[go: up one dir, main page]

JP2011094996A - Exhaust oxygen concentration detection apparatus - Google Patents

Exhaust oxygen concentration detection apparatus Download PDF

Info

Publication number
JP2011094996A
JP2011094996A JP2009246572A JP2009246572A JP2011094996A JP 2011094996 A JP2011094996 A JP 2011094996A JP 2009246572 A JP2009246572 A JP 2009246572A JP 2009246572 A JP2009246572 A JP 2009246572A JP 2011094996 A JP2011094996 A JP 2011094996A
Authority
JP
Japan
Prior art keywords
air
fuel ratio
oxygen concentration
exhaust
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009246572A
Other languages
Japanese (ja)
Inventor
Kazutaka Hattori
一孝 服部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2009246572A priority Critical patent/JP2011094996A/en
Publication of JP2011094996A publication Critical patent/JP2011094996A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

【課題】排気の酸素濃度の検出にかかる応答性を適切に調節することのできる排気酸素濃度検出装置を提供する。
【解決手段】この装置は、内燃機関の排気通路の集合部分における三元触媒より排気流れ方向上流側に設けられて同内燃機関の排気の酸素濃度を検出する空燃比センサを備える。機関システムは、内燃機関の各気筒における混合気の空燃比を調節する空燃比制御と内燃機関の気筒間における混合気の空燃比のバラツキを判定する空燃比バラツキ判定とを共に空燃比センサの検出値に基づき実行する。空燃比バラツキ判定の非実行時(S106:YES)における酸素センサの温度(S107)と比較して、空燃比バラツキ判定の実行時(S101:YES)における空燃比センサの温度(S102)を高温に調節する。
【選択図】図3
An exhaust oxygen concentration detection device capable of appropriately adjusting the responsiveness required for detecting the oxygen concentration of exhaust gas is provided.
The apparatus includes an air-fuel ratio sensor that is provided upstream of a three-way catalyst in the exhaust flow direction of the collective portion of the exhaust passage of the internal combustion engine and detects the oxygen concentration of the exhaust of the internal combustion engine. The engine system detects both the air-fuel ratio control for adjusting the air-fuel ratio of the air-fuel mixture in each cylinder of the internal combustion engine and the air-fuel ratio variation determination for determining the air-fuel ratio variation of the air-fuel mixture between the cylinders of the internal combustion engine. Run based on the value. Compared to the temperature (S107) of the oxygen sensor when the air-fuel ratio variation determination is not performed (S106: YES), the temperature (S102) of the air-fuel ratio sensor when the air-fuel ratio variation determination is performed (S101: YES) is increased. Adjust.
[Selection] Figure 3

Description

本発明は、内燃機関の排気の酸素濃度を検出するための酸素センサを有する排気酸素濃度検出装置に関するものである。   The present invention relates to an exhaust oxygen concentration detection device having an oxygen sensor for detecting the oxygen concentration of exhaust gas from an internal combustion engine.

機関システムにおいて内燃機関の排気通路に三元触媒を設けることが多用されている(特許文献1参照)。この機関システムでは、内燃機関の各気筒から排気通路に排出される燃焼ガス(排気)が三元触媒によって浄化されるようになっている。三元触媒は、内燃機関の各気筒内において燃焼する混合気の空燃比が所定範囲(いわゆるウィンド)内になっているときに高い浄化機能を発揮する。そのため三元触媒が設けられた機関システムでは、排気の性状を検出するとともに同性状に基づいて内燃機関の各気筒における混合気の空燃比をフィードバック制御する、いわゆる空燃比制御が実行される。   In an engine system, a three-way catalyst is often used in an exhaust passage of an internal combustion engine (see Patent Document 1). In this engine system, combustion gas (exhaust gas) discharged from each cylinder of the internal combustion engine to the exhaust passage is purified by a three-way catalyst. The three-way catalyst exhibits a high purification function when the air-fuel ratio of the air-fuel mixture combusting in each cylinder of the internal combustion engine is within a predetermined range (so-called window). For this reason, in an engine system provided with a three-way catalyst, so-called air-fuel ratio control is performed in which the nature of the exhaust gas is detected and the air-fuel ratio of the air-fuel mixture in each cylinder of the internal combustion engine is feedback controlled based on the same nature.

具体的には、内燃機関の排気通路の集合部分(詳しくは、各気筒から延びる通路が合流した部分)における三元触媒より排気流れ方向上流側の位置に排気の酸素濃度を検出するための酸素センサが設けられる。そして、この酸素センサにより検出される酸素濃度と所定の濃度(例えば、混合気の空燃比が理論空燃比である場合の排気の酸素濃度)とが一致するように、内燃機関の各気筒に供給される燃料の量(燃料供給量)がフィードバック制御される。   Specifically, oxygen for detecting the oxygen concentration of the exhaust at a position upstream of the three-way catalyst in the exhaust flow direction in the collective portion of the exhaust passage of the internal combustion engine (specifically, the portion where the passages extending from the cylinders merge) A sensor is provided. The oxygen concentration detected by the oxygen sensor is supplied to each cylinder of the internal combustion engine so that a predetermined concentration (for example, the oxygen concentration of the exhaust gas when the air-fuel ratio of the air-fuel mixture is the stoichiometric air-fuel ratio) matches. The amount of fuel to be discharged (fuel supply amount) is feedback-controlled.

こうした空燃比制御を通じて、混合気の空燃比がウィンド内の比率になるように調節されて三元触媒が高い浄化機能を発揮するようになり、内燃機関の排気が適正に浄化されるようになる。   Through such air-fuel ratio control, the air-fuel ratio of the air-fuel mixture is adjusted to the ratio in the window so that the three-way catalyst exhibits a high purification function, and the exhaust gas of the internal combustion engine is appropriately purified. .

ここで上記空燃比制御では、各気筒への燃料供給量が、排気通路の集合部分に設けられた酸素センサの検出値に応じて同一量となるように調節される。そのため、内燃機関の各気筒の空燃比の平均値をウィンド内の比率になるように調節することができるものの、各気筒の空燃比を各別に調節することはできず、機関システムの吸気系や燃料系の個体差、劣化などの影響によって各気筒の空燃比にバラツキが生じることが避けられない。   Here, in the air-fuel ratio control, the fuel supply amount to each cylinder is adjusted to be the same amount according to the detection value of the oxygen sensor provided in the collection portion of the exhaust passage. Therefore, although the average value of the air-fuel ratio of each cylinder of the internal combustion engine can be adjusted so as to be the ratio in the window, the air-fuel ratio of each cylinder cannot be adjusted separately, and the intake system of the engine system and It is inevitable that the air-fuel ratio of each cylinder varies due to the influence of individual differences and deterioration of the fuel system.

多気筒内燃機関においては、各気筒の空燃比の平均値がウィンド内の比率になっていたとしても、それら気筒間における空燃比のバラツキが大きくなると、排気の酸素濃度が上記ウィンドに相当する濃度範囲から周期的に外れるようになるために三元触媒による浄化機能が低下して排気性状の悪化を招いてしまう。そのため、空燃比制御が実行される機関システムであっても、内燃機関の気筒間における空燃比のバラツキの度合いを判定し、同バラツキが大きくなっている場合にはこれに適切に対処することが望ましい。   In a multi-cylinder internal combustion engine, even if the average value of the air-fuel ratio of each cylinder is a ratio in the window, if the variation in the air-fuel ratio between the cylinders becomes large, the oxygen concentration of the exhaust becomes the concentration corresponding to the window. Since it periodically deviates from the range, the purification function by the three-way catalyst is lowered and the exhaust properties are deteriorated. Therefore, even in an engine system in which air-fuel ratio control is executed, it is possible to determine the degree of air-fuel ratio variation between the cylinders of the internal combustion engine, and appropriately deal with this when the variation is large. desirable.

そのため従来、内燃機関の気筒間における空燃比のバラツキが大きくなると酸素センサの検出値の変動幅も大きくなることから、同変動幅(詳しくは、特定の周波数における検出値の変動幅)が大きくなったことをもって上記バラツキが大きくなる異常の発生を判定することが提案されている(例えば特許文献2参照)。   For this reason, conventionally, when the variation in the air-fuel ratio between the cylinders of the internal combustion engine increases, the fluctuation range of the detection value of the oxygen sensor also increases. Therefore, the fluctuation range (specifically, the fluctuation range of the detection value at a specific frequency) increases. Therefore, it has been proposed to determine the occurrence of an abnormality in which the variation becomes large (see, for example, Patent Document 2).

特開2000−179381号公報JP 2000-179381 A 特開2000−220489号公報JP 2000-220489 A

ところで、上述した空燃比制御の実行に際しては、共通の酸素センサの検出値に基づいて各気筒への燃料供給量が同一量に調節される。そのため空燃比制御の実行時には、酸素センサによって各気筒の空燃比の平均値に相当する値を検出すればよく、酸素センサに要求される検出応答性(実際の排気酸素濃度に対する検出値の追従性)は低い。このとき酸素センサの検出応答性を高くすると、その検出値の変動速度や変動幅が大きくなって同検出値と上記平均値に相当する値との乖離を招き易くなり、空燃比制御(具体的には、各気筒の混合気の空燃比)が不安定になり易い。   By the way, when performing the above-described air-fuel ratio control, the fuel supply amount to each cylinder is adjusted to the same amount based on the detection value of the common oxygen sensor. Therefore, when performing air-fuel ratio control, a value corresponding to the average value of the air-fuel ratio of each cylinder may be detected by the oxygen sensor, and the detection response required for the oxygen sensor (following of the detected value with respect to the actual exhaust oxygen concentration) ) Is low. If the detection responsiveness of the oxygen sensor is increased at this time, the fluctuation speed and fluctuation range of the detected value are increased, and the difference between the detected value and the value corresponding to the average value is easily caused. The air-fuel ratio of the air-fuel mixture in each cylinder tends to become unstable.

その一方で、前述のように空燃比のバラツキの度合いを判定する際には、酸素センサの検出応答性が低いと各気筒の空燃比の相違に起因する排気酸素濃度の変動を適正に検出することができないため、そうした排気酸素濃度の変動を的確に検出するために酸素センサに高い検出応答性が要求される。   On the other hand, when determining the degree of variation in the air-fuel ratio as described above, if the detection response of the oxygen sensor is low, fluctuations in the exhaust oxygen concentration due to the difference in the air-fuel ratio of each cylinder are properly detected. Therefore, the oxygen sensor is required to have high detection responsiveness in order to accurately detect such fluctuations in the exhaust oxygen concentration.

このように、排気酸素濃度の検出に際して酸素センサに要求される検出応答性は空燃比制御の実行時と空燃比バラツキの判定時とで異なり、それら空燃比制御および空燃比バラツキの判定を共に精度よく実行するためには、酸素センサの検出応答性を適正に設定する必要がある。   As described above, the detection responsiveness required for the oxygen sensor when detecting the exhaust oxygen concentration differs between the execution of the air-fuel ratio control and the determination of the air-fuel ratio variation, and both the air-fuel ratio control and the determination of the air-fuel ratio variation are accurate. In order to perform well, it is necessary to set the detection response of the oxygen sensor appropriately.

本発明は、そうした実情に鑑みてなされたものであり、その目的は、排気の酸素濃度の検出にかかる応答性を適切に調節することのできる排気酸素濃度検出装置を提供することにある。   The present invention has been made in view of such circumstances, and an object of the present invention is to provide an exhaust oxygen concentration detection device capable of appropriately adjusting the responsiveness required for detecting the oxygen concentration of exhaust gas.

以下、上記目的を達成するための手段及びその作用効果について説明する。
請求項1に記載の発明は、多気筒内燃機関の排気通路の集合部分における三元触媒より排気流れ方向上流側に設けられて同内燃機関の排気の酸素濃度を検出する酸素センサを備え、前記内燃機関の各気筒における混合気の空燃比を調節する空燃比制御と前記内燃機関の気筒間における混合気の空燃比のバラツキを判定する空燃比バラツキ判定とを共に前記酸素センサの検出値に基づき実行する機関システムに適用される排気酸素濃度検出装置において、前記空燃比バラツキ判定の非実行時における前記酸素センサの温度と比較して、同空燃比バラツキ判定の実行時における前記酸素センサの温度を高温に調節する温度調節手段を備えることをその要旨とする。
Hereinafter, means for achieving the above-described object and its operation and effects will be described.
The invention according to claim 1 is provided with an oxygen sensor that is provided upstream of the three-way catalyst in the exhaust passage direction of the collective portion of the exhaust passage of the multi-cylinder internal combustion engine and detects the oxygen concentration of the exhaust of the internal combustion engine, Both the air-fuel ratio control for adjusting the air-fuel ratio of the air-fuel mixture in each cylinder of the internal combustion engine and the air-fuel ratio variation determination for determining the air-fuel ratio variation of the air-fuel mixture between the cylinders of the internal combustion engine are both based on the detected value of the oxygen sensor. In the exhaust oxygen concentration detection device applied to the engine system to be executed, the temperature of the oxygen sensor when the air-fuel ratio variation determination is performed is compared with the temperature of the oxygen sensor when the air-fuel ratio variation determination is not performed. The gist of the invention is to provide temperature adjusting means for adjusting to a high temperature.

酸素センサの温度が適切な温度範囲内に調節されているのであれば、その温度が高くなるほど酸素センサの検出応答性は高くなる。上記構成によれば、空燃比バラツキ判定の実行時においては、酸素センサが高温になってその検出応答性が高くなるために、同酸素センサによって内燃機関の各気筒の排気酸素濃度の相違に起因する同排気酸素濃度の変動を適正に検出することができ、空燃比バラツキ判定を精度よく実行することができる。しかも、空燃比バラツキ判定の非実行時には、酸素センサが比較的低温になってその検出応答性が低くなるために、同酸素センサによって各気筒の排気酸素濃度の平均値に近い値を適正に検出することができ、その検出値に基づいて空燃比制御を精度よく実行することができる。このように上記構成によれば、空燃比制御と空燃比バラツキ判定とを共に精度よく実行するべく、排気の酸素濃度の検出にかかる応答性を適切に調節することができる。   If the temperature of the oxygen sensor is adjusted within an appropriate temperature range, the detection response of the oxygen sensor increases as the temperature increases. According to the above configuration, when the air-fuel ratio variation determination is executed, the oxygen sensor becomes high temperature and the detection responsiveness thereof becomes high. Therefore, the oxygen sensor causes the difference in exhaust oxygen concentration of each cylinder of the internal combustion engine. Therefore, it is possible to properly detect the fluctuation of the exhaust oxygen concentration, and to perform the air-fuel ratio variation determination with high accuracy. In addition, when the air-fuel ratio variation determination is not performed, the oxygen sensor becomes relatively low temperature and the detection responsiveness is low, so the oxygen sensor appropriately detects a value close to the average value of the exhaust oxygen concentration of each cylinder. The air-fuel ratio control can be executed with high accuracy based on the detected value. As described above, according to the above configuration, the responsiveness for detecting the oxygen concentration of the exhaust gas can be appropriately adjusted in order to execute both the air-fuel ratio control and the air-fuel ratio variation determination with high accuracy.

請求項2に記載の発明は、請求項1に記載の排気酸素濃度検出装置において、前記温度調節手段は、前記内燃機関の吸入空気量が多いときほど前記酸素センサの温度を低温に調節するものであることをその要旨とする。   The invention according to claim 2 is the exhaust oxygen concentration detection device according to claim 1, wherein the temperature adjusting means adjusts the temperature of the oxygen sensor to a lower temperature as the intake air amount of the internal combustion engine increases. That is the gist.

内燃機関の吸入空気量が多いときほど同内燃機関の排気量、すなわち酸素センサの配設部分を通過する排気の量が多いために、排気の酸素濃度の変化に対する酸素センサの検出値の追従性が高くなると云える。こうした吸入空気量の相違による酸素センサの検出値の変化速度の相違は、酸素センサの検出応答性の相違と同様に、空燃比制御の実行精度や空燃比バラツキ判定の判定精度を低下させる一因となる可能性がある。   As the intake air amount of the internal combustion engine increases, the exhaust amount of the internal combustion engine, that is, the amount of exhaust gas that passes through the portion where the oxygen sensor is disposed, increases the followability of the detected value of the oxygen sensor to the change in the oxygen concentration of the exhaust gas. Can be said to be high. The difference in the change rate of the detection value of the oxygen sensor due to the difference in the intake air amount is a cause of lowering the execution accuracy of the air-fuel ratio control and the determination accuracy of the air-fuel ratio variation determination, similarly to the difference in the detection response of the oxygen sensor. There is a possibility.

上記構成によれば、そうした吸入空気量の相違に起因する酸素センサの検出値の変化速度の差を抑えるように、酸素センサの温度を変更してその検出応答性を設定することができる。そのため、上記変化速度の差および同差による誤差の発生を抑えることができ、空燃比制御や空燃比バラツキ判定を精度よく実行することができる。   According to the above configuration, it is possible to change the temperature of the oxygen sensor and set its detection responsiveness so as to suppress the difference in the change rate of the detection value of the oxygen sensor due to such a difference in the intake air amount. Therefore, the difference between the change speeds and the error due to the difference can be suppressed, and the air-fuel ratio control and the air-fuel ratio variation determination can be executed with high accuracy.

なお、前記温度調節手段としては、請求項3によるように、前記酸素センサを加熱するためのヒータと同ヒータへの供給電力を調節するものとを有するものを採用することができる。   In addition, as said temperature control means, what has what has a heater for adjusting the electric power supplied to the heater for heating the said oxygen sensor as Claim 3 is employable.

請求項4に記載の発明は、請求項3に記載の排気酸素濃度検出装置において、前記酸素センサは温度上昇に伴いインピーダンスが大きくなる検出素子を有してなり、前記温度調節手段は、前記検出素子のインピーダンスの相関値を検出するとともに、同相関値に基づいて前記ヒータへ供給電力を調節するものであり、前記排気酸素濃度検出装置は、前記空燃比バラツキ判定の実行停止前後における前記ヒータの消費電力の差が所定の判定値以上であることを条件に、前記酸素センサの劣化異常を判定する劣化判定手段を更に備えてなることをその要旨とする。   According to a fourth aspect of the present invention, in the exhaust gas oxygen concentration detection device according to the third aspect, the oxygen sensor has a detection element whose impedance increases as the temperature rises, and the temperature adjusting means includes the detection element. In addition to detecting the correlation value of the impedance of the element, the supply power to the heater is adjusted based on the correlation value, and the exhaust oxygen concentration detection device is configured to detect the correlation of the heater before and after the execution of the air-fuel ratio variation determination is stopped. The gist of the present invention is that it further comprises a deterioration determining means for determining a deterioration abnormality of the oxygen sensor on condition that the difference in power consumption is equal to or greater than a predetermined determination value.

上記構成では、酸素センサの温度設定に際して、酸素センサの検出素子の温度が高くなるほど同検出素子のインピーダンスが小さくなるといった特性をふまえて、このインピーダンスの相関値が検出されるとともに同相関値が目標とする温度に相当する値になるようにヒータへ供給電力が調節される。これにより、酸素センサの素子温度が所望の温度に調節される。   In the above configuration, when setting the temperature of the oxygen sensor, the correlation value of the impedance is detected and the correlation value is the target value based on the characteristic that the impedance of the detection element of the oxygen sensor decreases as the temperature of the oxygen sensor increases. The power supplied to the heater is adjusted to a value corresponding to the temperature. Thereby, the element temperature of the oxygen sensor is adjusted to a desired temperature.

酸素センサの検出素子は劣化に伴ってインピーダンスが大きくなるといった特性も有している。そのため、検出素子のインピーダンスの相関値に基づいてヒータへ供給電力を調節する装置では、劣化によって検出素子のインピーダンスが増加した場合に、その増加分を低下させるためにヒータへの供給電力が大きくなる分だけ同ヒータの消費電力が不要に多くなってしまう。したがって、そのようにしてヒータの消費電力が大きくなったことをもって酸素センサの劣化異常を判定することが可能になる。   The detection element of the oxygen sensor has a characteristic that the impedance increases with deterioration. Therefore, in a device that adjusts the power supplied to the heater based on the correlation value of the impedance of the detection element, when the impedance of the detection element increases due to deterioration, the power supplied to the heater increases to reduce the increase. The power consumption of the heater is unnecessarily increased by that amount. Therefore, it becomes possible to determine the deterioration abnormality of the oxygen sensor when the power consumption of the heater is increased in this way.

ただし、内燃機関の排気温度はその運転状態に応じて異なるために、酸素センサの温度を目標とする温度で維持するために必要なヒータの消費電力も機関運転状態に応じて異なり、単にヒータの消費電力を監視しても酸素センサの劣化異常を精度よく判定することは難しい。   However, since the exhaust temperature of the internal combustion engine varies depending on its operating state, the power consumption of the heater required to maintain the temperature of the oxygen sensor at the target temperature also varies depending on the engine operating state. Even if the power consumption is monitored, it is difficult to accurately determine the deterioration abnormality of the oxygen sensor.

劣化によって検出素子のインピーダンスが大きくなった場合には、そのときどきのヒータの消費電力が大きくなることに加えて、空燃比バラツキ判定の実行停止前後におけるヒータの消費電力の差も大きくなる。そして、この消費電力の差も機関運転状態に応じて異なるとはいえ、その機関運転状態の変化に伴う変化幅は、そのときどきのヒータの消費電力の機関運転状態の変化に伴う変化幅と比較してごく小さくなることが発明者によって確認された。   When the impedance of the detection element increases due to deterioration, the power consumption of the heater increases from time to time, and the difference in power consumption of the heater before and after the execution of air-fuel ratio variation determination is stopped also increases. Although the difference in power consumption varies depending on the engine operating state, the change width accompanying the change in the engine operation state is compared with the change width accompanying the change in the engine operation state of the heater power consumption at that time. It was confirmed by the inventors that it was very small.

上記構成によれば、そうした空燃比バラツキ判定の実行停止前後におけるヒータ消費電力の差が大きくなったことに基づいて、酸素センサの劣化異常を精度よく判定することができる。なお、インピーダンスの相関値としては、インピーダンスそのものの他、アドミタンスを採用することができる。   According to the above configuration, it is possible to accurately determine the deterioration abnormality of the oxygen sensor based on the difference in the heater power consumption before and after the execution stop of the air-fuel ratio variation determination. As the impedance correlation value, admittance can be employed in addition to the impedance itself.

請求項5に記載の発明は、請求項1〜4のいずれか一項に記載の排気酸素濃度検出装置において、前記機関システムは、前記空燃比バラツキ判定において、前記酸素センサにより検出される酸素濃度の変化速度が所定の判定速度以上であるときに前記内燃機関の気筒間における混合気の空燃比のバラツキが大きくなる異常が発生していると判定することをその要旨とする。   According to a fifth aspect of the present invention, in the exhaust oxygen concentration detection device according to any one of the first to fourth aspects, the engine system detects the oxygen concentration detected by the oxygen sensor in the air-fuel ratio variation determination. The gist of the present invention is to determine that there is an abnormality in which the variation in the air-fuel ratio of the air-fuel mixture increases between the cylinders of the internal combustion engine when the change speed of the engine is equal to or higher than a predetermined determination speed.

内燃機関の気筒間における空燃比のバラツキが生じると、排気通路の集合部分を通過する排気の酸素濃度が周期的に変動するようになるために、酸素センサにより検出される酸素濃度も同様に周期的に変動するようになる。そして上記バラツキが大きくなると、酸素センサによって検出される排気酸素濃度の変動幅も大きくなり、同排気酸素濃度の変化速度が高くなる。   When the air-fuel ratio varies between the cylinders of the internal combustion engine, the oxygen concentration of the exhaust gas that passes through the aggregate portion of the exhaust passage changes periodically, so that the oxygen concentration detected by the oxygen sensor is also cycled similarly. Will fluctuate. When the variation increases, the fluctuation range of the exhaust oxygen concentration detected by the oxygen sensor also increases, and the change rate of the exhaust oxygen concentration increases.

この点、上記構成によれば、酸素センサにより検出される排気酸素濃度の変化速度が高くなったことをもって、内燃機関の気筒間における空燃比のバラツキが大きくなっていると判断することができ、同バラツキが大きくなる異常の発生を精度よく判定することができる。   In this regard, according to the above configuration, it can be determined that the variation in the air-fuel ratio between the cylinders of the internal combustion engine has increased due to the increase in the change rate of the exhaust oxygen concentration detected by the oxygen sensor. It is possible to accurately determine the occurrence of an abnormality that increases the variation.

請求項6に記載の発明は、請求項1〜5のいずれか一項に記載の排気酸素濃度検出装置において、前記機関システムは、実行条件の非成立時に前記空燃比制御を実行するとともに前記空燃比バラツキ判定を非実行とし、前記実行条件の成立時に前記空燃比制御と前記空燃比バラツキ判定とを共に実行することをその要旨とする。   According to a sixth aspect of the present invention, in the exhaust oxygen concentration detection device according to any one of the first to fifth aspects, the engine system executes the air-fuel ratio control when the execution condition is not satisfied, and The gist of the present invention is to execute the air-fuel ratio control and the air-fuel ratio variation determination together when the execution condition is satisfied, without executing the fuel-fuel ratio variation determination.

上記構成によれば、空燃比制御と空燃比バラツキ判定とが共に実行されるときには、同空燃比バラツキ判定の判定精度を空燃比制御の実行精度より優先するべく、酸素センサの検出応答性を高くすることができる。しかも、空燃比バラツキ判定が実行されずに空燃比制御が実行されるときには同空燃比制御を精度よく実行するべく酸素センサの検出応答性を低くすることができる。   According to the above configuration, when both the air-fuel ratio control and the air-fuel ratio variation determination are executed, the detection response of the oxygen sensor is increased so that the determination accuracy of the air-fuel ratio variation determination has priority over the execution accuracy of the air-fuel ratio control. can do. In addition, when the air-fuel ratio control is executed without executing the air-fuel ratio variation determination, the detection response of the oxygen sensor can be lowered so that the air-fuel ratio control can be executed with high accuracy.

このように上記構成によれば、空燃比バラツキ判定の実行の有無によることなく酸素センサの検出応答性が一定に維持される装置と比較して、酸素センサの検出応答性を適切に調節することができ、高い実行精度での空燃比制御の実行と高い判定精度での空燃比バラツキ判定の実行との両立を図ることができる。   As described above, according to the above configuration, the detection response of the oxygen sensor can be appropriately adjusted as compared with a device in which the detection response of the oxygen sensor is kept constant regardless of whether or not the air-fuel ratio variation determination is performed. Thus, it is possible to achieve both the execution of the air-fuel ratio control with high execution accuracy and the execution of the air-fuel ratio variation determination with high determination accuracy.

本発明を具体化した一実施の形態にかかる酸素濃度検出装置が適用される機関システムの概略構成を示す略図。1 is a schematic diagram showing a schematic configuration of an engine system to which an oxygen concentration detection device according to an embodiment embodying the present invention is applied. 空燃比センサにより検出される酸素濃度の推移の一例を示すタイムチャート。The time chart which shows an example of transition of the oxygen concentration detected by an air fuel ratio sensor. 温度調節処理の実行手順を示すフローチャート。The flowchart which shows the execution procedure of a temperature control process. 温度調節処理の実行手順を示すフローチャート。The flowchart which shows the execution procedure of a temperature control process. 空燃比センサの検出素子の温度と応答時間と吸入空気量との関係の一例を示すグラフ。The graph which shows an example of the relationship between the temperature of the detection element of an air fuel ratio sensor, response time, and intake air amount.

以下、本発明にかかる排気酸素濃度検出装置について説明する。
図1は、本発明を具体化した一実施の形態にかかる排気酸素濃度検出装置が適用される機関システムの概略構成を示している。
Hereinafter, an exhaust oxygen concentration detection apparatus according to the present invention will be described.
FIG. 1 shows a schematic configuration of an engine system to which an exhaust oxygen concentration detection device according to an embodiment embodying the present invention is applied.

同図1に示すように、内燃機関10は複数(本実施の形態では、四つ)の気筒(♯1〜♯4)を備えている。内燃機関10の吸気通路11は、各気筒を始点に延設された部分(各吸気分岐通路11a)とそれら吸気分岐通路11aの集合した集合部分(吸気集合通路11b)とにより構成されている。   As shown in FIG. 1, the internal combustion engine 10 includes a plurality (four in the present embodiment) of cylinders (# 1 to # 4). The intake passage 11 of the internal combustion engine 10 includes a portion extending from each cylinder as a starting point (each intake branch passage 11a) and a collective portion (intake collect passage 11b) in which the intake branch passages 11a are gathered.

吸気通路11における吸気集合通路11bにはスロットルバルブ12が設けられており、このスロットルバルブ12にはスロットルモータ13が連結されている。このスロットルモータ13の作動制御(スロットル制御)を通じてスロットルバルブ12の開度(スロットル開度TA)が調節される。このスロットル制御を通じて、内燃機関10の吸気通路11(詳しくは、吸気集合通路11b)の通路断面積が調節されて、同吸気通路11を介して内燃機関10の各気筒に吸入される空気の量が調節される。   A throttle valve 12 is provided in the intake manifold passage 11 b in the intake passage 11, and a throttle motor 13 is connected to the throttle valve 12. Through the operation control (throttle control) of the throttle motor 13, the opening degree (throttle opening degree TA) of the throttle valve 12 is adjusted. Through this throttle control, the passage cross-sectional area of the intake passage 11 (specifically, the intake manifold passage 11b) of the internal combustion engine 10 is adjusted, and the amount of air taken into each cylinder of the internal combustion engine 10 through the intake passage 11 Is adjusted.

吸気通路11における各吸気分岐通路11a(詳しくは、吸気ポート)には燃料を噴射する燃料噴射弁14が設けられている。本実施の形態では、各吸気分岐通路11aに対して一つずつ合計四つの燃料噴射弁14が設けられている。それら燃料噴射弁14の作動制御(燃料噴射制御)を通じて、内燃機関10の各吸気分岐通路11a内に噴射される燃料の量(燃料噴射量)が調節される。   Each intake branch passage 11a (specifically, intake port) in the intake passage 11 is provided with a fuel injection valve 14 for injecting fuel. In the present embodiment, a total of four fuel injection valves 14 are provided for each intake branch passage 11a. Through the operation control (fuel injection control) of these fuel injection valves 14, the amount of fuel (fuel injection amount) injected into each intake branch passage 11a of the internal combustion engine 10 is adjusted.

内燃機関10の運転に際しては、吸気分岐通路11aを通過する吸入空気と燃料噴射弁14から噴射される燃料とが混合されつつ内燃機関10の各気筒に吸入されることにより、各気筒内に混合気が形成される。   During operation of the internal combustion engine 10, the intake air passing through the intake branch passage 11a and the fuel injected from the fuel injection valve 14 are mixed and sucked into each cylinder of the internal combustion engine 10 to be mixed into each cylinder. Qi is formed.

内燃機関10の各気筒には、それぞれ点火プラグ15が設けられている。この点火プラグ15の作動制御(点火制御)を通じて内燃機関10の各気筒内の混合気が着火して燃焼し、その燃焼より発生するエネルギによって内燃機関10の出力軸16に回転トルクが付与される。   Each cylinder of the internal combustion engine 10 is provided with a spark plug 15. Through the operation control (ignition control) of the spark plug 15, the air-fuel mixture in each cylinder of the internal combustion engine 10 is ignited and combusted, and rotational torque is applied to the output shaft 16 of the internal combustion engine 10 by the energy generated by the combustion. .

内燃機関10の各気筒内の燃焼ガス(排気)は排気通路17に排出される。この排気通路17は、内燃機関10の各気筒を始点に延設された部分(各排気分岐通路17a)とそれら排気分岐通路17aの集合した集合部分(排気集合通路17b)とにより構成されている。   Combustion gas (exhaust gas) in each cylinder of the internal combustion engine 10 is discharged to the exhaust passage 17. The exhaust passage 17 includes a portion (each exhaust branch passage 17a) extending from each cylinder of the internal combustion engine 10 as a starting point and a collective portion (exhaust collect passage 17b) in which the exhaust branch passages 17a are gathered. .

そして、排気通路17における排気集合通路17bには三元触媒18が設けられている。内燃機関10の各気筒からの排気は各排気分岐通路17aを介して排気集合通路17bに集められて三元触媒18によって浄化された後、排気通路17の外部に排出される。   A three-way catalyst 18 is provided in the exhaust collecting passage 17 b in the exhaust passage 17. Exhaust gas from each cylinder of the internal combustion engine 10 is collected in the exhaust collecting passage 17b via the exhaust branch passages 17a, purified by the three-way catalyst 18, and then discharged to the outside of the exhaust passage 17.

本実施の形態の機関システムは、内燃機関10の運転状態を検出するための各種センサを備えている。各種センサとしては例えば、アクセルペダルなどのアクセル操作部材(図示略)の操作量(アクセル操作量ACC)を検出するためのアクセルセンサ21や、内燃機関10の吸気通路11(詳しくは、吸気集合通路11b)を通過する空気の量(通路吸気量GA)を検出するための吸気量センサ22が設けられている。また、内燃機関10の出力軸16の回転速度(機関回転速度NE)を検出するためのクランクセンサ23や、排気の酸素濃度OXを検出するための空燃比センサ24、スロットル開度TAを検出するためのスロットルセンサ25なども設けられている。   The engine system of the present embodiment includes various sensors for detecting the operating state of the internal combustion engine 10. Examples of various sensors include an accelerator sensor 21 for detecting an operation amount (accelerator operation amount ACC) of an accelerator operation member (not shown) such as an accelerator pedal, an intake passage 11 (specifically, an intake collective passage) of the internal combustion engine 10. An intake air amount sensor 22 for detecting the amount of air passing through 11b) (passage intake air amount GA) is provided. Further, the crank sensor 23 for detecting the rotational speed of the output shaft 16 (engine rotational speed NE) of the internal combustion engine 10, the air-fuel ratio sensor 24 for detecting the oxygen concentration OX of the exhaust, and the throttle opening TA are detected. A throttle sensor 25 for the purpose is also provided.

上記空燃比センサ24は詳しくは、排気通路17の排気集合通路17bにおける前記三元触媒18より排気流れ方向上流側の位置に取り付けられている。空燃比センサ24は、周知の限界電流式の酸素センサであり、ジルコニアを材料として焼結された検出素子24aを備えている。なお限界電流式の酸素センサは、排気の酸素濃度に応じた出力電流が得られるセンサであり、排気の酸素濃度と密接な関係にある混合気の空燃比が理論空燃比近傍の所定比率(具体的には、14.5)である場合には、その出力電流がほぼ「0」になる。そして、混合気の空燃比がリッチになるにつれて出力電流は負の方向に大きくなり、同空燃比がリーンになるにつれて出力電流は正の方向に大きくなる。したがって、上記空燃比センサ24の出力信号に基づき、混合気の空燃比についてそのリーン度合いやリッチ度合いを検出することができる。   Specifically, the air-fuel ratio sensor 24 is attached to a position upstream of the three-way catalyst 18 in the exhaust collecting passage 17b of the exhaust passage 17 in the exhaust flow direction. The air-fuel ratio sensor 24 is a well-known limiting current type oxygen sensor, and includes a detection element 24a sintered using zirconia as a material. The limit current type oxygen sensor is a sensor that obtains an output current according to the oxygen concentration of the exhaust gas, and the air-fuel ratio of the air-fuel mixture that is closely related to the oxygen concentration of the exhaust gas is a predetermined ratio (specifically Specifically, in the case of 14.5), the output current is almost “0”. The output current increases in the negative direction as the air-fuel ratio of the air-fuel mixture becomes rich, and the output current increases in the positive direction as the air-fuel ratio becomes lean. Therefore, based on the output signal of the air-fuel ratio sensor 24, the lean degree or rich degree of the air-fuel ratio of the air-fuel mixture can be detected.

また、空燃比センサ24はヒータ24bを内蔵している。このヒータ24bは検出素子24aを加熱するためのものであり、同ヒータ24bへの供給電力の調節制御(ヒータ制御)を通じて検出素子24aの温度を調節することができるようになっている。   The air-fuel ratio sensor 24 has a built-in heater 24b. The heater 24b is for heating the detection element 24a, and the temperature of the detection element 24a can be adjusted through adjustment control (heater control) of power supplied to the heater 24b.

本実施の形態の機関システムは、マイクロコンピュータなどを中心に構成される電子制御ユニット20を備えており、この電子制御ユニット20には各種センサの出力信号が取り込まれている。電子制御ユニット20は、各種センサの出力信号に基づき所定周期毎に実行される演算処理を通じて各種の演算を行い、その演算結果に基づいてスロットル制御や燃料噴射制御、点火制御、ヒータ制御などといった内燃機関10の運転にかかる各種制御を実行する。   The engine system according to the present embodiment includes an electronic control unit 20 mainly composed of a microcomputer and the like, and output signals of various sensors are taken into the electronic control unit 20. The electronic control unit 20 performs various calculations through calculation processes executed at predetermined intervals based on output signals of various sensors, and based on the calculation results, an internal combustion engine such as throttle control, fuel injection control, ignition control, heater control, etc. Various controls related to the operation of the engine 10 are executed.

本実施の形態のスロットル制御は次のように実行される。すなわち先ず、内燃機関10の運転状態(具体的には、アクセル操作量ACCおよび機関回転速度NE)に基づいてスロットル開度TAについての制御目標値(目標スロットル開度Tta)が算出される。そして、この目標スロットル開度Ttaと実際のスロットル開度TAとが一致するようにスロットルモータ13の作動が制御される。これにより、内燃機関10の各気筒に吸入される空気の量(吸入空気量)が同内燃機関10の運転状態に応じたかたちで調節される。   The throttle control according to the present embodiment is executed as follows. That is, first, a control target value (target throttle opening Tta) for the throttle opening TA is calculated based on the operating state of the internal combustion engine 10 (specifically, the accelerator operation amount ACC and the engine speed NE). Then, the operation of the throttle motor 13 is controlled so that the target throttle opening degree Tta and the actual throttle opening degree TA coincide with each other. As a result, the amount of air taken into each cylinder of the internal combustion engine 10 (intake air amount) is adjusted in accordance with the operating state of the internal combustion engine 10.

また、本実施の形態の燃料噴射制御は次のように実行される。すなわち先ず、通路吸気量GAと機関回転速度NEとに基づいて燃料噴射量についての制御目標値(目標燃料噴射量TQ)が算出される。そして、この目標燃料噴射量TQと同量の燃料が噴射されるように各燃料噴射弁14が開弁駆動される。なお本実施の形態では、通路吸気量GAと機関回転速度NEとにより定まる内燃機関10の運転状態と同内燃機関10の各気筒内の混合気の空燃比を所定比率(例えば、14.5)にすることの可能な燃料噴射量との関係が実験やシミュレーションの結果から予め求められて電子制御ユニット20に記憶されており、同関係に基づいて上記目標燃料噴射量TQが算出される。   Further, the fuel injection control of the present embodiment is executed as follows. That is, first, a control target value (target fuel injection amount TQ) for the fuel injection amount is calculated based on the passage intake air amount GA and the engine rotational speed NE. Then, each fuel injection valve 14 is driven to open so that the same amount of fuel as the target fuel injection amount TQ is injected. In the present embodiment, the operating state of the internal combustion engine 10 determined by the passage intake air amount GA and the engine rotational speed NE and the air-fuel ratio of the air-fuel mixture in each cylinder of the internal combustion engine 10 are set to a predetermined ratio (for example, 14.5). The relationship with the fuel injection amount that can be made is obtained in advance from the results of experiments and simulations and stored in the electronic control unit 20, and the target fuel injection amount TQ is calculated based on the relationship.

さらに本実施の形態では、空燃比センサ24の検出値(酸素濃度OX)に基づいて燃料噴射量をフィードバック制御する、いわゆる空燃比制御が実行される。この空燃比制御は、その実行条件が成立していることを条件に実行される所定周期毎の演算処理として電子制御ユニット20により実行される。空燃比制御の実行条件が成立したことは以下の各条件が共に満たされることにより判断される。
・空燃比センサ24が活性化していること(具体的には、検出素子24aの温度が所定温度[例えば、300℃]以上になっていること)。
・内燃機関10の暖機が完了していること(具体的には、機関冷却水の温度が所定温度[例えば、70℃]以上になっていること)。
Further, in the present embodiment, so-called air-fuel ratio control is performed in which the fuel injection amount is feedback-controlled based on the detected value (oxygen concentration OX) of the air-fuel ratio sensor 24. This air-fuel ratio control is executed by the electronic control unit 20 as a calculation process for every predetermined period executed on condition that the execution condition is satisfied. The fact that the execution condition of the air-fuel ratio control is satisfied is determined by satisfying both of the following conditions.
The air-fuel ratio sensor 24 is activated (specifically, the temperature of the detection element 24a is equal to or higher than a predetermined temperature [for example, 300 ° C.]).
The warm-up of the internal combustion engine 10 is completed (specifically, the temperature of the engine cooling water is equal to or higher than a predetermined temperature [for example, 70 ° C.]).

この空燃比制御にかかる処理では、先ず空燃比センサ24により検出される排気の酸素濃度OXと所定の濃度(混合気の空燃比が前記所定比率である場合の酸素濃度)との偏差が算出されるとともに同偏差に基づいて補正項Kが算出される。そして、この補正項Kにより目標燃料噴射量TQを補正することによって新たな目標燃料噴射量TQが算出される。なお本実施の形態では、上記偏差と同偏差を速やかに縮小させることの可能な補正項Kとの関係が実験やシミュレーションの結果から予め求められて電子制御ユニット20に記憶されており、同関係に基づいて補正項Kが算出される。この補正項Kとしては基本的に、上記偏差が大きいときほど目標燃料噴射量TQを大きく補正する値が算出される。こうした空燃比制御を通じて、内燃機関10の各気筒の混合気の空燃比と前記所定比率とが一致するように内燃機関10の各気筒への燃料供給量が調節される。本実施の形態では、目標燃料噴射量TQおよび補正項Kとして内燃機関10の各気筒で共通の値、すなわち一つの値のみが設定される。   In the process related to the air-fuel ratio control, first, a deviation between the oxygen concentration OX of the exhaust detected by the air-fuel ratio sensor 24 and a predetermined concentration (oxygen concentration when the air-fuel ratio of the air-fuel mixture is the predetermined ratio) is calculated. And a correction term K is calculated based on the deviation. Then, a new target fuel injection amount TQ is calculated by correcting the target fuel injection amount TQ with the correction term K. In the present embodiment, the relationship between the deviation and the correction term K that can quickly reduce the deviation is obtained in advance from the results of experiments and simulations and stored in the electronic control unit 20. Based on the above, the correction term K is calculated. As the correction term K, a value for correcting the target fuel injection amount TQ to be larger as the deviation is larger is basically calculated. Through such air-fuel ratio control, the amount of fuel supplied to each cylinder of the internal combustion engine 10 is adjusted so that the air-fuel ratio of the air-fuel mixture of each cylinder of the internal combustion engine 10 matches the predetermined ratio. In the present embodiment, as the target fuel injection amount TQ and the correction term K, a value common to each cylinder of the internal combustion engine 10, that is, only one value is set.

また本実施の形態のヒータ制御は以下のように実行される。
空燃比センサ24は、その検出素子24aの温度が適切な温度範囲内に調節されているのであれば、同検出素子24aの温度が高いときほど排気の酸素濃度の検出にかかる応答性が高くなるとの特性を有している。そのため、検出素子24aの温度変化によって空燃比センサ24の検出応答性が不要に変化してしまうと、同空燃比センサ24の検出値(酸素濃度OX)の変動速度や変動幅も不要に変化してしまう。したがって、空燃比制御の実行中において検出素子24aの温度が変化すると、これに伴って同空燃比制御において算出される前記偏差や補正項Kも変化するようになり、これが空燃比制御の不安定化を招く一因となってしまう。こうしたことから、空燃比制御を精度よく実行するためには空燃比センサ24の検出素子24aの温度を適正な温度で維持することが重要になると云える。この点をふまえて本実施の形態では、ヒータ制御の実行を通じて空燃比センサ24の検出素子24aの温度を適正な温度に調節するようにしている。
In addition, the heater control of the present embodiment is executed as follows.
If the temperature of the detection element 24a is adjusted within an appropriate temperature range, the air-fuel ratio sensor 24 has a higher responsiveness for detecting the oxygen concentration of the exhaust gas as the temperature of the detection element 24a is higher. It has the characteristics. Therefore, if the detection responsiveness of the air-fuel ratio sensor 24 changes unnecessarily due to the temperature change of the detection element 24a, the fluctuation speed and fluctuation width of the detection value (oxygen concentration OX) of the air-fuel ratio sensor 24 also change unnecessarily. End up. Therefore, when the temperature of the detection element 24a changes during the execution of the air-fuel ratio control, the deviation and the correction term K calculated in the air-fuel ratio control also change accordingly, which is an unstable air-fuel ratio control. It will be a cause of inducing. Therefore, it can be said that it is important to maintain the temperature of the detection element 24a of the air-fuel ratio sensor 24 at an appropriate temperature in order to execute the air-fuel ratio control with high accuracy. In view of this point, in the present embodiment, the temperature of the detection element 24a of the air-fuel ratio sensor 24 is adjusted to an appropriate temperature through the execution of heater control.

空燃比センサ24の検出素子24aは温度上昇に伴ってインピーダンスが小さくなるといった特性を有している。本実施の形態のヒータ制御では、この点をふまえて、検出素子24aの印加電圧や出力電流などに基づいて同検出素子24aのインピーダンスの相関値(具体的には、アドミタンス)が検出されるとともに、その検出したアドミタンスが目標とする温度に対応する値になるようにヒータ24bへの供給電力が調節されるようになっている。この調節は具体的には、ヒータ24bへの電力の供給と供給停止とを交互に繰り返す制御(いわゆるデューティ制御)が実行されるとともに電力が供給される時間と供給されない時間との比率(デューティ比)が調節されるといったように行われる。これにより、空燃比センサ24の検出素子24aの温度が目標とする温度に調節されるようになる。なお、この目標とする温度としては、空燃比制御の実行時においては、所定温度TH1(例えば650℃)が設定される。   The detection element 24a of the air-fuel ratio sensor 24 has a characteristic that the impedance decreases as the temperature rises. In the heater control of the present embodiment, based on this point, the correlation value (specifically, admittance) of the impedance of the detection element 24a is detected based on the applied voltage, output current, etc. of the detection element 24a. The power supplied to the heater 24b is adjusted so that the detected admittance becomes a value corresponding to the target temperature. Specifically, this adjustment is performed by executing a control (so-called duty control) that alternately repeats supply and stop of power supply to the heater 24b and a ratio (duty ratio) between the time when the power is supplied and the time when the power is not supplied. ) Is adjusted. As a result, the temperature of the detection element 24a of the air-fuel ratio sensor 24 is adjusted to the target temperature. As the target temperature, a predetermined temperature TH1 (for example, 650 ° C.) is set when the air-fuel ratio control is executed.

ここで上記燃料噴射制御および空燃比制御では、内燃機関10の各気筒への燃料供給量が共通の目標燃料噴射量TQおよび補正項Kをもとに同一量となるように調節される。そのため、内燃機関10の各気筒における混合気の空燃比の平均値を所定範囲(いわゆるウィンドウ)内の比率に調節することができるようになるものの、各気筒の混合気の空燃比を各別に調節することはできない。したがって、機関システムの吸気系(吸気ポートや吸気バルブなど)や燃料供給系(燃料噴射弁14など)の個体差、劣化などの影響によって内燃機関10の各気筒の混合気の空燃比にバラツキが生じることが避けられない。   Here, in the fuel injection control and the air-fuel ratio control, the fuel supply amount to each cylinder of the internal combustion engine 10 is adjusted to be the same amount based on the common target fuel injection amount TQ and the correction term K. Therefore, although the average value of the air-fuel ratio of the air-fuel mixture in each cylinder of the internal combustion engine 10 can be adjusted to a ratio within a predetermined range (so-called window), the air-fuel ratio of the air-fuel mixture in each cylinder is adjusted individually. I can't do it. Therefore, the air-fuel ratio of the air-fuel mixture of each cylinder of the internal combustion engine 10 varies due to the influence of individual differences and deterioration of the intake system (intake port, intake valve, etc.) and fuel supply system (fuel injection valve 14, etc.) of the engine system. Inevitable.

そうした内燃機関10の気筒間における空燃比のバラツキが生じると、排気通路17の排気集合通路17bを通過する排気、すなわち三元触媒18に流入する排気の酸素濃度が周期的に変動するようになる。そして、このバラツキが大きくなると、三元触媒18に流入する排気の酸素濃度が上記ウィンドに相当する濃度範囲から周期的に外れるようになるため、同三元触媒18による排気浄化機能が低下して排気性状の悪化を招いてしまう。そのため本実施の形態では、内燃機関10の気筒間における空燃比のバラツキの度合いが大きくなる異常(バラツキ異常)の発生の有無を判定する空燃比バラツキ判定を実行するようにしている。   When such variation in the air-fuel ratio between the cylinders of the internal combustion engine 10 occurs, the oxygen concentration of the exhaust passing through the exhaust collecting passage 17b of the exhaust passage 17, that is, the exhaust flowing into the three-way catalyst 18, periodically varies. . When this variation becomes large, the oxygen concentration of the exhaust gas flowing into the three-way catalyst 18 periodically deviates from the concentration range corresponding to the window, so that the exhaust purification function of the three-way catalyst 18 is reduced. Exhaust properties will be deteriorated. Therefore, in the present embodiment, air-fuel ratio variation determination is performed to determine whether or not an abnormality (an abnormality in variation) that increases the degree of variation in the air-fuel ratio between the cylinders of the internal combustion engine 10 occurs.

図2に空燃比センサ24により検出される酸素濃度OXの推移の一例を示す。なお同図2において、線L1は上記バラツキの度合いがごく小さいときにおける酸素濃度OXの推移を示しており、同図の線L2は上記バラツキの度合いが大きいときにおける酸素濃度OXの推移を示している。   FIG. 2 shows an example of the transition of the oxygen concentration OX detected by the air / fuel ratio sensor 24. In FIG. 2, line L1 shows the transition of oxygen concentration OX when the degree of variation is very small, and line L2 in FIG. 2 shows the transition of oxygen concentration OX when the degree of variation is large. Yes.

図2に線L1で示すように、内燃機関10の気筒間における空燃比のバラツキがごく小さいときには、排気集合通路17bを通過する排気の酸素濃度がほとんど変動しないために、酸素濃度OXもほとんど変化しない。これに対して、図2に線L2で示すように、内燃機関10の気筒間における空燃比のバラツキが大きいときには、排気集合通路17bを通過する排気の酸素濃度の変動幅が大きくなって、酸素濃度OXの変化速度が高くなる。   As shown by the line L1 in FIG. 2, when the variation in the air-fuel ratio between the cylinders of the internal combustion engine 10 is very small, the oxygen concentration of the exhaust gas passing through the exhaust collecting passage 17b hardly fluctuates. do not do. On the other hand, as shown by the line L2 in FIG. 2, when the variation in the air-fuel ratio between the cylinders of the internal combustion engine 10 is large, the fluctuation range of the oxygen concentration of the exhaust gas passing through the exhaust collecting passage 17b becomes large, and the oxygen The change rate of the concentration OX increases.

この点をふまえて、本実施の形態の空燃比バラツキ判定では、酸素濃度OXの変化速度が所定の判定速度以上になったことに基づいてバラツキ異常が発生していると判定するようにしている。そして、バラツキ異常が発生していると判定された場合には、車室内に設けられた警告灯(図示略)を点灯させたり、電子制御ユニット20にバラツキ異常が発生した履歴を記憶したりするようにしている。これにより、バラツキ異常が発生した場合に、これに適切に対処することが可能になる。   Based on this point, in the air-fuel ratio variation determination according to the present embodiment, it is determined that a variation abnormality has occurred based on the change rate of the oxygen concentration OX being equal to or higher than a predetermined determination rate. . If it is determined that a variation abnormality has occurred, a warning lamp (not shown) provided in the vehicle interior is turned on, or a history of occurrence of the variation abnormality is stored in the electronic control unit 20. I am doing so. Thereby, when a variation abnormality occurs, it is possible to appropriately cope with this.

空燃比バラツキ判定にかかる処理は具体的には以下のように実行される。
この処理は、空燃比制御の実行中において空燃比バラツキ判定の実行条件が成立していることを条件に、所定周期毎の割り込み処理として電子制御ユニット20により実行される。空燃比バラツキ判定の実行条件が成立していることは、「機関回転速度NEが所定の範囲(2000〜3000回転/分)内で安定していること」との条件が満たされることをもって判断される。
Specifically, the processing for air-fuel ratio variation determination is executed as follows.
This process is executed by the electronic control unit 20 as an interruption process for each predetermined period on condition that an execution condition for air-fuel ratio variation determination is satisfied during execution of the air-fuel ratio control. The fact that the air-fuel ratio variation determination execution condition is satisfied is determined by satisfying the condition that the engine speed NE is stable within a predetermined range (2000 to 3000 rpm). The

なお本実施の形態では、空燃比制御の実行条件が非成立であるときには、空燃比制御および空燃比バラツキ判定が共に実行されない。また、空燃比制御の実行条件の成立時において、空燃比バラツキ判定の実行条件の非成立時には空燃比制御が実行されるとともに空燃比バラツキ判定が実行されず、空燃比バラツキ判定の実行条件の成立時には空燃比制御および空燃比バラツキ判定が共に実行される。   In the present embodiment, when the execution condition of the air-fuel ratio control is not established, neither the air-fuel ratio control nor the air-fuel ratio variation determination is executed. In addition, when the execution condition of the air-fuel ratio control is satisfied, if the execution condition of the air-fuel ratio variation determination is not satisfied, the air-fuel ratio control is performed and the air-fuel ratio variation determination is not performed, and the execution condition of the air-fuel ratio variation determination is satisfied. Sometimes air-fuel ratio control and air-fuel ratio variation determination are both executed.

空燃比バラツキ判定にかかる処理では先ず、空燃比バラツキ判定の実行条件の成立後における酸素濃度OXの一階微分値が算出されるとともに同一階微分値が全て記憶される。この一階微分値としては、具体的には、本処理の前回実行時の酸素濃度OX[i−1]と今回実行時の酸素濃度OX[i]との差(=OX[i−1]−OX[i])が算出される。そして、その記憶された一階微分値に基づいて、周期的に変動している酸素濃度OXが、空燃比バラツキ判定の実行条件の成立後において初めて一旦最小になるタイミングT1(図2参照)と、その後において一旦最大になるタイミングT2と、さらにその後において一旦最小になるタイミングT3とがそれぞれ特定される。なお、タイミングT1,T3としては一階微分値の増加過程において同一階微分値が最も「0」に近づいたタイミングが採用され、タイミングT2としては一階微分値の減少過程において同一階微分値が最も「0」に近づいたタイミングが採用される。   In the process related to the air-fuel ratio variation determination, first, the first-order differential value of the oxygen concentration OX after the execution condition of the air-fuel ratio variation determination is satisfied is calculated and all the same-order differential values are stored. Specifically, as the first-order differential value, the difference between the oxygen concentration OX [i−1] at the previous execution of this process and the oxygen concentration OX [i] at the current execution (= OX [i−1]). -OX [i]) is calculated. Then, based on the stored first-order differential value, the timing T1 (see FIG. 2) at which the oxygen concentration OX, which is periodically changing, is minimized for the first time after the execution condition of the air-fuel ratio variation determination is satisfied. Thereafter, a timing T2 that once becomes maximum and a timing T3 that once becomes minimum after that are specified. As timings T1 and T3, the timing at which the same-order differential value is closest to “0” in the process of increasing the first-order differential value is adopted. As timing T2, the same-order differential value is used in the process of decreasing the first-order differential value. The timing closest to “0” is adopted.

その後、タイミングT1からタイミングT2までの期間における一階微分値の平均値が算出され、その算出値が酸素濃度OXの増加速度Vaとして記憶される。またタイミングT2からタイミングT3までの期間における一階微分値の平均値が算出されて、その算出値が酸素濃度OXの減少速度Vbとして記憶される。   Thereafter, an average value of first-order differential values in a period from timing T1 to timing T2 is calculated, and the calculated value is stored as an increase rate Va of the oxygen concentration OX. In addition, an average value of first-order differential values in a period from timing T2 to timing T3 is calculated, and the calculated value is stored as a decrease rate Vb of the oxygen concentration OX.

このようにして酸素濃度OXの変化速度(具体的には、増加速度Vaおよび減少速度Vb)が算出された後、同変化速度に基づいてバラツキ異常の発生の有無が判定される。具体的には、以下の(判定条件イ)および(判定条件ロ)の少なくとも一方が満たされたときにはバラツキ異常が発生していると判定される一方、それら(判定条件イ)および(判定条件ロ)が共に満たされないときにはバラツキ異常が発生していないと判定される。
(判定条件イ)増加速度Vaが所定の判定速度J1以上であること。
(判定条件ロ)増加速度Vaと減少速度Vbの絶対値との和が所定の判定速度J2以上であること。
After the change rate of oxygen concentration OX (specifically, increase rate Va and decrease rate Vb) is calculated in this manner, it is determined whether or not a variation abnormality has occurred based on the change rate. Specifically, when at least one of the following (determination condition a) and (determination condition b) is satisfied, it is determined that a variation abnormality has occurred, while those (determination condition a) and (determination condition b) ) Are not satisfied, it is determined that no variation abnormality has occurred.
(Determination condition a) The increase speed Va is equal to or higher than a predetermined determination speed J1.
(Determination condition b) The sum of the absolute value of the increase speed Va and the decrease speed Vb is not less than a predetermined determination speed J2.

なお、上記(判定条件イ)の判定速度J1と(判定条件ロ)の判定速度J2とは共に、実験やシミュレーションの結果に基づいてバラツキ異常の発生を精度よく判定することの可能な値が予め求められて電子制御ユニット20に記憶されている。   Note that both the determination speed J1 (determination condition A) and the determination speed J2 (determination condition B) are values that can accurately determine the occurrence of variation abnormality based on the results of experiments and simulations. It is obtained and stored in the electronic control unit 20.

ところで、本実施の形態では、内燃機関10の各気筒♯1〜♯4への燃料供給量が、空燃比センサ24の検出値(酸素濃度OX)に基づき算出される補正項Kをもとに同一量となるように調節される。   By the way, in the present embodiment, the fuel supply amount to each cylinder # 1 to # 4 of the internal combustion engine 10 is based on the correction term K calculated based on the detected value (oxygen concentration OX) of the air-fuel ratio sensor 24. It is adjusted to be the same amount.

そのため空燃比制御の実行時には、空燃比センサ24によって内燃機関10の各気筒の空燃比の平均値に相当する値を検出すればよく、空燃比センサ24に求められる検出応答性は低い。このとき空燃比センサ24の検出応答性が過度に高くなると、酸素濃度OXの変動速度が高くなったり変動幅が大きくなったりして同酸素濃度OXと上記平均値に相当する濃度との乖離を招き易くなり、空燃比制御(具体的には、各気筒の混合気の空燃比)が不安定になり易くなる。   Therefore, when the air-fuel ratio control is executed, a value corresponding to the average value of the air-fuel ratio of each cylinder of the internal combustion engine 10 may be detected by the air-fuel ratio sensor 24, and the detection response required for the air-fuel ratio sensor 24 is low. At this time, if the detection responsiveness of the air-fuel ratio sensor 24 becomes excessively high, the fluctuation rate of the oxygen concentration OX increases or the fluctuation range increases, and the difference between the oxygen concentration OX and the concentration corresponding to the average value is increased. The air-fuel ratio control (specifically, the air-fuel ratio of the air-fuel mixture in each cylinder) tends to become unstable.

その一方で、空燃比バラツキ判定の実行時には、空燃比センサ24の検出応答性が低いと内燃機関10の各気筒♯1〜♯4の空燃比の相違に起因する実際の排気酸素濃度の変動を同空燃比センサ24によって適正に検出することができなくなるおそれがあり、排気酸素濃度の変動を的確に検出するためには空燃比センサ24に高い検出応答性が求められる。   On the other hand, when the air-fuel ratio variation determination is executed, if the detection responsiveness of the air-fuel ratio sensor 24 is low, the actual exhaust oxygen concentration fluctuation caused by the difference in the air-fuel ratio between the cylinders # 1 to # 4 of the internal combustion engine 10 is reduced. The air-fuel ratio sensor 24 may not be able to properly detect the air-fuel ratio sensor 24, and the air-fuel ratio sensor 24 is required to have high detection responsiveness in order to accurately detect the fluctuation of the exhaust oxygen concentration.

このように、空燃比センサ24による酸素濃度の検出に際して求められる検出応答性は空燃比制御の実行時と空燃比バラツキ判定の実行時とで異なり、それら空燃比制御および空燃比バラツキ判定を共に精度よく実行するためには、空燃比センサ24の検出応答性を適正に設定する必要がある。   Thus, the detection responsiveness required when the oxygen concentration is detected by the air-fuel ratio sensor 24 differs between the execution of the air-fuel ratio control and the execution of the air-fuel ratio variation determination, and both the air-fuel ratio control and the air-fuel ratio variation determination are accurate. In order to perform well, it is necessary to set the detection response of the air-fuel ratio sensor 24 appropriately.

この点をふまえて本実施の形態では、空燃比センサ24の温度を、空燃比バラツキ判定の非実行時の温度と比較して、同空燃比バラツキ判定の実行時における温度が高くなるように調節するようにしている。   In view of this point, in the present embodiment, the temperature of the air-fuel ratio sensor 24 is adjusted to be higher than the temperature when the air-fuel ratio variation determination is not performed, compared to the temperature when the air-fuel ratio variation determination is not performed. Like to do.

これにより、空燃比バラツキ判定の実行時においては、空燃比センサ24の検出素子24aが高温になってその検出応答性が高くなり、同空燃比センサ24によって内燃機関10の各気筒♯1〜♯4の排気酸素濃度の相違に起因する同排気酸素濃度の変動が適正に検出されるようになって、空燃比バラツキ判定が精度よく実行されるようになる。このとき空燃比制御も実行されているが、その空燃比制御の実行精度より空燃比バラツキ判定の判定精度を優先するべく、空燃比センサ24の検出応答性が高く設定される。   As a result, when the air-fuel ratio variation determination is performed, the detection element 24a of the air-fuel ratio sensor 24 becomes high temperature and the detection responsiveness is increased, and the cylinders # 1 to ## of the internal combustion engine 10 are increased by the air-fuel ratio sensor 24. Thus, the variation in the exhaust gas oxygen concentration due to the difference in the exhaust gas oxygen concentration 4 is properly detected, and the air-fuel ratio variation determination is performed with high accuracy. At this time, the air-fuel ratio control is also executed, but the detection responsiveness of the air-fuel ratio sensor 24 is set higher so that the determination accuracy of the air-fuel ratio variation determination is given priority over the execution accuracy of the air-fuel ratio control.

一方、空燃比バラツキ判定の非実行時には、空燃比センサ24の検出素子24aが比較的低温になってその検出応答性が低くなるために、同空燃比センサ24によって内燃機関10の各気筒の排気酸素濃度の平均値に近い値が適正に検出されるようになり、その検出値に基づいて空燃比制御が精度よく実行されるようになる。   On the other hand, when the air-fuel ratio variation determination is not executed, the detection element 24a of the air-fuel ratio sensor 24 becomes relatively low temperature and the detection response becomes low. A value close to the average value of the oxygen concentration is appropriately detected, and the air-fuel ratio control is accurately executed based on the detected value.

このように本実施の形態にかかる機関システムでは、空燃比バラツキ判定の実行の有無によることなく空燃比センサ24の検出応答性が一定に維持される装置と比較して、空燃比センサ24の検出応答性を適切に調節することができ、高い実行精度での空燃比制御の実行と高い判定精度での空燃比バラツキ判定の実行とを両立させることができる。本実施の形態では、電子制御ユニット20がヒータ24bへの供給電力を調節するものとして機能する。   As described above, in the engine system according to the present embodiment, the detection of the air-fuel ratio sensor 24 is performed in comparison with the device in which the detection response of the air-fuel ratio sensor 24 is kept constant regardless of whether the air-fuel ratio variation determination is performed. The responsiveness can be adjusted appropriately, and both the execution of the air-fuel ratio control with high execution accuracy and the execution of the air-fuel ratio variation determination with high determination accuracy can be achieved. In the present embodiment, the electronic control unit 20 functions as a unit that adjusts the power supplied to the heater 24b.

また本実施の形態では、そうした空燃比センサ24の検出素子24aの温度の変更に併せて、同空燃比センサ24の劣化異常を判定するようにしている。この劣化異常の判定にかかる処理(劣化異常判定処理)は以下のような考えのもとに実行される。   Further, in the present embodiment, along with such a change in the temperature of the detection element 24a of the air-fuel ratio sensor 24, a deterioration abnormality of the air-fuel ratio sensor 24 is determined. The process related to the determination of the deterioration abnormality (deterioration abnormality determination process) is executed based on the following idea.

前述したように空燃比センサ24の検出素子24aのインピーダンスは同検出素子24aの温度上昇に伴って小さくなる。本実施の形態のヒータ制御では、そうした検出素子24aのインピーダンスの相関値(アドミタンス)と前記目標温度に対応する値とが一致するようにヒータ24bへ供給電力が調節される。そのため、劣化によって検出素子24aのインピーダンスが増加すると、その増加分を低下させるための分だけヒータ24bへの供給電力が不要に大きくなって同ヒータ24bの消費電力が多くなってしまう。したがって、そのようにしてヒータ24bの消費電力が大きくなったことをもって空燃比センサ24の劣化異常を判定することが可能になると云える。   As described above, the impedance of the detection element 24a of the air-fuel ratio sensor 24 decreases as the temperature of the detection element 24a increases. In the heater control of the present embodiment, the power supplied to the heater 24b is adjusted so that the correlation value (admittance) of the impedance of the detection element 24a matches the value corresponding to the target temperature. Therefore, when the impedance of the detection element 24a increases due to deterioration, the power supplied to the heater 24b becomes unnecessarily large by the amount for reducing the increase, and the power consumption of the heater 24b increases. Therefore, it can be said that the deterioration abnormality of the air-fuel ratio sensor 24 can be determined when the power consumption of the heater 24b is increased in this way.

ただし、内燃機関10の排気温度はその運転状態に応じて大きく異なり、空燃比センサ24の検出素子24aの温度を目標とする温度で維持するために必要なヒータ24bの消費電力もそのときどきの機関運転状態に応じて大きく異なるために、単にヒータ24bの消費電力を監視しても空燃比センサ24の劣化異常を精度よく判定することは難しい。   However, the exhaust gas temperature of the internal combustion engine 10 varies greatly depending on its operating state, and the power consumption of the heater 24b necessary to maintain the temperature of the detection element 24a of the air-fuel ratio sensor 24 at the target temperature is also the engine from time to time. Since it varies greatly depending on the operating state, it is difficult to accurately determine the deterioration abnormality of the air-fuel ratio sensor 24 even by simply monitoring the power consumption of the heater 24b.

ここで、劣化によって検出素子24aのインピーダンスが大きくなった場合には、そのときどきのヒータ24bの消費電力が大きくなることに加えて、空燃比バラツキ判定の実行停止前後におけるヒータ24bの消費電力の差も大きくなる。そして、この消費電力の差も内燃機関10の運転状態に応じて異なるとはいえ、その機関運転状態の変化に伴う変化幅は、そのときどきのヒータ24bの消費電力の機関運転状態の変化に伴う変化幅と比較してごく小さくなることが発明者によって確認された。   Here, when the impedance of the detection element 24a increases due to deterioration, the power consumption of the heater 24b increases, and the difference in power consumption of the heater 24b before and after the execution of the air-fuel ratio variation determination is stopped. Also grows. Although the difference in power consumption also varies depending on the operating state of the internal combustion engine 10, the range of change accompanying the change in the engine operating state is accompanied by the change in the engine operating state of the power consumption of the heater 24b at that time. It has been confirmed by the inventor that it is much smaller than the change width.

この点をふまえて本実施の形態では、空燃比バラツキ判定の実行停止前後におけるヒータ24bの消費電力の差ΔWを算出するとともに、同差ΔWが所定の判定値J3以上であることを条件に、空燃比センサ24の劣化異常を判定するようにしている。これにより、空燃比バラツキ判定の実行停止前後におけるヒータ24bの消費電力の差ΔWが大きくなっているときに、これが空燃比センサ24の劣化に起因するものであるとして、同空燃比センサ24の劣化異常を精度よく判定することができる。   Based on this point, in the present embodiment, the difference ΔW in power consumption of the heater 24b before and after the execution of the air-fuel ratio variation determination is stopped is calculated, and on the condition that the difference ΔW is equal to or greater than a predetermined determination value J3. An abnormality in the deterioration of the air-fuel ratio sensor 24 is determined. As a result, when the difference ΔW in the power consumption of the heater 24b before and after the stop of the execution of the air-fuel ratio variation determination is large, it is assumed that this is caused by the deterioration of the air-fuel ratio sensor 24. Abnormalities can be accurately determined.

以下、そうした劣化異常判定処理を含む空燃比センサ24の温度調節にかかる処理(温度調節処理)について図3および図4に示すフローチャートを参照して説明する。
なお、このフローチャートに示す一連の処理は、温度調節処理の具体的な実行手順を概念的に示したものであり、実際の処理は、所定周期毎の割り込み処理として、電子制御ユニット20により実行される。また、この温度調節処理は空燃比制御の実行条件が成立していることを条件に実行される。本実施の形態では、この温度調節処理が温度調節手段および劣化判定手段として機能する。
Hereinafter, processing related to the temperature adjustment of the air-fuel ratio sensor 24 including the deterioration abnormality determination processing (temperature adjustment processing) will be described with reference to the flowcharts shown in FIGS. 3 and 4.
The series of processes shown in this flowchart conceptually shows a specific execution procedure of the temperature adjustment process, and the actual process is executed by the electronic control unit 20 as an interrupt process for each predetermined period. The The temperature adjustment process is executed on condition that the execution condition of the air-fuel ratio control is satisfied. In the present embodiment, this temperature adjustment process functions as a temperature adjustment means and a deterioration determination means.

図3に示すように、この処理では先ず、前記空燃比バラツキ判定の実行条件が成立しているか否かが判断される(ステップS101)。空燃比バラツキ判定の実行条件が成立してないときには(ステップS101:NO)、以下の処理を実行することなく、本処理は終了される。   As shown in FIG. 3, in this process, first, it is determined whether or not an execution condition for the air-fuel ratio variation determination is satisfied (step S101). When the air-fuel ratio variation determination execution condition is not satisfied (step S101: NO), this processing is terminated without executing the following processing.

そして、その後において本処理が繰り返し実行されて空燃比バラツキ判定の実行条件が成立していると判断されると(ステップS101:YES)、空燃比センサ24の検出素子24aの目標温度として所定温度TH2が設定される(ステップS102)。この所定温度TH2としては、空燃比バラツキ判定の実行条件の非成立時、すなわち空燃比バラツキ判定が実行されないときにおける目標温度(前記所定温度TH1)より高い温度(例えば850℃)が設定される。これにより、その後におけるヒータ制御を通じて、空燃比センサ24の検出素子24aの温度が所定温度TH2になるようにヒータ24bへの供給電力が調節されるようになる。   After that, when this process is repeatedly executed and it is determined that the air-fuel ratio variation determination execution condition is satisfied (step S101: YES), the predetermined temperature TH2 is set as the target temperature of the detection element 24a of the air-fuel ratio sensor 24. Is set (step S102). As the predetermined temperature TH2, a temperature (for example, 850 ° C.) higher than the target temperature (the predetermined temperature TH1) when the execution condition of the air-fuel ratio variation determination is not satisfied, that is, when the air-fuel ratio variation determination is not executed is set. Thereby, the power supplied to the heater 24b is adjusted so that the temperature of the detection element 24a of the air-fuel ratio sensor 24 becomes the predetermined temperature TH2 through the heater control thereafter.

そうしたヒータ制御を通じて空燃比センサ24の検出素子24aの温度が所定温度TH2になると(ステップS103:YES)、ヒータ24bのアドミタンス、通電時間(具体的には前記デューティ比)、および印加電圧に基づいて同ヒータ24bの単位時間あたりの消費電力量Wstが算出されるとともに記憶される(ステップS104)。   When the temperature of the detection element 24a of the air-fuel ratio sensor 24 reaches the predetermined temperature TH2 through such heater control (step S103: YES), based on the admittance of the heater 24b, the energization time (specifically, the duty ratio), and the applied voltage. The power consumption amount Wst per unit time of the heater 24b is calculated and stored (step S104).

また、前述した空燃比バラツキ判定の実行が開始される(ステップS105)。これにより、空燃比センサ24の検出素子24aの温度がほぼ所定温度TH2になっている状況、すなわち空燃比センサ24の検出応答性が空燃比バラツキ判定の実行に適した値になっている状況の下で同空燃比バラツキ判定が実行されるようになり、空燃比バラツキ判定を精度良く実行することができるようになる。   In addition, execution of the air-fuel ratio variation determination described above is started (step S105). As a result, the temperature of the detection element 24a of the air-fuel ratio sensor 24 is substantially the predetermined temperature TH2, that is, the detection responsiveness of the air-fuel ratio sensor 24 is a value suitable for executing the air-fuel ratio variation determination. The air-fuel ratio variation determination is executed below, and the air-fuel ratio variation determination can be performed with high accuracy.

その後において空燃比バラツキ判定の実行が完了すると(ステップS106:YES)、空燃比センサ24の検出素子24aの目標温度として前記所定温度TH1が設定される(ステップS107)。これにより、空燃比センサ24の検出素子24aの温度が所定温度TH1、すなわち空燃比センサ24の検出応答性が空燃比制御の実行に適した値になる温度まで低下するようになる。そして、空燃比センサ24の検出素子24aの温度が所定温度TH1になると、空燃比センサ24の検出応答性が空燃比制御の実行に適した値になっている状況の下で同空燃比制御が実行されるようになり、空燃比制御を精度良く実行することができるようになる。   Thereafter, when the execution of the air-fuel ratio variation determination is completed (step S106: YES), the predetermined temperature TH1 is set as the target temperature of the detection element 24a of the air-fuel ratio sensor 24 (step S107). As a result, the temperature of the detection element 24a of the air-fuel ratio sensor 24 decreases to a predetermined temperature TH1, that is, a temperature at which the detection responsiveness of the air-fuel ratio sensor 24 becomes a value suitable for execution of the air-fuel ratio control. When the temperature of the detection element 24a of the air-fuel ratio sensor 24 reaches the predetermined temperature TH1, the air-fuel ratio control is performed under a situation where the detection responsiveness of the air-fuel ratio sensor 24 is a value suitable for execution of the air-fuel ratio control. As a result, the air-fuel ratio control can be executed with high accuracy.

また、ヒータ制御を通じて空燃比センサ24の検出素子24aの温度が所定温度TH1になると(ステップS108:YES)、ヒータ24bのアドミタンス、通電時間、および印加電圧に基づいて同ヒータ24bの単位時間あたりの消費電力量Wspが算出されるとともに記憶される(ステップS109)。   Further, when the temperature of the detection element 24a of the air-fuel ratio sensor 24 reaches the predetermined temperature TH1 through the heater control (step S108: YES), the unit per unit time of the heater 24b is based on the admittance, energization time, and applied voltage of the heater 24b. The power consumption amount Wsp is calculated and stored (step S109).

そして図4に示すように、その後において空燃比バラツキ判定の実行時におけるヒータ24bの消費電力量Wstと非実行時における消費電力量Wspとの差ΔW(Wst−Wsp)が算出されるとともに、同差ΔWが判定値J3以上であるか否かが判定される(ステップS110)。なお上記判定値J3としては、空燃比センサ24の劣化が過度に進んでいることを的確に判定することの可能な値が実験やシミュレーションの結果に基づいて予め求められて電子制御ユニット20に記憶されている。   Then, as shown in FIG. 4, a difference ΔW (Wst−Wsp) between the power consumption amount Wst of the heater 24b and the non-execution power consumption amount Wsp when the air-fuel ratio variation determination is performed is calculated. It is determined whether or not the difference ΔW is greater than or equal to a determination value J3 (step S110). As the determination value J3, a value capable of accurately determining that the deterioration of the air-fuel ratio sensor 24 has progressed excessively is obtained in advance based on the results of experiments and simulations and stored in the electronic control unit 20. Has been.

そして、上記差ΔWが判定値J3以上である場合には(ステップS110:YES)、空燃比センサ24の劣化が進んでいるとして、劣化異常が発生していると判定される(ステップS111)。一方、上記差ΔWが判定値J3未満である場合には(ステップS110:NO)、空燃比センサ24が劣化してない、あるいは劣化がさほど進んでいないとして、ステップS111の処理がジャンプされる。このように上記差ΔWに基づいて空燃比センサ24の劣化異常の有無が判定された後、本処理は終了される。   If the difference ΔW is equal to or greater than the determination value J3 (step S110: YES), it is determined that a deterioration abnormality has occurred (step S111), assuming that the deterioration of the air-fuel ratio sensor 24 has progressed. On the other hand, when the difference ΔW is less than the determination value J3 (step S110: NO), the process of step S111 is jumped on the assumption that the air-fuel ratio sensor 24 has not deteriorated or has not deteriorated so much. As described above, after the presence / absence of the deterioration abnormality of the air-fuel ratio sensor 24 is determined based on the difference ΔW, the present process is terminated.

以上説明したように、本実施の形態によれば、以下に記載する効果が得られるようになる。
(1)空燃比センサ24の検出素子24aの温度を、空燃比バラツキ判定の非実行時における温度と比較して同空燃比バラツキ判定の実行時における温度が高温になるように調節するようにした。そのため、空燃比バラツキ判定の実行時においては、空燃比センサ24が高温になってその検出応答性が高くなるために、同空燃比センサ24によって内燃機関10の各気筒♯1〜♯4の排気酸素濃度の相違に起因する同排気酸素濃度の変動を適正に検出することができ、空燃比バラツキ判定を精度よく実行することができる。しかも、空燃比バラツキ判定の非実行時においては、空燃比センサ24が比較的低温になってその検出応答性が低くなるために、同空燃比センサ24によって各気筒♯1〜♯4の排気酸素濃度の平均値に近い値を適正に検出することができ、その検出値に基づいて空燃比制御を精度よく実行することができる。したがって、空燃比制御と空燃比バラツキ判定とを共に精度よく実行するべく、排気の酸素濃度の検出にかかる応答性を適切に調節することができる。
As described above, according to the present embodiment, the effects described below can be obtained.
(1) The temperature of the detection element 24a of the air-fuel ratio sensor 24 is adjusted to be higher than the temperature when the air-fuel ratio variation determination is not performed, compared to the temperature when the air-fuel ratio variation determination is not performed. . For this reason, when the air-fuel ratio variation determination is performed, the air-fuel ratio sensor 24 becomes high in temperature and the detection response becomes high. Therefore, the exhaust gas of the cylinders # 1 to # 4 of the internal combustion engine 10 is detected by the air-fuel ratio sensor 24. Variations in the exhaust oxygen concentration due to the difference in oxygen concentration can be detected appropriately, and air-fuel ratio variation determination can be performed with high accuracy. In addition, when the air-fuel ratio variation determination is not performed, the air-fuel ratio sensor 24 becomes relatively low in temperature and the detection response becomes low. A value close to the average value of the concentration can be detected appropriately, and the air-fuel ratio control can be accurately executed based on the detected value. Therefore, in order to execute both the air-fuel ratio control and the air-fuel ratio variation determination with high accuracy, it is possible to appropriately adjust the responsiveness for detecting the oxygen concentration of the exhaust gas.

(2)空燃比バラツキ判定の実行停止前後におけるヒータ24bの消費電力の差ΔWが所定の判定値J3以上であることを条件に、空燃比センサ24の劣化異常を判定するようにした。そのため、上記差ΔWが大きくなったことに基づいて空燃比センサ24の劣化異常を精度よく判定することができる。   (2) Deterioration abnormality of the air-fuel ratio sensor 24 is determined on the condition that the difference ΔW in the power consumption of the heater 24b before and after the execution stop of the air-fuel ratio variation determination is equal to or greater than a predetermined determination value J3. Therefore, the deterioration abnormality of the air-fuel ratio sensor 24 can be accurately determined based on the increase in the difference ΔW.

(3)空燃比バラツキ判定において、酸素濃度OXの変化速度が高くなったことをもって内燃機関10の気筒♯1〜♯4間における空燃比のバラツキが大きくなっていると判断し、この判断をもってバラツキ異常の発生を精度よく判定することができる。   (3) In the air-fuel ratio variation determination, it is determined that the variation in the air-fuel ratio between the cylinders # 1 to # 4 of the internal combustion engine 10 is increased when the change rate of the oxygen concentration OX is increased. The occurrence of abnormality can be accurately determined.

(4)空燃比制御と空燃比バラツキ判定とが共に実行されるときには、同空燃比バラツキ判定の判定精度を空燃比制御の実行精度より優先するべく、空燃比センサ24の検出応答性を高くすることができる。しかも、空燃比バラツキ判定が実行されずに空燃比制御が実行されるときには同空燃比制御を精度よく実行するべく空燃比センサ24の検出応答性を低くすることができる。したがって、空燃比バラツキ判定の実行の有無によることなく空燃比センサ24検出応答性が一定に維持される装置と比較して、空燃比センサ24の検出応答性を適切に調節することができ、高い実行精度での空燃比制御の実行と高い判定精度での空燃比バラツキ判定の実行とを両立させることができる。   (4) When both the air-fuel ratio control and the air-fuel ratio variation determination are executed, the detection response of the air-fuel ratio sensor 24 is increased so that the determination accuracy of the air-fuel ratio variation determination is given priority over the execution accuracy of the air-fuel ratio control. be able to. In addition, when the air-fuel ratio control is executed without executing the air-fuel ratio variation determination, the detection responsiveness of the air-fuel ratio sensor 24 can be lowered to execute the air-fuel ratio control with high accuracy. Therefore, the detection responsiveness of the air-fuel ratio sensor 24 can be appropriately adjusted as compared with a device in which the detection responsiveness of the air-fuel ratio sensor 24 is kept constant regardless of whether the air-fuel ratio variation determination is performed or not. It is possible to achieve both the execution of air-fuel ratio control with execution accuracy and the execution of air-fuel ratio variation determination with high determination accuracy.

なお、上記実施の形態は、以下のように変更して実施してもよい。
・空燃比センサ24の検出素子24aの温度調節やヒータ24bの消費電力の算出に用いる値として、検出素子24aのアドミタンスを検出することに代えて、同検出素子24aのインピーダンスを検出するようにしてもよい。
The embodiment described above may be modified as follows.
Instead of detecting the admittance of the detection element 24a as a value used for adjusting the temperature of the detection element 24a of the air-fuel ratio sensor 24 or calculating the power consumption of the heater 24b, the impedance of the detection element 24a is detected. Also good.

・温度調節処理(図3および図4)において、劣化異常判定にかかる処理(ステップS104,ステップS109〜S111)を省略してもよい。
・空燃比バラツキ判定の実行時において空燃比制御を併せて実行することに限らず、同空燃比制御の実行を停止するようにしてもよい。この場合、空燃比制御の実行時において補正項Kの基準値(例えば[0])からの定常的な偏差を空燃比学習値として学習する学習処理を実行するようにし、空燃比制御の非実行において補正項Kの算出を停止するとともに同空燃比学習値により目標燃料噴射量TQを補正することが望ましい。
In the temperature adjustment process (FIGS. 3 and 4), the process (step S104, steps S109 to S111) relating to the deterioration abnormality determination may be omitted.
-When executing the air-fuel ratio variation determination, the execution of the air-fuel ratio control may be stopped without being limited to executing the air-fuel ratio control together. In this case, at the time of executing the air-fuel ratio control, a learning process for learning a steady deviation from the reference value (for example, [0]) of the correction term K as the air-fuel ratio learned value is executed, and the air-fuel ratio control is not executed. It is desirable to stop the calculation of the correction term K and correct the target fuel injection amount TQ with the same air-fuel ratio learning value.

・空燃比バラツキ判定においてバラツキ異常の発生の有無を判定するための判定条件は任意に変更することができる。具体的には、前記(判定条件イ)および(判定条件ロ)のいずれかを省略することができる。また、それら(判定条件イ)および(判定条件ロ)に代えて、あるいは併せて「減少速度Vbの絶対値が所定の判定速度以上であること」との条件や、「増加速度Vaおよび減少速度Vbの絶対値のうちの高いほうの速度が所定の判定速度以上であること」との条件を設定することもできる。その他、空燃比バラツキ判定の実行中における酸素濃度OXの変動幅を算出し、同変動幅が所定の判定値以上であることをもってバラツキ異常が発生していると判定するようにしてもよい。   In the air-fuel ratio variation determination, the determination condition for determining whether or not a variation abnormality has occurred can be arbitrarily changed. Specifically, either (determination condition a) or (determination condition b) can be omitted. In place of (judgment condition a) and (judgment condition b), or in addition, a condition that “the absolute value of the decrease speed Vb is equal to or greater than a predetermined judgment speed”, or “an increase speed Va and a decrease speed” It is also possible to set a condition that the higher speed of the absolute value of Vb is equal to or higher than a predetermined determination speed. In addition, the variation range of the oxygen concentration OX during the execution of the air-fuel ratio variation determination may be calculated, and it may be determined that the variation abnormality has occurred when the variation range is equal to or greater than a predetermined determination value.

・酸素濃度OXの変化速度の算出方法は任意に変更することができる。例えば増加速度Vaおよび減少速度Vbの算出に際して、タイミングT1,T2,T3の直前のタイミングおよび直後のタイミングにおいて算出された一階微分値を用いないようにしてもよい。その他、予め定めた所定タイミング(タイミングT1,T2の中間にあたるタイミングやタイミングT2,T3の中間にあたるタイミングなど)における一階微分値を酸素濃度OXの変化速度として算出することもできる。   -The calculation method of the change rate of oxygen concentration OX can be changed arbitrarily. For example, when calculating the increase speed Va and the decrease speed Vb, the first-order differential values calculated at the timing immediately before and after the timing T1, T2, T3 may not be used. In addition, a first-order differential value at a predetermined timing (a timing corresponding to the middle between timings T1 and T2 or a timing corresponding to the middle between timings T2 and T3) can also be calculated as a change rate of the oxygen concentration OX.

・空燃比バラツキ判定の非実行時や実行時において、予め定められた一定の温度(所定温度TH1または所定温度TH2)になるように空燃比センサ24の検出素子24aの温度を調節することに代えて、同検出素子24aの温度を内燃機関10の吸入空気量が多いときほど低い温度になるように調節してもよい。   Instead of adjusting the temperature of the detection element 24a of the air-fuel ratio sensor 24 so that it becomes a predetermined constant temperature (predetermined temperature TH1 or predetermined temperature TH2) when the air-fuel ratio variation determination is not performed or is performed. Thus, the temperature of the detection element 24a may be adjusted so as to become lower as the intake air amount of the internal combustion engine 10 is larger.

内燃機関10の吸入空気量が多いときほど同内燃機関10の排気量、すなわち排気通路17における空燃比センサ24の配設部分(詳しくは、排気集合通路17b)を通過する排気の量が多い。そして、上記配設部分を通過する酸素の量が多くなると、空燃比センサ24の内部の排気が入れ替わる速度が高くなる等して、同空燃比センサ24の検出値(酸素濃度OX)の変化速度が高くなる。こうしたことから内燃機関10の吸入空気量が多くなると、実際の排気の酸素濃度の変化に対する酸素濃度OXの追従性も高くなると云える。   The larger the intake air amount of the internal combustion engine 10, the greater the exhaust amount of the internal combustion engine 10, that is, the greater the amount of exhaust gas that passes through the portion of the exhaust passage 17 where the air-fuel ratio sensor 24 is disposed (specifically, the exhaust collecting passage 17b). When the amount of oxygen passing through the arrangement portion increases, the rate of change of the detected value (oxygen concentration OX) of the air-fuel ratio sensor 24 increases, for example, the speed at which the exhaust inside the air-fuel ratio sensor 24 is replaced. Becomes higher. Therefore, it can be said that as the intake air amount of the internal combustion engine 10 increases, the followability of the oxygen concentration OX to the actual change in the oxygen concentration of the exhaust gas also increases.

図5に、混合気の空燃比を同一の態様で変化させた場合における空燃比センサ24の検出素子24aの温度と酸素濃度OXが実際の排気酸素濃度に相当する値になるまでに要する時間(応答時間)と内燃機関10の吸入空気量との関係の一例を示す。同図5から明らかなように、内燃機関10の吸入空気量が多いときほど酸素濃度OXの変化速度は高くなる。   FIG. 5 shows the time required for the temperature of the detection element 24a of the air-fuel ratio sensor 24 and the oxygen concentration OX to become values corresponding to the actual exhaust oxygen concentration when the air-fuel ratio of the air-fuel mixture is changed in the same manner ( An example of the relationship between the response time) and the intake air amount of the internal combustion engine 10 is shown. As is apparent from FIG. 5, the change rate of the oxygen concentration OX increases as the intake air amount of the internal combustion engine 10 increases.

こうした吸入空気量の違いによる酸素濃度OXの変化速度の相違は、前述した空燃比センサの検出素子24aの温度の違いによる検出応答性の相違と同様に、空燃比制御の実行精度や空燃比バラツキ判定の判定精度の低下を招く一因となる可能性がある。   The difference in the change rate of the oxygen concentration OX due to the difference in the intake air amount is similar to the difference in detection responsiveness due to the difference in the temperature of the detection element 24a of the air-fuel ratio sensor described above, and the execution accuracy of the air-fuel ratio control and the variation in the air-fuel ratio. There is a possibility that it may cause a decrease in the determination accuracy of the determination.

この点、上記構成では、内燃機関10の吸入空気量が多く酸素濃度OXの変化速度が高いときほど、空燃比センサ24の検出応答性が低くなるようにその検出素子24aの温度が低い温度に調節される。これにより、内燃機関10の吸入空気量の相違に起因する酸素濃度OXの変化速度の差を抑えるように、同空燃比センサ24の検出素子24aの温度を変更してその検出応答性を設定することができるようになる。したがって上記構成によれば、酸素濃度OXの変化速度の差および同差による誤差の発生を抑えることができるようになり、空燃比制御や空燃比バラツキ判定を精度よく実行することができるようになる。   In this regard, in the above configuration, the temperature of the detection element 24a is lowered so that the detection response of the air-fuel ratio sensor 24 becomes lower as the intake air amount of the internal combustion engine 10 is larger and the change rate of the oxygen concentration OX is higher. Adjusted. As a result, the temperature of the detection element 24a of the air-fuel ratio sensor 24 is changed and its detection response is set so as to suppress the difference in the change rate of the oxygen concentration OX caused by the difference in the intake air amount of the internal combustion engine 10. Will be able to. Therefore, according to the above configuration, it is possible to suppress the difference in the change rate of the oxygen concentration OX and the occurrence of an error due to the difference, and the air-fuel ratio control and the air-fuel ratio variation determination can be executed with high accuracy. .

・本発明は、酸素センサの検出値に基づいて空燃比制御と空燃比バラツキ判定とが共に実行される機関システムであれば、排気通路の集合部分に限界電流式の酸素センサ(いわゆる空燃比センサ)が設けられた機関システムに限らず、濃淡電池式の酸素センサ(いわゆるO2センサ)が設けられた機関システムにも適用することができる。なお濃淡電池式の酸素センサは、排気の酸素濃度が混合気の空燃比が理論空燃比よりもリッチであるときの濃度である場合には1.0ボルト程度の出力電圧になる一方、排気の酸素濃度が混合気の空燃比が理論空燃比よりもリーンであるときの濃度である場合には0ボルト程度の出力電圧になるタイプの酸素センサである。   -If the present invention is an engine system in which both air-fuel ratio control and air-fuel ratio variation determination are executed based on the detection value of the oxygen sensor, a limit current type oxygen sensor (so-called air-fuel ratio sensor) The present invention can be applied not only to an engine system provided with a) but also to an engine system provided with a concentration cell type oxygen sensor (so-called O2 sensor). The concentration cell type oxygen sensor has an output voltage of about 1.0 volts when the oxygen concentration of the exhaust gas is a concentration when the air-fuel ratio of the air-fuel mixture is richer than the stoichiometric air-fuel ratio. When the oxygen concentration is the concentration when the air-fuel ratio of the air-fuel mixture is leaner than the stoichiometric air-fuel ratio, this is an oxygen sensor of an output voltage that is about 0 volts.

10…内燃機関、11…吸気通路、11a…吸気分岐通路、11b…吸気集合通路、12…スロットルバルブ、13…スロットルモータ、14…燃料噴射弁、15…点火プラグ、16…出力軸、17…排気通路、17a…排気分岐通路、17b…排気集合通路、18…三元触媒、20…電子制御ユニット、21…アクセルセンサ、22…吸気量センサ、23…クランクセンサ、24…空燃比センサ、24a…検出素子、24b…ヒータ。   DESCRIPTION OF SYMBOLS 10 ... Internal combustion engine, 11 ... Intake passage, 11a ... Intake branch passage, 11b ... Intake collecting passage, 12 ... Throttle valve, 13 ... Throttle motor, 14 ... Fuel injection valve, 15 ... Spark plug, 16 ... Output shaft, 17 ... Exhaust passage, 17a ... exhaust branch passage, 17b ... exhaust collecting passage, 18 ... three-way catalyst, 20 ... electronic control unit, 21 ... accelerator sensor, 22 ... intake air amount sensor, 23 ... crank sensor, 24 ... air-fuel ratio sensor, 24a ... detection element, 24b ... heater.

Claims (6)

多気筒内燃機関の排気通路の集合部分における三元触媒より排気流れ方向上流側に設けられて同内燃機関の排気の酸素濃度を検出する酸素センサを備え、前記内燃機関の各気筒における混合気の空燃比を調節する空燃比制御と前記内燃機関の気筒間における混合気の空燃比のバラツキを判定する空燃比バラツキ判定とを共に前記酸素センサの検出値に基づき実行する機関システムに適用される排気酸素濃度検出装置において、
前記空燃比バラツキ判定の非実行時における前記酸素センサの温度と比較して、同空燃比バラツキ判定の実行時における前記酸素センサの温度を高温に調節する温度調節手段を備える
ことを特徴とする排気酸素濃度検出装置。
An oxygen sensor is provided upstream of the three-way catalyst in the exhaust flow direction of the collective portion of the exhaust passage of the multi-cylinder internal combustion engine to detect the oxygen concentration of the exhaust of the internal combustion engine, and the mixture gas in each cylinder of the internal combustion engine Exhaust gas applied to an engine system that executes both air-fuel ratio control for adjusting the air-fuel ratio and air-fuel ratio variation determination for determining variation in the air-fuel ratio of the air-fuel mixture between the cylinders of the internal combustion engine based on the detection value of the oxygen sensor. In the oxygen concentration detection device,
Exhaust gas comprising temperature adjusting means for adjusting the temperature of the oxygen sensor at the time of execution of the air-fuel ratio variation determination to a high temperature as compared to the temperature of the oxygen sensor at the time of non-execution of the air-fuel ratio variation determination. Oxygen concentration detector.
請求項1に記載の排気酸素濃度検出装置において、
前記温度調節手段は、前記内燃機関の吸入空気量が多いときほど前記酸素センサの温度を低温に調節するものである
ことを特徴とする排気酸素濃度検出装置。
The exhaust oxygen concentration detection device according to claim 1,
The exhaust oxygen concentration detection device according to claim 1, wherein the temperature adjusting means adjusts the temperature of the oxygen sensor to a lower temperature as the intake air amount of the internal combustion engine increases.
請求項1または2に記載の排気酸素濃度検出装置において、
前記温度調節手段は、前記酸素センサを加熱するためのヒータと同ヒータへの供給電力を調節するものとを有してなる
ことを特徴とする排気酸素濃度検出装置。
The exhaust oxygen concentration detection device according to claim 1 or 2,
The exhaust gas oxygen concentration detecting device according to claim 1, wherein the temperature adjusting means includes a heater for heating the oxygen sensor and a device for adjusting power supplied to the heater.
請求項3に記載の排気酸素濃度検出装置において、
前記酸素センサは温度上昇に伴いインピーダンスが大きくなる検出素子を有してなり、
前記温度調節手段は、前記検出素子のインピーダンスの相関値を検出するとともに、同相関値に基づいて前記ヒータへ供給電力を調節するものであり、
前記排気酸素濃度検出装置は、前記空燃比バラツキ判定の実行停止前後における前記ヒータの消費電力の差が所定の判定値以上であることを条件に、前記酸素センサの劣化異常を判定する劣化判定手段を更に備えてなる
ことを特徴とする排気酸素濃度検出装置。
The exhaust oxygen concentration detection device according to claim 3,
The oxygen sensor has a detection element whose impedance increases with increasing temperature,
The temperature adjusting means detects the correlation value of the impedance of the detection element, and adjusts the power supplied to the heater based on the correlation value.
The exhaust oxygen concentration detection device determines deterioration abnormality of the oxygen sensor on the condition that a difference in power consumption of the heater before and after execution stop of the air-fuel ratio variation determination is equal to or greater than a predetermined determination value. An exhaust oxygen concentration detection device further comprising:
請求項1〜4のいずれか一項に記載の排気酸素濃度検出装置において、
前記機関システムは、前記空燃比バラツキ判定において、前記酸素センサにより検出される酸素濃度の変化速度が所定の判定速度以上であるときに前記内燃機関の気筒間における混合気の空燃比のバラツキが大きくなる異常が発生していると判定する
ことを特徴とする排気酸素濃度検出装置。
In the exhaust gas oxygen concentration detection device according to any one of claims 1 to 4,
In the engine system, in the air-fuel ratio variation determination, the variation in the air-fuel ratio of the air-fuel mixture between the cylinders of the internal combustion engine is large when the change rate of the oxygen concentration detected by the oxygen sensor is equal to or higher than a predetermined determination speed. An exhaust oxygen concentration detection device characterized by determining that an abnormality has occurred.
請求項1〜5のいずれか一項に記載の排気酸素濃度検出装置において、
前記機関システムは、実行条件の非成立時に前記空燃比制御を実行するとともに前記空燃比バラツキ判定を非実行とし、前記実行条件の成立時に前記空燃比制御と前記空燃比バラツキ判定とを共に実行する
ことを特徴とする排気酸素濃度検出装置。
In the exhaust gas oxygen concentration detection device according to any one of claims 1 to 5,
The engine system executes the air-fuel ratio control when the execution condition is not satisfied, makes the air-fuel ratio variation determination non-executed, and executes both the air-fuel ratio control and the air-fuel ratio variation determination when the execution condition is satisfied. An exhaust oxygen concentration detection device characterized by the above.
JP2009246572A 2009-10-27 2009-10-27 Exhaust oxygen concentration detection apparatus Pending JP2011094996A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009246572A JP2011094996A (en) 2009-10-27 2009-10-27 Exhaust oxygen concentration detection apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009246572A JP2011094996A (en) 2009-10-27 2009-10-27 Exhaust oxygen concentration detection apparatus

Publications (1)

Publication Number Publication Date
JP2011094996A true JP2011094996A (en) 2011-05-12

Family

ID=44112090

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009246572A Pending JP2011094996A (en) 2009-10-27 2009-10-27 Exhaust oxygen concentration detection apparatus

Country Status (1)

Country Link
JP (1) JP2011094996A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110257863A1 (en) * 2010-04-20 2011-10-20 Robert Bosch Gmbh Method for operating an internal combustion engine
JP2013117381A (en) * 2011-12-01 2013-06-13 Denso Corp Multilayer ceramic exhaust gas sensor element, exhaust gas sensor using the same, and method for manufacturing multilayer ceramic exhaust gas sensor element

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110257863A1 (en) * 2010-04-20 2011-10-20 Robert Bosch Gmbh Method for operating an internal combustion engine
US8554444B2 (en) * 2010-04-20 2013-10-08 Robert Bosch Gmbh Method for operating an internal combustion engine
JP2013117381A (en) * 2011-12-01 2013-06-13 Denso Corp Multilayer ceramic exhaust gas sensor element, exhaust gas sensor using the same, and method for manufacturing multilayer ceramic exhaust gas sensor element

Similar Documents

Publication Publication Date Title
JP4643550B2 (en) Air-fuel ratio control device
US7934418B2 (en) Abnormality diagnosis device of intake air quantity sensor
JP5278466B2 (en) Cylinder air-fuel ratio variation abnormality detection device
JP2009203884A (en) Control device for internal combustion engine
JP2010169038A (en) Device for determining variation in air-fuel ratio among cylinders of multiple cylinder internal combustion engine
JP2008248769A (en) Air fuel ratio control device for internal combustion engine
JP2013060927A (en) Internal combustion engine control apparatus
US9037383B2 (en) Fuel injection amount control apparatus for internal combustion engine
JPH09126015A (en) Air fuel ratio control device of internal combustion engine
CN103547785B (en) The characteristic correction device of sensor
US9664096B2 (en) Control apparatus for internal combustion engine
JP2009138579A (en) Internal combustion engine sensor failure determination device
JP2011094996A (en) Exhaust oxygen concentration detection apparatus
JP4429336B2 (en) Air-fuel ratio control device
JP5386388B2 (en) Abnormality judgment device
WO2020012713A1 (en) Control device and diagnosis method for internal combustion engine
JP2006177371A (en) Internal combustion engine control device
JP5461373B2 (en) Cylinder air-fuel ratio variation abnormality detection device
US20250154916A1 (en) Apparatus and Method for Controlling Internal Combustion Engine
JP5610979B2 (en) Control device for internal combustion engine
JPH11229930A (en) Internal combustion engine controller
JP4854796B2 (en) Abnormality detection device for internal combustion engine
JP2012077740A (en) Fuel injection amount control device for internal combustion engine
JP5083044B2 (en) Deterioration diagnosis apparatus and deterioration diagnosis method for air-fuel ratio detection means
JP3765416B2 (en) Air-fuel ratio control device for internal combustion engine