[go: up one dir, main page]

JP2011095034A - Electrostatic rotary encoder - Google Patents

Electrostatic rotary encoder Download PDF

Info

Publication number
JP2011095034A
JP2011095034A JP2009247648A JP2009247648A JP2011095034A JP 2011095034 A JP2011095034 A JP 2011095034A JP 2009247648 A JP2009247648 A JP 2009247648A JP 2009247648 A JP2009247648 A JP 2009247648A JP 2011095034 A JP2011095034 A JP 2011095034A
Authority
JP
Japan
Prior art keywords
electrode
track
phase
electrodes
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009247648A
Other languages
Japanese (ja)
Inventor
Satoshi Yanagawa
敏 梁川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koyo Electronics Industries Co Ltd
Original Assignee
Koyo Electronics Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koyo Electronics Industries Co Ltd filed Critical Koyo Electronics Industries Co Ltd
Priority to JP2009247648A priority Critical patent/JP2011095034A/en
Publication of JP2011095034A publication Critical patent/JP2011095034A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Transmission And Conversion Of Sensor Element Output (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To miniaturize a substrate size and hence the entire size of an encoder by composing a track for disposing an electrode for generating a magnetic pole position signal by one track. <P>SOLUTION: A plurality of induction electrodes E2 are disposed at a prescribed pitch on an optional rotary track TK2 in a rotating substrate 3; sections with and without motor magnetic pole signal electrodes UVW are disposed alternately with the same sectional length on a separate rotary track TK5; a plurality of detection electrodes E2' are disposed at a pitch equal to or less than the prescribed pitch divided by N (N is an integer of two or more) on a fixed track TK2' opposing the optional rotary track TK2 in a fixed substrate 4; and at least respective electrodes U, V, W of U, V, W phases having electrode width of 1/3 or smaller than the section having an electrode are disposed on the fixed track TK5' opposing the separate rotary track TK5. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、相対向面に電極を備えた固定基板と回転基板とを有し、両基板の相対回転に伴いこれら相対向面に設けた電極間での静電誘導作用により、回転軸等の被回転検出体の回転量、回転速度等を検出する静電型エンコーダに関するものである。   The present invention has a fixed substrate and a rotating substrate provided with electrodes on opposite surfaces, and due to the electrostatic induction action between the electrodes provided on the opposite surfaces with the relative rotation of both substrates, The present invention relates to an electrostatic encoder that detects a rotation amount, a rotation speed, and the like of a rotation detection object.

静電型エンコーダは、例えば、固定基板と回転基板との相対回転によりこれら両基板対向面の電極間における静電誘導作用の変化により回転の機械的変位量を示す電気信号を得ると共に、この電気信号を処理して回転軸の回転量や回転速度等を検出することができるようになっている。   The electrostatic encoder, for example, obtains an electrical signal indicating the mechanical displacement of rotation due to a change in electrostatic induction action between the electrodes on the opposite surfaces of the two substrates due to relative rotation between the fixed substrate and the rotating substrate. The signal can be processed to detect the rotation amount and rotation speed of the rotation shaft.

このような静電型エンコーダを、例えば交流サーボモータの回転制御に用いる場合、回転基板と固定基板の両基板対向面に、回転情報としてA相やB相信号生成のための電極を設けたものがある(特許文献1、2参照)。   When such an electrostatic encoder is used for rotation control of an AC servo motor, for example, electrodes for generating A-phase and B-phase signals as rotation information are provided on the opposite surfaces of the rotating substrate and the fixed substrate. (See Patent Documents 1 and 2).

特許4038558号公報Japanese Patent No. 40385558 特開2005−221472号公報JP 2005-221472 A

このような静電型エンコーダにおいて、モータロータの磁極を制御する各磁極位置を表すU相、V相、W相信号を生成する電極を設ける場合、回転基板や固定基板それぞれの半径方向に上記電極形成用に多数のトラックが必要であり、その結果、これら両基板の大型化と共に静電型エンコーダのサイズ大型化を招いてしまう。   In such an electrostatic encoder, when electrodes for generating U-phase, V-phase, and W-phase signals representing magnetic pole positions for controlling the magnetic poles of the motor rotor are provided, the electrodes are formed in the radial direction of each of the rotating substrate and the fixed substrate. Therefore, a large number of tracks are required, and as a result, the size of the electrostatic encoder is increased along with the increase in size of both substrates.

そこで、本発明は、そのような磁極位置信号生成のための電極数が増加してもそれを配置するトラック数を最小限の1トラックとして基板サイズの小型化と共にエンコーダサイズの小型化を図れるようにしたものである。   Therefore, according to the present invention, even if the number of electrodes for generating the magnetic pole position signal is increased, the number of tracks on which the magnetic pole position signal is arranged can be reduced to one track so that the substrate size can be reduced and the encoder size can be reduced. It is a thing.

本発明による静電型エンコーダは、相対向面のトラック上に少なくともA相とB相信号生成用の電極を備える固定基板と回転基板とを有し、上記両基板の相対回転に伴う上記両電極間での静電誘導作用に基づいて、上記信号を生成可能とした静電型ロータリエンコーダであって、回転基板においてその任意1つのトラック上にモータ磁極数に応じた間隔でモータ磁極信号電極有り区間と無し区間とを交互に回転電極パターンとして形成し、固定基板において上記回転基板における上記任意1つのトラックと対向する1つのトラック上に上記モータ磁極信号有り区間の3分の1以下の電極幅でもって、かつ所定間隔ごとに各相の磁極位置検出電極を固定電極パターンとして配置した、ことを特徴とするものである。   An electrostatic encoder according to the present invention has a fixed substrate and a rotating substrate having at least electrodes for generating A-phase and B-phase signals on tracks on opposite surfaces, and both electrodes according to relative rotation of the two substrates. Electrostatic rotary encoder capable of generating the above signal based on the electrostatic induction action between the motors, and the motor magnetic pole signal electrodes are provided on the arbitrary one of the tracks on the rotating substrate at intervals corresponding to the number of motor magnetic poles. The section and the non-section are alternately formed as a rotating electrode pattern, and the electrode width is one third or less of the section with the motor magnetic pole signal on one track on the fixed substrate facing the one arbitrary track on the rotating substrate. Therefore, the magnetic pole position detection electrodes of each phase are arranged as fixed electrode patterns at predetermined intervals.

本発明では、回転基板の1トラック上のモータ磁極信号電極の無し区間と有り区間と、固定基板の1トラック上の各相の検出電極との間の静電誘導作用により磁極位置を示すU相、V相、W相信号を生成することができるようになる。そして、本発明では、こうした磁極位置を示す電極を配置するトラックは、回転基板、固定基板いずれにおいても、1トラックであるので、トラック数の大幅削減化が可能となり、基板サイズの小型化ひいてはエンコーダの全体サイズの小型化を図れる。例えば、磁極位置信号がU,V,W,−U,−V,−Wの6磁極位置信号であっても、回転、固定基板両方とも1トラックで済み、磁極位置信号が増加しても基板サイズが大きくなるようなことがない。   In the present invention, the U phase indicating the magnetic pole position by the electrostatic induction action between the non-existing and non-existing sections of the motor magnetic pole signal electrode on one track of the rotating substrate and the detection electrodes of each phase on one track of the fixed substrate. V-phase and W-phase signals can be generated. In the present invention, since the track on which the electrode indicating the magnetic pole position is arranged is one track on both the rotating substrate and the fixed substrate, the number of tracks can be greatly reduced, the substrate size can be reduced, and the encoder The overall size can be reduced. For example, even if the magnetic pole position signals are 6 magnetic pole position signals of U, V, W, -U, -V, and -W, both the rotation and the fixed substrate need only one track, and even if the magnetic pole position signal increases, the substrate There is no such thing as an increase in size.

好ましくは、上記回転基板は外径側と内径側のトラックにその円周方向全周に連続帯状の2次誘導電極を設けると共に、外径側と内径側との間のトラックに円周方向所定ピッチで複数の励起電極を設け、各励起電極を円周方向交互に外径側と内径側の2次誘導電極に接続する一方、上記固定基板は外径側と内径側のトラックにその円周方向全周に連続帯状の1次誘導電極を設けると共に、外径側と内径側との間のトラックの円周方向に上記ピッチより複数分の1以下のピッチで複数の検出電極を設けることで、上記電極をA相とB相信号生成用の電極とすることである。   Preferably, the rotary substrate is provided with a continuous belt-shaped secondary induction electrode on the outer diameter side and inner diameter side tracks on the entire circumference in the circumferential direction, and a predetermined circumferential direction is provided on the track between the outer diameter side and the inner diameter side. A plurality of excitation electrodes are provided at a pitch, and each excitation electrode is connected to the secondary induction electrode on the outer diameter side and the inner diameter side alternately in the circumferential direction. By providing a continuous belt-shaped primary induction electrode on the entire circumference in the direction and providing a plurality of detection electrodes at a pitch equal to or less than a plurality of pitches in the circumferential direction of the track between the outer diameter side and the inner diameter side. The electrode is an electrode for generating A phase and B phase signals.

本発明によれば、磁極位置信号生成電極が増加してもそれら電極の配置用トラックは1トラックで済むから、基板サイズの小型化、ひいてはエンコーダの全体サイズの小型化を図れる。   According to the present invention, even if the number of magnetic pole position signal generating electrodes is increased, only one track is required for arranging these electrodes. Therefore, it is possible to reduce the substrate size and thus the overall size of the encoder.

図1は本発明の実施の形態にかかり、サーボモータと静電型エンコーダとを示す図である。FIG. 1 is a diagram illustrating a servo motor and an electrostatic encoder according to an embodiment of the present invention. 図2はサーボモータのエンコーダ取り付け用軸に静電型エンコーダを取り付けた状態を示す図である。FIG. 2 is a view showing a state where an electrostatic encoder is attached to an encoder attachment shaft of a servo motor. 図3は上記軸に対しての静電型エンコーダの回転基板と固定基板とを側面から示す図である。FIG. 3 is a diagram showing a rotating substrate and a fixed substrate of the electrostatic encoder with respect to the shaft from the side. 図4は上記軸に対しての静電型エンコーダの回転基板と固定基板との外観構成を示す図である。FIG. 4 is a diagram showing an external configuration of the rotary substrate and the fixed substrate of the electrostatic encoder with respect to the shaft. 図5はサーボモータと静電型エンコーダとサーボコントローラとの回路ブロックとそれらに関わる信号の入・出力関係を示す図である。FIG. 5 is a diagram showing circuit blocks of the servo motor, electrostatic encoder, and servo controller, and input / output relationships of signals related to them. 図6は静電型エンコーダの回転基板を展開して示す図である。FIG. 6 is a developed view of the rotating substrate of the electrostatic encoder. 図7は静電型エンコーダの固定基板を展開して示す図である。FIG. 7 is an unfolded view of the fixed substrate of the electrostatic encoder. 図8(a)は静電型エンコーダの出力を処理する処理回路例を示す図、図8(b)は静電型エンコーダの出力を処理する他の処理回路例を示す図である。FIG. 8A is a diagram showing an example of a processing circuit that processes the output of the electrostatic encoder, and FIG. 8B is a diagram showing another example of the processing circuit that processes the output of the electrostatic encoder. 図9(a−1)ないし(a−8)は図8(a)の処理回路による動作タイミングチャートを示す図、図9(b−1)ないし(b−8)は図8(b)の処理回路による動作タイミングチャートを示す図である。9 (a-1) to 9 (a-8) are diagrams showing operation timing charts by the processing circuit of FIG. 8 (a), and FIGS. 9 (b-1) to 9 (b-8) are diagrams of FIG. 8 (b). It is a figure which shows the operation | movement timing chart by a processing circuit. 図10は回転電極パターン、固定電極パターン、およびU相、V相、W相信号のタイミングチャートを示す図である。FIG. 10 is a diagram showing a timing chart of the rotating electrode pattern, the fixed electrode pattern, and the U-phase, V-phase, and W-phase signals. 図11は回転電極パターン、固定電極パターン、およびU相、V相、W相信号における別のタイミングチャートを示す図である。FIG. 11 is a diagram showing another timing chart for the rotating electrode pattern, the fixed electrode pattern, and the U-phase, V-phase, and W-phase signals.

以下、添付した図面を参照して、本発明の実施の形態に係る静電型のエンコーダを詳細に説明する。   Hereinafter, an electrostatic encoder according to an embodiment of the present invention will be described in detail with reference to the accompanying drawings.

図1を参照して、1はサーボモータ、2はエンコーダを示す。サーボモータ1はモータ本体1a前端に駆動軸1bを有すると共に後端にエンコーダ取付用軸1cを有する。エンコーダ2は、回転基板3と固定基板4とを有する。エンコーダ2は、図1中、矢印で示すように、エンコーダ取付用軸1cに取り付けられた後、モータ本体1a後部側は、図2で示すように、モータカバー1dで覆われる。エンコーダ2は、図3および図4で示すように、その回転基板3が円形エンコーダ取付用軸1cに一体回転可能に固定され、固定基板4が回転基板3と軸方向相対向した状態で図示略の機構により非回転に固定される。   Referring to FIG. 1, reference numeral 1 denotes a servo motor, and 2 denotes an encoder. The servo motor 1 has a drive shaft 1b at the front end of the motor body 1a and an encoder mounting shaft 1c at the rear end. The encoder 2 has a rotating substrate 3 and a fixed substrate 4. After the encoder 2 is attached to the encoder mounting shaft 1c as shown by an arrow in FIG. 1, the rear side of the motor body 1a is covered with a motor cover 1d as shown in FIG. As shown in FIGS. 3 and 4, the encoder 2 is fixed so that the rotary substrate 3 can rotate integrally with the circular encoder mounting shaft 1 c, and the fixed substrate 4 is axially opposed to the rotary substrate 3. It is fixed non-rotating by this mechanism.

図5で示すように、エンコーダ2において、回転基板3と固定基板4との相対向面には電極(図5では図示略)が形成されており、これら電極は容量結合し、固定基板4上の電極には静電誘導により回転基板3の回転に対応した信号が生成される。この信号は位置信号であるA相およびB相信号とか、原点信号であるZ相信号とかを出力すると共に、U相、V相、W相の磁極位置信号を出力する。   As shown in FIG. 5, in the encoder 2, electrodes (not shown in FIG. 5) are formed on opposite surfaces of the rotating substrate 3 and the fixed substrate 4, and these electrodes are capacitively coupled to each other on the fixed substrate 4. A signal corresponding to the rotation of the rotary substrate 3 is generated by electrostatic induction on the electrodes. This signal outputs A-phase and B-phase signals that are position signals and Z-phase signals that are origin signals, and also outputs U-phase, V-phase, and W-phase magnetic pole position signals.

位置信号と原点信号は、エンコーダ2の上位の検出デバイス、例えばカウンタや、プログラマブルコントローラ等に入力される。   The position signal and the origin signal are input to a detection device above the encoder 2, such as a counter or a programmable controller.

U相、V相、W相の磁極位置信号はサーボドライバー5に入力される。サーボドライバー5は、電源投入時にエンコーダ2からのUVW信号からモータの磁極の大体の位置を割り出し、モータを励起する電圧と同位相の電流指令を発生させてサーボモータ1を回転させる。そのため、サーボドライバー5は、エンコーダ2からのUVW信号に基づきサーボモータ1の各磁極を駆動するための励起電圧Eu,Ev,Ewをサーボモータ1のU相、V相、W相入力端子にそれぞれ印加し、サーボモータ1を駆動制御するようになっている。   U-phase, V-phase, and W-phase magnetic pole position signals are input to the servo driver 5. The servo driver 5 determines the approximate position of the magnetic pole of the motor from the UVW signal from the encoder 2 when the power is turned on, generates a current command having the same phase as the voltage for exciting the motor, and rotates the servo motor 1. Therefore, the servo driver 5 applies excitation voltages Eu, Ev, and Ew for driving the magnetic poles of the servo motor 1 to the U-phase, V-phase, and W-phase input terminals of the servo motor 1 based on the UVW signal from the encoder 2, respectively. The servo motor 1 is driven and controlled by application.

このようなサーボモータ1は近年では小型化され、それに伴い、エンコーダ2も小型化が要求されてきている。こうしたことから、U相、V相、W相の磁極位置信号生成に関わるトラック数の削減化は、エンコーダ2の小型化促進上、重要な技術となっている。そこで本実施の形態では、この磁極位置信号生成に関わるトラック数を回転基板3、固定基板4において1トラックとしたものである。以下説明する。   Such a servo motor 1 has been downsized in recent years, and accordingly, the encoder 2 is also required to be downsized. For this reason, the reduction of the number of tracks related to the generation of the U-phase, V-phase, and W-phase magnetic pole position signals is an important technique for promoting the downsizing of the encoder 2. Therefore, in this embodiment, the number of tracks related to the magnetic pole position signal generation is set to one track on the rotating substrate 3 and the fixed substrate 4. This will be described below.

図6に回転基板3の一部展開を示す。回転基板3は、外径側から内径側に第1ないし第6トラックTK1ないしTK6構成の基板としている。    FIG. 6 shows a partial development of the rotating substrate 3. The rotary substrate 3 is a substrate having the first to sixth tracks TK1 to TK6 from the outer diameter side to the inner diameter side.

第1トラックTK1には、円周方向全周に連続帯状の2次誘導電極E1を設けている。   The first track TK1 is provided with a continuous inductive secondary induction electrode E1 on the entire circumference in the circumferential direction.

第2トラックTK2には、円周方向所定ピッチPで複数の誘導電極E2を設けている。誘導電極E2は円周方向1つずつ交互に第1トラックTK1の2次誘導電極E1と、後記する第6トラックTK6の2次誘導電極E6とに接続される。   The second track TK2 is provided with a plurality of induction electrodes E2 with a predetermined circumferential pitch P. The induction electrode E2 is alternately connected to the secondary induction electrode E1 of the first track TK1 and the secondary induction electrode E6 of the sixth track TK6 described later, one by one in the circumferential direction.

第3トラックTK3には、円周方向1箇所にZ相電極E3を設けている。このZ相電極E3は第1トラックTK1の2次誘導電極E1に接続される。   The third track TK3 is provided with a Z-phase electrode E3 at one place in the circumferential direction. This Z-phase electrode E3 is connected to the secondary induction electrode E1 of the first track TK1.

第4トラックTK4には、円周方向に上記Z相電極E3が半径方向に存在しない領域に帯状に−Z相電極E4を設けている。この−Z相電極E4は後記する第6トラックTK6の2次誘導電極E6に接続される。   The fourth track TK4 is provided with a −Z phase electrode E4 in a band shape in a region where the Z phase electrode E3 does not exist in the radial direction in the circumferential direction. The -Z phase electrode E4 is connected to a secondary induction electrode E6 of a sixth track TK6 described later.

第5トラックTK5には、円周方向交互にモータ磁極信号電極の無し区間と有り区間とを同じ区間長さLで複数区間設けている。電極有り区間には、モータ磁極信号生成用のUVW相電極が設けられている。このUVW相電極は後記する第6トラックTK6の2次誘導電極E6に接続される。サーボモータ1において磁極の数(ポール数)は、サーボモータ1の界磁に形成されるN極とS極との合計数であり、例えば2極(1ペア)であれば、電極UVWは90°ずつ設けられ、6(3ペア)極であれば、UVW相電極は60°ずつ設けられ、8(4ペア)極であれば、UVW相電極は45°ずつ設けられる。   In the fifth track TK5, a plurality of sections having the same section length L are provided for the sections having no motor magnetic pole signal electrode and the sections having the motor pole signal electrode alternately in the circumferential direction. A UVW phase electrode for generating a motor magnetic pole signal is provided in the section with electrodes. This UVW phase electrode is connected to a secondary induction electrode E6 of the sixth track TK6 described later. In the servo motor 1, the number of magnetic poles (the number of poles) is the total number of N poles and S poles formed in the field of the servo motor 1. For example, if there are two poles (one pair), the electrode UVW is 90. If there are 6 (3 pairs) poles, the UVW phase electrodes are provided by 60 °, and if 8 (4 pairs) poles, the UVW phase electrodes are provided by 45 °.

第6トラックTK6には、円周方向全周に連続帯状の2次誘導電極E6を設けている。   The sixth track TK6 is provided with a continuous belt-shaped secondary induction electrode E6 on the entire circumference in the circumferential direction.

図7に固定基板4の一部展開を示す。固定基板4は、外径側から内径側に、回転基板3の第1ないし第6トラックTK1ないしTK6に対向して第1ないし第6トラックTK1´ないしTK6´構成の基板としている。固定基板4は実施の形態では回転基板3と対向するが、回転基板3両側に配置する形態でもよい。   FIG. 7 shows a partial development of the fixed substrate 4. The fixed substrate 4 is configured as a substrate having first to sixth tracks TK1 ′ to TK6 ′ facing the first to sixth tracks TK1 to TK6 of the rotating substrate 3 from the outer diameter side to the inner diameter side. The fixed substrate 4 faces the rotating substrate 3 in the embodiment, but may be arranged on both sides of the rotating substrate 3.

第1トラックTK1´には、円周方向全周連続して帯状に1次誘導電極E1´を設けている。この第1トラックTK1´の1次誘導電極E1´には入力信号1(Asinωtまたはパルス波)が印加される。この入力信号1の周波数は、エンコーダ2の最高回転数、最大分解能、必要な検出精度等を考慮して例えば50MHzなどと定める。後記する第6トラックTK6´での入力信号2(−Asinωtまたはパルス波)の周波数も同様である。   In the first track TK1 ′, a primary induction electrode E1 ′ is provided in a belt shape continuously in the circumferential direction. An input signal 1 (Asin ωt or pulse wave) is applied to the primary induction electrode E1 ′ of the first track TK1 ′. The frequency of the input signal 1 is determined to be, for example, 50 MHz in consideration of the maximum rotation speed, maximum resolution, necessary detection accuracy, and the like of the encoder 2. The same applies to the frequency of the input signal 2 (-Asin ωt or pulse wave) in the sixth track TK6 ′ described later.

第2トラックTK2´には、円周方向等間隔で(P/4)ピッチで円周方向所定の電極幅で複数の平面視矩形の検出(誘導)電極E2´を設けている。この検出電極E2´は、円周方向で連続して隣接する電極4個で1組となり、各組内で第1ないし第4電極(各組内の第1電極は図解の都合で図中ハッチングで示す)を備え、各組の第1電極同士、第2電極同士、第3電極同士、第4電極同士で共通接続し、基板上の信号線から信号(A相とB相信号生成用の信号)を取り出すようになっている。この電極組の数は図7に示す数に限定されず、取り出す信号のレベルに応じて適宜決めることができる。回転基板3の第2トラックTK2の複数の誘導電極E2の配置ピッチはPであり、かつ、誘導電極E2には交互に入力信号1と2とが印加される一方、固定基板4の第2トラックTK2´の上記検出電極E2´の配置ピッチはP/4であるから、この検出電極E2´には、回転基板3の回転に伴い、静電誘導作用により、90度ずつ位相差がある信号を取り出すことができる。そして、この信号からA相、B相信号を生成することができる。   The second track TK2 ′ is provided with a plurality of rectangular detection (induction) electrodes E2 ′ in plan view with a predetermined electrode width in the circumferential direction at a pitch (P / 4) at equal intervals in the circumferential direction. This detection electrode E2 'is a set of four electrodes that are continuously adjacent in the circumferential direction to form one set. The first to fourth electrodes in each set (the first electrode in each set is hatched in the figure for convenience of illustration). The first electrode of each set, the second electrode, the third electrode, and the fourth electrode are connected in common, and signals (for A-phase and B-phase signal generation) from signal lines on the substrate Signal). The number of electrode sets is not limited to the number shown in FIG. 7, and can be determined as appropriate according to the level of the signal to be extracted. The arrangement pitch of the plurality of induction electrodes E2 on the second track TK2 of the rotating substrate 3 is P, and the input signals 1 and 2 are alternately applied to the induction electrode E2, while the second track of the fixed substrate 4 is applied. Since the arrangement pitch of the detection electrodes E2 ′ of TK2 ′ is P / 4, a signal having a phase difference of 90 degrees is applied to the detection electrodes E2 ′ by electrostatic induction as the rotating substrate 3 rotates. It can be taken out. Then, A-phase and B-phase signals can be generated from this signal.

第3トラックTK3´には、円周方向1箇所にZ相電極E3´を設けている。このZ相電極E3´に生成したZ相信号は基板上の信号線から取り出すようになっている。   The third track TK3 ′ is provided with a Z-phase electrode E3 ′ at one place in the circumferential direction. The Z-phase signal generated at the Z-phase electrode E3 ′ is extracted from the signal line on the substrate.

第4トラックTK4´には、円周方向に上記Z相電極E3´と半径方向に対向する領域に−Z相電極E4´を設けている。この−Z相電極E4´に生成した−Z相信号は基板上の信号線から取り出すようになっている。  The fourth track TK4 ′ is provided with a −Z phase electrode E4 ′ in a region facing the Z phase electrode E3 ′ in the circumferential direction in the radial direction. The -Z phase signal generated on the -Z phase electrode E4 'is extracted from the signal line on the substrate.

第5トラックTK5´には、円周方向6個の検出電極E5´をU電極,−W電極,V電極,−U電極,W電極,−V電極の順で隣接して設けている。この検出電極E5´の電極幅は、回転基板3の第5トラックTK5におけるモータ磁極信号電極の区間長さの3分の1以下である。これらU電極,−W電極,V電極,−U電極,W電極,−V電極上に生成した信号は基板上の信号線から取り出すようになっている。   In the fifth track TK5 ′, six detection electrodes E5 ′ in the circumferential direction are provided adjacently in this order: U electrode, −W electrode, V electrode, −U electrode, W electrode, and −V electrode. The electrode width of the detection electrode E5 ′ is equal to or less than one third of the section length of the motor magnetic pole signal electrode in the fifth track TK5 of the rotating substrate 3. Signals generated on these U electrode, -W electrode, V electrode, -U electrode, W electrode, and -V electrode are extracted from signal lines on the substrate.

第6トラックTK6´には、円周方向全周に連続して帯状に1次誘導電極E6´を設けている。この第6トラックTK6´の1次誘導電極E6´には入力信号2(−Asinωtまたはパルス波)が印加される。   The sixth track TK6 ′ is provided with a primary induction electrode E6 ′ in a strip shape continuously around the entire circumference. An input signal 2 (−Asinωt or pulse wave) is applied to the primary induction electrode E6 ′ of the sixth track TK6 ′.

図8(a)に固定基板4の電極E1´ないしE6´を含む処理回路例、図8(b)に他の処理回路例を示す。また、図9(a−1)ないし(a−8)に図8(a)の処理回路による動作タイミングチャート、図9(b−1)ないし(b−8)に図8(b)の処理回路による動作タイミングチャートを示す。図8(a)に示す処理回路は、固定検出電極部5aと、増幅部6aと、復調部7aと、波形整形部8aと、発振部9aの各部を有する。図8(b)に示す処理回路は、固定検出電極部5bと、増幅部6bと、波形整形部7bと、ラッチ部8b、発振部9bの各部を有する。   FIG. 8A shows a processing circuit example including the electrodes E1 ′ to E6 ′ of the fixed substrate 4, and FIG. 8B shows another processing circuit example. Further, FIGS. 9A-1 to 9A-8 show operation timing charts by the processing circuit of FIG. 8A, and FIGS. 9B-1 to 9B-8 show the processing of FIG. The operation | movement timing chart by a circuit is shown. The processing circuit shown in FIG. 8A includes the fixed detection electrode unit 5a, the amplification unit 6a, the demodulation unit 7a, the waveform shaping unit 8a, and the oscillation unit 9a. The processing circuit shown in FIG. 8B includes fixed detection electrode unit 5b, amplification unit 6b, waveform shaping unit 7b, latch unit 8b, and oscillation unit 9b.

まず、図8(a)と図9(a−1)ないし(a−8)を参照して、固定基板4の固定検出電極部5aにおける1次誘導電極E1´、E6´には発振部9aから入力信号(Asinωt,−Asinωt)1、2がキャリア信号として印加される(a−1、a−2)。キャリア信号はパルス波でもよい。   First, referring to FIG. 8 (a) and FIGS. 9 (a-1) to (a-8), the primary induction electrodes E1 ′ and E6 ′ in the fixed detection electrode portion 5a of the fixed substrate 4 include the oscillation portion 9a. Input signals (Asin ωt, -Asin ωt) 1 and 2 are applied as carrier signals (a-1, a-2). The carrier signal may be a pulse wave.

固定基板4の第1、第6トラックTK1´、TK6´それぞれの1次誘導電極E1´、E6´に印加された各入力信号1,2はそれぞれ静電誘導により回転基板3の対応する第1、第6トラックTK1、TK6それぞれの2次誘導電極E1、E6に誘導される。この2次誘導電極E1、E6に誘導された入力信号1,2は、回転基板3の第2トラックTK2上の誘導電極E2に印加される。そして回転基板3の第2トラックTK2上の誘導電極E2から固定基板4の第2トラックTK2´上の検出電極E2´に誘導される。この場合、回転基板3が回転するために、回転基板3の回転位置に対応して入力信号1,2は正弦波状に2つの変調信号1,2に変調される(a−3,a−4)。この変調信号1,2は、増幅部6aで増幅され、復調部7aで復調され90度位相差の位置信号1,2になり(a−5,a−6)、次いで波形整形部8aにて波形整形され、この整形後の波形1、2はA相信号と、B相信号となる(a−7,a−8)。   The input signals 1 and 2 applied to the primary induction electrodes E1 ′ and E6 ′ of the first and sixth tracks TK1 ′ and TK6 ′ of the fixed substrate 4 are respectively corresponding to the first corresponding to the rotary substrate 3 by electrostatic induction. , Are guided to the secondary induction electrodes E1 and E6 of the sixth tracks TK1 and TK6, respectively. The input signals 1 and 2 induced by the secondary induction electrodes E1 and E6 are applied to the induction electrode E2 on the second track TK2 of the rotating substrate 3. Then, the induction electrode E2 on the second track TK2 of the rotating substrate 3 is guided to the detection electrode E2 ′ on the second track TK2 ′ of the fixed substrate 4. In this case, since the rotating substrate 3 rotates, the input signals 1 and 2 are modulated into two modulation signals 1 and 2 in a sine wave shape corresponding to the rotational position of the rotating substrate 3 (a-3, a-4). ). The modulated signals 1 and 2 are amplified by the amplifying unit 6a, demodulated by the demodulating unit 7a and converted into position signals 1 and 2 having a phase difference of 90 degrees (a-5, a-6), and then by the waveform shaping unit 8a. Waveform shaping is performed, and the shaped waveforms 1 and 2 become an A-phase signal and a B-phase signal (a-7, a-8).

次に図8(b)と図9(b−1)ないし(b−8)を参照して、固定検出電極部5bにおける1次誘導電極E1´、E6´には発振部9bから入力信号(Asinωt)1、2がキャリア信号として印加される(b−1、b−2)。キャリア信号はパルス波でもよい。   Next, referring to FIG. 8 (b) and FIGS. 9 (b-1) to (b-8), the primary induction electrodes E1 ′ and E6 ′ in the fixed detection electrode unit 5b are supplied with input signals (from the oscillation unit 9b). Asinωt) 1 and 2 are applied as carrier signals (b-1, b-2). The carrier signal may be a pulse wave.

固定基板4の第1、第6トラックTK1´、TK6´それぞれの1次誘導電極E1´、E6´に印加された各入力信号1,2はそれぞれ静電誘導により回転基板3の対応する第1、第6トラックTK1、TK6それぞれの2次誘導電極E1、E6に誘導される。この2次誘導電極E1、E6に誘導された入力信号1,2は、回転基板3の第2トラックTK2上の誘導電極E2に印加される。そして回転基板3の第2トラックTK2上の誘導電極E2から固定基板4の第2トラックTK2´上の検出電極E2´に誘導される。この場合、回転基板3が回転するために、回転基板3の回転位置に対応して入力信号1,2は正弦波状に2つの変調信号1,2に変調される(b−3,b−4)。この変調信号1,2は、増幅部6bで増幅され、増幅後の変調信号1,2に対して波形整形部7bで基準電圧Verfで波形整形し(b−5,b−6)、ラッチ部8bでラッチ処理することで、A相信号と、B相信号となる(b−7,b−8)。   The input signals 1 and 2 applied to the primary induction electrodes E1 ′ and E6 ′ of the first and sixth tracks TK1 ′ and TK6 ′ of the fixed substrate 4 are respectively corresponding to the first corresponding to the rotary substrate 3 by electrostatic induction. , Are guided to the secondary induction electrodes E1 and E6 of the sixth tracks TK1 and TK6, respectively. The input signals 1 and 2 induced by the secondary induction electrodes E1 and E6 are applied to the induction electrode E2 on the second track TK2 of the rotating substrate 3. Then, the induction electrode E2 on the second track TK2 of the rotating substrate 3 is guided to the detection electrode E2 ′ on the second track TK2 ′ of the fixed substrate 4. In this case, since the rotating substrate 3 rotates, the input signals 1 and 2 are modulated into two modulation signals 1 and 2 in a sine wave form corresponding to the rotational position of the rotating substrate 3 (b-3, b-4). ). The modulated signals 1 and 2 are amplified by the amplifying unit 6b, the waveform shaping unit 7b shapes the waveform of the modulated signals 1 and 2 after amplification using the reference voltage Verf (b-5, b-6), and the latch unit. By latching at 8b, an A-phase signal and a B-phase signal are obtained (b-7, b-8).

以上のようにして図8(a)の処理回路においても、図8(b)の処理回路においても、回転基板3の回転により、エンコーダ2からA相信号、B相信号が出力される。なお、原点信号であるZ相、−Z相信号に関しては説明を略する。   As described above, both the processing circuit of FIG. 8A and the processing circuit of FIG. 8B output the A phase signal and the B phase signal from the encoder 2 by the rotation of the rotating substrate 3. A description of the Z-phase and -Z-phase signals that are origin signals is omitted.

次に、図10を参照して回転基板1回転(360°)での回転基板3の第5トラックTK5上の回転電極パターン(UVW相電極の配置パターン)と固定基板4の第5トラックTK5´上の固定電極パターン(U電極,−W電極,V電極,−U電極,W電極,−V電極の配置パターン)と、各電極におけるU相、−W相、V相、−U相、W相、−V相の出力波形を説明する。回転電極パターンにおいてはその回転方向を矢印で示している。   Next, referring to FIG. 10, the rotating electrode pattern (UVW phase electrode arrangement pattern) on the fifth track TK5 of the rotating substrate 3 and the fifth track TK5 ′ of the fixed substrate 4 at one rotation (360 °) of the rotating substrate. Upper fixed electrode pattern (U electrode, -W electrode, V electrode, -U electrode, W electrode, -V electrode arrangement pattern), U phase, -W phase, V phase, -U phase, W in each electrode The output waveform of the phase and -V phase will be described. In the rotating electrode pattern, the rotation direction is indicated by an arrow.

固定電極パターンを構成するU電極,−W電極,V電極,−U電極,W電極,−V電極それぞれの配置は、次式(1)ないし(6)で定められる。Nはモータ1回転におけるU相、V相、W相の出力パルス数あるいはモータ磁極のペア数を指す。   The arrangement of each of the U electrode, -W electrode, V electrode, -U electrode, W electrode, and -V electrode constituting the fixed electrode pattern is defined by the following equations (1) to (6). N indicates the number of U-phase, V-phase, and W-phase output pulses or the number of motor magnetic pole pairs in one rotation of the motor.

図10では、固定電極パターンにおいて、
U電極は、機械角θu=0° …(1)
V電極は、機械角θv=360°/3×N …(2)
W電極は、機械角θw=2×360°/3×N …(3)
−U電極は、機械角θ−u=360°/2×N …(4)
−V電極は、機械角θ−v=5×360°/6×N …(5)
−W電極は、機械角θ−w=360°/6×N …(6)
固定電極パターンの各電極の電極幅αは、次式(7)で求められる。
In FIG. 10, in the fixed electrode pattern,
The U electrode has a mechanical angle θu = 0 ° (1)
The V electrode has a mechanical angle θv = 360 ° / 3 × N (2)
The W electrode has a mechanical angle θw = 2 × 360 ° / 3 × N (3)
-U electrode has mechanical angle θ-u = 360 ° / 2 × N (4)
The -V electrode has a mechanical angle θ−v = 5 × 360 ° / 6 × N (5)
The -W electrode has a mechanical angle θ−w = 360 ° / 6 × N (6)
The electrode width α of each electrode of the fixed electrode pattern is obtained by the following formula (7).

電極幅α≦360°/6×N …(7)
回転電極パターンの電極幅tは、次式(8)で求められる。
Electrode width α ≦ 360 ° / 6 × N (7)
The electrode width t of the rotating electrode pattern is obtained by the following equation (8).

電極幅t=360°/2×N…(8)
図10は、UVW相の固定電極が差動検出配置である。したがって、U電極と−U電極との差動出力がU相信号出力となり、V電極と−V電極との差動出力がV相信号出力となり、W電極と−W電極との差動出力がW相信号出力となる。
Electrode width t = 360 ° / 2 × N (8)
In FIG. 10, the UVW-phase fixed electrode has a differential detection arrangement. Therefore, the differential output between the U electrode and the -U electrode is a U-phase signal output, the differential output between the V electrode and the -V electrode is a V-phase signal output, and the differential output between the W electrode and the -W electrode is W phase signal output.

図10で示す固定電極パターンでは電極が差動検出された配置であったが、固定電極がU電極、V電極、W電極の単素子でも成立する。一例として8ポール(4ペア)サーボモータにおいての固定電極パターンを、図11に示す。回転電極パターンにおいてモータ磁極信号電極の無し区間と有り区間はそれぞれ45°である。また、固定電極パターンにおけるU電極、V電極、W電極それぞれの配置位置は、上記式(1)−(3)で計算することができる。その計算では、U電極の機械角θuは0°、V電極の機械角θvは30°、W電極の機械角θwは60°である。また、U電極、V電極、W電極それぞれの電極幅αは式(7)で求められ、αは15°以下である。   In the fixed electrode pattern shown in FIG. 10, the electrodes are differentially detected, but the fixed electrode can also be realized by a single element of the U electrode, the V electrode, and the W electrode. As an example, FIG. 11 shows a fixed electrode pattern in an 8-pole (4-pair) servo motor. In the rotating electrode pattern, the motor magnetic pole signal electrode non-existing section and the existing section are 45 °. Further, the arrangement positions of the U electrode, the V electrode, and the W electrode in the fixed electrode pattern can be calculated by the above formulas (1) to (3). In the calculation, the mechanical angle θu of the U electrode is 0 °, the mechanical angle θv of the V electrode is 30 °, and the mechanical angle θw of the W electrode is 60 °. Moreover, the electrode width α of each of the U electrode, the V electrode, and the W electrode is obtained by the equation (7), and α is 15 ° or less.

なお、非差動検出の場合、図8(b)の回路での信号処理が便利である。   In the case of non-differential detection, signal processing with the circuit of FIG. 8B is convenient.

以上説明したように本実施の形態では、磁極位置信号生成のための電極を配置するトラックは、回転基板3、固定基板4のいずれにおいても、第5トラックTK5、TK5´の1トラックであるので、トラック数が大幅に削減化可能となり、基板サイズの小型化ひいてはエンコーダの全体サイズの小型化を図れる。例えば、磁極位置信号がU,V,W,−U,−V,−Wの6磁極位置信号であっても、回転、固定基板3,4両方とも1トラックで済み、磁極位置信号が増加しても基板サイズが大きくなるようなことがない。   As described above, in this embodiment, the track on which the electrode for generating the magnetic pole position signal is arranged is one track of the fifth tracks TK5 and TK5 ′ in both the rotating substrate 3 and the fixed substrate 4. As a result, the number of tracks can be greatly reduced, and the size of the substrate can be reduced, and thus the overall size of the encoder can be reduced. For example, even if the magnetic pole position signals are 6 magnetic pole position signals of U, V, W, -U, -V, and -W, both the rotation and fixed substrates 3 and 4 need only one track, and the magnetic pole position signal increases. However, the substrate size does not increase.

1 サーボモータ
2 エンコーダ
3 回転基板
4 固定基板
1 Servo motor 2 Encoder 3 Rotating board 4 Fixed board

Claims (2)

相対向面のトラック上に少なくともA相とB相信号生成用の電極を備える固定基板と回転基板とを有し、上記両基板の相対回転に伴う上記両電極間での静電誘導作用に基づいて、上記信号を生成可能とした静電型ロータリエンコーダであって、
回転基板においてその任意1つのトラック上にモータ磁極数に応じた間隔でモータ磁極信号電極有りの区間と無しの区間とを交互に回転電極パターンとして形成し、
固定基板において上記回転基板における上記任意1つのトラックと対向する1つのトラック上に上記モータ磁極信号有り区間の3分の1以下の電極幅でもって所定間隔ごとに各相の磁極位置検出電極を固定電極パターンとして配置した、ことを特徴とする静電型ロータリエンコーダ。
Based on the electrostatic induction effect between the two electrodes due to relative rotation of the two substrates, having a fixed substrate and a rotating substrate having at least electrodes for generating the A-phase and B-phase signals on the tracks on the opposite surfaces. An electrostatic rotary encoder capable of generating the signal,
On the rotating substrate, the section with and without the motor magnetic pole signal electrode is alternately formed as a rotating electrode pattern at an interval corresponding to the number of motor magnetic poles on the arbitrary one track.
On the fixed substrate, the magnetic pole position detection electrodes of each phase are fixed at predetermined intervals with an electrode width of one third or less of the section with the motor magnetic pole signal on one track facing the one arbitrary track on the rotating substrate. An electrostatic rotary encoder characterized by being arranged as an electrode pattern.
上記回転基板は外径側と内径側のトラックにその円周方向全周に連続帯状の2次誘導電極を設けると共に、外径側と内径側との間のトラックに円周方向所定ピッチで複数の励起電極を設け、各励起電極を円周方向交互に外径側と内径側の2次誘導電極に接続する一方、
上記固定基板は外径側と内径側のトラックにその円周方向全周に連続帯状の1次誘導電極を設けると共に、外径側と内径側との間のトラックに円周方向に上記ピッチより複数分の1以下のピッチで複数の検出電極を設けることで、
上記電極をA相とB相信号生成用の電極とした、ことを特徴とする請求項1に記載の静電型ロータリエンコーダ。
The rotating substrate is provided with a continuous belt-like secondary induction electrode on the outer diameter side and inner diameter side tracks on the entire circumference in the circumferential direction, and a plurality of tracks at a predetermined pitch in the circumferential direction are provided on the track between the outer diameter side and the inner diameter side. The excitation electrodes are connected to the secondary induction electrodes on the outer diameter side and the inner diameter side alternately in the circumferential direction,
The fixed substrate is provided with a continuous belt-shaped primary induction electrode on the outer diameter side and the inner diameter side of the track on the entire circumference in the circumferential direction, and on the track between the outer diameter side and the inner diameter side in the circumferential direction from the pitch. By providing a plurality of detection electrodes at a pitch of 1 / multiple or less,
2. The electrostatic rotary encoder according to claim 1, wherein the electrodes are electrodes for generating A phase and B phase signals.
JP2009247648A 2009-10-28 2009-10-28 Electrostatic rotary encoder Pending JP2011095034A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009247648A JP2011095034A (en) 2009-10-28 2009-10-28 Electrostatic rotary encoder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009247648A JP2011095034A (en) 2009-10-28 2009-10-28 Electrostatic rotary encoder

Publications (1)

Publication Number Publication Date
JP2011095034A true JP2011095034A (en) 2011-05-12

Family

ID=44112121

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009247648A Pending JP2011095034A (en) 2009-10-28 2009-10-28 Electrostatic rotary encoder

Country Status (1)

Country Link
JP (1) JP2011095034A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017164373A1 (en) * 2016-03-25 2017-09-28 ヤマハ株式会社 Position detection device and position detection method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6429772A (en) * 1987-07-27 1989-01-31 Nec Corp Pulse generator for motor
JPH0355511U (en) * 1989-10-03 1991-05-29
JPH04194616A (en) * 1990-11-28 1992-07-14 Shinko Electric Co Ltd Optical encoder
JP2004117101A (en) * 2002-09-25 2004-04-15 Yaskawa Electric Corp Magnetic encoder device
JP2005221472A (en) * 2004-02-09 2005-08-18 Olympus Corp Electrostatic encoder and electrostatic displacement measuring method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6429772A (en) * 1987-07-27 1989-01-31 Nec Corp Pulse generator for motor
JPH0355511U (en) * 1989-10-03 1991-05-29
JPH04194616A (en) * 1990-11-28 1992-07-14 Shinko Electric Co Ltd Optical encoder
JP2004117101A (en) * 2002-09-25 2004-04-15 Yaskawa Electric Corp Magnetic encoder device
JP2005221472A (en) * 2004-02-09 2005-08-18 Olympus Corp Electrostatic encoder and electrostatic displacement measuring method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017164373A1 (en) * 2016-03-25 2017-09-28 ヤマハ株式会社 Position detection device and position detection method
CN108779993A (en) * 2016-03-25 2018-11-09 雅马哈株式会社 Position detecting device and method for detecting position
US10768021B2 (en) 2016-03-25 2020-09-08 Yamaha Corporation Position detection device and position detection method

Similar Documents

Publication Publication Date Title
JP6316581B2 (en) Motor and its sensing magnet
KR100905357B1 (en) Drive circuit of motor, small electric motor, actuator
US20120274185A1 (en) Motor rotor and motor
JP4845704B2 (en) Hall element resolver
JP2008197046A (en) Resolver
CN102664096A (en) Outer rotor salient pole reluctance type multi-pole rotary transformer
US10505478B2 (en) Motor module, motor step operation control system, and motor control device
JP2008215835A (en) Resolver and resolver for automobile drive motor
CN105308849B (en) The phase control method of the phase-control circuit of brushless electric machine, brushless electric machine and brushless electric machine
WO2016098613A1 (en) Electrostatic encoder
JP2011095034A (en) Electrostatic rotary encoder
JP4814858B2 (en) Resolver
JP4991991B2 (en) Resolver
JP4991992B2 (en) Resolver
CN209659097U (en) The detecting apparatus for rotor position of magneto
JPH01218344A (en) Resolver
CN110754038B (en) Motor control device and motor system
KR20100138163A (en) Rotor position detecting device and brushless motor having same
JP2010117169A (en) Resolver
JP7291104B2 (en) Three-phase brushless motor and method for detecting rotational position of three-phase brushless motor
JP6525846B2 (en) Resolver
CN103762813A (en) Hall position detection device of bipolar excitation three-phase switched reluctance motor
JP4591682B2 (en) Permanent magnet synchronous motor with magnetic encoder
JP2005091269A (en) Angular position detection device and driving device using the same
JPS58119762A (en) DC brushless motor

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20121016

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130705

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130709

A977 Report on retrieval

Effective date: 20130905

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130906

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130909

A131 Notification of reasons for refusal

Effective date: 20140507

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20141014

Free format text: JAPANESE INTERMEDIATE CODE: A02