst very easily by using water, which has been repelled as a poison for the conventional catalyst, in a specific range, and thus can produce biofuel at low cost. Enable.

本発明において特筆すべきは、通常の産業用又は試薬用の酸化カルシウムであっても、一旦大気中で焼成すれば、従来活性化処理を施した酸化カルシウム触媒に匹敵する高活性触媒とすることができるのである。   In the present invention, it should be noted that even if it is a normal industrial or reagent calcium oxide, once it is calcined in the atmosphere, it should be a highly active catalyst comparable to a calcium oxide catalyst that has been activated in the past. Can do it.

触媒1モルに対して油脂20.4倍モルとした場合の水存在量とエステル生成状況を示すグラフである。It is a graph which shows the water abundance and ester production | generation condition at the time of setting oil and fat 20.4 times mole with respect to 1 mol of catalysts. 触媒1モルに対して油脂10.2倍モルとした場合の水存在量とエステル生成状況を示すグラフである。It is a graph which shows the water abundance and ester production | generation condition at the time of setting oil and fat 10.2 times mole with respect to 1 mol of catalysts. 触媒1モルに対して油脂5.1倍モルとした場合の水存在量とエステル生成状況を示すグラフである。It is a graph which shows the water abundance and ester production | generation condition at the time of oil and fat being 5.1 times mole with respect to 1 mol of catalysts. エステル生成割合が最高となる水存在下での油脂/触媒割合の違いとエステル生成状況を示すグラフである。It is a graph which shows the difference of the fats / catalyst ratio in the presence of water in which the ester production ratio is the highest, and the ester production status. 触媒と水の存在割合がエステル生成に与える状況を示すグラフである。It is a graph which shows the condition which the presence rate of a catalyst and water gives to ester production. 使用前に大気中に放置された酸化カルシウムの触媒を焼成して使用した場合のエステル生成に及ぼす影響を示すグラフである。It is a graph which shows the influence which it has on the ester production | generation at the time of baking and using the catalyst of calcium oxide left to stand in air | atmosphere before use.

本発明は比較的安価であり、且つ生成物から容易に分離回収することができ、加熱等の簡単な処理で再使用可能な酸化カルシウムを触媒として用いる油脂と一価アルコールとからバイオ燃料、特にディーゼルエンジン用の燃料として使用可能な脂肪酸エステルを効率よく製造する方法を提供するものである。   The present invention is relatively inexpensive, can be easily separated and recovered from the product, and can be used as a biofuel from fats and monohydric alcohols using calcium oxide as a catalyst, which can be reused by a simple process such as heating. The present invention provides a method for efficiently producing a fatty acid ester that can be used as a fuel for a diesel engine.

本発明に用いられる一方の原料である油脂は、特に限定されるものではないが、例えば、米油、菜種油、胡麻油、大豆油、向日葵油、パーム油、椰子油、綿実油、落花生油、椿油、亜麻仁油、桐油、大風子油、オリーブ油、サフラワー油、アーモンドナッツ油、ヤトロファ油等の植物油脂、牛脂、馬脂、羊脂、豚脂、鶏油、魚油、鯨油、鯨脳油、イルカ油、サメ肝油等の動物油脂、又はこれらのうち、食用とされたものの廃油などが対象とされる。勿論これらは単独であっても、混合物であってもよい。なかでも米油、大豆油、オリーブ油或いはこれらの廃食油又は、パーム油、ヤトロファ油等が好適に使用される。   Oils and fats that are one of the raw materials used in the present invention are not particularly limited, for example, rice oil, rapeseed oil, sesame oil, soybean oil, sunflower oil, palm oil, coconut oil, cottonseed oil, peanut oil, coconut oil, Flaxseed oil, tung oil, garlic oil, olive oil, safflower oil, almond nut oil, Jatropha oil, etc. Animal fats and oils such as shark liver oil, or waste oils of those edible are included. Of course, these may be used alone or as a mixture. Among these, rice oil, soybean oil, olive oil, waste edible oils thereof, palm oil, Jatropha oil or the like is preferably used.

また、他方の原料である一価のアルコールとしては、一般に一価の脂肪族アルコールである。なかでも、メタノール、エタノール、プロパノール、ブタノール、ぺンタノール又はヘキサノールなど炭素数6以下の脂肪族アルコールが好ましく、特にメタノールが好適である。   Further, the monovalent alcohol as the other raw material is generally a monovalent aliphatic alcohol. Of these, aliphatic alcohols having 6 or less carbon atoms such as methanol, ethanol, propanol, butanol, pentanol or hexanol are preferable, and methanol is particularly preferable.

また、ディーゼルエンジン用燃料とする場合は、セタン価を高くするため、不飽和度の高いエステルとなるよう、不飽和度の高い油脂を用いることも有利である。更に燃料として、粘度を低くするためには、分枝した油脂やアルコールを用いることも有利とされる。   Moreover, when using it as a fuel for diesel engines, in order to make a cetane number high, it is also advantageous to use fats and oils with high unsaturation so that it may become ester with high unsaturation. In order to lower the viscosity, it is also advantageous to use a branched oil or alcohol as a fuel.

次に本発明に用いる触媒である酸化カルシウムは、特に限定されず、石灰石(炭酸カルシウム)を焼成して作った酸化カルシウム、水酸化カルシウムを脱水した酸化カルシウム或いは、カルシウムアルコラートやカルシウム有機酸塩を分解した酸化カルシウム等が使用される。   Next, calcium oxide which is a catalyst used in the present invention is not particularly limited, calcium oxide produced by calcining limestone (calcium carbonate), calcium oxide dehydrated calcium hydroxide, calcium alcoholate or calcium organic acid salt. Decomposed calcium oxide or the like is used.

また使用する酸化カルシウムの物性としては、その塩基強度(pKBH)は、7.2≦pKBH≦18.4程度で、且つ、塩基量としては、2.0×10−3〜1.5mmol/g−CaO程度の幅広い物性のものが使用し得るが、特筆すべきは、従来活性が低いとされていた塩基強度が7.2≦pKBH≦9.3(これはチモールブルーで青色を呈し、フェノールフタレインで桃色を呈するまでの間にある)、塩基量が2.0×10−3〜0.2mmol/g−CaO(安息香酸のトルエン溶液中での逆滴定による)のごとき、低い塩基性を示す触媒であっても高い活性を付与し得る点にある。 As the physical properties of the calcium oxide used, the base strength (pK BH ) is about 7.2 ≦ pK BH ≦ 18.4, and the amount of base is 2.0 × 10 −3 to 1.5 mmol. Although a wide range of physical properties such as / g-CaO can be used, it should be noted that the base strength, which has been considered to be low in activity, is 7.2 ≦ pK BH ≦ 9.3 (this is thymol blue and blue) And the amount of base is 2.0 × 10 −3 to 0.2 mmol / g-CaO (by back titration in a toluene solution of benzoic acid), Even a catalyst exhibiting low basicity is capable of imparting high activity.

このため、市販されている工業用の酸化カルシウムをほとんどそのまま、好ましくは、大気下で500〜850℃程度に焼成して、使用することができる。勿論焼成後、大気雰囲気下にあまりに長期間放置した触媒は、大気中の炭酸ガスや水分を過剰に吸収し、活性を低下させるので、焼成後数日中、特に1日以内に触媒として使用することが好ましい。同様に市販の酸化カルシウムについても、開封後、すぐに使用すべきであるし、また酸化カルシウムの製造過程において、どのように取り扱われているか不明である場合は、一旦焼成して使用することが望ましい。   For this reason, commercially available calcium oxide for industrial use can be used almost as it is, preferably by firing at about 500 to 850 ° C. in the atmosphere. Of course, a catalyst that has been left in an air atmosphere for a long time after calcination excessively absorbs carbon dioxide gas and moisture in the air and decreases its activity, so it is used as a catalyst within a few days, especially within one day after calcination. It is preferable. Similarly, commercially available calcium oxide should be used immediately after opening, and if it is unclear how it is handled in the manufacturing process of calcium oxide, it should be fired once and used. desirable.

本発明における油脂と一価アルコールとの反応(油脂のアルコリシス)は特に限定されず、従来公知の方法が用いられる。すなわち、油脂1モルに対して、アルコールは理論反応量である3モル以上、好ましくは10モル以上とし、油脂に対する触媒の使用量は特に限定されないが、一般に1/100モル以上好ましくは1/50モル以上用い、油脂のアルコリシスの反応は、通常50℃から使用される一価のアルコールの沸点以下又は還流温度で、1時間以上、好ましくは2時間〜10時間行われる。また、加圧下に反応を行ってもよいが、通常常圧下に行われる。本発明の特徴は、反応時に極めて制御された量の水を用いるものであるため、一般にバッチ法により行われる。   The reaction of fats and oils with monohydric alcohol (oil alcoholysis) in the present invention is not particularly limited, and conventionally known methods are used. That is, the alcohol is a theoretical reaction amount of 3 moles or more, preferably 10 moles or more with respect to 1 mole of fats and oils, and the amount of the catalyst used for the fats and oils is not particularly limited. The reaction of alcoholysis of fats and oils is carried out for 1 hour or more, preferably 2 hours to 10 hours at the boiling point or lower of the monohydric alcohol usually used from 50 ° C. or reflux temperature. The reaction may be carried out under pressure, but is usually carried out under normal pressure. A feature of the present invention is that it uses a very controlled amount of water during the reaction and is generally performed by a batch process.

また、原料中に含まれる不純物は、特に問題とされないが、水分量の管理は必要であり、場合によっては脱水処理を施さねばならない。   Further, impurities contained in the raw material are not particularly problematic, but it is necessary to control the amount of water, and in some cases, a dehydration treatment must be performed.

以下に本発明の概要を説明する。   The outline of the present invention will be described below.

図1は、油脂として米油を用い、メタノールによりアルコリシスを行った場合の反応時間と収率の関係を示した図であり、米油40ml(40.85mmol)、メタノール20ml(493.13mmol)、酸化カルシウム(シグマアルドリッチジャパン社特級試薬)0.1122g(2mmol)を用い、水を1.4mol/mol cat.(原料中に存在していた量)、8.3mol/mol cat.、15.2mol/mol cat.の割合で加えた場合の例であり、水が少ないとほとんど反応しないが、約8倍モル程度では3時間で70%以上、7時間では約80%程度の脂肪族エステルが生成していることがわかる。   FIG. 1 is a diagram showing the relationship between reaction time and yield when alcoholysis is carried out with methanol using rice oil as fats and oils: 40 ml (40.85 mmol) of rice oil, 20 ml (493.13 mmol) of methanol, Using 0.1122 g (2 mmol) of calcium oxide (special grade reagent of Sigma-Aldrich Japan), water was added at 1.4 mol / mol cat. (Amount present in the raw material), 8.3 mol / mol cat. 15.2 mol / mol cat. This is an example of the case of adding at a ratio of less than 70%, but it hardly reacts when there is little water, but at about 8 times mole, 70% or more aliphatic ester is produced in 3 hours and about 80% in 7 hours. I understand.

同様の条件で、触媒を4mmol用いた場合(図2)では、触媒1molに対して約4倍molの水の存在により、2時間で約80%、3時間では最高到達点である約97%のエステル化を達成し得るのである。更に同様な反応条件下において、触媒8mmolとした場合(図3)には、触媒1mol当り3〜5倍molの水の存在下で2〜3時間の反応で90%近く又はそれ以上の収率でエステルを生成するのである。   When 4 mmol of the catalyst was used under the same conditions (FIG. 2), about 4% mol of water with respect to 1 mol of the catalyst was about 80% in 2 hours and about 97% which was the highest point in 3 hours. Can be achieved. Furthermore, when the catalyst is 8 mmol under the same reaction conditions (FIG. 3), the yield is nearly 90% or more in the reaction for 2 to 3 hours in the presence of 3 to 5 times mol of water per mol of the catalyst. To produce an ester.

他方、触媒1モル当り、1モル以下の水の存在では極めて低い反応率しか得られないのである。   On the other hand, only a very low reaction rate can be obtained in the presence of 1 mol or less of water per 1 mol of the catalyst.

以上の図1〜図3に示す結果を整理して、各触媒使用量について最高収率を得る条件下における収率と反応時間の関係を図4に示す。この図から、触媒量は、油脂に対して、約1/20〜1/5程度用いる場合良好な結果が得られることがわかる。勿論触媒量をこの範囲に限定するものではない。   The results shown in FIGS. 1 to 3 are arranged, and FIG. 4 shows the relationship between the yield and the reaction time under the conditions for obtaining the maximum yield for each catalyst usage. From this figure, it can be seen that good results can be obtained when the catalyst amount is about 1/20 to about 1/5 of the oil. Of course, the amount of catalyst is not limited to this range.

また、水の存在量については、図5に示すとおり触媒当り1.0〜14倍mol存在させることにより、75%以上の収率でエステルを生成し得ること、より好ましくは2〜5倍mol用いることで90%以上の収率とすることができる。   As for the amount of water present, as shown in FIG. 5, it is possible to produce an ester with a yield of 75% or more by adding 1.0 to 14 times mol per catalyst, more preferably 2 to 5 times mol. By using it, a yield of 90% or more can be obtained.

これらを総合すると、本発明においては、原料油脂1mol当り、触媒は1/100mol以上、好ましくは1/50mol以上、特に1/20mol以上用いるのがよく、一方、過度に用いても効果は少なく、経済性の面を考慮すると触媒の上限については、1/2mol以下、好ましくは1/3mol以下、特に1/5mol以下用いるのがよい。また、水を触媒1mol当り1.0〜14倍mol、好ましくは2〜5倍mol用いることが好ましい態様となる。   When these are combined, in the present invention, the catalyst is used in an amount of 1/100 mol or more, preferably 1/50 mol or more, particularly 1/20 mol or more, per 1 mol of the raw oil or fat. Considering the economical aspect, the upper limit of the catalyst is 1/2 mol or less, preferably 1/3 mol or less, particularly 1/5 mol or less. Moreover, it becomes a preferable aspect to use 1.0-14 times mol with respect to 1 mol of catalysts, Preferably it is 2-5 times mol.

更に本発明にあっては、一度アルコリシスに供された触媒や、水酸化物或いは大気中に長時間曝露され多量の水分や二酸化炭素を吸収した酸化カルシウムについても、これを500℃〜850℃、好ましくは、550℃〜800℃で3時間程度焼成することによって本発明において使用し得る酸化カルシウムに変更することができる。   Furthermore, in the present invention, a catalyst once subjected to alcoholysis, a hydroxide or calcium oxide which has been exposed to the atmosphere for a long time and absorbed a large amount of water and carbon dioxide, is used at 500 ° C. to 850 ° C., Preferably, it can change into calcium oxide which can be used in this invention by baking for about 3 hours at 550 to 800 degreeC.

すなわち、図6において、長時間大気中に曝露されほとんど触媒活性を失った酸化カルシウムについて種々の温度で焼成したものを本発明の触媒として用いた例であり、条件は、米油40ml(40.85mmol)、メタノール20ml(493.13mmol)、酸化カルシウム0.2243g(4mmol)及び水250μl(13.9mmol)とし、原料成分の沸点温度で3時間反応を行った場合の収率を示すものである。なお、水酸化カルシウムを焼成して用いた場合もほぼ同様の結果となったので図は省略した。以下実施例を示す。   That is, FIG. 6 shows an example in which calcium oxide that has been exposed to the atmosphere for a long time and has almost lost catalytic activity is calcined at various temperatures and used as the catalyst of the present invention. 85 mmol), 20 ml (493.13 mmol) of methanol, 0.2243 g (4 mmol) of calcium oxide and 250 μl (13.9 mmol) of water, and shows the yield when the reaction is carried out for 3 hours at the boiling temperature of the raw material components. . In addition, when calcium hydroxide was fired and used, almost the same result was obtained, so the figure was omitted. Examples are shown below.

[実施例1]
(使用薬品)
触媒:酸化カルシウム(シグマアルドリッチジャパン株式会社製特級試薬:純度98%以上)を一旦開栓し、1〜2ケ月経過したものを乳鉢で粉末状にして用いる。(塩基強度7.2≦pKBH≦9.3、塩基量2.0×10−3mmol/g)
油脂:米油(築野食品工業株式会社製:平均分子量897.76)
アルコール:メタノール(和光純薬工業株式会社製一級試薬:純度99.8%)
脂肪酸エステルの製造
内容積200mlの丸底フラスコに米油40ml(40.85mmol)、メタノール20ml(493.13mmol)及び酸化カルシウムをそれぞれ[イ]0.1122g(2mmol)、[ロ]0.2243g(4mmol)、[ハ]0.4486g(8mmol)を用い、水の存在量を種々変化させて反応を行う。
[Example 1]
(Chemicals used)
Catalyst: Calcium oxide (special grade reagent manufactured by Sigma-Aldrich Japan Co., Ltd .: purity 98% or more) is once opened and used after powdered in a mortar after 1-2 months. (Base strength 7.2 ≦ pK BH ≦ 9.3, base amount 2.0 × 10 −3 mmol / g)
Fats and oils: Rice oil (manufactured by Tsukino Food Industry Co., Ltd .: average molecular weight 897.76)
Alcohol: methanol (first grade reagent manufactured by Wako Pure Chemical Industries, Ltd .: purity 99.8%)
Production of fatty acid ester In a round bottom flask having an internal volume of 200 ml, 40 ml (40.85 mmol) of rice oil, 20 ml (493.13 mmol) of methanol and calcium oxide were respectively [ii] 0.1122 g (2 mmol) and [b] 0.2243 g ( 4 mmol) and [c] 0.4486 g (8 mmol) are used, and the reaction is carried out by varying the amount of water present.

反応は、フラスコ上部口に還流冷却器を取り付け、マントルヒーターにより還流温度に加熱する。1時間ごとにサンプリングし、収率を測定して7時間反応を行う。   In the reaction, a reflux condenser is attached to the upper neck of the flask and heated to the reflux temperature with a mantle heater. Sampling is performed every hour, the yield is measured, and the reaction is carried out for 7 hours.

各収率(%)をそれぞれ表1〜3及び図1〜3に示す。   Each yield (%) is shown in Tables 1 to 3 and FIGS.

Figure 2011099009
Figure 2011099009

Figure 2011099009
Figure 2011099009

Figure 2011099009
Figure 2011099009

[実施例2]
実施例1と同様であるが、120時間大気中に曝露した酸化カルシウムを触媒とする。酸化カルシウムは表2に示す種々の温度で各3時間焼成、処理を行い、炉中で1日間放冷して触媒とする。
[Example 2]
Similar to Example 1, but with calcium oxide exposed to the atmosphere for 120 hours as catalyst. Calcium oxide is calcined and treated for 3 hours at various temperatures shown in Table 2 and allowed to cool in a furnace for 1 day to form a catalyst.

反応は、米油40ml(40.85mmol)、メタノール20ml(493.13mmol)、酸化カルシウム0.2243g(4mmol)水250μl添加(原料に含まれる水分を併せ298μl:4.2mol/mol cat)により、2時間反応を行った場合の収率を表4及び図5に示す。   The reaction was carried out by adding 40 ml of rice oil (40.85 mmol), 20 ml of methanol (493.13 mmol), 0.2243 g of calcium oxide (4 mmol) and 250 μl of water (298 μl: 4.2 mol / mol cat combined with water contained in the raw materials) Table 4 and FIG. 5 show the yield when the reaction was carried out for 2 hours.

Figure 2011099009
Figure 2011099009

[実施例3及び比較例1]
実施例1と同じ酸化カルシウムについて、開栓直後の粉末を用い、米油40ml(48.85mmol)及びメタノール20ml(493.13mmol)、酸化カルシウム224.3mg(4mmol)、水298μl(4.2mol/mol cat)を用いてアルコリシスを行ったところ、収率は79.2%であった。一方、水を加えていない場合は、9.29%、また、該酸化カルシウムを600℃で3時間焼成し、(ただし水を加えない)触媒として使用した場合は収率70.6%であった。
[Example 3 and Comparative Example 1]
About the same calcium oxide as Example 1, using the powder immediately after opening, 40 ml (48.85 mmol) of rice oil, 20 ml (493.13 mmol) of methanol, 224.3 mg (4 mmol) of calcium oxide, 298 μl of water (4.2 mol / 4.2 mol / mol) The yield was 79.2% when alcoholysis was performed using mol cat). On the other hand, when no water was added, the yield was 9.29%, and when the calcium oxide was calcined at 600 ° C. for 3 hours and used as a catalyst (without adding water), the yield was 70.6%. It was.

これらの結果から、水を加えない新鮮な酸化カルシウム又は焼成により再活性化した酸化カルシウムはアルコリシスについて或る程度の活性は有するが、本発明は特定範囲の水を存在させることにより高い活性を示すことが理解される。   From these results, fresh calcium oxide without added water or calcium oxide reactivated by baking has some activity on alcoholysis, but the present invention shows high activity by the presence of a specific range of water. It is understood.

[実施例4]
水酸化カルシウム(シグマアルドリッチジャパン株式会社製1級試薬:純度95%以上)を500℃3時間小型電気炉で加熱処理し得た酸化カルシウム5.29mmolを米油40ml(40.85mmol)、メタノール20ml(493.13mmol)、蒸留水298μl(16.56mmol)の存在下に2時間アルコリシスを行ったところ、96%の収率で脂肪酸メチルが得られた。同様に水酸化カルシウムを700℃、800℃及び900℃で焼成した場合も脂肪酸メチルの収率はすべて96%以上であった。
[Example 4]
Calcium hydroxide (first grade reagent manufactured by Sigma-Aldrich Japan Co., Ltd .: purity 95% or more) was heated in a small electric furnace at 500 ° C. for 3 hours, 5.29 mmol of calcium oxide, 40 ml of rice oil (40.85 mmol), 20 ml of methanol When alcoholysis was performed in the presence of (493.13 mmol) and 298 μl (16.56 mmol) of distilled water for 2 hours, methyl fatty acid was obtained in a yield of 96%. Similarly, when calcium hydroxide was calcined at 700 ° C., 800 ° C. and 900 ° C., the yield of fatty acid methyl was 96% or more.

[比較例2]
開封直後の酸化カルシウム(シグマアルドリッチジャパン株式会社製特級試薬:純度98%以上)を粉末化し、10gを600℃で3時間焼成し、ただちに下部に水を張ったデシケータ内に入れて24時間放置する。その間酸化カルシウムは100℃以上の温度から室温に至るまでの間当該温度下での、ほぼ飽和水蒸気圧下に置かれ水分の供給を受けることになる。得られた酸化カルシウムは、12.2gとなっていた。
[Comparative Example 2]
Calcium oxide (special grade reagent manufactured by Sigma-Aldrich Japan Co., Ltd .: purity 98% or more) immediately after opening is pulverized, 10 g is baked at 600 ° C. for 3 hours, and immediately put in a desiccator filled with water at the bottom and left for 24 hours. . In the meantime, the calcium oxide is placed under the saturated water vapor pressure at the temperature from 100 ° C. or higher to room temperature, and is supplied with moisture. The obtained calcium oxide was 12.2 g.

かかる酸化カルシウムを触媒として用い、実施例2の場合と同様に米油とメタノールを用い、エステル化反応に供した。但し、反応時に水の添加は行わなかった。結果を表5に示す。   Using this calcium oxide as a catalyst, rice oil and methanol were used in the same manner as in Example 2 and subjected to an esterification reaction. However, no water was added during the reaction. The results are shown in Table 5.

Figure 2011099009

上記結果から、水による処理は、エステル化反応時に存在させなければならないことがわかる。


Figure 2011099009

From the above results, it can be seen that the treatment with water must be present during the esterification reaction.


Claims (5)

酸化カルシウムを触媒とし、油脂と一価のアルコールを原料として、脂肪酸エステルを製造するにあたり、水を触媒1モル当り、1.0〜14モル存在下に反応を行うことを特徴とする脂肪酸エステルの製造方法。   A fatty acid ester characterized in that, in the production of a fatty acid ester using calcium oxide as a catalyst and fats and oils and a monohydric alcohol as raw materials, water is reacted in the presence of 1.0 to 14 mol per mol of the catalyst. Production method. 触媒1モル当り、水を2〜5モル存在下に反応を行うことを特徴とする請求項1に記載の脂肪酸エステルの製造方法。   The method for producing a fatty acid ester according to claim 1, wherein the reaction is carried out in the presence of 2 to 5 mol of water per 1 mol of the catalyst. 酸化カルシウムを一旦500℃〜850℃の温度で焼成した後、触媒として用いることを特徴とする請求項1又は請求項2に記載の脂肪酸エステルの製造方法。   The method for producing a fatty acid ester according to claim 1 or 2, wherein calcium oxide is once calcined at a temperature of 500 ° C to 850 ° C and then used as a catalyst. 触媒を原料油脂に対して1/100倍モル以上存在させ、50℃乃至原料アルコールの沸点以下又は還流温度で反応を行うことを特徴とする請求項1乃至請求項3のいずれかに記載の脂肪酸エステルの製造方法。   The fatty acid according to any one of claims 1 to 3, wherein the catalyst is present at 1/100 times mol or more with respect to the raw material fat and oil, and the reaction is carried out at 50 ° C to the boiling point of the raw material alcohol or at the reflux temperature. Ester production method. 原料アルコールがメタノールである請求項1乃至請求項4のいずれかに記載の脂肪酸メチルエステルの製造方法。

The method for producing a fatty acid methyl ester according to any one of claims 1 to 4, wherein the raw alcohol is methanol.

JP2009253124A 2009-11-04 2009-11-04 Method for producing fatty acid ester Pending JP2011099009A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009253124A JP2011099009A (en) 2009-11-04 2009-11-04 Method for producing fatty acid ester

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009253124A JP2011099009A (en) 2009-11-04 2009-11-04 Method for producing fatty acid ester

Publications (1)

Publication Number Publication Date
JP2011099009A true JP2011099009A (en) 2011-05-19

Family

ID=44190466

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009253124A Pending JP2011099009A (en) 2009-11-04 2009-11-04 Method for producing fatty acid ester

Country Status (1)

Country Link
JP (1) JP2011099009A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3357982A1 (en) 2017-02-01 2018-08-08 Seiko Epson Corporation Oily ink composition for ink jet recording

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3357982A1 (en) 2017-02-01 2018-08-08 Seiko Epson Corporation Oily ink composition for ink jet recording

Similar Documents

Publication Publication Date Title
JP5964327B2 (en) Improved process for producing fatty acid alkyl esters (biodiesel) from triglyceride oils by using environmentally friendly solid base catalysts
Li et al. Recyclable Li/NaY zeolite as a heterogeneous alkaline catalyst for biodiesel production: Process optimization and kinetics study
Teo et al. Biodiesel production from crude Jatropha Curcas oil using calcium based mixed oxide catalysts
Sharma et al. Latest developments on application of heterogenous basic catalysts for an efficient and eco friendly synthesis of biodiesel: A review
Chen et al. Biodiesel production from palm oil using active and stable K doped hydroxyapatite catalysts
Taufiq-Yap et al. Transesterification of non-edible Jatropha curcas oil to biodiesel using binary Ca–Mg mixed oxide catalyst: effect of stoichiometric composition
Lani et al. New route for the synthesis of silica-supported calcium oxide catalyst in biodiesel production
Xie et al. Production of biodiesel by transesterification of soybean oil using calcium supported tin oxides as heterogeneous catalysts
Reyero et al. Heterogenization of the biodiesel synthesis catalysis: CaO and novel calcium compounds as transesterification catalysts
Teo et al. Heterogeneous calcium-based bimetallic oxide catalyzed transesterification of Elaeis guineensis derived triglycerides for biodiesel production
RU2428460C2 (en) Hydrocarbon fuel obtaining method
Basumatary Transesterification with heterogeneous catalyst in production of biodiesel: A Review
CN101696372B (en) Method for preparing biodiesel by solid acid-base two-step method
Wong et al. Effect of calcination temperatures of CaO/Nb2O5 mixed oxides catalysts on biodiesel production
Syamsuddin et al. Synthesis of glycerol free-fatty acid methyl esters from Jatropha oil over Ca–La mixed-oxide catalyst
CN101868525A (en) Method for preparing fatty acid alkyl esters and/or glycerin using fats and oils
Peng et al. Magnetic graphene oxide supported tin oxide (SnO) nanocomposite as a heterogeneous catalyst for biodiesel production from soybean oil
JP7057552B1 (en) A catalyst and a method for producing a biodiesel using this catalyst
Ruatpuia et al. Biodiesel production through heterogeneous catalysis route: A review
Fu et al. Surfactant-enhanced ZnO x/CaO catalytic activity for ultrasound-assisted biodiesel production from waste cooking oil
JP2011099009A (en) Method for producing fatty acid ester
CN103301857B (en) Preparation method of ternary compound solid base catalyst and method for catalyzed synthesis of novel biodiesel thereof
CN102302942A (en) Nano-magnetic bifunctional solid alkali catalyst for transesterification reaction and preparation method thereof
CN103191709B (en) Heterogeneous catalysis of attapulgite loaded potassium hydroxide and preparation method thereof and the application in biodiesel catalyzes and synthesizes
JP5296047B2 (en) Method for producing fatty acid methyl ester