JP2011086468A - 非水電解質電池 - Google Patents
非水電解質電池 Download PDFInfo
- Publication number
- JP2011086468A JP2011086468A JP2009237636A JP2009237636A JP2011086468A JP 2011086468 A JP2011086468 A JP 2011086468A JP 2009237636 A JP2009237636 A JP 2009237636A JP 2009237636 A JP2009237636 A JP 2009237636A JP 2011086468 A JP2011086468 A JP 2011086468A
- Authority
- JP
- Japan
- Prior art keywords
- positive electrode
- active material
- binder
- conductive agent
- battery
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Battery Electrode And Active Subsutance (AREA)
Abstract
【課題】良好な導電性を確保できると共に、充放電サイクル特性などの電池特性を向上できる。
【解決手段】正極33は、正極集電体33Aの両面に正極活物質層33Bが設けられたものである。正極活物質層33Bは、オリビン型結晶構造を有するリチウムリン酸化合物と、導電剤として繊維状炭素および中空シェル状構造を有するカーボンブラックと、結着剤としてポリフッ化ビニリデンとを有する。
【選択図】図2
【解決手段】正極33は、正極集電体33Aの両面に正極活物質層33Bが設けられたものである。正極活物質層33Bは、オリビン型結晶構造を有するリチウムリン酸化合物と、導電剤として繊維状炭素および中空シェル状構造を有するカーボンブラックと、結着剤としてポリフッ化ビニリデンとを有する。
【選択図】図2
Description
この発明は、非水電解質電池に関する。さらに詳しくは、正極にオリビン型結晶構造を有するリン酸リチウム化合物を用いた非水電解質電池に関する。
近年、カメラー体型VTR(Video Tape Recorder)、携帯電話、ラップトップコンピュータなどのポータブル電子機器が多く登場し、その小型軽量化が図られている。そしてこれらの電子機器のポータブル電源として、電池、特に二次電池について、エネルギー密度を向上させるための研究開発が活発に進められている。
非水電解液を用いた電池、中でも、リチウムイオン二次電池は、従来の水溶液系電解液二次電池である鉛電池、ニッケルカドミウム電池と比較して大きなエネルギー密度が得られるため、期待度が大きくなっており、市場も著しく成長している。
とりわけ近年、リチウムイオン二次電池の軽量、高エネルギー密度という特徴が電気自動車やハイブリッド電気自動車用途に適することから、同電池の大型化、高出力化を目指した検討が盛んとなっている。
リチウムイオン二次電池に代表される非水系二次電池では、正極活物質としてLiCoO2、LiNiO2、LiMn2O4などの酸化物正極が用いられることが一般的である。これは高容量、高電圧が得られ、かつ高充填性に優れるため、携帯機器の小型・軽量化に有利であるためである。
しかし、これらの正極は、充電状態で加熱すると200℃〜300℃において酸素放出を開始する。酸素放出が始まると、電解液として可燃性の有機電解液を用いるため、電池が熱暴走する危険性がある。よって、酸化物正極を用いた場合には、特に大型電池での安全性確保が容易ではない
そこで、LiFePO4などのオリビン型結晶構造の正極活物質が提案されている。このオリビン型結晶構造の正極活物質は、350℃を超えても酸素放出が起こらない、非常に安全性に優れた正極材料である。
LiFePO4などのオリビン型結晶構造を有する正極材料では、充放電がLiFePO4、FePO4の二層共存状態で進行するため、電位平坦性が非常に高い。このため、通常のリチウムイオン電池の充電方式である、定電流・定電圧充電を行うと、ほとんど定電流充電状態で充電が行われるという特徴がある。したがって、オリビン型結晶構造を有する正極材料を用いた電池では、LiCoO2、LiNiO2、LiMn2O4などの従来の正極材料に比べ、同じ充電レートで充電した場合、充電時間の短縮が可能である。
一方で、このオリビン型結晶構造の正極活物質では、従来のコバルト酸リチウム(LiCoO2)と比較して電池充放電時の挿入脱離反応が遅く、電気抵抗が大きいため、大電流充放電時において過電圧の増大に伴い、十分な充放電容量が得られない。
そこで、オリビン型結晶構造の正極活物質では、電気抵抗を低下させるために、導電剤である炭素材料と共に正極に用いることが、一般的に行われている。また、オリビン型結晶構造の正極活物質では、電子伝導性の低さを改善するために、活物質自体の粒子径を小さくし、比表面積を大きくすることや、比表面積の大きなカーボンブラックを添加することが提案されている。(例えば、特許文献1参照)
しかしながら、粒子径の小さい活物質や比表面積の大きいカーボンブラックを用いた正極では、充填性が悪いため、結着剤の必要量が増大してしまう。すなわち、塗布正極の作製では集電体に正極活物質層を形成するが、この正極活物質層を形成する際に必要となる正極合剤スラリーの安定や、集電体と正極活物質層との十分な密着強度を得るために、結着剤の必要量が増大してしまう。
結着剤の必要量が増大すると、導電剤として用いる炭素材料がカーボンブラックのみでは、その含有量が少ないと、導電性が十分ではなく、出力特性が低下するなどの問題が生じる。一方、導電性を確保するために、カーボンブラックの含有量を増大させると、集電体箔と正極活物質粒子との密着強度が弱くなって、充放電を繰り返した際の容量が低下するなどの問題が生じてしまう。
したがって、この発明の目的は、オリビン型結晶構造を有する正極活物質を正極に用いた場合に、良好な導電性を確保できると共に、充放電サイクル特性などの電池特性を向上できる非水電解質電池を提供することにある。
上述した課題を解決するために、この発明は、正極活物質、導電剤および結着剤を含む正極と、負極と、非水電解質とを備え、正極活物質は、オリビン型結晶構造を有するリチウムリン酸化合物を含み、導電剤は、中空シェル状構造を有するカーボンブラックおよび繊維状炭素を含み、結着剤の含有量は、正極活物質、導電助剤および結着剤の合計質量に対して、2wt%以上5wt%以下であり、導電剤の含有量は、結着剤の含有量に対して、40wt%以上60wt%以下であり、繊維状炭素の含有量は、導電剤の含有量に対して、10wt%以上20wt%以下である非水電解質電池である。
この発明では、中空シェル状構造を有するカーボンブラックに対して繊維状炭素を少量加えて、正極活物質粒子間の密着性を確保して導電性を確保する。さらに、繊維状炭素の表面を結着剤が覆うことで、正極活物質粒子と集電体との間の密着性を改善できる。すなわち、結着剤で覆われた繊維状炭素を介して、正極活物質粒子同士間が接触することで、正極活物質粒子同士間の密着強度を向上できる。また、結着剤で覆われた繊維状炭素を介して、正極活物質粒子と集電体との間が接触することで、正極活物質粒子と集電体との間の密着強度を向上できる。これにより、オリビン型結晶構造の正極活物質を用いた非水電解質電池において、良好な導電性を確保できると共に、充放電サイクル特性などの電池特性を向上できる。
この発明によれば、良好な導電性を確保できると共に、充放電サイクル特性などの電池特性を向上できるという効果を奏する。
以下、この発明の実施の形態について図面を参照して説明する。なお、説明は、以下の順序で行う。
1.第1の実施の形態(電池の第1の例)
2.第2の実施の形態(電池の第2の例)
3.第3の実施の形態(電池の第3の例)
4.他の実施の形態(変形例)
1.第1の実施の形態(電池の第1の例)
2.第2の実施の形態(電池の第2の例)
3.第3の実施の形態(電池の第3の例)
4.他の実施の形態(変形例)
1.第1の実施の形態
この発明の第1の実施の形態による電池について説明する。この電池は、例えば負極の容量が電極反応物質であるリチウムの吸蔵および放出に基づく容量成分により表されるリチウムイオン二次電池である。また、この電池は、有機溶媒を含む電解液を高分子化合物に保持させたゲル状電解質を用いた電池である。
この発明の第1の実施の形態による電池について説明する。この電池は、例えば負極の容量が電極反応物質であるリチウムの吸蔵および放出に基づく容量成分により表されるリチウムイオン二次電池である。また、この電池は、有機溶媒を含む電解液を高分子化合物に保持させたゲル状電解質を用いた電池である。
<電池の構成>
図1は、この発明の第1の実施の形態による電池の分解斜視構成を示す。この電池は、正極リード31および負極リード32が取り付けられた巻回電極体30をフィルム状の外装部材40の内部に収容したものである。この電池は、ラミネートフィルム型と称する電池構造を有する。
図1は、この発明の第1の実施の形態による電池の分解斜視構成を示す。この電池は、正極リード31および負極リード32が取り付けられた巻回電極体30をフィルム状の外装部材40の内部に収容したものである。この電池は、ラミネートフィルム型と称する電池構造を有する。
正極リード31および負極リード32は、例えば、それぞれ外装部材40の内部から外部に向かって同一方向に導出されている。これらは、例えば、それぞれアルミニウム(Al)、銅(Cu)、ニッケル(Ni)またはステンレス(SUS)などの金属材料により構成されており、薄板状または網目状になっている。
外装部材40は、例えば、ナイロンフィルム、アルミニウム箔およびポリエチレンフィルムがこの順に貼り合わされた矩形状のアルミラミネートフィルムにより構成されている。この外装部材40では、例えば、ポリエチレンフィルムが巻回電極体30と対向していると共に、各外縁部が融着または接着剤により互いに密着されている。外装部材40と正極リード31および負極リード32との間には、外気の侵入を防止するための密着フィルム41が挿入されている。この密着フィルム41は、正極リード31および負極リード32に対して密着性を有する材料、例えば、ポリエチレン、ポリプロピレン、変性ポリエチレンまたは変性ポリプロピレンなどのポリオレフィン樹脂により構成されている。
なお、外装部材40は、上記した3層構造のアルミラミネートフィルムに代えて、他の構造を有するラミネートフィルムにより構成されていてもよいし、またはポリプロピレンなどの高分子フィルム若しくは金属フィルムにより構成されていてもよい。
図2は、図1に示した巻回電極体30のI−I線に沿った断面構成を表している。この巻回電極体30は、正極33および負極34がセパレータ35および電解質36を介して積層されたのちに巻回されたものであり、その最外周部は保護テープ37により保護されている。
<正極>
正極33は、例えば、対向する一対の面を有する正極集電体33Aの両面に、正極活物質層33Bが設けられたものである。正極集電体33Aは、例えば、アルミニウム(Al)、ニッケル(Ni)あるいはステンレス(SUS)などの金属材料により構成されている。正極活物質層33Bは、正極活物質と、導電剤と、結着剤とを含む。
正極33は、例えば、対向する一対の面を有する正極集電体33Aの両面に、正極活物質層33Bが設けられたものである。正極集電体33Aは、例えば、アルミニウム(Al)、ニッケル(Ni)あるいはステンレス(SUS)などの金属材料により構成されている。正極活物質層33Bは、正極活物質と、導電剤と、結着剤とを含む。
(正極活物質)
正極活物質としては、オリビン型結晶構造を有するリチウムリン酸化合物を用いる。オリビン型結晶構造を有するリチウムリン酸化合物は、二次粒子が好ましい。
正極活物質としては、オリビン型結晶構造を有するリチウムリン酸化合物を用いる。オリビン型結晶構造を有するリチウムリン酸化合物は、二次粒子が好ましい。
なお、リチウムリン酸化合物の表面には、例えば、導電性を向上させるために炭素材料等を担持させてもよい。
二次粒子は、例えばスプレードライ法等の一般的に用いられる方法により造粒できる。スプレードライ法では、上述の一次粒子を例えばカーボン源材料とともに溶媒中に分散し、高温雰囲気下に噴霧することにより、瞬時に溶媒を飛ばして炭素材料が被覆された一次粒子が凝集した二次粒子を形成することができる。
オリビン型結晶構造を有するリチウムリン酸化合物としては、例えば、化Iで表される化合物を挙げることができる。
(化I)
LiMxPO4
(式中、Mは、コバルト(Co)、マンガン(Mn)、鉄(Fe)、ニッケル(Ni)、マグネシウム(Mg)、アルミニウム(Al)、ホウ素(B)、チタン(Ti)、バナジウム(V)、ニオブ(Nb)、銅(Cu)、亜鉛(Zn)、モリブデン(Mo)、カルシウム(Ca)、ストロンチウム(Sr)、タングステン(W)およびジルコニウム(Zr)からなる群のうちの少なくとも1種である。xは0<x≦1である。)
LiMxPO4
(式中、Mは、コバルト(Co)、マンガン(Mn)、鉄(Fe)、ニッケル(Ni)、マグネシウム(Mg)、アルミニウム(Al)、ホウ素(B)、チタン(Ti)、バナジウム(V)、ニオブ(Nb)、銅(Cu)、亜鉛(Zn)、モリブデン(Mo)、カルシウム(Ca)、ストロンチウム(Sr)、タングステン(W)およびジルコニウム(Zr)からなる群のうちの少なくとも1種である。xは0<x≦1である。)
化Iで表される化合物としては、LiFePO4や、LiFe1-yMeyPO4、LiFe1-y-zMe1yMe2zPO4、LiCoPO4、LiCo1-yMeyPO4、LiMn1-yMeyPO4(式中、Me、Me1、Me2は、コバルト(Co)、マンガン(Mn)、鉄(Fe)、ニッケル(Ni)、マグネシウム(Mg)、アルミニウム(Al)、ホウ素(B)、チタン(Ti)、バナジウム(V)、ニオブ(Nb)、銅(Cu)、亜鉛(Zn)、モリブデン(Mo)、カルシウム(Ca)、ストロンチウム(Sr)、タングステン(W)およびジルコニウム(Zr)から選ばれる1種であり、0<y<1、0<z<1である。)などが挙げられる。
(結着剤)
結着剤としては、ポリフッ化ビニリデン(PVdF)などのフッ素系高分子化合物などが挙げられる。
結着剤としては、ポリフッ化ビニリデン(PVdF)などのフッ素系高分子化合物などが挙げられる。
(導電剤)
導電剤としては、繊維状炭素と、中空シェル状構造を有するカーボンブラックとを組み合わせて用いる。
導電剤としては、繊維状炭素と、中空シェル状構造を有するカーボンブラックとを組み合わせて用いる。
[中空シェル状構造を有するカーボンブラック]
カーボンブラックは、ほぼ95%以上が無定形炭素質からなるサブミクロンの微粒子である。中空シェル状構造を有するカーボンブラックとしては、例えばケッチェンブラックなどが挙げられる。ケッチェンブラックは、導電性カーボンブラックの1種であり、中空シェル状の構造を有し、単位質量あたりの一次粒子数が多く、比表面積が大きい点に特徴を有する。ケッチェンブラックとしては、一般に市販されている、例えば「ライオン株式会社製、商品名:ケッチェンブラックEC」などを用いることができる。
カーボンブラックは、ほぼ95%以上が無定形炭素質からなるサブミクロンの微粒子である。中空シェル状構造を有するカーボンブラックとしては、例えばケッチェンブラックなどが挙げられる。ケッチェンブラックは、導電性カーボンブラックの1種であり、中空シェル状の構造を有し、単位質量あたりの一次粒子数が多く、比表面積が大きい点に特徴を有する。ケッチェンブラックとしては、一般に市販されている、例えば「ライオン株式会社製、商品名:ケッチェンブラックEC」などを用いることができる。
[繊維状炭素]
繊維状炭素としては、例えば気相法により合成された気相成長炭素繊維を用いることができる。気相成長炭素繊維は、例えば、高温雰囲気下に、触媒となる鉄と共に気化された有機化合物を吹き込む方法で製造することができる。気相成長炭素繊維は、製造した状態のままのもの、800℃〜1500℃程度で熱処理したもの、2000℃〜3000℃程度で黒鉛化処理したもののいずれも使用可能であるが、熱処理さらには黒鉛化処理したものの方が炭素の結晶性が進んでおり、高導電性および高耐圧特性を有するため好ましい。
繊維状炭素としては、例えば気相法により合成された気相成長炭素繊維を用いることができる。気相成長炭素繊維は、例えば、高温雰囲気下に、触媒となる鉄と共に気化された有機化合物を吹き込む方法で製造することができる。気相成長炭素繊維は、製造した状態のままのもの、800℃〜1500℃程度で熱処理したもの、2000℃〜3000℃程度で黒鉛化処理したもののいずれも使用可能であるが、熱処理さらには黒鉛化処理したものの方が炭素の結晶性が進んでおり、高導電性および高耐圧特性を有するため好ましい。
[繊維状炭素および中空シェル状構造を有するカーボンブラックの作用]
中空シェル状構造を有するカーボンブラックは、アグリゲートの基本粒子の大きさに応じた短い距離の導電ネットワークを形成すると考えられる。繊維状炭素は、その長径の長さに応じた長距離の導電ネットワークを形成する。中空シェル状構造を有するカーボンブラックの短距離の導電ネットワークを、繊維状炭素の長距離の導電ネットワークが補強的に架橋すると考えられるので、導電性を向上することができると考えられる。
中空シェル状構造を有するカーボンブラックは、アグリゲートの基本粒子の大きさに応じた短い距離の導電ネットワークを形成すると考えられる。繊維状炭素は、その長径の長さに応じた長距離の導電ネットワークを形成する。中空シェル状構造を有するカーボンブラックの短距離の導電ネットワークを、繊維状炭素の長距離の導電ネットワークが補強的に架橋すると考えられるので、導電性を向上することができると考えられる。
また、繊維状炭素の表面が、結着剤によって覆われることで、カーボンブラックのみを導電剤として用いた場合に比べて、密着性が改善される。すなわち、結着剤で覆われた繊維状炭素を介して、正極活物質粒子同士間が接触することで、正極活物質粒子同士間の密着強度を向上できる。また、結着剤で覆われた繊維状炭素を介して、正極活物質粒子と集電体との間が接触することで、正極活物質粒子と集電体との間の密着強度を向上できる。
正極活物質粒子同士間の密着強度を向上することによって、導電性を向上できる。正極活物質粒子と集電体との間の密着強度を向上することによって、正極活物質層の剥離強度を向上できるので、充放電サイクル特性などの電池特性を向上できる。
(正極活物質、導電剤および結着剤の含有量)
正極活物質、導電剤および結着剤の含有量について、説明する。例えば、結着剤としてポリフッ化ビニリデン(PVdF)を用い、導電剤として中空シェル状構造を有するカーボンブラックおよび気相成長炭素繊維(繊維状炭素)を用いた場合には、結着剤量、導電剤量、繊維状炭素量、中空シェル状構造を有するカーボンブラック量は、下記のように設定される。
正極活物質、導電剤および結着剤の含有量について、説明する。例えば、結着剤としてポリフッ化ビニリデン(PVdF)を用い、導電剤として中空シェル状構造を有するカーボンブラックおよび気相成長炭素繊維(繊維状炭素)を用いた場合には、結着剤量、導電剤量、繊維状炭素量、中空シェル状構造を有するカーボンブラック量は、下記のように設定される。
結着剤量:正極活物質、導電剤および結着剤の合計量に対して、2wt%以上5wt%以下である。
導電剤量:結着剤量に対して、40wt%以上60wt%以下である。
繊維状炭素量:導電剤量に対して、10wt%以上20wt%以下である。
中空シェル状構造を有するカーボンブラック量:導電剤量に対して、80wt%以上90wt%以下である。
導電剤量:結着剤量に対して、40wt%以上60wt%以下である。
繊維状炭素量:導電剤量に対して、10wt%以上20wt%以下である。
中空シェル状構造を有するカーボンブラック量:導電剤量に対して、80wt%以上90wt%以下である。
[結着剤量]
結着剤量は、正極活物質、導電剤および結着剤の合計量に対して、2wt%以上5wt%以下である。結着剤の含有量が上記数値範囲より少ないと、集電体箔への密着性が悪くなってしまう。結着剤の含有量が上記数値範囲より多いと、負荷特性が低下してしまう。また、結着剤の含有量は、正極活物質、導電剤および結着剤の合計量に対して、3wt%以上4wt%以下であることが好ましい。
結着剤量は、正極活物質、導電剤および結着剤の合計量に対して、2wt%以上5wt%以下である。結着剤の含有量が上記数値範囲より少ないと、集電体箔への密着性が悪くなってしまう。結着剤の含有量が上記数値範囲より多いと、負荷特性が低下してしまう。また、結着剤の含有量は、正極活物質、導電剤および結着剤の合計量に対して、3wt%以上4wt%以下であることが好ましい。
なお、オリビン型結晶構造の正極活物質を用いる場合には、LiCoO2などのコバルト系の正極活物質を用いる場合よりも、結着剤量が多くなる。すなわち、コバルト系の正極活物質を用いる場合には、結着剤量が多い場合でも2wt%を超えない程度だが、オリビン型結晶構造の正極活物質を用いる場合には、微細化した活物質を用いているため、結着剤量を2wt%以上5%wt以下に増大する必要がある。
[導電剤量]
導電剤量は、結着剤量に対して、40wt%以上60wt%以下である。導電剤量が上記数値範囲より少ないと、導電性が低下してしまう。導電剤量を上記数値範囲より多くしても、導電性は飛躍的には向上しない。また、導電剤量は、結着剤量に対して、45wt%以上55wt%以下であることが好ましい。
導電剤量は、結着剤量に対して、40wt%以上60wt%以下である。導電剤量が上記数値範囲より少ないと、導電性が低下してしまう。導電剤量を上記数値範囲より多くしても、導電性は飛躍的には向上しない。また、導電剤量は、結着剤量に対して、45wt%以上55wt%以下であることが好ましい。
[繊維状炭素量]
繊維状炭素量は、導電剤量に対して、10wt%以上20wt%以下である。上記数値範囲内で、より優れた特性が得られる。また、繊維状炭素量は、導電剤量に対して、12wt%以上16wt%以下であることが好ましい。
繊維状炭素量は、導電剤量に対して、10wt%以上20wt%以下である。上記数値範囲内で、より優れた特性が得られる。また、繊維状炭素量は、導電剤量に対して、12wt%以上16wt%以下であることが好ましい。
(中空シェル状構造を有するカーボンブラック量)
中空シェル状構造を有するカーボンブラック量は、導電剤量に対して、80wt%以上90wt%以下である。上記数値範囲内で、より優れた特性が得られる。中空シェル状構造を有するカーボンブラック量は、84wt%以上88wt%以下であることが好ましい。
中空シェル状構造を有するカーボンブラック量は、導電剤量に対して、80wt%以上90wt%以下である。上記数値範囲内で、より優れた特性が得られる。中空シェル状構造を有するカーボンブラック量は、84wt%以上88wt%以下であることが好ましい。
(正極活物質層33Bの空隙率)
正極活物質層33Bの空隙率は、例えば、30%以上45%以下に設定される。例えば、コバルト系の正極活物質を用いた場合には、25%以下に設定されるが、オリビン型結晶構造の正極活物質では、微細化したものを用いるため充填性が悪いので、上記範囲に設定される。
正極活物質層33Bの空隙率は、例えば、30%以上45%以下に設定される。例えば、コバルト系の正極活物質を用いた場合には、25%以下に設定されるが、オリビン型結晶構造の正極活物質では、微細化したものを用いるため充填性が悪いので、上記範囲に設定される。
(正極活物質層33Bの剥離強度)
また、正極活物質層33Bの剥離強度は、例えば10mN/mm以上80mN/mm以下に設定される。
また、正極活物質層33Bの剥離強度は、例えば10mN/mm以上80mN/mm以下に設定される。
<負極>
負極34は、例えば、対向する一対の面を有する負極集電体22Aの両面に、負極活物質層22Bが設けられたものである。負極集電体22Aは、例えば、銅(Cu)、ニッケル(Ni)またはステンレス(SUS)などの金属材料により構成されている。負極活物質層22Bは、例えば、負極活物質として、リチウムを吸蔵および放出することが可能な負極材料のいずれか1種または2種以上を含んでいる。この負極活物質層22Bは、必要に応じて、導電剤や結着剤などを含んでいてもよい。
負極34は、例えば、対向する一対の面を有する負極集電体22Aの両面に、負極活物質層22Bが設けられたものである。負極集電体22Aは、例えば、銅(Cu)、ニッケル(Ni)またはステンレス(SUS)などの金属材料により構成されている。負極活物質層22Bは、例えば、負極活物質として、リチウムを吸蔵および放出することが可能な負極材料のいずれか1種または2種以上を含んでいる。この負極活物質層22Bは、必要に応じて、導電剤や結着剤などを含んでいてもよい。
(負極活物質)
リチウムを吸蔵および放出することが可能な負極材料としては、例えば、炭素材料、金属酸化物または高分子化合物などが挙げられる。
リチウムを吸蔵および放出することが可能な負極材料としては、例えば、炭素材料、金属酸化物または高分子化合物などが挙げられる。
炭素質材料としては、例えば、難黒鉛化性炭素、易黒鉛化性炭素、MCMB(メソカーボンマイクロビーズ)などの人造黒鉛、天然黒鉛、熱分解炭素類、コークス類、グラファイト類、ガラス状炭素類、有機高分子化合物焼成体、カーボンブラック類、炭素繊維あるいは活性炭が挙げられる。このうち、コークス類には、ピッチコークス、ニードルコークスあるいは石油コークスなどがある。有機高分子化合物焼成体というのは、フェノール樹脂やフラン樹脂などの高分子材料を適当な温度で焼成して炭素化したものをいい、一部には難黒鉛化性炭素または易黒鉛化性炭素に分類されるものもある。金属酸化物としては、例えば、酸化鉄、酸化ルテニウムまたは酸化モリブデンなどが挙げられる。また、高分子材料としてはポリアセチレンまたはポリピロールなどが挙げられる。
リチウムを吸蔵および放出することが可能な負極材料としては、例えば、リチウムを吸蔵および放出することが可能であると共に金属元素および半金属元素のうちの少なくとも1種を構成元素として含む材料も挙げられる。このような負極材料を用いれば、高いエネルギー密度を得ることができるので好ましい。この負極材料は、金属元素若しくは半金属元素の単体でも合金でも化合物でもよく、またはこれらの1種若しくは2種以上の相を少なくとも一部に有するようなものでもよい。なお、本発明において、合金には、2種以上の金属元素からなるものに加えて、1種以上の金属元素と1種以上の半金属元素とを含むものも含める。また、本発明における合金は、非金属元素を含んでいてもよい。この組織には、固溶体、共晶(共融混合物)、金属間化合物またはそれらのうちの2種以上が共存するものがある。
この負極材料を構成する金属元素または半金属元素としては、例えば、リチウムと合金を形成することが可能な金属元素または半金属元素が挙げられる。具体的には、マグネシウム(Mg)、ホウ素(B)、アルミニウム(Al)、ガリウム(Ga)、インジウム(In)、ケイ素(Si)、ゲルマニウム(Ge)、スズ、鉛(Pb)、ビスマス(Bi)、カドミウム(Cd)、銀(Ag)、亜鉛(Zn)、ハフニウム(Hf)、ジルコニウム(Zr)、イットリウム(Y)、パラジウム(Pd)または白金(Pt)などが挙げられる。このうち、特に好ましいのは、ケイ素(Si)およびスズ(Sn)のうちの少なくとも1種である。リチウムを吸蔵および放出する能力が大きく、高いエネルギー密度が得られるからである。
ケイ素(Si)およびスズ(Sn)のうちの少なくとも1種を含む負極材料としては、例えば、ケイ素の単体、合金若しくは化合物、スズの単体、合金若しくは化合物、またはこれらの1種若しくは2種以上の相を少なくとも一部に有する材料が挙げられる。これらは単独で用いてもよいし、複数種を混合して用いてもよい。
ケイ素の合金としては、例えば、ケイ素(Si)以外の第2の構成元素として、スズ(Sn)、ニッケル(Ni)、銅(Cu)、鉄(Fe)、コバルト(Co)、マンガン(Mn)、亜鉛(Zn)、インジウム(In)、銀(Ag)、チタン(Ti)、ゲルマニウム(Ge)、ビスマス(Bi)、アンチモン(Sb)およびクロム(Cr)からなる群のうちの少なくとも1種を含むものが挙げられる。スズの合金としては、例えば、スズ(Sn)以外の第2の構成元素として、ケイ素(Si)、ニッケル(Ni)、銅(Cu)、鉄(Fe)、コバルト(Co)、マンガン(Mn)、亜鉛(Zn)、インジウム(In)、銀(Ag)、チタン(Ti)、ゲルマニウム(Ge)、ビスマス(Bi)、アンチモン(Sb)およびクロム(Cr)からなる群のうちの少なくとも1種を含むものが挙げられる。
スズの化合物またはケイ素の化合物としては、例えば、酸素(O)または炭素(C)を含むものが挙げられ、スズ(Sn)またはケイ素(Si)に加えて、上記した第2の構成元素を含んでいてもよい。
特に、ケイ素(Si)およびスズ(Sn)のうちの少なくとも1種を含む負極材料としては、例えば、スズ(Sn)を第1の構成元素とし、そのスズ(Sn)に加えて第2の構成元素と第3の構成元素とを含むものが好ましい。勿論、この負極材料を上記した負極材料と共に用いてもよい。第2の構成元素は、コバルト(Co)、鉄(Fe)、マグネシウム(Mg)、チタン(Ti)、バナジウム(V)、クロム(Cr)、マンガン(Mn)、ニッケル(Ni)、銅(Cu)、亜鉛(Zn)、ガリウム(Ga)、ジルコニウム(Zr)、ニオブ(Nb)、モリブデン(Mo)、銀(Ag)、インジウム(In)、セリウム(Ce)、ハフニウム(Hf)、タンタル(Ta)、タングステン(W)、ビスマス(Bi)およびケイ素(Si)からなる群のうちの少なくとも1種である。第3の構成元素は、ホウ素(B)、炭素(C)、アルミニウム(Al)およびリン(P)からなる群のうちの少なくとも1種である。第2の元素および第3の元素を含むことにより、サイクル特性が向上するからである。
中でも、スズ(Sn)、コバルト(Co)および炭素(C)を構成元素として含み、炭素(C)の含有量が9.9質量%以上29.7質量%以下の範囲内、スズ(Sn)およびコバルト(Co)の合計に対するコバルト(Co)の割合(Co/(Sn+Co))が30質量%以上70質量%以下の範囲内であるCoSnC含有材料が好ましい。このような組成範囲において、高いエネルギー密度が得られると共に優れたサイクル特性が得られるからである。
このCoSnC含有材料は、必要に応じて、さらに他の構成元素を含んでいてもよい。他の構成元素としては、例えば、ケイ素(Si)、鉄(Fe)、ニッケル(Ni)、クロム(Cr)、インジウム(In)、ニオブ(Nb)、ゲルマニウム(Ge)、チタン(Ti)、モリブデン(Mo)、アルミニウム(Al)、リン(P)、ガリウム(Ga)またはビスマス(Bi)などが好ましく、それらの2種以上を含んでいてもよい。容量特性あるいはサイクル特性がさらに向上するからである。
なお、CoSnC含有材料は、スズ(Sn)、コバルト(Co)および炭素(C)を含む相を有しており、この相は結晶性の低いまたは非晶質な構造を有していることが好ましい。また、CoSnC含有材料では、構成元素である炭素の少なくとも一部が、他の構成元素である金属元素あるいは半金属元素と結合していることが好ましい。サイクル特性の低下は、スズ(Sn)などが凝集あるいは結晶化することによるものであると考えられるが、炭素が他の元素と結合することにより、そのような凝集または結晶化が抑制されるからである。
元素の結合状態を調べる測定方法としては、例えば、X線光電子分光法(X-ray Photoelectron Spectroscopy;XPS)が挙げられる。このXPSでは、金原子の4f軌道(Au4f)のピークが84.0eVに得られるようにエネルギー較正された装置において、グラファイトであれば、炭素の1s軌道(C1s)のピークは284.5eVに現れる。また、表面汚染炭素であれば、284.8eVに現れる。これに対して、炭素元素の電荷密度が高くなる場合、例えば、炭素が金属元素または半金属元素と結合している場合には、C1sのピークは284.5eVよりも低い領域に現れる。すなわち、CoSnC含有材料について得られるC1sの合成波のピークが284.5eVよりも低い領域に現れる場合には、CoSnC含有材料に含まれる炭素(C)の少なくとも一部が他の構成元素である金属元素または半金属元素と結合している。
なお、XPSでは、例えば、スペクトルのエネルギー軸の補正に、C1sのピークを用いる。通常、表面には表面汚染炭素が存在しているので、表面汚染炭素のC1sのピークを284.8eVとし、これをエネルギー基準とする。XPSにおいて、C1sのピークの波形は、表面汚染炭素のピークとCoSnC含有材料中の炭素のピークとを含んだ形として得られるので、例えば、市販のソフトウエアを用いて解析することにより、表面汚染炭素のピークと、CoSnC含有材料中の炭素のピークとを分離する。波形の解析では、最低束縛エネルギー側に存在する主ピークの位置をエネルギー基準(284.8eV)とする。
(導電剤)
導電剤としては、例えば、黒鉛、カーボンブラックなどの炭素材料が挙げられる。これらは単独で用いてもよいし、複数種を混合して用いてもよい。なお、導電剤は、導電性を有する材料であれば、金属材料または導電性高分子などであってもよい。
導電剤としては、例えば、黒鉛、カーボンブラックなどの炭素材料が挙げられる。これらは単独で用いてもよいし、複数種を混合して用いてもよい。なお、導電剤は、導電性を有する材料であれば、金属材料または導電性高分子などであってもよい。
(結着剤)
結着剤としては、例えば、スチレンブタジエン系ゴム、フッ素系ゴムまたはエチレンプロピレンジエンなどの合成ゴムや、ポリフッ化ビニリデンなどの高分子材料が挙げられる。これらは単独で用いてもよいし、複数種を混合して用いてもよい。ただし、図1に示したように、正極33および負極34が巻回されている場合には、柔軟性に富むスチレンブタジエン系ゴムまたはフッ素系ゴムなどを用いることが好ましい。
結着剤としては、例えば、スチレンブタジエン系ゴム、フッ素系ゴムまたはエチレンプロピレンジエンなどの合成ゴムや、ポリフッ化ビニリデンなどの高分子材料が挙げられる。これらは単独で用いてもよいし、複数種を混合して用いてもよい。ただし、図1に示したように、正極33および負極34が巻回されている場合には、柔軟性に富むスチレンブタジエン系ゴムまたはフッ素系ゴムなどを用いることが好ましい。
(電解質)
電解質36は、電解液と、それを保持する高分子化合物とを含んでおり、いわゆるゲル状になっている。ゲル状の電解質は、高いイオン伝導率(例えば室温で1mS/cm以上)が得られると共に漏液が防止されるので好ましい。
電解質36は、電解液と、それを保持する高分子化合物とを含んでおり、いわゆるゲル状になっている。ゲル状の電解質は、高いイオン伝導率(例えば室温で1mS/cm以上)が得られると共に漏液が防止されるので好ましい。
[電解液]
電解液は、溶媒と電解質塩とを含む。溶媒としては、例えば、エチレンカーボネート、プロピレンカーボネート、ビニレンカーボネート、ジメチルカーボネート、エチルメチルカーボネート、ジエチルカーボネートなどの炭酸エステル系溶媒、1,2−ジメトキシエタン、1−エトキシ−2−メトキシエタン、1,2−ジエトキシエタン、テトラヒドロフラン、2−メチルテトラヒドロフランなどのエーテル系溶媒、γ−ブチロラクトン、γ−バレロラクトン、δ−バレロラクトン、ε−カプロラクトンなどのラクトン系溶媒、アセトニトリルなどのニトリル系溶媒、スルフォラン系溶媒、リン酸類、リン酸エステル溶媒、、ピロリドン類などの非水溶媒が挙げられる。溶媒は、いずれか1種を単独で用いても、2種以上を混合して用いてもよい。溶媒にプロピレンカーボネートを含む場合には、電解液に対して、プロピレンカーボネートを40wt%以上含むことが好ましい。
電解液は、溶媒と電解質塩とを含む。溶媒としては、例えば、エチレンカーボネート、プロピレンカーボネート、ビニレンカーボネート、ジメチルカーボネート、エチルメチルカーボネート、ジエチルカーボネートなどの炭酸エステル系溶媒、1,2−ジメトキシエタン、1−エトキシ−2−メトキシエタン、1,2−ジエトキシエタン、テトラヒドロフラン、2−メチルテトラヒドロフランなどのエーテル系溶媒、γ−ブチロラクトン、γ−バレロラクトン、δ−バレロラクトン、ε−カプロラクトンなどのラクトン系溶媒、アセトニトリルなどのニトリル系溶媒、スルフォラン系溶媒、リン酸類、リン酸エステル溶媒、、ピロリドン類などの非水溶媒が挙げられる。溶媒は、いずれか1種を単独で用いても、2種以上を混合して用いてもよい。溶媒にプロピレンカーボネートを含む場合には、電解液に対して、プロピレンカーボネートを40wt%以上含むことが好ましい。
電解質塩は、LiPF6、LiClO4、LiBF4、LiN(CF3SO2)2、LiN(C2F5SO2)2、LiAsF6などのリチウム塩を用いることができる。これらのリチウム塩は、いずれか1種を用いても、2種以上を混合して用いてもよい。
[高分子化合物]
高分子化合物としては、例えば、ポリアクリロニトリル、ポリフッ化ビニリデン、ポリフッ化ビニリデンとポリヘキサフルオロピレンとの共重合体、ポリテトラフルオロエチレン、ポリヘキサフルオロプロピレン、ポリエチレンオキサイド、ポリプロピレンオキサイド、ポリフォスファゼン、ポリシロキサン、ポリ酢酸ビニル、ポリビニルアルコール、ポリメタクリル酸メチル、ポリアクリル酸、ポリメタクリル酸、スチレン−ブタジエンゴム、ニトリル−ブタジエンゴム、ポリスチレンまたはポリカーボネートなどが挙げられる。これらは単独で用いてもよいし、複数種を混合して用いてもよい。特に、電気化学的安定性の点から、ポリアクリロニトリル、ポリフッ化ビニリデン、ポリヘキサフルオロプロピレンまたはポリエチレンオキサイドなどが好ましい。
高分子化合物としては、例えば、ポリアクリロニトリル、ポリフッ化ビニリデン、ポリフッ化ビニリデンとポリヘキサフルオロピレンとの共重合体、ポリテトラフルオロエチレン、ポリヘキサフルオロプロピレン、ポリエチレンオキサイド、ポリプロピレンオキサイド、ポリフォスファゼン、ポリシロキサン、ポリ酢酸ビニル、ポリビニルアルコール、ポリメタクリル酸メチル、ポリアクリル酸、ポリメタクリル酸、スチレン−ブタジエンゴム、ニトリル−ブタジエンゴム、ポリスチレンまたはポリカーボネートなどが挙げられる。これらは単独で用いてもよいし、複数種を混合して用いてもよい。特に、電気化学的安定性の点から、ポリアクリロニトリル、ポリフッ化ビニリデン、ポリヘキサフルオロプロピレンまたはポリエチレンオキサイドなどが好ましい。
電解質塩の含有量は、溶媒に対して0.3mol/kg以上3.0mol/kg以下の範囲内であることが好ましい。この範囲外ではイオン伝導性が極端に低下するため、容量特性などが十分に得られないおそれがあるからである。ただし、この場合の溶媒とは、液状の溶媒だけでなく、電解質塩を解離させることが可能なイオン伝導性を有するものまで含む広い概念である。したがって、イオン伝導性を有する高分子化合物を用いる場合には、その高分子化合物も溶媒に含まれる。
(セパレータ)
セパレータ35は、正極33と負極34とを隔離し、両極の接触による電流の短絡を防止しつつリチウムイオンを通過させるものである。このセパレータ35は、例えば、ポリテトラフルオロエチレン、ポリプロピレン、ポリエチレンなどの合成樹脂からなる多孔質膜、またはセラミックからなる多孔質膜により構成されており、これらの2種以上の多孔質膜を積層した構造とされていてもよい。中でも、ポリオレフィン製の多孔質膜は、ショート防止効果に優れ、かつシャットダウン効果による電池の安全性向上を図ることができるので好ましい。特に、ポリエチレンは、100℃以上160℃以下の範囲内でシャットダウン効果を得ることができると共に、電気化学的安定性にも優れているので好ましい。また、ポリプロピレンも好ましく、他にも化学的安定性を備えた樹脂であれば、ポリエチレンまたはポリプロピレンと共重合させたものであったり、ブレンド化したものであってもよい。
セパレータ35は、正極33と負極34とを隔離し、両極の接触による電流の短絡を防止しつつリチウムイオンを通過させるものである。このセパレータ35は、例えば、ポリテトラフルオロエチレン、ポリプロピレン、ポリエチレンなどの合成樹脂からなる多孔質膜、またはセラミックからなる多孔質膜により構成されており、これらの2種以上の多孔質膜を積層した構造とされていてもよい。中でも、ポリオレフィン製の多孔質膜は、ショート防止効果に優れ、かつシャットダウン効果による電池の安全性向上を図ることができるので好ましい。特に、ポリエチレンは、100℃以上160℃以下の範囲内でシャットダウン効果を得ることができると共に、電気化学的安定性にも優れているので好ましい。また、ポリプロピレンも好ましく、他にも化学的安定性を備えた樹脂であれば、ポリエチレンまたはポリプロピレンと共重合させたものであったり、ブレンド化したものであってもよい。
<電池の製造方法>
上述した電池は、例えば、以下のように製造する。
上述した電池は、例えば、以下のように製造する。
まず、電解液と、高分子化合物と、混合溶剤とを含む前駆溶液を調製し、正極33および負極34のそれぞれに塗布したのちに混合溶剤を揮発させることにより、電解質36を形成する。続いて、正極集電体33Aに正極リード31を取り付けると共に、負極集電体34Aに負極リード32を取り付ける。
続いて、電解質36が形成された正極33および負極34をセパレータ35を介して積層させたのち、長手方向に巻回させると共に最外周部に保護テープ37を接着させることにより、巻回電極体30を形成する。続いて、例えば、外装部材40の間に巻回電極体30を挟み込み、その外装部材40の外縁部同士を熱融着などで密着させることにより巻回電極体30を封入する。その際、正極リード31および負極リード32と外装部材40との間に、密着フィルム41を挿入する。これにより、図1および図2に示す電池を得ることができる。
また、この電池は、以下のように製造してもよい。
まず、正極33および負極34にそれぞれ正極リード31および負極リード32を取り付けたのち、それらの正極33および負極34をセパレータ35を介して積層および巻回させると共に最外周部に保護テープ37を接着させる。これにより、巻回電極体30の前駆体である巻回体を形成する。
次に、外装部材40の間に巻回体を挟み込み、一辺の外周縁部を除く残りの外周縁部を熱融着などで密着させることにより、袋状の外装部材40の内部に収納する。次に、電解液と、高分子化合物の原料であるモノマーと、重合開始剤と、必要に応じて重合禁止剤などの他の材料とを含む電解質用組成物を調製し、袋状の外装部材40の内部に注入したのち、外装部材40の開口部を熱融着などで密封する。最後に、モノマーを熱重合させて高分子化合物とすることにより、ゲル状の電解質36を形成する。これにより、図1および図2に示す電池を得ることができる。
また、この電池は、以下のように製造してもよい。
まず、正極33および負極34にそれぞれ正極リード31および負極リード32を取り付ける。次に、この正極33および負極34を、高分子化合物が両面に塗布されたセパレータ35を介して、積層および巻回すると共に、最外周部に保護テープ37を接着させることにより、巻回電極体30を形成する。
高分子化合物としては、例えばフッ化ビニリデンを成分とする重合体、すなわち単独重合体、共重合体または多元共重合体などが挙げられる。具体的には、ポリフッ化ビニリデン、フッ化ビニリデンおよびヘキサフルオロプロピレンを成分とする二元系共重合体や、フッ化ビニリデン、ヘキサフルオロプロピレンおよびクロロトリフルオロエチレンを成分とする三元系共重合体などである。なお、高分子化合物は、上記したフッ化ビニリデンを成分とする重合体とともに、他の1種または2種以上の高分子化合物を含んでいてもよい。
次に、上記した電解液を外装部材40の内部に注入したのち、その外装部材40の開口部を熱融着などで密封する。最後に、外装部材40に加重をかけながら加熱し、高分子化合物を介してセパレータ35を正極33および負極34に密着させる。これにより、電解液が高分子化合物に含浸し、その高分子化合物がゲル化して電解質36が形成される。以上により、図1および図2に示す電池を得ることができる。
<効果>
この発明の第1の実施の形態による非水電解質電池では、良好な導電性を確保できると共に、充放電サイクル特性などの電池特性を向上できる。
この発明の第1の実施の形態による非水電解質電池では、良好な導電性を確保できると共に、充放電サイクル特性などの電池特性を向上できる。
2.第2の実施の形態
この発明の第2の実施の形態による電池について説明する。この発明の第2の実施の形態による電池は、電解液を高分子化合物に保持させたもの(電解質36)に代えて、電解液をそのまま用いた点以外は、第1の実施の形態による電池と同様である。したがって、以下では、第1の実施の形態と異なる点を中心にその構成を詳細に説明する。
この発明の第2の実施の形態による電池について説明する。この発明の第2の実施の形態による電池は、電解液を高分子化合物に保持させたもの(電解質36)に代えて、電解液をそのまま用いた点以外は、第1の実施の形態による電池と同様である。したがって、以下では、第1の実施の形態と異なる点を中心にその構成を詳細に説明する。
<電池の構成>
この発明の第2の実施の形態による電池では、ゲル状の電解質36の代わりに、電解液を用いている。したがって、巻回電極体30は、電解質36が省略された構成を有し、電解液がセパレータ35に含浸されている。
この発明の第2の実施の形態による電池では、ゲル状の電解質36の代わりに、電解液を用いている。したがって、巻回電極体30は、電解質36が省略された構成を有し、電解液がセパレータ35に含浸されている。
<電池の製造方法>
この電池は、例えば、以下のように製造する。
この電池は、例えば、以下のように製造する。
まず、例えば正極活物質と結着剤と導電剤とを混合して正極合剤を調製し、N−メチル−2−ピロリドンなどの溶剤に分散させることにより正極合剤スラリーを作製する。次に、この正極合剤スラリーを両面に塗布し、乾燥させ圧縮成型して正極活物質層33Bを形成し正極33を作製する。次に、例えば正極集電体33Aに正極リード31を、例えば超音波溶接、スポット溶接などにより接合する。
また、例えば負極材料と結着剤とを混合して負極合剤を調製し、N−メチル−2−ピロリドンなどの溶剤に分散させることにより負極合剤スラリーを作製する。次に、この負極合剤スラリーを負極集電体34Aの両面に塗布し乾燥させ、圧縮成型して負極活物質層34Bを形成し、負極34を作製する。次に、例えば負極集電体34Aに負極リード32を例えば超音波溶接、スポット溶接などにより接合する。
続いて、正極33と負極34とをセパレータ35を介して巻回して外装部材40の内部に挟み込んだのち、外装部材40の内部に電解液を注入し、外装部材40を密閉する。これにより、図1および図2に示す電池が得られる。
<効果>
この発明の第2の実施の形態は、第1の実施の形態と同様の効果を有する。
この発明の第2の実施の形態は、第1の実施の形態と同様の効果を有する。
3.第3の実施の形態
図3は、この発明の第3の実施の形態による電池の断面構成を示す。この電池は、有機溶媒を含む電解液を用いた非水電解質電池である。この電池は、円筒型と呼ばれる電池構造を有する。
図3は、この発明の第3の実施の形態による電池の断面構成を示す。この電池は、有機溶媒を含む電解液を用いた非水電解質電池である。この電池は、円筒型と呼ばれる電池構造を有する。
<電池の構成>
この電池は、ほぼ中空円柱状の電池缶11の内部に、正極21および負極22がセパレータ23を介して巻回された巻回電極体20と、一対の絶縁板12、13とが収納されたものである。電池缶11は、例えば、ニッケル(Ni)めっきが施された鉄(Fe)により構成されており、その一端部および他端部はそれぞれ閉鎖および開放されている。一対の絶縁板12、13は、巻回電極体20を挟み、その巻回周面に対して垂直に延在するように配置されている。
この電池は、ほぼ中空円柱状の電池缶11の内部に、正極21および負極22がセパレータ23を介して巻回された巻回電極体20と、一対の絶縁板12、13とが収納されたものである。電池缶11は、例えば、ニッケル(Ni)めっきが施された鉄(Fe)により構成されており、その一端部および他端部はそれぞれ閉鎖および開放されている。一対の絶縁板12、13は、巻回電極体20を挟み、その巻回周面に対して垂直に延在するように配置されている。
電池缶11の開放端部には、電池蓋14と、その内側に設けられた安全弁機構15および熱感抵抗素子(Positive Temperature Coefficient;PTC素子)16とが、ガスケット17を介してかしめられることにより取り付けられており、電池缶11の内部は密閉されている。電池蓋14は、例えば、電池缶11と同様の材料により構成されている。安全弁機構15は、熱感抵抗素子16を介して電池蓋14と電気的に接続されている。
この安全弁機構15では、内部短絡あるいは外部からの加熱などに起因して内圧が一定以上となった場合に、ディスク板15Aが反転することにより電池蓋14と巻回電極体20との間の電気的接続が切断されるようになっている。熱感抵抗素子16は、温度の上昇に応じて抵抗が増大することにより電流を制限し、大電流に起因する異常な発熱を防止するものである。ガスケット17は、例えば、絶縁材料により構成されており、その表面にはアスファルトが塗布されている。
巻回電極体20の中心には、例えば、センターピン24が挿入されている。この巻回電極体20では、アルミニウム(Al)などにより構成された正極リード25が正極21に接続されており、ニッケルなどにより構成された負極リード26が負極22に接続されている。正極リード25は、安全弁機構15に溶接されることにより電池蓋14と電気的に接続されており、負極リード26は、電池缶11に溶接されることにより電気的に接続されている。
図2は、図1に示した巻回電極体20の一部を拡大して表している。正極21は、正極集電体21Aの両面に正極活物質層21Bが設けられたものである。負極22は、負極集電体22Aの両面に負極活物質層22Bが設けられたものであり、その負極活物質層22Bが正極活物質層21Bと対向するように配置されている。正極集電体22A、正極活物質層22B、負極集電体22A、負極活物質層22Bおよびセパレータ23の構成は、例えば、それぞれ上記した第1の実施の形態で説明した構成と同様である。
(電解液)
上記した第1の実施の形態で説明した構成と同様である。
上記した第1の実施の形態で説明した構成と同様である。
<電池の製造方法>
上述した電池は、例えば、以下のように製造する。
上述した電池は、例えば、以下のように製造する。
まず、例えば、正極集電体21Aの両面に正極活物質層21Bを形成することにより、正極21を作製する。この正極活物質層21Bを形成する際には、正極活物質の粉末と、導電剤と、結着剤とを混合した正極合剤をN−メチル−2−ピロリドンなどの溶剤に分散させることによりペースト状の正極合剤スラリーとする。そして、正極合剤スラリーを正極集電体21Aに塗布して乾燥させたのちに圧縮成型する。
また、例えば、正極21と同様の手順にしたがって負極集電体22Aの両面に負極活物質層22Bを形成することにより、負極22を作製する。
次に、正極集電体21Aに正極リード25を溶接して取り付けると共に、負極集電体22Aに負極リード26を溶接して取り付ける。
次に、正極21および負極22をセパレータ23を介して巻回させることにより巻回電極体20を形成する。そして、正極リード25の先端部を安全弁機構15に溶接すると共に負極リード26の先端部を電池缶11に溶接したのち、巻回電極体20を一対の絶縁板12、13で挟みながら電池缶11の内部に収納する。
次に、電池缶11の内部に電解液を注入してセパレータ23に含浸させる。最後に、電池缶11の開口端部に電池蓋14、安全弁機構15および熱感抵抗素子16をガスケット17を介してかしめることにより固定する。以上により、図1および図2に示す電池を得ることができる。
<効果>
この発明の第3の実施の形態では、第1の実施の形態と同様の効果を得ることができる。
この発明の第3の実施の形態では、第1の実施の形態と同様の効果を得ることができる。
以下、実施例によりこの発明を具体的に説明するが、この発明はこれらの実施例のみに限定されるものではない。
<実施例1>
LiFePO4粉末と、導電剤として気相成長炭素繊維およびケッチェンブラックと、結着剤としてポリフッ化ビニリデンとを以下の質量比で混合して正極合剤を調製した。
「LiFePO4:気相成長炭素繊維:ケッチェンブラック:ポリフッ化ビニリデン=97:0.1:0.9:2」
LiFePO4粉末と、導電剤として気相成長炭素繊維およびケッチェンブラックと、結着剤としてポリフッ化ビニリデンとを以下の質量比で混合して正極合剤を調製した。
「LiFePO4:気相成長炭素繊維:ケッチェンブラック:ポリフッ化ビニリデン=97:0.1:0.9:2」
次に、この正極合剤を溶剤であるN−メチル−2−ピロリドンに分散させて正極合剤スラリーとし、厚み20μmの帯状アルミニウム箔よりなる正極集電体の両面に均一に塗布した。
次に、乾燥工程を経てロールプレス機で圧縮成型して正極活物質層を形成した後、50mm×350mmとなるように切り出し、正極を作製した。なお、正極集電体の一端部には、アルミニウム製の正極リードを接続した。
負極活物質として、メソカーボンマイクロビーズ(MCMB)と、結着剤としてポリフッ化ビニリデン(PVdF)とを混合して負極合剤を調製した。次に、この負極合剤を溶剤であるN−メチル−2−ピロリドンに分散させて負極合剤スラリーとし、厚み15μmの帯状銅箔よりなる負極集電体の両面に均一に塗布した。
次に、乾燥工程を経てロールプレス機で圧縮成型して負極活物質層を形成した後、52mm×370mmとなるように切り出し、負極を作製した。その後、負極集電体の一端部にニッケル製の負極リードを接続した。
次に、エチレンカーボネート(EC)とプロピレンカーボネート(PC)とを体積比(EC:PC)=60:40で混合した混合溶媒にLiPF6を0.7mol/kgとなるように溶解させた電解液を作製した。
次に、電解液をフッ化ビニリデンとヘキサフルオロプロピレンとの共重合体に保持させ、ゲル状の電解質とした。共重合体におけるヘキサフルオロプロピレンの割合は、6.9wt%とした。
作製した正極および負極のそれぞれの両面にゲル状の電解質を形成し、セパレータを介して積層、巻回して巻回電極体とした。セパレータは、ボリエチレン製微多孔膜を用いた。次に、この巻回電極体をラミネートフィルムにて外装し、巻回電極体の周囲を封止した。以上により、実施例1の非水電解質電池を作製した。
<実施例2>
LiFePO4粉末と、導電剤として気相成長炭素繊維およびケッチェンブラックと、結着剤としてポリフッ化ビニリデンとを以下の質量比で混合して正極合剤を調製した点以外は、実施例1と同様にして、実施例2の非水電解質電池を作製した。
「LiFePO4:気相成長炭素繊維:ケッチェンブラック:ポリフッ化ビニリデン=96.8:0.24:0.96:2」
LiFePO4粉末と、導電剤として気相成長炭素繊維およびケッチェンブラックと、結着剤としてポリフッ化ビニリデンとを以下の質量比で混合して正極合剤を調製した点以外は、実施例1と同様にして、実施例2の非水電解質電池を作製した。
「LiFePO4:気相成長炭素繊維:ケッチェンブラック:ポリフッ化ビニリデン=96.8:0.24:0.96:2」
<実施例3>
LiFePO4粉末と、導電剤として気相成長炭素繊維およびケッチェンブラックと、結着剤としてポリフッ化ビニリデンとを以下の質量比で混合して正極合剤を調製した点以外は、実施例1と同様にして、実施例3の非水電解質電池を作製した。
「LiFePO4:気相成長炭素繊維:ケッチェンブラック:ポリフッ化ビニリデン=95.8:0.12:1.08:3」
LiFePO4粉末と、導電剤として気相成長炭素繊維およびケッチェンブラックと、結着剤としてポリフッ化ビニリデンとを以下の質量比で混合して正極合剤を調製した点以外は、実施例1と同様にして、実施例3の非水電解質電池を作製した。
「LiFePO4:気相成長炭素繊維:ケッチェンブラック:ポリフッ化ビニリデン=95.8:0.12:1.08:3」
<実施例4>
LiFePO4粉末と、導電剤として気相成長炭素繊維およびケッチェンブラックと、結着剤としてポリフッ化ビニリデンとを以下の質量比で混合して正極合剤を調製した点以外は、実施例1と同様にして、実施例4の非水電解質電池を作製した。
「LiFePO4:気相成長炭素繊維:ケッチェンブラック:ポリフッ化ビニリデン=95.5:0.225:1.275:3」
LiFePO4粉末と、導電剤として気相成長炭素繊維およびケッチェンブラックと、結着剤としてポリフッ化ビニリデンとを以下の質量比で混合して正極合剤を調製した点以外は、実施例1と同様にして、実施例4の非水電解質電池を作製した。
「LiFePO4:気相成長炭素繊維:ケッチェンブラック:ポリフッ化ビニリデン=95.5:0.225:1.275:3」
<実施例5>
LiFePO4粉末と、導電剤として気相成長炭素繊維およびケッチェンブラックと、結着剤としてポリフッ化ビニリデンとを以下の質量比で混合して正極合剤を調製した点以外は、実施例1と同様にして、実施例5の非水電解質電池を作製した。
「LiFePO4:気相成長炭素繊維:ケッチェンブラック:ポリフッ化ビニリデン=93.6:0.36:2.04:4」
LiFePO4粉末と、導電剤として気相成長炭素繊維およびケッチェンブラックと、結着剤としてポリフッ化ビニリデンとを以下の質量比で混合して正極合剤を調製した点以外は、実施例1と同様にして、実施例5の非水電解質電池を作製した。
「LiFePO4:気相成長炭素繊維:ケッチェンブラック:ポリフッ化ビニリデン=93.6:0.36:2.04:4」
<実施例6>
LiFePO4粉末と、導電剤として気相成長炭素繊維およびケッチェンブラックと、結着剤としてポリフッ化ビニリデンとを以下の質量比で混合して正極合剤を調製した点以外は、実施例1と同様にして、実施例6の非水電解質電池を作製した。
「LiFePO4:気相成長炭素繊維:ケッチェンブラック:ポリフッ化ビニリデン=93:0.4:1.6:5」
LiFePO4粉末と、導電剤として気相成長炭素繊維およびケッチェンブラックと、結着剤としてポリフッ化ビニリデンとを以下の質量比で混合して正極合剤を調製した点以外は、実施例1と同様にして、実施例6の非水電解質電池を作製した。
「LiFePO4:気相成長炭素繊維:ケッチェンブラック:ポリフッ化ビニリデン=93:0.4:1.6:5」
<比較例1>
LiFePO4粉末と、導電剤として気相成長炭素繊維およびケッチェンブラックと、結着剤としてポリフッ化ビニリデンとを以下の質量比で混合して正極合剤を調製した点以外は、実施例1と同様にして、比較例1の非水電解質電池を作製した。
「LiFePO4:気相成長炭素繊維:ケッチェンブラック:ポリフッ化ビニリデン=97.75:0.1125:0.6375:1.5」
LiFePO4粉末と、導電剤として気相成長炭素繊維およびケッチェンブラックと、結着剤としてポリフッ化ビニリデンとを以下の質量比で混合して正極合剤を調製した点以外は、実施例1と同様にして、比較例1の非水電解質電池を作製した。
「LiFePO4:気相成長炭素繊維:ケッチェンブラック:ポリフッ化ビニリデン=97.75:0.1125:0.6375:1.5」
<比較例2>
LiFePO4粉末と、導電剤として気相成長炭素繊維およびケッチェンブラックと、結着剤としてポリフッ化ビニリデンとを以下の質量比で混合して正極合剤を調製した点以外は、実施例1と同様にして、比較例2の非水電解質電池を作製した。
「LiFePO4:気相成長炭素繊維:ケッチェンブラック:ポリフッ化ビニリデン=97.3:0.035:0.665:2」
LiFePO4粉末と、導電剤として気相成長炭素繊維およびケッチェンブラックと、結着剤としてポリフッ化ビニリデンとを以下の質量比で混合して正極合剤を調製した点以外は、実施例1と同様にして、比較例2の非水電解質電池を作製した。
「LiFePO4:気相成長炭素繊維:ケッチェンブラック:ポリフッ化ビニリデン=97.3:0.035:0.665:2」
<比較例3>
LiFePO4粉末と、導電剤としてケッチェンブラックと、結着剤としてポリフッ化ビニリデンとを以下の質量比で混合して正極合剤を調製した点以外は、実施例1と同様にして、比較例3の非水電解質電池を作製した。
「LiFePO4:ケッチェンブラック:ポリフッ化ビニリデン=95.5:1.5:3」
LiFePO4粉末と、導電剤としてケッチェンブラックと、結着剤としてポリフッ化ビニリデンとを以下の質量比で混合して正極合剤を調製した点以外は、実施例1と同様にして、比較例3の非水電解質電池を作製した。
「LiFePO4:ケッチェンブラック:ポリフッ化ビニリデン=95.5:1.5:3」
<比較例4>
LiFePO4粉末と、導電剤として気相成長炭素繊維およびアセチレンブラックと、結着剤としてポリフッ化ビニリデンとを以下の質量比で混合して正極合剤を調製した点以外は、実施例1と同様にして、比較例4の非水電解質電池を作製した。
「LiFePO4:気相成長炭素繊維:アセチレンブラック:ポリフッ化ビニリデン=95.8:0.12:1.08:3」
LiFePO4粉末と、導電剤として気相成長炭素繊維およびアセチレンブラックと、結着剤としてポリフッ化ビニリデンとを以下の質量比で混合して正極合剤を調製した点以外は、実施例1と同様にして、比較例4の非水電解質電池を作製した。
「LiFePO4:気相成長炭素繊維:アセチレンブラック:ポリフッ化ビニリデン=95.8:0.12:1.08:3」
<比較例5>
LiFePO4粉末と、導電剤として気相成長炭素繊維およびケッチェンブラックと、結着剤としてポリフッ化ビニリデンとを以下の質量比で混合して正極合剤を調製した点以外は、実施例1と同様にして、比較例5の非水電解質電池を作製した。
「LiFePO4:気相成長炭素繊維:ケッチェンブラック:ポリフッ化ビニリデン=95.2:0.45:1.35:3」
LiFePO4粉末と、導電剤として気相成長炭素繊維およびケッチェンブラックと、結着剤としてポリフッ化ビニリデンとを以下の質量比で混合して正極合剤を調製した点以外は、実施例1と同様にして、比較例5の非水電解質電池を作製した。
「LiFePO4:気相成長炭素繊維:ケッチェンブラック:ポリフッ化ビニリデン=95.2:0.45:1.35:3」
<比較例6>
LiFePO4粉末と、導電剤として気相成長炭素繊維と、結着剤としてポリフッ化ビニリデンとを以下の質量比で混合して正極合剤を調製した点以外は、実施例1と同様にして、比較例6の非水電解質電池を作製した。
「LiFePO4:気相成長炭素繊維:ポリフッ化ビニリデン=95.5:1.5:3」
LiFePO4粉末と、導電剤として気相成長炭素繊維と、結着剤としてポリフッ化ビニリデンとを以下の質量比で混合して正極合剤を調製した点以外は、実施例1と同様にして、比較例6の非水電解質電池を作製した。
「LiFePO4:気相成長炭素繊維:ポリフッ化ビニリデン=95.5:1.5:3」
<比較例7>
LiFePO4粉末と、導電剤として気相成長炭素繊維およびケッチェンブラックと、結着剤としてポリフッ化ビニリデンとを以下の質量比で混合して正極合剤を調製した点以外は、実施例1と同様にして、比較例7の非水電解質電池を作製した。
「LiFePO4:気相成長炭素繊維:ケッチェンブラック:ポリフッ化ビニリデン=94.6:0.35:1.05:4」
LiFePO4粉末と、導電剤として気相成長炭素繊維およびケッチェンブラックと、結着剤としてポリフッ化ビニリデンとを以下の質量比で混合して正極合剤を調製した点以外は、実施例1と同様にして、比較例7の非水電解質電池を作製した。
「LiFePO4:気相成長炭素繊維:ケッチェンブラック:ポリフッ化ビニリデン=94.6:0.35:1.05:4」
<比較例8>
LiFePO4粉末と、導電剤として気相成長炭素繊維およびケッチェンブラックと、結着剤としてポリフッ化ビニリデンとを以下の質量比で混合して正極合剤を調製した点以外は、実施例1と同様にして、比較例8の非水電解質電池を作製した。
「LiFePO4:気相成長炭素繊維:ケッチェンブラック:ポリフッ化ビニリデン=93.4:0.39:2.21:4」
LiFePO4粉末と、導電剤として気相成長炭素繊維およびケッチェンブラックと、結着剤としてポリフッ化ビニリデンとを以下の質量比で混合して正極合剤を調製した点以外は、実施例1と同様にして、比較例8の非水電解質電池を作製した。
「LiFePO4:気相成長炭素繊維:ケッチェンブラック:ポリフッ化ビニリデン=93.4:0.39:2.21:4」
<比較例9>
LiFePO4粉末と、導電剤として気相成長炭素繊維およびケッチェンブラックと、結着剤としてポリフッ化ビニリデンとを以下の質量比で混合して正極合剤を調製した点以外は、実施例1と同様にして、比較例9の非水電解質電池を作製した。
「LiFePO4:気相成長炭素繊維:ケッチェンブラック:ポリフッ化ビニリデン=92:0.75:2.25:5」
LiFePO4粉末と、導電剤として気相成長炭素繊維およびケッチェンブラックと、結着剤としてポリフッ化ビニリデンとを以下の質量比で混合して正極合剤を調製した点以外は、実施例1と同様にして、比較例9の非水電解質電池を作製した。
「LiFePO4:気相成長炭素繊維:ケッチェンブラック:ポリフッ化ビニリデン=92:0.75:2.25:5」
<比較例10>
LiFePO4粉末と、導電剤として気相成長炭素繊維およびケッチェンブラックと、結着剤としてポリフッ化ビニリデンとを以下の質量比で混合して正極合剤を調製した点以外は、実施例1と同様にして、比較例10の非水電解質電池を作製した。
「LiFePO4:気相成長炭素繊維:ケッチェンブラック:ポリフッ化ビニリデン=91.75:0.4125:2.3375:5.5」
LiFePO4粉末と、導電剤として気相成長炭素繊維およびケッチェンブラックと、結着剤としてポリフッ化ビニリデンとを以下の質量比で混合して正極合剤を調製した点以外は、実施例1と同様にして、比較例10の非水電解質電池を作製した。
「LiFePO4:気相成長炭素繊維:ケッチェンブラック:ポリフッ化ビニリデン=91.75:0.4125:2.3375:5.5」
<評価>
(サイクル特性の評価)
サイクル特性を以下に説明するようにして評価した。まず、1Cの定電流定電圧充電を上限3.6Vまで総充電時間を2時間として行い、続いて、1Cの定電流放電を終止電圧2.5Vまで行うことにより充放電を行った。また、この充放電操作を500回繰り返した。容量維持率は、下記の(式A)により1サイクル目の放電容量に対する500サイクル目の放電容量の比率を求めた。
(式A)
容量維持率(%)
=(「500サイクル目の放電容量」/「1サイクル目の放電容量」)×100(%)
(サイクル特性の評価)
サイクル特性を以下に説明するようにして評価した。まず、1Cの定電流定電圧充電を上限3.6Vまで総充電時間を2時間として行い、続いて、1Cの定電流放電を終止電圧2.5Vまで行うことにより充放電を行った。また、この充放電操作を500回繰り返した。容量維持率は、下記の(式A)により1サイクル目の放電容量に対する500サイクル目の放電容量の比率を求めた。
(式A)
容量維持率(%)
=(「500サイクル目の放電容量」/「1サイクル目の放電容量」)×100(%)
測定結果を表1に示す。
(評価)
表1に示すように、実施例1〜実施例6では、正極活物質にリン酸鉄リチウム、導電剤にケッチェンブラックおよび気相成長炭素繊維、結着剤にポリフッ化ビニリデンを用いた。実施例1〜実施例6では、導電剤量および結着剤量をそれぞれ最適範囲とした。すなわち、結着剤量を、正極活物質、導電剤および結着剤の合計量に対して、2wt%以上5wt%以下の範囲とした。導電剤量を、結着剤量に対して40wt%以上60wt%以下の範囲とした。気相成長炭素繊維量を、導電剤量に対して、10wt%以上20wt%以下の範囲とした。これにより、実施例1〜実施例6では、良好なサイクル特性が得られることを確認できた。
表1に示すように、実施例1〜実施例6では、正極活物質にリン酸鉄リチウム、導電剤にケッチェンブラックおよび気相成長炭素繊維、結着剤にポリフッ化ビニリデンを用いた。実施例1〜実施例6では、導電剤量および結着剤量をそれぞれ最適範囲とした。すなわち、結着剤量を、正極活物質、導電剤および結着剤の合計量に対して、2wt%以上5wt%以下の範囲とした。導電剤量を、結着剤量に対して40wt%以上60wt%以下の範囲とした。気相成長炭素繊維量を、導電剤量に対して、10wt%以上20wt%以下の範囲とした。これにより、実施例1〜実施例6では、良好なサイクル特性が得られることを確認できた。
一方、比較例1では、結着剤量が正極活物質、導電剤および結着剤の合計量に対して、1.5wt%であるので、集電体の密着性が弱く、良好なサイクル特性が得られなかった。比較例2では、結着剤量に対する導電剤量が、上記の最適範囲未満であり、導電剤量に対する気相成長炭素繊維量が、上記の最適範囲未満であるので、良好なサイクル特性が得られなかった。比較例3では、気相成長炭素繊維を用いていないので、良好なサイクル特性が得られなかった。比較例4では、中空シェル状構造を有するカーボンブラックであるケッチェンブラックの代わりに、中空シェル状構造を持たないアセチレンブラックを用いたので、良好なサイクル特性が得られなかった。比較例5では、導電剤量に対する気相成長炭素繊維量が、上記の最適範囲より多いので、良好なサイクル特性が得られなかった。比較例6では、ケッチェンブラックを用いていないので、良好なサイクル特性が得られなかった。比較例7では、結着剤量に対する導電材料が、上記の最適範囲より少なく、導電剤量に対する気相成長炭素繊維量が、上記の最適範囲より多いので、良好なサイクル特性が得られなかった。比較例8では、結着剤量に対する導電剤量が、上記の最適範囲より多く、導電剤量に対する気相成長炭素繊維量が、上記の最適範囲より少ないので、良好なサイクル特性が得られなかった。比較例9では、導電剤量に対する気相成長炭素繊維量が、上記の最適範囲より多いので、良好なサイクル特性が得られなかった。比較例10では、結着剤量が、上記の最適範囲より多いので、良好なサイクル特性が得られなかった。
4.他の実施の形態
この発明は、上述したこの発明の実施形態に限定されるものでは無く、この発明の要旨を逸脱しない範囲内で様々な変形や応用が可能である。
この発明は、上述したこの発明の実施形態に限定されるものでは無く、この発明の要旨を逸脱しない範囲内で様々な変形や応用が可能である。
上述の実施の形態および実施例では、この発明の電池の電解質として、電解液または電解液を高分子化合物に保持させたゲル状電解質を用いる場合について説明したが、他の種類の電解質を用いるようにしてもよい。他の電解質としては、イオン伝導性セラミックス、イオン伝導性ガラス、またはイオン性結晶等のイオン伝導性無機化合物と電解液とを混合したもの、他の無機化合物と電解液とを混合したもの、これらの無機化合物とゲル状電解質とを混合したもの等が挙げられる。
上述の実施の形態および実施例では、円筒型、ラミネートフィルム型の電池構造を有する電池、電極を巻回した巻回構造を有する電池について説明したが、これらに限定されるものではない。例えば、角型、コイン型、またはボタン型などの他の電池構造を有する電池、電極を積層した積層構造を有する電池についても同様に、この発明を適用することができ、同様の効果を得ることができる。
11・・・電池缶
12,13・・・絶縁板
14・・・電池蓋
15A・・・ディスク板
15・・・安全弁機構
16・・・熱感抵抗素子
17・・・ガスケット
20・・・巻回電極体
21・・・正極
21A・・・正極集電体
21B・・・正極活物質層
22・・・負極
22A・・・負極集電体
22B・・・負極活物質層
23・・・セパレータ
24・・・センターピン
25・・・正極リード
26・・・負極リード
27・・・ガスケット
30・・・巻回電極体
31・・・正極リード
32・・・負極リード
33・・・正極
33A・・・正極集電体
33B・・・正極活物質層
34・・・負極
34A・・・負極集電体
34B・・・負極活物質層
35・・・セパレータ
36・・・電解質
37・・・保護テープ
40・・・外装部材
41・・・密着フィルム
12,13・・・絶縁板
14・・・電池蓋
15A・・・ディスク板
15・・・安全弁機構
16・・・熱感抵抗素子
17・・・ガスケット
20・・・巻回電極体
21・・・正極
21A・・・正極集電体
21B・・・正極活物質層
22・・・負極
22A・・・負極集電体
22B・・・負極活物質層
23・・・セパレータ
24・・・センターピン
25・・・正極リード
26・・・負極リード
27・・・ガスケット
30・・・巻回電極体
31・・・正極リード
32・・・負極リード
33・・・正極
33A・・・正極集電体
33B・・・正極活物質層
34・・・負極
34A・・・負極集電体
34B・・・負極活物質層
35・・・セパレータ
36・・・電解質
37・・・保護テープ
40・・・外装部材
41・・・密着フィルム
Claims (6)
- 正極活物質、導電剤および結着剤を含む正極活物質層を備えた正極と、
負極と、
非水電解質とを備え、
上記正極活物質は、オリビン型結晶構造を有するリチウムリン酸化合物を含み、
上記導電剤は、中空シェル状構造を有するカーボンブラックおよび繊維状炭素を含み、
上記結着剤の含有量は、上記正極活物質、導電剤および結着剤の合計質量に対して、2wt%以上5wt%以下であり、
上記導電剤の含有量は、上記結着剤の含有量に対して、40wt%以上60wt%以下であり、
上記繊維状炭素の含有量は、上記導電剤の含有量に対して、10wt%以上20wt%以下である
非水電解質電池。 - 上記繊維状炭素は、気相成長炭素繊維である
請求項1記載の非水電解質電池。 - 上記中空シェル状構造を有するカーボンブラックは、ケッチェンブラックである
請求項1記載の非水電解質電池。 - 上記結着剤は、フッ素系の高分子化合物である
請求項1記載の非水電解質電池。 - 上記フッ素系の高分子化合物は、ポリフッ化ビニリデンである
請求項4記載の非水電解質電池。 - 上記オリビン型結晶構造を有するリチウムリン酸化合物は、化Iで表されるリチウムリン酸化合物である
請求項1記載の非水電解質電池。
(化I)
LiMxPO4
(式中、Mは、コバルト(Co)、マンガン(Mn)、鉄(Fe)、ニッケル(Ni)、マグネシウム(Mg)、アルミニウム(Al)、ホウ素(B)、チタン(Ti)、バナジウム(V)、ニオブ(Nb)、銅(Cu)、亜鉛(Zn)、モリブデン(Mo)、カルシウム(Ca)、ストロンチウム(Sr)、タングステン(W)およびジルコニウム(Zr)からなる群のうちの少なくとも1種である。xは0<x≦1である。)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009237636A JP2011086468A (ja) | 2009-10-14 | 2009-10-14 | 非水電解質電池 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009237636A JP2011086468A (ja) | 2009-10-14 | 2009-10-14 | 非水電解質電池 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2011086468A true JP2011086468A (ja) | 2011-04-28 |
Family
ID=44079267
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009237636A Pending JP2011086468A (ja) | 2009-10-14 | 2009-10-14 | 非水電解質電池 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2011086468A (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015056282A (ja) * | 2013-09-12 | 2015-03-23 | 八千代工業株式会社 | 高分子固体電解質電池 |
JP2017182926A (ja) * | 2016-03-28 | 2017-10-05 | Fdk株式会社 | アルカリ二次電池用の負極、この負極を含むアルカリ二次電池及びこの負極の製造方法 |
-
2009
- 2009-10-14 JP JP2009237636A patent/JP2011086468A/ja active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015056282A (ja) * | 2013-09-12 | 2015-03-23 | 八千代工業株式会社 | 高分子固体電解質電池 |
JP2017182926A (ja) * | 2016-03-28 | 2017-10-05 | Fdk株式会社 | アルカリ二次電池用の負極、この負極を含むアルカリ二次電池及びこの負極の製造方法 |
WO2017169164A1 (ja) * | 2016-03-28 | 2017-10-05 | Fdk株式会社 | アルカリ二次電池用の負極、この負極を含むアルカリ二次電池及びこの負極の製造方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8486566B2 (en) | Positive electrode for lithium-ion secondary battery, manufacturing method thereof, and lithium-ion secondary battery | |
JP4061586B2 (ja) | 非水電解質二次電池用正極活物質及びそれを用いた非水電解質二次電池 | |
JP4245532B2 (ja) | 非水電解質二次電池 | |
JP5510084B2 (ja) | リチウムイオン二次電池用負極、リチウムイオン二次電池、電動工具、電気自動車および電力貯蔵システム | |
JP4905267B2 (ja) | 正極合剤および非水電解質電池 | |
WO2010131401A1 (ja) | リチウムイオン二次電池用電極及びリチウムイオン二次電池 | |
JP6305263B2 (ja) | 非水電解質電池、組電池、電池パック及び車 | |
JP2006134770A (ja) | 正極および電池 | |
JP2009277661A (ja) | 正極活物質、正極および非水電解質二次電池 | |
KR20070053140A (ko) | 부극 재료, 부극 및 전지 | |
JP2009117159A (ja) | 正極及びリチウムイオン二次電池 | |
JP2008262832A (ja) | 非水電解質二次電池 | |
KR20080048397A (ko) | 정극 활물질 및 이것을 이용한 비수 전해질 2차 전지, 및정극 활물질의 제조 방법 | |
JP2008060033A (ja) | 正極活物質、これを用いた正極および非水電解質二次電池、並びに正極活物質の製造方法 | |
JP2008305662A (ja) | 非水電解質二次電池 | |
JP2011154963A (ja) | 非水電解質電池 | |
JP2012089402A (ja) | リチウムイオン二次電池 | |
JP6656370B2 (ja) | リチウムイオン二次電池および組電池 | |
JP4591674B2 (ja) | リチウムイオン二次電池 | |
JP2007005073A (ja) | 正極材料および電池、ならびに正極材料の製造方法 | |
JP4876495B2 (ja) | リチウムイオン二次電池用電解液およびリチウムイオン二次電池 | |
WO2020065832A1 (ja) | 導電性物質、正極および二次電池 | |
JP2005347222A (ja) | 電解液および電池 | |
JP2009054469A (ja) | 非水二次電池 | |
KR20100015284A (ko) | 정극 활물질 및 그것을 이용한 정극과 비수 전해질 2차 전지 |