JP2011095046A - Method for checking/testing gas permeability of gas-permeable filler material and gas permeability checking/testing device - Google Patents
Method for checking/testing gas permeability of gas-permeable filler material and gas permeability checking/testing device Download PDFInfo
- Publication number
- JP2011095046A JP2011095046A JP2009247827A JP2009247827A JP2011095046A JP 2011095046 A JP2011095046 A JP 2011095046A JP 2009247827 A JP2009247827 A JP 2009247827A JP 2009247827 A JP2009247827 A JP 2009247827A JP 2011095046 A JP2011095046 A JP 2011095046A
- Authority
- JP
- Japan
- Prior art keywords
- air
- pressure
- specimen
- flow
- columnar specimen
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Examining Or Testing Airtightness (AREA)
Abstract
Description
本発明は、エアモルタル等の透気性中詰め材の透気性確認試験方法及び透気性確認試験装置に関するものである。 The present invention relates to an air permeability confirmation test method and an air permeability confirmation test apparatus for an air permeable stuffing material such as air mortar.
例えば、ガス導管をトンネル内に配管する際に使用されるエアモルタル等の中詰め材は、ガス導管からの漏洩ガスを速やかに検知できるように良好な透気性が求められる。しかしながら、このような中詰め材の透気性を標準的に評価する指標は確立しておらず、各種成分の中詰め材に対して、適正な透気性を有するか否かを標準的な指標を基にして迅速に確認する試験方法が求められている。 For example, a filling material such as air mortar used when piping a gas conduit in a tunnel is required to have good air permeability so that a leaked gas from the gas conduit can be detected quickly. However, an index for standard evaluation of the air permeability of such filling materials has not been established, and a standard index is used to determine whether or not appropriate filling properties are provided for the filling materials of various components. There is a need for a test method that can be quickly confirmed based on this.
下記特許文献1には、施工例の気泡コンクリートから直径5cm×高さ10cmの供試体を採取し、20℃、湿度90%以上の恒温槽の中で28日間養生し、この供試体に一定の空気圧を作用させ、流入量と流出量が等しくなったときの流量を測定することにより、透気係数を求めること等が記載されている。
In
このような従来技術では、供試体の形成寸法誤差によって評価値に差が出てしまい、標準的な評価を行うことができない問題があり、また、流入量と流出量を等しくする調整に手間がかかり、迅速な評価を行うことができない問題があった。 In such a conventional technique, there is a problem that a standard evaluation cannot be performed due to a difference in evaluation value due to a formation dimension error of the specimen, and there is a trouble in adjusting the inflow amount and the outflow amount to be equal. Therefore, there is a problem that a quick evaluation cannot be performed.
本発明は、このような問題に対処することを課題の一例とするものである。すなわち、中詰め材の透気性を標準的に評価する指標を確立し、各種成分の中詰め材に対して、適正な透気性を有するか否かを標準的な指標を基にして迅速に確認することができる確認試験方法及び確認試験装置を提供すること、等が本発明の目的である。 This invention makes it an example of a subject to cope with such a problem. In other words, we established an index for standard evaluation of the air permeability of filling materials, and quickly confirmed whether or not they have proper air permeability for various filling materials based on the standard indicators It is an object of the present invention to provide a confirmation test method and a confirmation test apparatus that can be performed.
このような目的を達成するために、本発明による透気性中詰め材の透気性確認試験方法及び透気性確認試験装置は、以下の構成を少なくとも具備するものである。 In order to achieve such an object, an air permeability confirmation test method and an air permeability confirmation test device for an air permeable filling material according to the present invention have at least the following configurations.
試験対象の中詰め材によって、側面に気密樹脂を塗布した設定高さ(L)及び一定断面積(A)を有する柱状供試体を形成し、該柱状供試体の開放された端面の一方から一定圧力の空気を流入させて、前記端面の他方を大気開放させながら、流入される空気の圧力(h)と流量(Q)を設定時間(t)計測し、下記式(1)によって透気係数Kを求めることを特徴とする透気性中詰め材の透気性確認試験方法。
K=(L/h)×{Q/(A・t)} …… (1)
ここに、
L:前記柱状供試体の高さ
A:前記柱状供試体の断面積
h:流入される空気の圧力
Q:流入される空気の流量
t:計測時間
A columnar specimen having a set height (L) and a constant cross-sectional area (A) in which an airtight resin is applied to the side surface is formed by the filling material to be tested, and constant from one of the open end faces of the columnar specimen. The pressure (h) and the flow rate (Q) of the inflowing air are measured for a set time (t) while the pressure air is introduced and the other end surface is opened to the atmosphere, and the air permeability coefficient is calculated by the following equation (1). A method for confirming air permeability of an air permeable filling material, characterized in that K is obtained.
K = (L / h) × {Q / (A · t)} (1)
here,
L: Height of the columnar specimen A: Cross-sectional area of the columnar specimen h: Pressure of air flowing in Q: Flow rate of air flowing in t: Measurement time
試験対象の中詰め材によって、側面に気密樹脂を塗布した設定高さ(L)及び一定断面積(A)を有する柱状供試体を形成し、該柱状供試体の開放された端面の一方から一定圧力の空気を流入させて、前記端面の他方を大気開放させながら、流入される空気の圧力(h)と流量(Q)を設定時間(t)計測し、異なる前記圧力(h)に対してそれぞれ計測された流量(Q)によって、圧力勾配iと流速vとの関係で原点を通る直線回帰を行い、有意な直線近似が得られる前記圧力勾配の範囲で、前記圧力勾配と前記流速の直線回帰式における回帰係数によって柱状供試体の透気係数Kを決定することを特徴とする透気性中詰め材の透気性確認試験方法。
但し、
L:前記柱状供試体の高さ
A:前記柱状供試体の断面積
h:流入される空気の圧力
Q:流入される空気の流量
t:計測時間
i:圧力勾配
v:流速
とすると、v=Q/(A・t),i=h/L
A columnar specimen having a set height (L) and a constant cross-sectional area (A) in which an airtight resin is applied to the side surface is formed by the filling material to be tested, and constant from one of the open end faces of the columnar specimen. Measure the set time (t) of the pressure (h) and the flow rate (Q) of the air that flows into the other end of the end face while letting the other side of the air into the atmosphere. A linear regression through the origin is performed with the relationship between the pressure gradient i and the flow velocity v by the measured flow rate (Q), and the pressure gradient and the flow velocity straight line are within a range of the pressure gradient in which a significant linear approximation is obtained. An air permeability confirmation test method for an air permeable filling material, wherein the air permeability coefficient K of a columnar specimen is determined by a regression coefficient in a regression equation.
However,
L: Height of the columnar specimen A: Cross-sectional area of the columnar specimen h: Inflowing air pressure Q: Inflowing air flow t: Measurement time i: Pressure gradient v: Flow velocity Q / (A · t), i = h / L
試験対象の中詰め材によって形成され、側面に気密樹脂を塗布した設定高さ及び一定断面積を有する柱状供試体を、内部に支持する外枠と、前記柱状供試体の開放された端面の一方に空気を流入させる空気流入パイプの放出端を前記端面の一方に向けて支持すると共に前記外枠を支持する支持台と、前記空気流入パイプを流れる空気の流量を計測する流量センサと、前記空気流入パイプに流入される空気の圧力を計測する圧力センサと、前記空気流入パイプに空気を設定された一定圧力で流入する空気供給装置とを備えることを特徴とする透気性中詰め材の透気性確認試験装置。 One of an outer frame that supports a columnar specimen having a set height and a constant cross-sectional area, which is formed of a filling material to be tested and has an airtight resin applied to the side surface, and an open end face of the columnar specimen. Supporting a discharge end of an air inflow pipe for allowing air to flow into one of the end faces and supporting the outer frame, a flow rate sensor for measuring a flow rate of air flowing through the air inflow pipe, and the air Air permeability of the air permeable filling material, comprising: a pressure sensor that measures the pressure of air flowing into the inflow pipe; and an air supply device that flows air into the air inflow pipe at a set constant pressure. Confirmation test equipment.
このような特徴によると、中詰め材の透気性を標準的に評価する指標を確立し、各種成分の中詰め材に対して、適正な透気性を有するか否かを標準的な指標を基にして迅速に確認することができる。 According to such characteristics, an index for standard evaluation of the air permeability of the filling material is established, and whether or not it has appropriate air permeability for the filling material of various components is based on the standard index. Can be confirmed quickly.
以下、図面を参照しながら本発明の実施形態を説明する。図1は本発明の一実施形態に係る透気性確認試験装置を示す説明図である。本発明の実施形態に係る透気性確認試験装置1は、試験対象の中詰め材によって形成される柱状供試体Mに対して透気性を確認するための試験装置である。ここで柱状供試体Mは、円形,楕円形,矩形等の一定断面を有する柱状に形成された供試体であり、一対の端面を開放状態にして、側面に気密樹脂G1を塗布したものである。ここで用いられる気密樹脂G1は、供試体内部への含浸が少ない高粘度の樹脂が適し、塗布のし易さや気密性の確保を考慮すると高粘度のエポキシ系樹脂が適する。
Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is an explanatory view showing an air permeability confirmation test apparatus according to an embodiment of the present invention. The air permeability
この透気性確認試験装置1は、外枠10、支持台11、空気流入パイプ12、流量センサ20、圧力センサ21、空気供給装置30等を備える。外枠10は、内部に前述した柱状供試体Mを支持する部材であり、形状や材質は特に限定されないが、一例としては、透明なアクリル樹脂板を用い柱状供試体Mを囲むように形成することで、柱状供試体Mの状態を観察しながらの試験が可能になる。外枠10の内部に柱状供試体Mを支持するには、例えば図示のように、外枠10の内部に所定高さ気密樹脂G2を充填する。この場合の気密樹脂G2にもエポキシ系樹脂を用いることができる。柱状供試体Mの両端面m1,m2が開放されるように、柱状供試体Mの外側空間に気密樹脂G2を充填する。なお、何らかの他の手段で後述する支持台11上に柱状供試体Mを支持できれば、外枠10は省いても良い。
The air permeability
支持台11は、柱状供試体Mの開放された端面の一方(m1)に空気を流入させる空気流入パイプ12の放出端12aを端面の一方(m1)に向けて支持すると共に、外枠10を支持するものである。図示の例では、外枠10の内部に支持された柱状供試体Mの端面m1が支持台11上に面しており、この端面m1に向かって空気流入パイプ12の放出端12aが当接されている。
The
空気流入パイプ12は柱状供試体Mの内部に空気を流入させるための流入経路であって、その流入経路の途中に流量センサ20が配備され、その端部に圧力センサ21が配備されている。また、必要に応じて、その途中経路にバルブ22を配備する構成にしても良い。流量センサ20は空気流入パイプ12を流れる空気の流量を計測するためのものであり、圧力センサ21は空気流入パイプ12に流入される空気の圧力を計測するためのものである。
The
空気供給装置30は、空気流入パイプ12に空気を設定された一定圧力で流入することができるものであり、より標準化された試験結果を得るために、空気供給装置30は設定圧力を可変調整できるものであることが好ましい。
The air supply device 30 can flow air into the
また必要に応じて、外枠10における支持台11に支持される側と逆側の端部に蓋部材13を設けても良い。柱状供試体Mの端面m2は大気開放する必要があるので、蓋部材13を設ける場合であっても、外枠10の端部を気密に塞がないことが必要になり所定の通気性が得られるものが用いられる。
Moreover, you may provide the
このような透気性確認試験装置1を用いた本発明の実施形態に係る透気性確認試験方法を以下に説明する。本発明の実施形態に係る透気性確認試験方法は、試験対象の中詰め材によって、前述した設定高さ(L)及び一定断面積(A)を有する柱状供試体Mを形成し、柱状供試体Mの開放された端面の一方(m1)から一定圧力の空気を流入させて、端面の他方(m2)を大気開放させながら、流入される空気の圧力(h)と流量(Q)を設定時間(t)計測し、下記式(1)によって透気係数Kを求める。
An air permeability confirmation test method according to an embodiment of the present invention using such an air permeability
K=(L/h)×{Q/(A・t)} …… (1)
ここに、
L:前記柱状供試体の高さ
A:前記柱状供試体の断面積
h:流入される空気の圧力
Q:流入される空気の流量
t:計測時間
K = (L / h) × {Q / (A · t)} (1)
here,
L: Height of the columnar specimen A: Cross-sectional area of the columnar specimen h: Pressure of air flowing in Q: Flow rate of air flowing in t: Measurement time
ここで、透気係数Kの単位をcm/secとするためには、柱状供試体Mの高さLの単位がcmであり、柱状供試体Mの断面積Aの単位がcm2であり、流入される空気の圧力hの単位が高さ変換されたcmであり、流入される空気の流量Qの単位が20℃且つ1気圧の体積流量に換算されたcm3であり、計測時間tがsecである。 Here, in order to set the unit of the air permeability coefficient K to cm / sec, the unit of the height L of the columnar specimen M is cm, and the unit of the cross-sectional area A of the columnar specimen M is cm 2 . The unit of the pressure h of the incoming air is cm whose height is converted, the unit of the flow rate Q of the incoming air is cm 3 converted to a volumetric flow rate of 20 ° C. and 1 atm, and the measurement time t is sec.
より具体的には、図1に示すように、支持台11上に柱状供試体Mを配置して、柱状供試体Mの端面m1に空気流入パイプ12の放出端12aを当接させ、空気流入パイプ12から放出される空気が全て柱状供試体M内に流入するように、支持台11と端面m1の外周との気密性を確保し、バルブ22を開放して、空気供給装置30を作動させる。そして、圧力センサ21で計測される圧力h(cm)が一定の設定値を定常的に示していることを確認して、所定の計測時間t(sec)の間の流量Q(cm3)を流量センサ20で計測する。そして、柱状供試体Mの諸元から得られるL(cm)とA(cm2)と計測によって得られたh(cm),Q(cm3),t(sec)によって、式(1)から透気係数K(cm/sec)を求める。
More specifically, as shown in FIG. 1, a columnar specimen M is arranged on the
式(1)は、本来は圧縮性の流体である空気を非圧縮性流体として扱い、一定圧での透水係数を求めるダルシー則に基づいて導き出した式である。実際上は、空気は圧縮性流体であるから、全ての条件で式(1)の関係が当てはまることにはならないが、柱状供試体Mの外周を気密樹脂G1で覆うことで柱状供試体M内の空気の流れを一軸方向に限定させ、流入する空気の圧力を一定にすることで、ダルシー則が適用できる試験条件を得ることができる。すなわち、透気係数にダルシー則を適用したことだけでなく、柱状供試体Mの両端面を開放させ側面に気密樹脂を塗布すること、更にはこの柱状供試体Mの一端面から一定圧力の空気を流入させ他端面を大気開放することで、ダルシー則を適用できる試験条件を得たことが本発明の一つの特徴である。 Expression (1) is an expression derived based on Darcy's law for determining the hydraulic conductivity at a constant pressure by treating air, which is originally a compressible fluid, as an incompressible fluid. In practice, since air is a compressive fluid, the relationship of formula (1) does not hold under all conditions, but the outer periphery of the columnar specimen M is covered with an airtight resin G1 to thereby form the inside of the columnar specimen M. By limiting the flow of air in a uniaxial direction and keeping the pressure of the incoming air constant, it is possible to obtain test conditions to which the Darcy law can be applied. That is, not only applying the Darcy law to the air permeability coefficient, but opening both end faces of the columnar specimen M and applying airtight resin to the side faces, and further, air at a constant pressure from one end face of the columnar specimen M. It is one of the features of the present invention that the test conditions for applying Darcy's law can be obtained by injecting the water and opening the other end surface to the atmosphere.
また、ダルシー則を適用して柱状供試体Mの透気特性を求めるには、ダルシー則が適用可能範囲を見極める必要がある。柱状供試体M内での空気の流速をv(=Q/(A・t)),圧力勾配をi(=h/L)とすると、圧力勾配iと流速vとの関係は、図2に示すように、ダルシー則が成り立つと仮定すると原点を通る直線aの関係になる。しかしながら、圧縮性流体である空気を透過媒体とする場合には、圧力勾配iが大きくなると、圧力勾配iと流速vとの関係が直線aから外れた関係になる。例えば、空気の圧縮性が影響する条件では、圧力勾配iと流速vとの関係が図2の曲線bのような曲線関係となり、空気の流れが層流から乱流に遷移する条件では、圧力勾配iと流速vとの関係が図2の曲線cのような曲線関係になる。 Further, in order to obtain the air permeability characteristics of the columnar specimen M by applying Darcy's law, it is necessary to determine the applicable range of Darcy's law. When the flow velocity of air in the columnar specimen M is v (= Q / (A · t)) and the pressure gradient is i (= h / L), the relationship between the pressure gradient i and the flow velocity v is shown in FIG. As shown, assuming that Darcy's law holds, the relationship is a straight line a passing through the origin. However, when air, which is a compressible fluid, is used as the permeation medium, when the pressure gradient i increases, the relationship between the pressure gradient i and the flow velocity v deviates from the straight line a. For example, under the condition where the compressibility of air affects, the relationship between the pressure gradient i and the flow velocity v becomes a curve relationship as shown by the curve b in FIG. 2, and under the condition where the air flow transitions from laminar flow to turbulent flow, The relationship between the gradient i and the flow velocity v is a curve relationship like the curve c in FIG.
したがって、ダルシー則を適用して柱状供試体Mの透気特性を求めるには、圧力勾配iと流速vとの関係が原点を通る直線関係にあることが前提になり、そのような関係にある計測値を基に式(1)を用いた透気係数Kを求めることが必要になる。 Therefore, in order to obtain the air permeability characteristics of the columnar specimen M by applying Darcy's law, it is premised that the relationship between the pressure gradient i and the flow velocity v is a linear relationship passing through the origin. It is necessary to obtain the air permeability coefficient K using the formula (1) based on the measured value.
また、圧力hを変えて、異なる圧力hに対してそれぞれ計測された流量Qによって、圧力勾配iと流速vとの関係を求めることで、画一性のある透気係数Kを得ることができる。すなわち、異なる圧力hに対してそれぞれ計測された流量Qによって、圧力勾配iと流速vとの関係で原点を通る直線回帰を行い、有意な直線近似が得られる圧力勾配iの範囲で、圧力勾配iと流速vの直線回帰式を求め、この直線回帰式における回帰係数によって柱状供試体Mの透気係数Kを決定する。 In addition, a uniform air permeability coefficient K can be obtained by changing the pressure h and obtaining the relationship between the pressure gradient i and the flow velocity v based on the flow rates Q respectively measured for different pressures h. . That is, with the flow rate Q measured for each of the different pressures h, a linear regression through the origin is performed in the relationship between the pressure gradient i and the flow velocity v, and the pressure gradient is within a range of the pressure gradient i in which a significant linear approximation is obtained. A linear regression equation of i and flow velocity v is obtained, and the air permeability coefficient K of the columnar specimen M is determined by the regression coefficient in this linear regression equation.
圧力勾配iと流速vとの関係は、ダルシー則が適用できる範囲であれば、v=K・i(K:透気係数)の関係になる。計測値から得られる複数組の(i,v)データによって、v=K・iの直線回帰を行い、その決定係数(相関係数)R2がより1に近くなるように計測データを選択する。前述したように、圧力勾配iが大きくなると(i,v)の関係が直線から外れる要因が増えるので、圧力勾配iの上限を定めて、その圧力勾配iの範囲で、(i,v)の直線回帰式における回帰係数を求め、この回帰係数を柱状供試体の透気係数Kとする。その際の圧力勾配iの範囲は、直線回帰式の決定係数R2が0.90以上、更に好ましくは0.95以上になるように計測値を選択する。 The relationship between the pressure gradient i and the flow velocity v is v = K · i (K: air permeability coefficient) as long as Darcy's law can be applied. Using a plurality of sets of (i, v) data obtained from the measured values, linear regression of v = K · i is performed, and the measured data is selected so that the determination coefficient (correlation coefficient) R 2 is closer to 1. . As described above, when the pressure gradient i increases, the factor that the relationship of (i, v) deviates from the straight line increases. Therefore, an upper limit of the pressure gradient i is determined, and within the range of the pressure gradient i, (i, v) The regression coefficient in the linear regression equation is obtained, and this regression coefficient is defined as the air permeability coefficient K of the columnar specimen. Range of pressure gradient i in that case, the linear regression equation of the coefficient of determination R 2 is 0.90 or more, more preferably to select the measured value so that the 0.95 or more.
このように求めた透気係数Kは、供試体の大きさや計測時間の長さに影響されない標準的な値になる。また、単純に柱状供試体Mへ流入する空気の状態を計測するだけでよいから、計測が簡単であり、供試体の透気性に関して迅速な評価を行うことが可能になる。 The air permeability coefficient K thus determined is a standard value that is not affected by the size of the specimen and the length of the measurement time. Moreover, since it is only necessary to simply measure the state of the air flowing into the columnar specimen M, the measurement is simple, and it is possible to quickly evaluate the air permeability of the specimen.
柱状供試体Mの外周を気密樹脂G1で覆っているので、柱状供試体Mの側面から漏れ出る空気を防ぐことができ、柱状供試体Mの一軸方向の透気性のみに着目した試験結果が得られる。これによって、柱状供試体Mの形状の違いによる計測結果のばらつきを抑止することが可能になり、より標準化した透気性の評価を行うことができる。更には、外枠10の内部に所定高さ気密樹脂G2を充填することで柱状供試体Mを支持しているので、柱状供試体Mの端面m1周囲の気密性を確保しやすい構造になり、より精度の高い計測結果を得ることが可能になる。
Since the outer periphery of the columnar specimen M is covered with the airtight resin G1, air leaking from the side surface of the columnar specimen M can be prevented, and a test result focusing only on the uniaxial permeability of the columnar specimen M is obtained. It is done. This makes it possible to suppress variations in measurement results due to differences in the shape of the columnar specimen M, and to perform more standardized air permeability evaluation. Furthermore, since the columnar specimen M is supported by filling the inside of the
なお、前述の説明では、図示の透気性確認試験装置1を用いた試験方法の例を説明したが、本発明の実施形態に係る透気性確認試験方法は、図示のような透気性確認試験装置1を用いた場合と同等の圧力(h)と流量(Q)が計測できれば、このような装置を用いなくても実施することができる。
In the above description, the example of the test method using the illustrated air permeability
本発明の実施形態に係る透気性確認試験方法を採用することで、ガス導管をトンネル内に配管する際に使用する中詰め材について、各種の成分の中詰め材に対して通気性を精度良く且つ高い再現性で評価することができる。これによって、中詰め材の品質を均一化することができ、その結果、配管後の気密試験において、保持時間を正確に且つ低コストで確定することができ、万が一配管からガス漏洩が発生した場合でも、ガスの検知を効率的に行うことが可能になる。このように本発明の実施形態によると、トンネル内配管の中詰め工法における標準化した性能評価方法を確立することができる。 By adopting the air permeability confirmation test method according to the embodiment of the present invention, with respect to the filling material used when piping the gas conduit in the tunnel, the air permeability with respect to the filling materials of various components is accurately determined. And it can evaluate with high reproducibility. As a result, the quality of the filling material can be made uniform, and as a result, in the airtight test after piping, the holding time can be determined accurately and at low cost, and in the unlikely event that gas leaks from the piping However, gas can be detected efficiently. As described above, according to the embodiment of the present invention, it is possible to establish a standardized performance evaluation method in the filling method for tunnel piping.
以下に、本発明の透気性確認試験方法及び透気性確認試験装置の実施例を説明する。ここでは、エアモルタルを試験対象として、3つの供試体(供試体1,供試体2,供試体3)に対して、前述した透気性確認試験装置を用いた透気性確認試験を行った。試験条件を表1に示す。各供試体の寸法等を表2に示す。
Below, the Example of the air permeability confirmation test method and the air permeability confirmation test apparatus of this invention is described. Here, air mortar was used as a test object, and the air permeability confirmation test using the above-described air permeability confirmation test apparatus was performed on the three specimens (
[試験手順]
(1)供試体の整形及び設置
供試体は直径φ49.9mmの円柱状に整形し、端面は上下の平行度を保ちつつ、滑らかになるように整形する。整形後、供試体密度を測定する。整形した供試体の側面に高粘度エポキシ接着剤を塗る。高粘度エポキシ接着剤が硬化した後、供試体を図1に示す通気性確認試験装置1の支持台11に設置し、気密樹脂G2として低粘度エポキシ接着剤を打設し支持台11に供試体を密着する。
[Test procedure]
(1) Shaping and installation of the specimen The specimen is shaped into a cylindrical shape with a diameter of 49.9 mm, and the end face is shaped so as to be smooth while maintaining parallelism in the vertical direction. After shaping, the specimen density is measured. Apply a high-viscosity epoxy adhesive to the side of the shaped specimen. After the high-viscosity epoxy adhesive is cured, the specimen is placed on the
(2)透気量計測
空気供給装置30を作動させて、圧力センサ21の計測値が任意の圧力になるまで加圧し、流量センサ20により毎分流量を測定する。圧力を数段階変化させて順次流量センサ20により毎分流量を測定する。
(2) Air Permeation Measurement The air supply device 30 is operated and pressurized until the measured value of the
(3)透気係数の計算
測定結果を基にして前述した式(1)によって供試体毎に各圧力に対応した透気係数Kを求める。ここで圧力センサの計測値をPとすると、式(1)におけるh(cm)=P(kPa)/0.098となる。
[試験結果]
供試体1〜3の試験結果を表3〜表5に示す。
(3) Calculation of air permeability coefficient Based on the measurement result, the air permeability coefficient K corresponding to each pressure is obtained for each specimen by the above-described equation (1). Here, if the measurement value of the pressure sensor is P, h (cm) = P (kPa) /0.098 in the equation (1).
[Test results]
Tables 3 to 5 show the test results of the
[試験結果の整理]
式(1)の関係は、多孔質媒体中の非圧縮性流体の一次元流れに対して成り立つダルシー則が、空気を透過媒体とする場合にも成り立つことが前提になっている。しかしながら、圧縮性流体である空気を透過媒体とする場合には、その圧縮性や層流から乱流への遷移等によってダルシー則が適用できる条件は限られたものになる。
[Organization of test results]
The relationship of equation (1) is based on the premise that the Darcy law that holds for a one-dimensional flow of an incompressible fluid in a porous medium also holds when air is used as the permeation medium. However, when air, which is a compressible fluid, is used as a permeation medium, the conditions under which the Darcy law can be applied are limited by the compressibility and the transition from laminar flow to turbulent flow.
表3〜5に示した試験結果では、透気係数kの計算値(計測値0は除く)は、供試体1で0.600〜1.233(cm/s)、供試体2で0.530〜1.173(cm/s)、供試体3で0.747〜1.490(cm/s)と大きくばらついた値になっており、供試体の透過特性を評価する画一的な値になっていない。これは圧力変化の範囲がダルシー則を適用できる範囲を超えていることを意味している。ダルシー則が適用できる範囲では、圧力勾配i(=h/L)と流速v(=Q/(A・t))との関係は原点を通る直線上になる(v=k・i)。
In the test results shown in Tables 3 to 5, the calculated value of the air permeability coefficient k (excluding the measured value 0) is 0.600 to 1.233 (cm / s) for the
表3〜5の試験結果から得られるi(x)とv(y)の原点を通る回帰直線(y=k・x)のグラフを図3に示す。図3に示した直線回帰式は、供試体1がy=0.6734・x(R2=0.8799)、供試体2がy=0.6023・x(R2=0.882)、供試体3がy=0.8486・x(R2=0.8696)となるが、決定係数(相関係数)R2がそれほど高くない。圧力勾配iが高くなるほど圧力勾配iの上昇に対して流速vの上昇率が低くなって直線関係が崩れていることが判るので、これは層流から乱流への遷移の影響を受けていると考えられる。
A graph of a regression line (y = k · x) passing through the origins of i (x) and v (y) obtained from the test results of Tables 3 to 5 is shown in FIG. In the linear regression equation shown in FIG. 3, the
これに対して、層流から乱流への遷移の影響を受けやすい(圧力勾配iが高い)計測値を取り除いて直線回帰を行った解析結果を図4に示す。このときの直線回帰式は、供試体1がy=0.9958・x(R2=0.9357)、供試体2がy=0.9176・x(R2=0.9402)、供試体3がy=0.1.1563・x(R2=0.9701)となり、決定係数(相関係数)R2はいずれも高い値を示す。このように圧力勾配iと流速vの計測値を直線回帰した解析結果、決定係数が十分に高くなり有意な直線近似が得られる圧力勾配iの範囲を特定し、その範囲の計測値から求められた圧力勾配iと流速vの直線回帰式(v=K・i)における回帰係数によって各供試体の透気係数Kを決定する。このように求めた供試体1,供試体2,供試体3の透気係数Kを表6に示す。
On the other hand, FIG. 4 shows an analysis result obtained by performing linear regression after removing a measurement value that is easily affected by the transition from laminar flow to turbulent flow (pressure gradient i is high). The linear regression equation at this time is as follows:
1:透気性確認試験装置,
10:外枠,11:支持台,12:空気流入パイプ,13:蓋部材,
20:流量センサ,21:圧力センサ,22:バルブ,
30:空気供給装置,
M:柱状供試体,G1,G2:気密樹脂(エポキシ系樹脂)
1: Permeability check test device,
10: outer frame, 11: support base, 12: air inflow pipe, 13: lid member,
20: flow sensor, 21: pressure sensor, 22: valve,
30: Air supply device,
M: Columnar specimen, G1, G2: Airtight resin (epoxy resin)
Claims (6)
該柱状供試体の開放された端面の一方から一定圧力の空気を流入させて、前記端面の他方を大気開放させながら、流入される空気の圧力(h)と流量(Q)を設定時間(t)計測し、下記式(1)によって透気係数Kを求めることを特徴とする透気性中詰め材の透気性確認試験方法。
K=(L/h)×{Q/(A・t)} …… (1)
ここに、
L:前記柱状供試体の高さ
A:前記柱状供試体の断面積
h:流入される空気の圧力
Q:流入される空気の流量
t:計測時間 A columnar specimen having a set height (L) and a constant cross-sectional area (A) in which an airtight resin is applied to the side surface is formed by the filling material to be tested,
The pressure (h) and the flow rate (Q) of the inflowed air are set for a set time (t) while air at a constant pressure is introduced from one of the open end faces of the columnar specimen and the other end face is opened to the atmosphere. ) Measuring and determining the air permeability coefficient K according to the following formula (1):
K = (L / h) × {Q / (A · t)} (1)
here,
L: Height of the columnar specimen A: Cross-sectional area of the columnar specimen h: Pressure of air flowing in Q: Flow rate of air flowing in t: Measurement time
該柱状供試体の開放された端面の一方から一定圧力の空気を流入させて、前記端面の他方を大気開放させながら、流入される空気の圧力(h)と流量(Q)を設定時間(t)計測し、
異なる前記圧力(h)に対してそれぞれ計測された流量(Q)によって、圧力勾配iと流速vとの関係で原点を通る直線回帰を行い、有意な直線近似が得られる前記圧力勾配の範囲で、前記圧力勾配と前記流速の直線回帰式における回帰係数によって柱状供試体の透気係数Kを決定することを特徴とする透気性中詰め材の透気性確認試験方法。
但し、
L:前記柱状供試体の高さ
A:前記柱状供試体の断面積
h:流入される空気の圧力
Q:流入される空気の流量
t:計測時間
i:圧力勾配
v:流速
とすると、v=Q/(A・t),i=h/L A columnar specimen having a set height (L) and a constant cross-sectional area (A) in which an airtight resin is applied to the side surface is formed by the filling material to be tested,
The pressure (h) and the flow rate (Q) of the inflowed air are set for a set time (t) while air at a constant pressure is introduced from one of the open end faces of the columnar specimen and the other end face is opened to the atmosphere. ) Measure and
With the flow rate (Q) measured for each of the different pressures (h), a linear regression through the origin is performed in the relationship between the pressure gradient i and the flow velocity v, and within a range of the pressure gradient in which a significant linear approximation is obtained. An air permeability confirmation test method for an air permeable filling material, wherein an air permeability coefficient K of a columnar specimen is determined by a regression coefficient in a linear regression equation of the pressure gradient and the flow velocity.
However,
L: Height of the columnar specimen A: Cross-sectional area of the columnar specimen h: Inflowing air pressure Q: Inflowing air flow t: Measurement time i: Pressure gradient v: Flow velocity Q / (A · t), i = h / L
前記柱状供試体の開放された端面の一方に空気を流入させる空気流入パイプの放出端を前記端面の一方に向けて支持すると共に前記外枠を支持する支持台と、
前記空気流入パイプを流れる空気の流量を計測する流量センサと、
前記空気流入パイプに流入される空気の圧力を計測する圧力センサと、
前記空気流入パイプに空気を設定された一定圧力で流入する空気供給装置とを備えること特徴とする透気性中詰め材の透気性確認試験装置。 An outer frame for supporting a columnar specimen having a set height and a constant cross-sectional area formed of a filling material to be tested and coated with an airtight resin on a side surface;
A support base for supporting the outer frame while supporting a discharge end of an air inflow pipe that allows air to flow into one of the open end faces of the columnar specimen, toward one of the end faces;
A flow rate sensor for measuring a flow rate of air flowing through the air inflow pipe;
A pressure sensor for measuring the pressure of air flowing into the air inlet pipe;
An air supply confirmation test device for air permeable filling material, comprising: an air supply device for introducing air into the air inflow pipe at a set constant pressure.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009247827A JP5486896B2 (en) | 2009-10-28 | 2009-10-28 | Permeability confirmation test method and permeability confirmation test device for air permeable filling material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009247827A JP5486896B2 (en) | 2009-10-28 | 2009-10-28 | Permeability confirmation test method and permeability confirmation test device for air permeable filling material |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2011095046A true JP2011095046A (en) | 2011-05-12 |
JP5486896B2 JP5486896B2 (en) | 2014-05-07 |
Family
ID=44112131
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009247827A Active JP5486896B2 (en) | 2009-10-28 | 2009-10-28 | Permeability confirmation test method and permeability confirmation test device for air permeable filling material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5486896B2 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106769761A (en) * | 2016-12-14 | 2017-05-31 | 镇江市建科工程质量检测中心有限公司 | A kind of method and device of in-site measurement pervious concrete infiltration coefficient |
CN109406370A (en) * | 2018-12-14 | 2019-03-01 | 河北工业大学 | A kind of tunnel duct piece or country rock lining cutting infiltration coefficient test macro and test method |
CN114088596A (en) * | 2021-05-13 | 2022-02-25 | 盐城工业职业技术学院 | A kind of silkworm cocoon air permeability test method |
CN114295528A (en) * | 2021-12-29 | 2022-04-08 | 西安建筑科技大学 | An experimental system and research method for studying gas permeability characteristics of unsaturated soil |
CN114659369A (en) * | 2022-03-30 | 2022-06-24 | 中冶华天工程技术有限公司 | Double closed-loop sintering material distribution control method based on air permeability soft measurement |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5460994A (en) * | 1977-10-24 | 1979-05-16 | Agency Of Ind Science & Technol | Measuring method of gas permeability of porous substances |
JPS56118641A (en) * | 1980-02-22 | 1981-09-17 | Nippon Soken Inc | Fine particle discharge amount measuring apparatus for vehicle |
JPH02268249A (en) * | 1989-04-11 | 1990-11-01 | Taisei Corp | Water permeability testing method |
JPH0587726A (en) * | 1991-03-08 | 1993-04-06 | Osaka Gas Co Ltd | Device and method for evaluating permeability on paved surface |
JPH07198583A (en) * | 1993-12-28 | 1995-08-01 | Chuo Kaihatsu Kk | Water permeability measuring device and water permeability measuring method using the same |
JPH08304260A (en) * | 1995-04-28 | 1996-11-22 | Sintokogio Ltd | Instrument for measuring air permeability of molding sand |
JPH0985386A (en) * | 1995-09-18 | 1997-03-31 | Daido Steel Co Ltd | Method for measuring permeability of mold and instrument therefor |
JP2005114612A (en) * | 2003-10-09 | 2005-04-28 | Ngk Insulators Ltd | Apparatus for measuring pressure loss |
JP2009114024A (en) * | 2007-11-06 | 2009-05-28 | Kajima Corp | Bubble mortar kneaded material |
-
2009
- 2009-10-28 JP JP2009247827A patent/JP5486896B2/en active Active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5460994A (en) * | 1977-10-24 | 1979-05-16 | Agency Of Ind Science & Technol | Measuring method of gas permeability of porous substances |
JPS56118641A (en) * | 1980-02-22 | 1981-09-17 | Nippon Soken Inc | Fine particle discharge amount measuring apparatus for vehicle |
JPH02268249A (en) * | 1989-04-11 | 1990-11-01 | Taisei Corp | Water permeability testing method |
JPH0587726A (en) * | 1991-03-08 | 1993-04-06 | Osaka Gas Co Ltd | Device and method for evaluating permeability on paved surface |
JPH07198583A (en) * | 1993-12-28 | 1995-08-01 | Chuo Kaihatsu Kk | Water permeability measuring device and water permeability measuring method using the same |
JPH08304260A (en) * | 1995-04-28 | 1996-11-22 | Sintokogio Ltd | Instrument for measuring air permeability of molding sand |
JPH0985386A (en) * | 1995-09-18 | 1997-03-31 | Daido Steel Co Ltd | Method for measuring permeability of mold and instrument therefor |
JP2005114612A (en) * | 2003-10-09 | 2005-04-28 | Ngk Insulators Ltd | Apparatus for measuring pressure loss |
JP2009114024A (en) * | 2007-11-06 | 2009-05-28 | Kajima Corp | Bubble mortar kneaded material |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106769761A (en) * | 2016-12-14 | 2017-05-31 | 镇江市建科工程质量检测中心有限公司 | A kind of method and device of in-site measurement pervious concrete infiltration coefficient |
CN106769761B (en) * | 2016-12-14 | 2023-08-15 | 镇江市建设工程质量检测中心有限公司 | Method and device for on-site measurement of permeable concrete permeability coefficient |
CN109406370A (en) * | 2018-12-14 | 2019-03-01 | 河北工业大学 | A kind of tunnel duct piece or country rock lining cutting infiltration coefficient test macro and test method |
CN109406370B (en) * | 2018-12-14 | 2023-11-24 | 河北工业大学 | A tunnel segment or surrounding rock lining permeability coefficient testing system and testing method |
CN114088596A (en) * | 2021-05-13 | 2022-02-25 | 盐城工业职业技术学院 | A kind of silkworm cocoon air permeability test method |
CN114088596B (en) * | 2021-05-13 | 2023-06-30 | 盐城工业职业技术学院 | Silkworm cocoon air permeability test method |
CN114295528A (en) * | 2021-12-29 | 2022-04-08 | 西安建筑科技大学 | An experimental system and research method for studying gas permeability characteristics of unsaturated soil |
CN114659369A (en) * | 2022-03-30 | 2022-06-24 | 中冶华天工程技术有限公司 | Double closed-loop sintering material distribution control method based on air permeability soft measurement |
CN114659369B (en) * | 2022-03-30 | 2023-12-26 | 中冶华天工程技术有限公司 | Double closed loop sintering cloth control method based on air permeability soft measurement |
Also Published As
Publication number | Publication date |
---|---|
JP5486896B2 (en) | 2014-05-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104880394B (en) | A kind of concrete air infiltration test equipment and its method of testing | |
CN102353625B (en) | Method for measuring overburden porosity with water in permeation fluid mechanics experiment | |
US8447537B2 (en) | Methods and apparatus for determining the permeability and diffusivity of a porous solid | |
CN102087195B (en) | Full-automatic microfiltration membrane aperture distribution tester as well as automatic measuring method and application thereof | |
RU2267772C2 (en) | Method and device for measuring permeability or deformation of permeable materials | |
JP5486896B2 (en) | Permeability confirmation test method and permeability confirmation test device for air permeable filling material | |
CN114993917A (en) | Device and method for continuously testing gas permeability coefficient of unsaturated soil body under variable suction | |
CN107917863A (en) | A kind of circle pervious concrete test block device for testing permeability coefficient and its measuring method | |
Sogbossi et al. | New approach for the measurement of gas permeability and porosity accessible to gas in vacuum and under pressure | |
CN102151487A (en) | Full-automatic ultrafiltration membrane pore size distribution determining instrument and automatic determining method thereof | |
CN115326303B (en) | A sealing gasket leakage rate testing system and testing method under high temperature and high pressure environment | |
CN105466831A (en) | A gas permeability testing device | |
CN111855527A (en) | Device and method for detecting gas permeability of damaged concrete | |
CN108362626A (en) | General device for measuring water and gas permeability coefficient of concrete | |
KR102771379B1 (en) | Device and method for continuously testing gas permeability coefficient of unsaturated soil under varying suction force | |
CN114894693B (en) | Small-size rock core permeability testing method and device | |
JP5286427B2 (en) | Cavity inspection method for concrete structures | |
CN102728232B (en) | Method for detecting hollow fibrous membrane aperture performance | |
CN107607672A (en) | A kind of underwater gas sensor calibrator (-ter) unit and calibration method | |
CN105466834B (en) | The measurement apparatus and method of compression ratio adjustable type porous media plane permeability | |
CN101319982A (en) | Concrete Permeability Measuring Device | |
CN107917864A (en) | A kind of square pervious concrete test block device for testing permeability coefficient and its measuring method | |
CN111458276A (en) | Steel slag concrete permeability determination device and method | |
CN115096784B (en) | Determination of nonlinear permeability coefficient of high permeability concrete at low flow rate based on Forchheimer theorem | |
CN111122418A (en) | A device and method for measuring the permeability of concrete with controllable flow |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20120425 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20130521 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130528 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130725 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20130903 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20131203 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20131203 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20131225 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20140128 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20140224 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5486896 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |