[go: up one dir, main page]

JP2011084632A - Derivative of polyethylene glycol and antitumor drug including the same as active ingredient - Google Patents

Derivative of polyethylene glycol and antitumor drug including the same as active ingredient Download PDF

Info

Publication number
JP2011084632A
JP2011084632A JP2009237627A JP2009237627A JP2011084632A JP 2011084632 A JP2011084632 A JP 2011084632A JP 2009237627 A JP2009237627 A JP 2009237627A JP 2009237627 A JP2009237627 A JP 2009237627A JP 2011084632 A JP2011084632 A JP 2011084632A
Authority
JP
Japan
Prior art keywords
compound
administration
tumor
mmol
cells
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009237627A
Other languages
Japanese (ja)
Other versions
JP5364532B2 (en
Inventor
Makoto Yoshida
吉田  誠
Kentaro Yamaguchi
健太郎 山口
Masahiko Kanekawa
雅彦 金川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SENKA PHARMACY KK
Original Assignee
SENKA PHARMACY KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SENKA PHARMACY KK filed Critical SENKA PHARMACY KK
Priority to JP2009237627A priority Critical patent/JP5364532B2/en
Publication of JP2011084632A publication Critical patent/JP2011084632A/en
Application granted granted Critical
Publication of JP5364532B2 publication Critical patent/JP5364532B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Polyethers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide compounds useful as active ingredients of an antitumor drug. <P>SOLUTION: A compound 9bw, which is prepared by producing nonaethylene glycol mono(p-toluenesulfonyl) ether from nonaethylene glycol and deriving nonaethylene glycol mono(4'-iodo-4-biphenyl) ether from the resultant ether, and a compound 8bw, which is prepared by producing dodecaethylene glycol mono(p-toluenesulfonyl) ether from dodecaethylene glycol and deriving dodecaethylene glycol mono(4'-iodo-4-biphenyl) ether from the resultant ether, are used as active ingredients of the antitumor drug. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、ポリエチレングリコールの誘導体およびそれを有効成分として含む抗腫瘍剤に関する。   The present invention relates to a derivative of polyethylene glycol and an antitumor agent comprising the same as an active ingredient.

細胞死を誘導する化合物あるいは細胞死を誘導する化合物の作用を増強する化合物としては種々の化合物が知られており、種々の疾患の予防あるいは治療用の医薬における有効成分としての利用についての検討は盛んに行なわれている。   Various compounds are known as compounds that induce cell death or compounds that enhance the action of compounds that induce cell death, and studies on their use as active ingredients in drugs for the prevention or treatment of various diseases It is actively performed.

細胞死誘導剤及び抗癌剤の活性成分として利用可能なポリエチレングリコール誘導体(例えば、ポリオキシエチレン(2,4−ジイソオクチルフェニル)エーテル)およびその製造方法については、WO2006/043338号(A1)パンフレット、WO2006/043353号(A1)パンフレット及びWO2006/134648号(A1)パンフレットに記載されている。更に、かかるポリエチレングリコール誘導体の合成についてはOrg. Lett., 2002, 4, 2329-2332に記載されている。   For a polyethylene glycol derivative (for example, polyoxyethylene (2,4-diisooctylphenyl) ether) that can be used as an active ingredient of a cell death inducer and an anticancer agent, and a method for producing the same, WO 2006/043338 (A1) pamphlet, It is described in WO2006 / 043353 (A1) pamphlet and WO2006 / 134648 (A1) pamphlet. Furthermore, the synthesis of such polyethylene glycol derivatives is described in Org. Lett., 2002, 4, 2329-2332.

WO2006/043338号パンフレット、WO2006 / 043338 pamphlet, WO2006/043353号パンフレットWO2006 / 043353 pamphlet WO2006/134648号パンフレットWO2006 / 134648 pamphlet

Org. Lett., 2002, 4, 2329-2332Org. Lett., 2002, 4, 2329-2332

本発明の目的は、抗腫瘍剤の有効成分として有用であり、かつより簡便な方法により製造可能な化合物及びそれを有効成分とする抗腫瘍剤を提供することにある。   An object of the present invention is to provide a compound that is useful as an active ingredient of an antitumor agent and can be produced by a simpler method, and an antitumor agent containing the compound as an active ingredient.

本発明にかかる抗腫瘍剤は、下記式(1)で示されるポリエチレングリコールモノエーテル化合物及びその塩、並びに下記式(2)で示されるポリエチレングリコールモノエーテル化合物及びその塩からなる群から選択された少なくとも1種の化合物を含む。   The antitumor agent according to the present invention was selected from the group consisting of a polyethylene glycol monoether compound represented by the following formula (1) and a salt thereof, and a polyethylene glycol monoether compound represented by the following formula (2) and a salt thereof. Including at least one compound.

Figure 2011084632
Figure 2011084632

本発明によれば、抗腫瘍剤などの有効成分として有用な化合物を提供することができる。また、上記の効率良い中間体化合物の製造方法により、かかる有用な化合物の効率良い製造が可能となる。   According to the present invention, a compound useful as an active ingredient such as an antitumor agent can be provided. In addition, the above efficient production method of an intermediate compound enables efficient production of such a useful compound.

化合物9bwの安全性試験の結果を示す図である。It is a figure which shows the result of the safety test of compound 9bw. 化合物9bwの安全性試験の結果を示す図である。It is a figure which shows the result of the safety test of compound 9bw. 化合物8bwの安全性試験の結果を示す図である。It is a figure which shows the result of the safety test of compound 8bw. 化合物8bwの安全性試験の結果を示す図である。It is a figure which shows the result of the safety test of compound 8bw. 化合物9bwのMeth-A腫瘍細胞に対するDNA合成阻害効果を示す図である。It is a figure which shows the DNA synthesis inhibitory effect with respect to Meth-A tumor cell of the compound 9bw. 化合物9bwの腹腔内投与マウスの体重変化を示す図である。It is a figure which shows the body weight change of the mouse | mouth intraperitoneally administered of compound 9bw. 化合物9bwの腹腔内投与によるMeth-A腫瘍体積の変化を示す図である。It is a figure which shows the change of Meth-A tumor volume by intraperitoneal administration of compound 9bw. 化合物9bw投与後の腫瘍縮小比を示す図である。It is a figure which shows the tumor reduction ratio after compound 9bw administration. 化合物9bw投与後のMeth-A腫瘍重量を示す図である。It is a figure which shows the Meth-A tumor weight after compound 9bw administration. 化合物9bwの連続10日間投与による体重変化を示す図である。It is a figure which shows the body weight change by continuous administration for 10 days of compound 9bw. 化合物9bwの連続10間投与による腫瘍体積の変化を示す図である。It is a figure which shows the change of the tumor volume by continuous administration for 10 days of compound 9bw. 化合物9bwの連続10間投与による腫瘍体積比の変化を示す図である。It is a figure which shows the change of the tumor volume ratio by continuous administration for 10 days of compound 9bw. 化合物9bwの腫瘍内投与マウスの体重の変化を示す図である。It is a figure which shows the change of the body weight of the mouse | mouth in which the compound 9bw is intratumorally administered. 化合物9bwの腫瘍内投与における腫瘍体積の変化を示す図である。It is a figure which shows the change of the tumor volume in the intratumoral administration of compound 9bw. 化合物9bwの腫瘍内投与における腫瘍体積の変化を示す図である。It is a figure which shows the change of the tumor volume in the intratumoral administration of compound 9bw. 化合物9bwの抗腫瘍効果を示す図である。It is a figure which shows the antitumor effect of compound 9bw. 化合物9bwのMeth-A腫瘍細胞に対するDNA合成阻害効果を示す図である。It is a figure which shows the DNA synthesis inhibitory effect with respect to Meth-A tumor cell of the compound 9bw. マウス脾リンパ球のマイトジェン反応に対する化合物9bwの効果を示す図である。It is a figure which shows the effect of the compound 9bw with respect to the mitogenic reaction of a mouse | mouth spleen lymphocyte. 実施例5におけるマウス体重(解剖時)の変化を示す図である。It is a figure which shows the change of the mouse body weight (at the time of dissection) in Example 5. FIG. 実施例5における腫瘍重量の変化を示す図である。It is a figure which shows the change of the tumor weight in Example 5. FIG. 実施例5における赤血球数の変化を示す図である。It is a figure which shows the change of the red blood cell count in Example 5. FIG. 実施例5における白血球数の変化を示す図である。It is a figure which shows the change of the white blood cell count in Example 5. FIG. 実施例5における血小板数の変化を示す図である。It is a figure which shows the change of the platelet count in Example 5. FIG. 実施例5におけるヘモグロビン量の変化を示す図である。It is a figure which shows the change of the amount of hemoglobin in Example 5. FIG. 実施例5におけるヘマトクリット値の変化を示す図である。It is a figure which shows the change of the hematocrit value in Example 5. FIG. 実施例5の参考試験(1)における体重の変化を示す図である。It is a figure which shows the change of the body weight in the reference test (1) of Example 5. FIG. 実施例5の参考試験(1)における腫瘍重量の変化を示す図である。It is a figure which shows the change of the tumor weight in the reference test (1) of Example 5. FIG. 実施例5の参考試験(1)における赤血球数の変化を示す図である。It is a figure which shows the change of the red blood cell count in the reference test (1) of Example 5. FIG. 実施例5の参考試験(1)における白血球数の変化を示す図である。It is a figure which shows the change of the white blood cell count in the reference test (1) of Example 5. FIG. 実施例5の参考試験(1)における血小板数の変化を示す図である。It is a figure which shows the change of the platelet count in the reference test (1) of Example 5. FIG. 実施例5の参考試験(1)におけるヘモグロビン量の変化を示す図である。It is a figure which shows the change of the amount of hemoglobin in the reference test (1) of Example 5. FIG. 実施例5の参考試験(1)におけるヘマトクリット値の変化を示す図である。It is a figure which shows the change of the hematocrit value in the reference test (1) of Example 5. FIG. 実施例5の参考試験(2)におけるMIA-PaCa-2に対する9bwの効果を示す図である。It is a figure which shows the effect of 9bw with respect to MIA-PaCa-2 in the reference test (2) of Example 5. FIG. 化合物9bw及び8bwの正常細胞と腫瘍細胞に対する選択性を示す図である。It is a figure which shows the selectivity with respect to the normal cell and tumor cell of compound 9bw and 8bw.

本発明にかかるポリエチレングリコールモノエーテル化合物8bw及び9bw(以下単に化合物8bw及び9bw、8bw及び9bw、あるいはPEG(8bw)及びPEG(9bw)という)。上記の化合物8bw及び9bwは、これらのそれぞれに対応する中間体化合物のパラトルエンスルホニル基をRに置換する以下の反応により合成可能である。   Polyethylene glycol monoether compounds 8bw and 9bw according to the present invention (hereinafter simply referred to as compounds 8bw and 9bw, 8bw and 9bw, or PEG (8bw) and PEG (9bw)). The above compounds 8bw and 9bw can be synthesized by the following reaction in which the paratoluenesulfonyl group of the intermediate compound corresponding to each of them is substituted with R.

Figure 2011084632
Figure 2011084632

反応は、水、水と任意の割合で混和しない溶媒及び水溶性である塩基性の金属塩の存在下、空気雰囲気下で行うことができる。溶媒としては上記のものの他に、ジクロロメタンを挙げることができる。塩基性の金属塩としては、実施例において使用しているものに加えて、炭酸ナトリウム、炭酸水素ナトリウム、水素化リチウム、水酸化カリウムなどを挙げることができる。触媒としては、、実施例において使用しているものに加えて、臭化テトラブチルアンモニウム、ヨウ化テトラブチルアンモニウム、臭化セチルトリメチルアンモニウムなどの4級アンモニウム塩を挙げることができる。反応温度は、室温を含む範囲から適宜設定できる。反応終了後、反応液から目的とする化合物8bw及び9bwを回収する。この回収には、ろ過、各種のクロマトグラフィーを利用した分離方法などの常法を用いることができる。   The reaction can be carried out in an air atmosphere in the presence of water, a solvent immiscible with water in any proportion, and a basic metal salt that is water-soluble. As the solvent, in addition to the above, dichloromethane can be used. Examples of the basic metal salt include sodium carbonate, sodium hydrogen carbonate, lithium hydride, potassium hydroxide and the like in addition to those used in the examples. Examples of the catalyst include quaternary ammonium salts such as tetrabutylammonium bromide, tetrabutylammonium iodide, cetyltrimethylammonium bromide in addition to those used in the examples. The reaction temperature can be appropriately set from a range including room temperature. After completion of the reaction, target compounds 8bw and 9bw are recovered from the reaction solution. For this recovery, conventional methods such as filtration and separation methods using various chromatographies can be used.

また、これらの中間体化合物は、対応するポリエチレングリコールと塩化パラトルエンスルホニルをトルエン等の不活性溶媒中で水酸化ナトリウム等のアルカリ水溶液および塩化ベンジルトリエチルアンモニウム等の相間移動触媒の存在下で反応させることにより得ることができる。反応温度は、室温を含む範囲から適宜設定できる。反応終了後、反応液から目的とする中間化合物を回収する。この回収には、ろ過、各種のクロマトグラフィーを利用した分離方法などの常法を用いることができる。   In addition, these intermediate compounds react the corresponding polyethylene glycol and para-toluenesulfonyl chloride in an inert solvent such as toluene in the presence of an aqueous alkali solution such as sodium hydroxide and a phase transfer catalyst such as benzyltriethylammonium chloride. Can be obtained. The reaction temperature can be appropriately set from a range including room temperature. After completion of the reaction, the target intermediate compound is recovered from the reaction solution. For this recovery, conventional methods such as filtration and separation methods using various chromatographies can be used.

上記の合成における経路を以下の反応スキームとして示す。   The route in the above synthesis is shown as the following reaction scheme.

Figure 2011084632
Figure 2011084632

本発明にかかる化合物8bw及び9bw、並びにこれらの塩、特に、薬理学的に許容される塩から選択された少なくとも1種を有効成分として抗腫瘍剤とすることができる。抗腫瘍剤の形態としては、例えば、点滴(静脈注)、錠剤、丸剤、散剤、顆粒剤、カプセル剤、坐剤などの固形製剤、注射剤、懸濁剤、シロップ剤、乳剤などの液体製剤、貼付剤等の半固形剤などを挙げることができる。これらの剤形に応じた担体、希釈剤、賦形剤、各種添加剤を適宜選択して製剤化を行うことができる。   Compounds 8bw and 9bw according to the present invention, and salts thereof, in particular, at least one selected from pharmacologically acceptable salts can be used as an antitumor agent as an active ingredient. Examples of the antitumor agent include solid preparations such as infusions (intravenous injection), tablets, pills, powders, granules, capsules, suppositories, and liquids such as injections, suspensions, syrups, and emulsions. Examples thereof include semi-solid preparations such as preparations and patches. Formulation can be carried out by appropriately selecting carriers, diluents, excipients and various additives according to these dosage forms.

化合物8bw及び9bwの薬理学的に許容される塩は、常法によって得ることができる。例えば、例えば塩酸、臭化水素酸、リン酸、硫酸などの無機酸、あるいはギ酸、酢酸、フマル酸、クエン酸、マレイン酸、シユウ酸、リンゴ酸、酒石酸、メタンスルホン酸、ベンゼンスルホン酸、p−トルエンスルホン酸などの有機酸との塩として用いることができる。   The pharmacologically acceptable salts of compounds 8bw and 9bw can be obtained by conventional methods. For example, for example, inorganic acids such as hydrochloric acid, hydrobromic acid, phosphoric acid, sulfuric acid, or formic acid, acetic acid, fumaric acid, citric acid, maleic acid, oxalic acid, malic acid, tartaric acid, methanesulfonic acid, benzenesulfonic acid, p -It can be used as a salt with an organic acid such as toluenesulfonic acid.

本発明の抗癌剤は、膵臓がんなどに特に有効である。   The anticancer agent of the present invention is particularly effective for pancreatic cancer and the like.

以下実施例により本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail by way of examples.

(実施例1)化合物9bwの合成
(1)化合物5の合成
Nonaethylene glycol mono(p-toluenesulfonyl) ester (5)
Example 1 Synthesis of Compound 9bw (1) Synthesis of Compound 5
Nonaethylene glycol mono (p-toluenesulfonyl) ester (5)

Figure 2011084632
Figure 2011084632

ノナエチレングリコール 2 (1.00 g, 2.41 mmol) をトルエン (10 mL) に溶解させた。これに塩化ベンジルトリエチルアンモニウム (0.05 g, 0.24 mmol) および20% 水酸化ナトリウム水溶液 (10 mL) を加え撹拌した。このものに塩化p-トルエンスルホニル (0.53 g, 2.75 mmol) のトルエン (5.0 mL) 溶液を添加し、室温で18時間撹拌を続けた。その後10% 塩酸 (25 mL) を加えトルエン層と水層を分離した。水層は酢酸エチル (25 mL×3) で抽出した。トルエン層と 酢酸エチル層を合し、水 (20 mL)、飽和重曹水 (20 mL)、飽和食塩水 (20 mL) で順次洗浄した。無水硫酸ナトリウムで乾燥後これを濾過し、エバポレーターで濃縮した。得られた残渣をシリカゲルカラムクロマトグラフィー (シリカゲル : 20 g, 展開溶媒 : 酢酸エチル-メタノール混合溶媒 1 対 0 → 200 対 1 → 16 対 1) で分離精製し、無色液体5 (0.88 g, 1.55 mmol, 純度100%、収率48%)を得た。IR(ATR)v max cm-1: 3433。1H-NMR(CDCl3)δ: 2.27 (3H, s), 2.93 (1H, br), 3.56-3.64 (34H, br), 4,14 (2H, t, J=5.0 Hz), 7.34 (2H, d, J=8.4 Hz), 7.79 (2H, d, J=8.4 Hz)。 Nonaethylene glycol 2 (1.00 g, 2.41 mmol) was dissolved in toluene (10 mL). To this, benzyltriethylammonium chloride (0.05 g, 0.24 mmol) and 20% aqueous sodium hydroxide solution (10 mL) were added and stirred. To this was added a solution of p-toluenesulfonyl chloride (0.53 g, 2.75 mmol) in toluene (5.0 mL), and stirring was continued at room temperature for 18 hours. Thereafter, 10% hydrochloric acid (25 mL) was added, and the toluene layer and the aqueous layer were separated. The aqueous layer was extracted with ethyl acetate (25 mL × 3). The toluene layer and the ethyl acetate layer were combined and washed successively with water (20 mL), saturated aqueous sodium hydrogen carbonate (20 mL), and saturated brine (20 mL). After drying over anhydrous sodium sulfate, this was filtered and concentrated with an evaporator. The resulting residue was separated and purified by silica gel column chromatography (silica gel: 20 g, developing solvent: ethyl acetate-methanol mixed solvent 1 to 0 → 200 to 1 → 16 to 1), and colorless liquid 5 (0.88 g, 1.55 mmol) , Purity 100%, yield 48%). IR (ATR) v max cm -1 : 3433. 1 H-NMR (CDCl 3 ) δ: 2.27 (3H, s), 2.93 (1H, br), 3.56-3.64 (34H, br), 4,14 (2H, t, J = 5.0 Hz), 7.34 (2H , d, J = 8.4 Hz), 7.79 (2H, d, J = 8.4 Hz).

(2)化合物9bwの合成
Nonaethylene glycol mono(4'-iodo-4-biphenyl) ether (9bw)
(2) Synthesis of compound 9bw
Nonaethylene glycol mono (4'-iodo-4-biphenyl) ether (9bw)

Figure 2011084632
Figure 2011084632

7bw (296 mg, 1.00 mmol) を THF (5.0 mL) に溶解させた。これに水素化ナトリウム (ミネラルオイル懸濁, 純度 60%, 46 mg, 1.15 mmol) を加え室温にて1時間撹拌した。このものに5 (176 mg, 0.31 mmol) の THF (3.0 mL) 溶液を添加し、室温で24時間撹拌を続けた。反応溶液を酢酸エチル (10 mL) で希釈し、水 (10 mL)、飽和食塩水 (10 mL) で順次洗浄した。無水硫酸ナトリウムで乾燥後これを濾過し、エバポレーターで濃縮した。得られた残渣をシリカゲルカラムクロマトグラフィー (シリカゲル : 4 g, 展開溶媒 : 酢酸エチル-メタノール混合溶媒 1 対 0 → 8 対 1 → 7 対 2) で分離精製し、9bw (119 mg, 0.17 mmol, 純度100%、収率92%、分子量:675)を得た。1H-NMR(CDCl3)δ: 2.64 (1H, br), 3.56-3.64 (32H, br), 3.88 (2H, t, J=4.9 Hz), 4.17 (2H, t, J=4.9 Hz), 6.98 (2H, d, J=8.6 Hz), 7.29 (2H, d, J=8.6 Hz), 7.47 (2H, d, J=8.6 Hz), 7.73 (2H, d, J=8.6 Hz)。 7bw (296 mg, 1.00 mmol) was dissolved in THF (5.0 mL). To this, sodium hydride (mineral oil suspension, purity 60%, 46 mg, 1.15 mmol) was added and stirred at room temperature for 1 hour. To this was added a solution of 5 (176 mg, 0.31 mmol) in THF (3.0 mL) and stirring was continued at room temperature for 24 hours. The reaction solution was diluted with ethyl acetate (10 mL), and washed successively with water (10 mL) and saturated brine (10 mL). After drying over anhydrous sodium sulfate, this was filtered and concentrated with an evaporator. The resulting residue was separated and purified by silica gel column chromatography (silica gel: 4 g, developing solvent: ethyl acetate-methanol mixed solvent 1 to 0 → 8 to 1 → 7 to 2), and 9 bw (119 mg, 0.17 mmol, purity 100%, yield 92%, molecular weight: 675). 1 H-NMR (CDCl 3 ) δ: 2.64 (1H, br), 3.56-3.64 (32H, br), 3.88 (2H, t, J = 4.9 Hz), 4.17 (2H, t, J = 4.9 Hz), 6.98 (2H, d, J = 8.6 Hz), 7.29 (2H, d, J = 8.6 Hz), 7.47 (2H, d, J = 8.6 Hz), 7.73 (2H, d, J = 8.6 Hz).

(実施例2)化合物8bwの合成
(1)化合物(3)の合成
Dodecaethylene glycol mono(p-toluenesulfonyl) ester (3)
Example 2 Synthesis of Compound 8bw (1) Synthesis of Compound (3)
Dodecaethylene glycol mono (p-toluenesulfonyl) ester (3)

Figure 2011084632
Figure 2011084632

ドデカエチレングリコール 1 (1.00 g, 1.83 mmol) をトルエン (10 mL) に溶解させた。これに塩化ベンジルトリエチルアンモニウム (0.04 g, 0.19 mmol) および20% 水酸化ナトリウム水溶液 (10 mL) を加え撹拌した。このものに塩化p-トルエンスルホニル (0.36 g, 1.90 mmol) のトルエン (5.0 mL) 溶液を添加し、室温で18時間撹拌を続けた。その後10% 塩酸 (25 mL) を加えトルエン層と水層を分離した。水層は酢酸エチル (25 mL×3) で抽出した。トルエン層と酢酸エチル層を合し、水 (20 mL)、飽和重曹水 (20 mL)、飽和食塩水 (20 mL) で順次洗浄した。無水硫酸ナトリウムで乾燥後これを濾過し、エバポレーターで濃縮した。得られた残渣をシリカゲルカラムクロマトグラフィー (シリカゲル : 16 g, 展開溶媒 : 酢酸エチル-メタノール混合溶媒 1 対 0 → 60 対 1 → 8 対 1) で分離精製し、無色液体3 (0.76 g, 1.08 mmol, 純度99%、収率 49%) を得た。IR(ATR) v max cm-1: 3462。1H-NMR(CDCl3)δ: 2.03 (1H, br), 2.27 (3H, s), 3.56-3.64 (46H, br), 4.14 (2H, t, J=5.0 Hz), 7.34 (2H, d, J=8.4 Hz), 7.79 (2H, d, J=8.4 Hz)。
(2)化合物8bwの合成
Dodecaethylene glycol mono(4'-iodo-4-biphenyl) ether (8bw)
Dodecaethylene glycol 1 (1.00 g, 1.83 mmol) was dissolved in toluene (10 mL). To this, benzyltriethylammonium chloride (0.04 g, 0.19 mmol) and 20% aqueous sodium hydroxide solution (10 mL) were added and stirred. To this was added a solution of p-toluenesulfonyl chloride (0.36 g, 1.90 mmol) in toluene (5.0 mL), and stirring was continued at room temperature for 18 hours. Thereafter, 10% hydrochloric acid (25 mL) was added, and the toluene layer and the aqueous layer were separated. The aqueous layer was extracted with ethyl acetate (25 mL × 3). The toluene layer and the ethyl acetate layer were combined, and washed successively with water (20 mL), saturated aqueous sodium bicarbonate (20 mL), and saturated brine (20 mL). After drying over anhydrous sodium sulfate, this was filtered and concentrated with an evaporator. The resulting residue was separated and purified by silica gel column chromatography (silica gel: 16 g, developing solvent: ethyl acetate-methanol mixed solvent 1 to 0 → 60 to 1 → 8 to 1), and colorless liquid 3 (0.76 g, 1.08 mmol) , Purity 99%, yield 49%). IR (ATR) v max cm -1 : 3462. 1 H-NMR (CDCl 3 ) δ: 2.03 (1H, br), 2.27 (3H, s), 3.56-3.64 (46H, br), 4.14 (2H, t, J = 5.0 Hz), 7.34 (2H, d , J = 8.4 Hz), 7.79 (2H, d, J = 8.4 Hz).
(2) Synthesis of compound 8bw
Dodecaethylene glycol mono (4'-iodo-4-biphenyl) ether (8bw)

Figure 2011084632
Figure 2011084632

7bw (310 mg, 1.05 mmol) を THF (5.0 mL) に溶解させた。これに水素化ナトリウム (ミネラルオイル懸濁, 純度 60%, 51 mg, 1.28 mmol) を加え室温にて1時間撹拌した。このものに3(200 mg, 0.29 mmol) の THF (2.0 mL) 溶液を添加し、室温で24時間撹拌を続けた。反応溶液を酢酸エチル (10 mL) で希釈し、水 (10 mL)、飽和食塩水 (10 mL) で順次洗浄した。無水硫酸ナトリウムで乾燥後これを濾過し、エバポレーターで濃縮した。得られた残渣をシリカゲルカラムクロマトグラフィー (シリカゲル : 5 g, 展開溶媒 : 酢酸エチル-メタノール混合溶媒 1 対 0 → 45 対 1 → 45 対 2 → 8 対 1 → 7 対 2) で分離し、8bw (52 mg, 0.06 mmol, 純度100%、収率 75%、分子量:807)を得た。1H-NMR(CDCl3)δ: 2.75 (1H, br), 3.56-3.64 (44H, br), 3.88 (2H, t, J=4.9 Hz), 4.17 (2H, t, J=4.9 Hz), 6.98 (2H, d, J=8.6 Hz), 7.29 (2H, d, J=8.6 Hz), 7.47 (2H, d, J=8.6 Hz), 7.73 (2H, d, J=8.6 Hz)。 7bw (310 mg, 1.05 mmol) was dissolved in THF (5.0 mL). Sodium hydride (mineral oil suspension, purity 60%, 51 mg, 1.28 mmol) was added thereto, and the mixture was stirred at room temperature for 1 hour. To this was added a solution of 3 (200 mg, 0.29 mmol) in THF (2.0 mL) and stirring was continued at room temperature for 24 hours. The reaction solution was diluted with ethyl acetate (10 mL), and washed successively with water (10 mL) and saturated brine (10 mL). After drying over anhydrous sodium sulfate, this was filtered and concentrated with an evaporator. The obtained residue was separated by silica gel column chromatography (silica gel: 5 g, developing solvent: ethyl acetate-methanol mixed solvent 1 to 0 → 45 to 1 → 45 to 2 → 8 to 1 → 7 to 2) and 8 bw ( 52 mg, 0.06 mmol, purity 100%, yield 75%, molecular weight: 807). 1 H-NMR (CDCl 3 ) δ: 2.75 (1H, br), 3.56-3.64 (44H, br), 3.88 (2H, t, J = 4.9 Hz), 4.17 (2H, t, J = 4.9 Hz), 6.98 (2H, d, J = 8.6 Hz), 7.29 (2H, d, J = 8.6 Hz), 7.47 (2H, d, J = 8.6 Hz), 7.73 (2H, d, J = 8.6 Hz).

(参考合成例)
Nonaethylene glycol mono(4-iodophenyl) ether (9ah)
(Reference synthesis example)
Nonaethylene glycol mono (4-iodophenyl) ether (9ah)

Figure 2011084632
Figure 2011084632

7ah (230 mg, 1.05 mmol) を THF (2.0 mL) に溶解させた。これに水素化ナトリウム (ミネラルオイル懸濁, 純度 60%, 49 mg, 1.23 mmol) を加え室温にて1時間撹拌した。このものに 5 (210 mg, 0.37 mmol) の THF (2.0 mL) 溶液を添加し、室温で24時間撹拌を続けた。反応溶液を酢酸エチル (10 mL)で希釈し、水 (10 mL)、飽和食塩水 (10 mL) で順次洗浄した。無水硫酸ナトリウムで乾燥後これを濾過し、エバポレーターで濃縮した。得られた残渣をシリカゲルカラムクロマトグラフィー (シリカゲル:4g, 展開溶媒:酢酸エチル-メタノール混合溶媒 1 対 0 → 90 対 1 → 12 対 1 → 4 対 1) で分離精製し、9ah (154 mg, 0.25 mmol, 収率 68%) を得た。1H-NMR(CDCl3)δ: 2.61 (1H, br), 3.57-3.73 (32H, br), 3.84 (2H, t, J=4.8 Hz), 4.09 (2H, t, J=4.8 Hz), 6.69 (2H, d, J=9.2 Hz), 7.54 (2H, d, J=9.2 Hz)。 7ah (230 mg, 1.05 mmol) was dissolved in THF (2.0 mL). To this, sodium hydride (mineral oil suspension, purity 60%, 49 mg, 1.23 mmol) was added and stirred at room temperature for 1 hour. To this was added a solution of 5 (210 mg, 0.37 mmol) in THF (2.0 mL) and stirring was continued at room temperature for 24 hours. The reaction solution was diluted with ethyl acetate (10 mL), and washed successively with water (10 mL) and saturated brine (10 mL). After drying over anhydrous sodium sulfate, this was filtered and concentrated with an evaporator. The resulting residue was separated and purified by silica gel column chromatography (silica gel: 4 g, developing solvent: ethyl acetate-methanol mixed solvent 1 to 0 → 90 to 1 → 12 to 1 → 4 to 1), and 9ah (154 mg, 0.25 mmol, yield 68%). 1 H-NMR (CDCl 3 ) δ: 2.61 (1H, br), 3.57-3.73 (32H, br), 3.84 (2H, t, J = 4.8 Hz), 4.09 (2H, t, J = 4.8 Hz), 6.69 (2H, d, J = 9.2 Hz), 7.54 (2H, d, J = 9.2 Hz).

Nonaethylene glycol mono(4-bromophenyl) ether (9j)   Nonaethylene glycol mono (4-bromophenyl) ether (9j)

Figure 2011084632
Figure 2011084632

7j (126 mg, 0.73 mmol) を THF (1.0 mL) に溶解させた。これに水素化ナトリウム (ミネラルオイル懸濁, 純度 60%, 36 mg, 0.90 mmol) を加え室温にて1時間撹拌した。このものに 5 (192 mg, 0.34 mmol) の THF (2.0 mL) 溶液を添加し、室温で24時間撹拌を続けた。反応溶液を酢酸エチル (10 mL) で希釈し、水 (10 mL)、飽和食塩水 (10 mL) で順次洗浄した。無水硫酸ナトリウムで乾燥後これを濾過し、エバポレーターで濃縮した。得られた残渣をシリカゲルカラムクロマトグラフィー (シリカゲル : 4 g, 展開溶媒 : 酢酸エチル-メタノール混合溶媒 1 対 0 → 10 対 1) で分離精製し、9j (130 mg, 0.23 mmol, 収率 68%) を得た。1H-NMR(CDCl3)δ: 2.78 (1H, br), 3.59-3.74 (32H, br), 3.83 (2H, t, J=4.8 Hz), 4.09 (2H, t, J=4.6 Hz), 6.79 (2H, d, J=9.2 Hz), 7.35 (2H, d, J=9.2 Hz)。 7j (126 mg, 0.73 mmol) was dissolved in THF (1.0 mL). To this was added sodium hydride (mineral oil suspension, purity 60%, 36 mg, 0.90 mmol), and the mixture was stirred at room temperature for 1 hour. To this was added a solution of 5 (192 mg, 0.34 mmol) in THF (2.0 mL) and stirring was continued at room temperature for 24 hours. The reaction solution was diluted with ethyl acetate (10 mL), and washed successively with water (10 mL) and saturated brine (10 mL). After drying over anhydrous sodium sulfate, this was filtered and concentrated with an evaporator. The obtained residue was separated and purified by silica gel column chromatography (silica gel: 4 g, developing solvent: ethyl acetate-methanol mixed solvent 1 to 0 → 10 to 1), 9j (130 mg, 0.23 mmol, yield 68%) Got. 1 H-NMR (CDCl 3 ) δ: 2.78 (1H, br), 3.59-3.74 (32H, br), 3.83 (2H, t, J = 4.8 Hz), 4.09 (2H, t, J = 4.6 Hz), 6.79 (2H, d, J = 9.2 Hz), 7.35 (2H, d, J = 9.2 Hz).

Nonaethylene glycol mono(4-trifluoromethylphenyl) ether (9o)   Nonaethylene glycol mono (4-trifluoromethylphenyl) ether (9o)

Figure 2011084632
Figure 2011084632

7o (170 mg, 1.05 mmol) を THF (1.5 mL) に溶解させた。これに水素化ナトリウム (ミネラルオイル懸濁, 純度 60%, 50 mg, 1.25 mmol) を加え室温にて1時間撹拌した。このものに 5 (200 mg, 0.35 mmol) の THF (2.0 mL) 溶液を添加し、室温で24時間撹拌を続けた。反応溶液を酢酸エチル(10 mL)で希釈し、水(10 mL)、飽和食塩水(10 mL)で順次洗浄した。無水硫酸ナトリウムで乾燥後これを濾過し、エバポレーターで濃縮した。得られた残渣をシリカゲルカラムクロマトグラフィー (シリカゲル : 4 g, 展開溶媒 : 酢酸エチル-メタノール混合溶媒 1 対 0 → 8 対 1) で分離精製し、9o (99 mg, 0.18 mmol, 収率 49%) を得た。1H-NMR(CDCl3)δ: 2.73 (1H, br), 3.57-3.73 (32H, br), 3.86 (2H, t, J=4.8 Hz), 4.16 (2H, t, J=4.8 Hz), 6.97 (2H, d, J=8.7 Hz), 7.52 (2H, d, J=8.7 Hz)。 7o (170 mg, 1.05 mmol) was dissolved in THF (1.5 mL). To this, sodium hydride (mineral oil suspension, purity 60%, 50 mg, 1.25 mmol) was added and stirred at room temperature for 1 hour. To this was added a solution of 5 (200 mg, 0.35 mmol) in THF (2.0 mL) and stirring was continued at room temperature for 24 hours. The reaction solution was diluted with ethyl acetate (10 mL), and washed successively with water (10 mL) and saturated brine (10 mL). After drying over anhydrous sodium sulfate, this was filtered and concentrated with an evaporator. The obtained residue was separated and purified by silica gel column chromatography (silica gel: 4 g, developing solvent: ethyl acetate-methanol mixed solvent 1 to 0 → 8 to 1), 9o (99 mg, 0.18 mmol, yield 49%) Got. 1 H-NMR (CDCl 3 ) δ: 2.73 (1H, br), 3.57-3.73 (32H, br), 3.86 (2H, t, J = 4.8 Hz), 4.16 (2H, t, J = 4.8 Hz), 6.97 (2H, d, J = 8.7 Hz), 7.52 (2H, d, J = 8.7 Hz).

Nonaethylene glycol mono(4-cyanophenyl) ether (9r)   Nonaethylene glycol mono (4-cyanophenyl) ether (9r)

Figure 2011084632
Figure 2011084632

7r (200 mg, 1.68 mmol) を THF (3.0 mL) に溶解させた。これに水素化ナトリウム (ミネラルオイル懸濁, 純度 60%, 82 mg, 2.05 mmol) を加え室温にて1時間撹拌した。このものに 5 (240 mg, 0.42 mmol) の THF (2.0 mL) 溶液を添加し、室温で24時間撹拌を続けた。反応溶液を酢酸エチル (10 mL) で希釈し、水 (10 mL)、飽和食塩水 (10 mL) で順次洗浄した。無水硫酸ナトリウムで乾燥後これを濾過し、エバポレーターで濃縮した。得られた残渣をシリカゲルカラムクロマトグラフィー (シリカゲル : 5 g, 展開溶媒 : 酢酸エチル-メタノール混合溶媒 1 対 0 → 100 対 1 → 8 対 1) で分離精製し、9r (82 mg, 0.16 mmol, 収率 38%) を得た。1H-NMR(CDCl3)δ: 2.64 (1H, br), 3.59-3.74 (32H, br), 3.86 (2H, t, J=4.8 Hz), 4.16 (2H, t, J=4.8 Hz), 6.96 (2H, t, J=8.9 Hz), 7.57 (2H, d, J=8.9 Hz)。 7r (200 mg, 1.68 mmol) was dissolved in THF (3.0 mL). Sodium hydride (mineral oil suspension, purity 60%, 82 mg, 2.05 mmol) was added thereto, and the mixture was stirred at room temperature for 1 hour. To this was added a solution of 5 (240 mg, 0.42 mmol) in THF (2.0 mL) and stirring was continued at room temperature for 24 hours. The reaction solution was diluted with ethyl acetate (10 mL), and washed successively with water (10 mL) and saturated brine (10 mL). After drying over anhydrous sodium sulfate, this was filtered and concentrated with an evaporator. The obtained residue was separated and purified by silica gel column chromatography (silica gel: 5 g, developing solvent: ethyl acetate-methanol mixed solvent 1 to 0 → 100 to 1 → 8 to 1), and 9r (82 mg, 0.16 mmol, collected) Rate 38%). 1 H-NMR (CDCl 3 ) δ: 2.64 (1H, br), 3.59-3.74 (32H, br), 3.86 (2H, t, J = 4.8 Hz), 4.16 (2H, t, J = 4.8 Hz), 6.96 (2H, t, J = 8.9 Hz), 7.57 (2H, d, J = 8.9 Hz).

Nonaethylene glycol mono(6-quinolyl) ether (9s)   Nonaethylene glycol mono (6-quinolyl) ether (9s)

Figure 2011084632
Figure 2011084632

7s (200 mg, 1.38 mmol) 及び塩化ベンジルトリエチルアンモニウム (30 mg, 0.13 mmol) を THF (2.0 mL) に溶解させた。これに水素化ナトリウム (ミネラルオイル懸濁, 純度 60%, 60 mg, 1.50 mmol) を加え室温にて1時間撹拌した。このものに 5 (180 mg, 0.32 mmol) の THF (2.0 mL) 溶液を添加し、室温で24時間撹拌を続けた。反応溶液を水 (10 mL) で希釈し、クロロホルム (10 mL×4) で抽出した。クロロホルム層は、水 (10 mL)、飽和食塩水 (10 mL) で順次洗浄した。無水硫酸ナトリウムで乾燥後これを濾過し、エバポレーターで濃縮した。得られた残渣をシリカゲルカラムクロマトグラフィー (シリカゲル : 4 g, 展開溶媒 : 酢酸エチル-メタノール混合溶媒 1 対 0 → 16 対 1 → 8 対 1 → 7 対 2) で分離精製し、9s (103 mg, 0.19 mmol, 収率 60%) を得た。1H-NMR(CDCl3)δ: 2.89 (1H, br), 3.58-3.79 (32H, br), 3.94 (2H, t, J=4.9 Hz), 4.26 (2H, t, J=4.9 Hz), 7.09 (1H, d, J=2.7 Hz), 7.36 (1H, dd, J=8.2 Hz, 4.1 Hz), 7.41 (1H, dd, J=9.4 Hz, 2.7 Hz), 8.00 (1H, d, J=9.4 Hz), 8.04 (1H, dd, J=8.2 Hz, 1.7 Hz), 8.77 (1H, dd, J=4.1 Hz, 1.7 Hz)。 7s (200 mg, 1.38 mmol) and benzyltriethylammonium chloride (30 mg, 0.13 mmol) were dissolved in THF (2.0 mL). To this, sodium hydride (mineral oil suspension, purity 60%, 60 mg, 1.50 mmol) was added and stirred at room temperature for 1 hour. To this was added a solution of 5 (180 mg, 0.32 mmol) in THF (2.0 mL) and stirring was continued at room temperature for 24 hours. The reaction solution was diluted with water (10 mL) and extracted with chloroform (10 mL × 4). The chloroform layer was washed successively with water (10 mL) and saturated brine (10 mL). After drying over anhydrous sodium sulfate, this was filtered and concentrated with an evaporator. The resulting residue was separated and purified by silica gel column chromatography (silica gel: 4 g, developing solvent: ethyl acetate-methanol mixed solvent 1 to 0 → 16 to 1 → 8 to 1 → 7 to 2), and 9s (103 mg, 0.19 mmol, 60% yield). 1 H-NMR (CDCl 3 ) δ: 2.89 (1H, br), 3.58-3.79 (32H, br), 3.94 (2H, t, J = 4.9 Hz), 4.26 (2H, t, J = 4.9 Hz), 7.09 (1H, d, J = 2.7 Hz), 7.36 (1H, dd, J = 8.2 Hz, 4.1 Hz), 7.41 (1H, dd, J = 9.4 Hz, 2.7 Hz), 8.00 (1H, d, J = 9.4 Hz), 8.04 (1H, dd, J = 8.2 Hz, 1.7 Hz), 8.77 (1H, dd, J = 4.1 Hz, 1.7 Hz).

Nonaethylene glycol mono(2,4-bis(1,1-dimethylpropyl)phenyl) ether (9z)   Nonaethylene glycol mono (2,4-bis (1,1-dimethylpropyl) phenyl) ether (9z)

Figure 2011084632
Figure 2011084632

7z (222 mg, 0.95 mmol) を THF (2.0 mL) に溶解させた。これに水素化ナトリウム (ミネラルオイル懸濁, 純度 60%, 50 mg, 1.25 mmol) を加え室温にて1時間撹拌した。このものに 5 (220 mg, 0.39 mmol) の THF (2.0 mL) 溶液を添加し、室温で24時間撹拌を続けた。反応溶液を酢酸エチル (10 mL) で希釈し、水 (10 mL)、飽和食塩水 (10 mL) で順次洗浄した。無水硫酸ナトリウムで乾燥後これを濾過し、エバポレーターで濃縮した。得られた残渣をシリカゲルカラムクロマトグラフィー (シリカゲル : 4 g, 展開溶媒 : 酢酸エチル-メタノール混合溶媒 1 対 0 → 50 対 1 → 8 対 1 → 4 対 1) で分離精製し、9z (134 mg, 0.21 mmol, 収率 55%) を得た。1H-NMR(CDCl3)δ: 0.60 (3H, t, J=7.3 Hz), 0.66 (3H, t, J=7.3 Hz), 1.25 (6H, s), 1.34 (6H, s), 1.59 (2H, q, J=7.3 Hz), 1.83 (2H, q, J=7.3 Hz), 2.843 (1H, br), 3.58-3.74 (32H, br), 3.87 (2H, t, J=5.2 Hz), 4.10 (2H, t, J=4.8 Hz), 6.75 (1H, d, J=8.2 Hz), 7.07 (1H, dd, J=8.2 Hz, 2.3 Hz), 7.16 (1H, d, J=2.3 Hz)。 7z (222 mg, 0.95 mmol) was dissolved in THF (2.0 mL). To this, sodium hydride (mineral oil suspension, purity 60%, 50 mg, 1.25 mmol) was added and stirred at room temperature for 1 hour. To this was added a solution of 5 (220 mg, 0.39 mmol) in THF (2.0 mL) and stirring was continued at room temperature for 24 hours. The reaction solution was diluted with ethyl acetate (10 mL), and washed successively with water (10 mL) and saturated brine (10 mL). After drying over anhydrous sodium sulfate, this was filtered and concentrated with an evaporator. The resulting residue was separated and purified by silica gel column chromatography (silica gel: 4 g, developing solvent: ethyl acetate-methanol mixed solvent 1 to 0 → 50 to 1 → 8 to 1 → 4 to 1), and 9z (134 mg, 0.21 mmol, yield 55%). 1 H-NMR (CDCl 3 ) δ: 0.60 (3H, t, J = 7.3 Hz), 0.66 (3H, t, J = 7.3 Hz), 1.25 (6H, s), 1.34 (6H, s), 1.59 ( 2H, q, J = 7.3 Hz), 1.83 (2H, q, J = 7.3 Hz), 2.843 (1H, br), 3.58-3.74 (32H, br), 3.87 (2H, t, J = 5.2 Hz), 4.10 (2H, t, J = 4.8 Hz), 6.75 (1H, d, J = 8.2 Hz), 7.07 (1H, dd, J = 8.2 Hz, 2.3 Hz), 7.16 (1H, d, J = 2.3 Hz) .

Dodecaethylene glycol mono(4-iodophenyl) ether (8ah)   Dodecaethylene glycol mono (4-iodophenyl) ether (8ah)

Figure 2011084632
Figure 2011084632

7ah (216 mg, 0.98 mmol) を THF (2.0 mL) に溶解させた。これに水素化ナトリウム (ミネラルオイル懸濁, 純度 60%, 51 mg, 1.28 mmol) を加え室温にて1時間撹拌した。このものに 3 (172 mg, 0.25 mmol) の THF (2.0 mL) 溶液を添加し、室温で24時間撹拌を続けた。反応溶液を酢酸エチル (10 mL) で希釈し、水 (10 mL)、飽和食塩水 (10 mL) で順次洗浄した。無水硫酸ナトリウムで乾燥後これを濾過し、エバポレーターで濃縮した。得られた残渣をシリカゲルカラムクロマトグラフィー (シリカゲル : 4 g, 展開溶媒 : 酢酸エチル-メタノール混合溶媒 1 対 0 → 45 対 1 → 45 対 2 → 8 対 1) で分離精製し、8ah (74 mg, 0.10 mmol, 収率 40%) を得た。1H-NMR(CDCl3)δ: 2.70 (1H, br), 3.59-3.73 (44H, br), 3.84 (2H, t, J=4.8 Hz), 4.09 (2H, t, J=4.8 Hz), 6.70 (2H, d, J=8.9 Hz), 7.54 (2H, d, J=8.9 Hz)。 7ah (216 mg, 0.98 mmol) was dissolved in THF (2.0 mL). Sodium hydride (mineral oil suspension, purity 60%, 51 mg, 1.28 mmol) was added thereto, and the mixture was stirred at room temperature for 1 hour. To this was added a solution of 3 (172 mg, 0.25 mmol) in THF (2.0 mL) and stirring was continued at room temperature for 24 hours. The reaction solution was diluted with ethyl acetate (10 mL), and washed successively with water (10 mL) and saturated brine (10 mL). After drying over anhydrous sodium sulfate, this was filtered and concentrated with an evaporator. The resulting residue was separated and purified by silica gel column chromatography (silica gel: 4 g, developing solvent: ethyl acetate-methanol mixed solvent 1 to 0 → 45 to 1 → 45 to 2 → 8 to 1), and 8ah (74 mg, 0.10 mmol, 40% yield). 1 H-NMR (CDCl 3 ) δ: 2.70 (1H, br), 3.59-3.73 (44H, br), 3.84 (2H, t, J = 4.8 Hz), 4.09 (2H, t, J = 4.8 Hz), 6.70 (2H, d, J = 8.9 Hz), 7.54 (2H, d, J = 8.9 Hz).

Dodecaethylene glycol mono(p-biphenyl) ether (8aj)   Dodecaethylene glycol mono (p-biphenyl) ether (8aj)

Figure 2011084632
Figure 2011084632

7aj (173 mg, 1.02 mmol) を THF (1.5 mL) に溶解させた。これに水素化ナトリウム (ミネラルオイル懸濁, 純度 60%, 45 mg, 1.13 mmol) を加え室温にて1時間撹拌した。このものに 3 (216 mg, 0.31 mmol) の THF (2.0 mL) 溶液を添加し、室温で24時間撹拌を続けた。反応溶液を酢酸エチル (10 mL) で希釈し、水 (10 mL)、飽和食塩水 (10 mL) で順次洗浄した。無水硫酸ナトリウムで乾燥後これを濾過し、エバポレーターで濃縮した。得られた残渣をシリカゲルカラムクロマトグラフィー (シリカゲル : 4 g, 展開溶媒 : 酢酸エチル-メタノール混合溶媒 1 対 0 → 45 対 1 → 30 対 1 → 45 対 2 → 8 対 1 → 7 対 2) で分離精製し、8aj (105 mg, 0.15 mmol, 収率 49%) を得た。1H-NMR(CDCl3)δ: 3.57 (1H, t, J=6.0 Hz), 3.59-3.75 (44H, br), 3.88 (2H, t, J=4.9 Hz), 4.18 (2H, t, J=4.9 Hz), 6.99 (2H, d, J=8.7 Hz), 7.30-7.57 (7H, m)。 7aj (173 mg, 1.02 mmol) was dissolved in THF (1.5 mL). To this, sodium hydride (mineral oil suspension, purity 60%, 45 mg, 1.13 mmol) was added and stirred at room temperature for 1 hour. To this was added a solution of 3 (216 mg, 0.31 mmol) in THF (2.0 mL) and stirring was continued at room temperature for 24 hours. The reaction solution was diluted with ethyl acetate (10 mL), and washed successively with water (10 mL) and saturated brine (10 mL). After drying over anhydrous sodium sulfate, this was filtered and concentrated with an evaporator. The obtained residue was separated by silica gel column chromatography (silica gel: 4 g, developing solvent: ethyl acetate-methanol mixed solvent 1 to 0 → 45 to 1 → 30 to 1 → 45 to 2 → 8 to 1 → 7 to 2) Purification was performed to obtain 8aj (105 mg, 0.15 mmol, yield 49%). 1 H-NMR (CDCl 3 ) δ: 3.57 (1H, t, J = 6.0 Hz), 3.59-3.75 (44H, br), 3.88 (2H, t, J = 4.9 Hz), 4.18 (2H, t, J = 4.9 Hz), 6.99 (2H, d, J = 8.7 Hz), 7.30-7.57 (7H, m).

Dodecaethylene glycol mono(4-bromophenyl) ether (8j)   Dodecaethylene glycol mono (4-bromophenyl) ether (8j)

Figure 2011084632
Figure 2011084632

7j (169 mg, 0.98 mmol) を THF (1.5 mL) に溶解させた。これに水素化ナトリウム (ミネラルオイル懸濁, 純度 60%, 47 mg, 1.18 mmol) を加え室温にて1時間撹拌した。このものに 3 (215 mg, 0.31 mmol) の THF (2.0 mL) 溶液を添加し、室温で24時間撹拌を続けた。反応溶液を酢酸エチル (10 mL) で希釈し、水 (10 mL)、飽和食塩水 (10 mL) で順次洗浄した。無水硫酸ナトリウムで乾燥後これを濾過し、エバポレーターで濃縮した。得られた残渣をシリカゲルカラムクロマトグラフィー (シリカゲル : 4 g, 展開溶媒 : 酢酸エチル-メタノール混合溶媒 1 対 0 → 30 対 1 → 8 対 1 → 7 対 2) で分離精製し、8j (44 mg, 0.06 mmol, 収率 20%) を得た。1H-NMR(CDCl3)δ: 2.78 (1H, br), 3.58-3.65 (44H, br), 3.83 (2H, t, J=4.6 Hz), 4.08 (2H, t, J=4.6 Hz), 6.79 (2H, d, J=9.2 Hz), 7.35 (2H, d, J=9.2 Hz)。 7j (169 mg, 0.98 mmol) was dissolved in THF (1.5 mL). Sodium hydride (mineral oil suspension, purity 60%, 47 mg, 1.18 mmol) was added thereto, and the mixture was stirred at room temperature for 1 hour. A solution of 3 (215 mg, 0.31 mmol) in THF (2.0 mL) was added to this, and stirring was continued at room temperature for 24 hours. The reaction solution was diluted with ethyl acetate (10 mL), and washed successively with water (10 mL) and saturated brine (10 mL). After drying over anhydrous sodium sulfate, this was filtered and concentrated with an evaporator. The obtained residue was separated and purified by silica gel column chromatography (silica gel: 4 g, developing solvent: ethyl acetate-methanol mixed solvent 1 to 0 → 30 to 1 → 8 to 1 → 7 to 2), and 8j (44 mg, 0.06 mmol, yield 20%). 1 H-NMR (CDCl 3 ) δ: 2.78 (1H, br), 3.58-3.65 (44H, br), 3.83 (2H, t, J = 4.6 Hz), 4.08 (2H, t, J = 4.6 Hz), 6.79 (2H, d, J = 9.2 Hz), 7.35 (2H, d, J = 9.2 Hz).

Dodecaethylene glycol mono(4-trifluoromethylphenyl) ether (8o)   Dodecaethylene glycol mono (4-trifluoromethylphenyl) ether (8o)

Figure 2011084632
Figure 2011084632

7o (162 mg, 1.00 mmol) を THF (2.0 mL) に溶解させた。これに水素化ナトリウム (ミネラルオイル懸濁, 純度 60%, 65 mg, 1.63 mmol) を加え室温にて1時間撹拌した。このものに 3 (250 mg, 0.36 mmol) の THF (1.5 mL) 溶液を添加し、室温で24時間撹拌を続けた。反応溶液を酢酸エチル (10 mL) で希釈し、水 (10 mL)、飽和食塩水 (10 mL) で順次洗浄した。無水硫酸ナトリウムで乾燥後これを濾過し、エバポレーターで濃縮した。得られた残渣をシリカゲルカラムクロマトグラフィー (シリカゲル : 5 g, 展開溶媒 : 酢酸エチル-メタノール混合溶媒 1 対 0 → 45 対 1 → 8 対 1) で分離精製し、8o (54 mg, 0.08 mmol, 収率 22%) を得た。1H-NMR(CDCl3)δ: 2.75 (1H, br), 3.57-3.73 (44H, br), 3.87 (2H, t, J=4.8 Hz), 4.17 (2H, t, J=4.8 Hz), 6.98 (2H, d, J=8.5 Hz), 7.53 (2H, d, J=8.5 Hz)。 7o (162 mg, 1.00 mmol) was dissolved in THF (2.0 mL). To this, sodium hydride (mineral oil suspension, purity 60%, 65 mg, 1.63 mmol) was added and stirred at room temperature for 1 hour. To this was added a solution of 3 (250 mg, 0.36 mmol) in THF (1.5 mL) and stirring was continued at room temperature for 24 hours. The reaction solution was diluted with ethyl acetate (10 mL), and washed successively with water (10 mL) and saturated brine (10 mL). After drying over anhydrous sodium sulfate, this was filtered and concentrated with an evaporator. The obtained residue was separated and purified by silica gel column chromatography (silica gel: 5 g, developing solvent: ethyl acetate-methanol mixed solvent 1 to 0 → 45 to 1 → 8 to 1), and 8o (54 mg, 0.08 mmol, collected) Rate 22%). 1 H-NMR (CDCl 3 ) δ: 2.75 (1H, br), 3.57-3.73 (44H, br), 3.87 (2H, t, J = 4.8 Hz), 4.17 (2H, t, J = 4.8 Hz), 6.98 (2H, d, J = 8.5 Hz), 7.53 (2H, d, J = 8.5 Hz).

Dodecaethylene glycol mono(2,4-bis(1,1-dimethylpropyl)phenyl) ether (8z)   Dodecaethylene glycol mono (2,4-bis (1,1-dimethylpropyl) phenyl) ether (8z)

Figure 2011084632
Figure 2011084632

7z (240 mg, 1.02 mmol) を THF (2.0 mL) に溶解させた。これに水素化ナトリウム (ミネラルオイル懸濁, 純度 60%, 53 mg, 1.33 mmol) を加え室温にて1時間撹拌した。このものに 3 (225 mg, 0.32 mmol) の THF (2.0 mL) 溶液を添加し、室温で24時間撹拌を続けた。反応溶液を酢酸エチル (10 mL) で希釈し、水 (10 mL)、飽和食塩水 (10 mL) で順次洗浄した。無水硫酸ナトリウムで乾燥後これを濾過し、エバポレーターで濃縮した。得られた残渣をシリカゲルカラムクロマトグラフィー (シリカゲル : 4 g, 展開溶媒 : 酢酸エチル-メタノール混合溶媒 1 対 0 → 60 対 1 → 30 対 1 → 4 対 1) で分離精製し、8z (192 mg, 0.25 mmol, 収率 79%) を得た。1H-NMR(CDCl3)δ: 0.61 (3H, t, J=7.5 Hz), 0.66 (3H, t, J=7.5 Hz), 1.25 (6H, s), 1.34 (6H, s), 1.59 (2H, q, J=7.5 Hz), 1.83 (2H, q, J=7.5 Hz), 2.73 (1H, br), 3.59-3.74 (44H, br), 3.86 (2H, t, J=5.2 Hz), 4.10 (2H, t, J=4.8 Hz), 6.75 (1H, d, J=8.4 Hz), 7.07 (1H, dd, J=8.4 Hz, 2.4 Hz), 7.16 (1H, d, J=2.4 Hz)。 7z (240 mg, 1.02 mmol) was dissolved in THF (2.0 mL). To this, sodium hydride (mineral oil suspension, purity 60%, 53 mg, 1.33 mmol) was added and stirred at room temperature for 1 hour. To this was added a solution of 3 (225 mg, 0.32 mmol) in THF (2.0 mL) and stirring was continued at room temperature for 24 hours. The reaction solution was diluted with ethyl acetate (10 mL), and washed successively with water (10 mL) and saturated brine (10 mL). After drying over anhydrous sodium sulfate, this was filtered and concentrated with an evaporator. The obtained residue was separated and purified by silica gel column chromatography (silica gel: 4 g, developing solvent: ethyl acetate-methanol mixed solvent 1 to 0 → 60 to 1 → 30 to 1 → 4 to 1), and 8z (192 mg, 0.25 mmol, yield 79%). 1 H-NMR (CDCl 3 ) δ: 0.61 (3H, t, J = 7.5 Hz), 0.66 (3H, t, J = 7.5 Hz), 1.25 (6H, s), 1.34 (6H, s), 1.59 ( 2H, q, J = 7.5 Hz), 1.83 (2H, q, J = 7.5 Hz), 2.73 (1H, br), 3.59-3.74 (44H, br), 3.86 (2H, t, J = 5.2 Hz), 4.10 (2H, t, J = 4.8 Hz), 6.75 (1H, d, J = 8.4 Hz), 7.07 (1H, dd, J = 8.4 Hz, 2.4 Hz), 7.16 (1H, d, J = 2.4 Hz) .

Nonaethylene glycol mono(p-biphenyl) ether (9aj)   Nonaethylene glycol mono (p-biphenyl) ether (9aj)

Figure 2011084632
Figure 2011084632

7aj (170 mg, 1.00 mmol) を THF (1.5 mL) に溶解させた。これに水素化ナトリウム (ミネラルオイル懸濁, 純度 60%, 44 mg, 1.10 mmol) を加え室温にて1時間撹拌した。このものに 5 (205 mg, 0.36 mmol) の THF (2.0 mL) 溶液を添加し、室温で24時間撹拌を続けた。反応溶液を酢酸エチル (10 mL) で希釈し、水 (10 mL)、飽和食塩水 (10 mL) で順次洗浄した。無水硫酸ナトリウムで乾燥後これを濾過し、エバポレーターで濃縮した。得られた残渣をシリカゲルカラムクロマトグラフィー (シリカゲル : 4 g, 展開溶媒 : 酢酸エチル-メタノール混合溶媒 1 対 0 → 90 対 1 → 12 対 1 → 4 対 1) で分離精製し、9aj (172 mg, 0.30 mmol, 収率 84%) を得た。1H-NMR(CDCl3)δ: 2.77 (1H, t, J=6.0 Hz), 3.59-3.75 (32H, br), 3.88 (2H, t, J=5.4 Hz), 4.18 (2H, t, J=5.4 Hz), 6.98 (2H, d, J=8.7 Hz), 7.30-7.56 (7H, m)。 7aj (170 mg, 1.00 mmol) was dissolved in THF (1.5 mL). To this, sodium hydride (mineral oil suspension, purity 60%, 44 mg, 1.10 mmol) was added and stirred at room temperature for 1 hour. To this was added a solution of 5 (205 mg, 0.36 mmol) in THF (2.0 mL) and stirring was continued at room temperature for 24 hours. The reaction solution was diluted with ethyl acetate (10 mL), and washed successively with water (10 mL) and saturated brine (10 mL). After drying over anhydrous sodium sulfate, this was filtered and concentrated with an evaporator. The obtained residue was separated and purified by silica gel column chromatography (silica gel: 4 g, developing solvent: ethyl acetate-methanol mixed solvent 1 to 0 → 90 to 1 → 12 to 1 → 4 to 1), and 9aj (172 mg, 0.30 mmol, yield 84%). 1 H-NMR (CDCl 3 ) δ: 2.77 (1H, t, J = 6.0 Hz), 3.59-3.75 (32H, br), 3.88 (2H, t, J = 5.4 Hz), 4.18 (2H, t, J = 5.4 Hz), 6.98 (2H, d, J = 8.7 Hz), 7.30-7.56 (7H, m).

(実施例3)マウス(BALB/c、雄)の腹腔内および静脈内投与に対する安全性に関する試験
(A)化合物9bwの安全性に関する試験
[材料及び方法]
(1)マウス腹腔/静脈内投与に対する50%致死量の検討
1.実験動物:
ヌードマウス(BALB/c Slc-nu/nu 雄、エスエルシー(株))80匹を7週令で購入して1週間の予備飼育を実施した後に8週令で使用した。
2.試料の調整:
化合物9bwのサンプルを滅菌水およびPBSで希釈調製した。滅菌は0.45μmのろ過フィルターを用いて行った。
3.投与方法及び投与量:
投与は腹腔内および静脈内の単一投与とし、投与容量は共に0.2ml/マウスとした。投与容量は400mg/kg(9.3mg/0.2ml/マウス/23g体重)を基本濃度として作成し、200mg/kg、150mg/kg、100mg/kg、75mg/kg、50mg/kg、40mg/kg、30mg/kgおよび20mg/kgの8濃度を滅菌PBS(-)にて調整した。
4.観察期間:
投与後:3週間の観察を行った。また、投与開始前から投与後3週間まで投与各群の体重を経時的に測定した。
5.投与群を下記の表1に示した。
(Example 3) Test on safety of intraperitoneal and intravenous administration of mice (BALB / c, male) (A) Test on safety of compound 9bw [Materials and Methods]
(1) Examination of 50% lethal dose for mouse intraperitoneal / intravenous administration Experimental animals:
80 nude mice (BALB / c Slc-nu / nu male, SLC Co., Ltd.) were purchased at 7 weeks of age and pre-bred for 1 week before use at 8 weeks of age.
2. Sample preparation:
A sample of compound 9bw was prepared by diluting with sterile water and PBS. Sterilization was performed using a 0.45 μm filtration filter.
3. Administration method and dosage:
The administration was a single intraperitoneal and intravenous administration, and both administration volumes were 0.2 ml / mouse. Dose volume is 400mg / kg (9.3mg / 0.2ml / mouse / 23g body weight) as basic concentration, 200mg / kg, 150mg / kg, 100mg / kg, 75mg / kg, 50mg / kg, 40mg / kg, 30mg 8 concentrations of / kg and 20 mg / kg were adjusted with sterile PBS (−).
4). Observation period:
After administration: Observation was performed for 3 weeks. In addition, the body weight of each administration group was measured over time from the start of administration to 3 weeks after administration.
5). The administration groups are shown in Table 1 below.

Figure 2011084632
Figure 2011084632

6.実験開始前平均体重(n = 13):
投与開始前の平均体重は23. 36±0.89 ( SE)であった。
7.致死量の算出
LD50はプロビット法により算出した。
8.結果
ヌードマウスに対する化合物9bwの腹腔内(ip)および静脈内(iv)投与後の生存率の結果を表2に示す。また、化合物9bwの投与にかかるヌードマウスの体重変化を図1及び図2に示す。
6). Average body weight before starting the experiment (n = 13):
The average body weight before administration was 23.36 ± 0.89 (SE).
7). Calculation of lethal dose
LD50 was calculated by the probit method.
8). Results Table 2 shows the survival results after intraperitoneal (ip) and intravenous (iv) administration of compound 9bw to nude mice. In addition, changes in body weight of nude mice upon administration of compound 9bw are shown in FIGS.

Figure 2011084632
Figure 2011084632

(B)化合物8bwの安全性に関する試験
[材料及び方法]
(1)マウス腹腔/静脈内投与に対する50%致死量の検討
1.実験動物:
ヌードマウス(BALB/c Slc-nu/nu 雄、エスエルシー(株))100匹を7週令で購入して1週間の予備飼育を実施した後に8週令で使用した。
2.試料の調整:
化合物8bw(表及び図ではPEG(9bw)と表記する)のサンプルを滅菌水およびPBSで希釈調製した。滅菌は0.45μmのろ過フィルターを用いて行った。
3.投与方法及び投与量:
投与は腹腔内および静脈内の単一投与とし、投与容量は共に0.2ml/マウスとした。投与容量は 400mg/kg(9.3mg/0.2ml/マウス/23g体重)を基本濃度として作成し、150mg/kg、100mg/kg、75mg/kg、60mg/kg、50mg/kg、40mg/kg、30mg/kgおよび20mg/kgの8濃度を滅菌PBS(-)にて調整した。
4.観察期間:
投与後:3週間の観察を行った。また、投与開始前から投与後3週間まで投与各群の体重を経時的に測定した。
5.投与群を下記の表に示した。
(B) Test on safety of compound 8bw [Materials and Methods]
(1) Examination of 50% lethal dose for mouse intraperitoneal / intravenous administration Experimental animals:
100 nude mice (BALB / c Slc-nu / nu male, SLC Co., Ltd.) were purchased at 7 weeks of age and pre-bred for 1 week before use at 8 weeks of age.
2. Sample preparation:
A sample of compound 8bw (denoted as PEG (9bw) in the tables and figures) was prepared by diluting with sterile water and PBS. Sterilization was performed using a 0.45 μm filtration filter.
3. Administration method and dosage:
The administration was a single intraperitoneal and intravenous administration, and both administration volumes were 0.2 ml / mouse. Dose volume is 400mg / kg (9.3mg / 0.2ml / mouse / 23g body weight) as the basic concentration, 150mg / kg, 100mg / kg, 75mg / kg, 60mg / kg, 50mg / kg, 40mg / kg, 30mg 8 concentrations of / kg and 20 mg / kg were adjusted with sterile PBS (−).
4). Observation period:
After administration: Observation was performed for 3 weeks. In addition, the body weight of each administration group was measured over time from the start of administration to 3 weeks after administration.
5). The administration groups are shown in the table below.

Figure 2011084632
Figure 2011084632

6.実験開始前平均体重(n = 13):
投与開始前の平均体重は23.21±0.25 ( SE)であった。
7.致死量の算出
LD50はプロビット法により算出した。
8.結果
ヌードマウスに対する化合物8bwの腹腔内(ip)および静脈内(iv)投与後の生存率の結果を表4に示す。また、化合物8bwの投与にかかるヌードマウスの体重変化を図3及び図4に示す。
6). Average body weight before starting the experiment (n = 13):
The average body weight before the start of administration was 23.21 ± 0.25 (SE).
7). Calculation of lethal dose
LD50 was calculated by the probit method.
8). Results Table 4 shows the survival results after intraperitoneal (ip) and intravenous (iv) administration of compound 8bw to nude mice. In addition, changes in body weight of nude mice upon administration of Compound 8bw are shown in FIGS.

Figure 2011084632
Figure 2011084632

(C)Meth -A腫瘍細胞に対するDNA合成阻害効果の検討(インビトロ)
1.腫瘍細胞:
Meth - A 腫瘍細胞(マウス肉腫)
2.培養液:
RPMI-l640 medium ( Sigma Chemicals, MO , USA)にfetal bovine serum 10 %, L-glutamine, gentamycinおよびstreptomycinを添加した。
3.試料の調整:
化合物9bwを滅菌蒸留水にて 2mg/mlの濃度に調整し、ゆるやかに撹拝した後に1夜冷蔵保存すると透明な状態で溶解した。しかし、溶解した化合物は室温(21〜25℃で)に置くとわずかに白濁が確認された。この状態で培養液にて96-well plates (F96 microwell plate NUNC)中で2n希釈を行い、各wellにMeth-A細胞を加えて24時間の培養(37℃, 5% CO2)を行った。
4.トリチュウムーチミジンの取り込み:
培養17時間後に3H-thymidine (methyl-3H, MP Biomedicals, CA, USA )を37 kBq/well 添加し、さらに7時間の培養を行った後にシンシレーションカウンター(1450 MicroBeta TriLux . Ma11ac , Finland)を用いて放射活性を測定した。
(C) Examination of DNA synthesis inhibitory effect on Meth-A tumor cells (in vitro)
1. Tumor cells:
Meth-A tumor cells (mouse sarcoma)
2. Culture medium:
Fetal bovine serum 10%, L-glutamine, gentamycin and streptomycin were added to RPMI-l640 medium (Sigma Chemicals, MO, USA).
3. Sample preparation:
Compound 9bw was adjusted to a concentration of 2 mg / ml with sterilized distilled water, gently stirred, and then stored in a refrigerator overnight to dissolve in a clear state. However, slight cloudiness was confirmed when the dissolved compound was placed at room temperature (at 21-25 ° C.). In this state, the culture solution was diluted 2n in 96-well plates (F96 microwell plate NUNC), and Meth-A cells were added to each well, followed by culture for 24 hours (37 ° C., 5% CO 2).
4). Tritium thymidine incorporation:
After 17 hours of culture, 37 kBq / well of 3H-thymidine (methyl-3H, MP Biomedicals, CA, USA) was added, and after further incubation for 7 hours, a scintillation counter (1450 MicroBeta TriLux. Ma11ac, Finland) was used. The radioactivity was measured.

[試験結果]
化合物9bwのMeth-A腫瘍細胞に対するDNA合成阻害効果について
1.活発な増殖を示すMeth-A細胞に培養液で希釈調整した化合物9bwを128μg/mlから 4μg/mlの濃度に添加し、24時間の培養を行い細胞内に取り込まれた 3H-チミジンの放射活性を測定した。化合物9bw非添加細胞(対照)が取り込んだ放射活性(CPM)を100%とした時,128μg/mlの濃度では約11%と細胞の増殖、分裂が抑制されており、 8μg/m1では約71%の抑制効果が認められた。
[Test results]
1. Inhibitory effect of compound 9bw on DNA synthesis on Meth-A tumor cells Radioactive activity of 3H-thymidine incorporated into cells by adding 9 bw of compound diluted in culture medium to Meth-A cells showing active growth at a concentration of 128 μg / ml to 4 μg / ml. Was measured. When the radioactivity (CPM) taken up by compound 9bw-free cells (control) was taken as 100%, the growth and division of the cells were suppressed to about 11% at a concentration of 128 μg / ml, and about 71 at 8 μg / m1. % Inhibitory effect was observed.

(実施例4)マウス(BALB/c、雄)に移植したMeth-A腫蕩に対する化合物の抗腫瘍効果に関する試験
[材料及び方法]
(1)動物試験:腫瘍移植マウスに対する化合物9bwの抗腫瘍効果判定
1.実験動物:
通常マウス(BALB/c,雄,SLC )80匹を6週令で購入して1週間の予備飼育を実施した後に7週令で使用した。
2.移植腫瘍:
腫瘍はマウスの肉腫(Meth-A)を用い、マウス腹腔内で増殖(15匹使用)させた本腫瘍をマイクロシリンジにてマウス右大腿部皮下に約1×107/ 60μlの細胞を移植した。移植後1週間で腫瘍径が7mm前後に達したマウスを選別して投与群および担癌対照群を作成した。また、腹腔内60mg/kg連続10回投与群および腫瘍内直接投与群には腫瘍が比較的大きく成長した個体を選択した。(腫瘍の発育不良な個体および極端な増殖過多な個体は除外した。)
3.試料の調整:化合物9bwのサンプルは滅菌水および PBS で希釈調製した。
4.投与方法および投与量:
投与経路は腹腔内および腫瘍内直接投与とし、投与容量は腹腔内0.2ml/マウスおよび腫瘍内 50μl/マウスとした。投与量は腹腔内投与で 30mg/kg および 60mg/kgさらに腫瘍内投与では7.5mg/kgおよび15mg/kgに設定した。
5.投与回数および期間:
a)腹腔内投与:連続 30mg/kg ×10回(10日間)、隔日 60mg/kg投与 ×5回(10日間)および連続 60mg/kg×10回(10日間)
b )腫瘍内投与:連続 7.5mg /kg投与(10日間)および連続 15mg/kg投与(10日間)の5群を設定した。
6.腫瘍体積:
マウスの右大腿部皮下に移植した腫瘍体積は、ノギスを用いて腫瘍径を計測し、以下の計算式により算出した。
(Example 4) Test on antitumor effect of compound on Meth-A tumor transplanted to mouse (BALB / c, male) [Materials and Methods]
(1) Animal test: Determination of antitumor effect of compound 9bw on tumor-transplanted mice Experimental animals:
Eighty normal mice (BALB / c, male, SLC) were purchased at 6 weeks of age and preliminarily raised for 1 week before being used at 7 weeks of age.
2. Transplanted tumor:
Tumors with mouse sarcoma (Meth-A), transplanted about 1 × 10 7 / 60μl of cells present tumors grown (15 animals used) in mice intraperitoneally into mice right thigh subcutaneously at a microsyringe did. One week after transplantation, mice with a tumor diameter of around 7 mm were selected to prepare administration groups and cancer-bearing control groups. In addition, individuals with relatively large tumor growth were selected for the intraperitoneal 60 mg / kg continuous 10 administration group and the intratumoral direct administration group. (Individuals with poor tumor growth and extremely hyperproliferative individuals were excluded.)
3. Sample preparation: A compound 9bw sample was diluted with sterile water and PBS.
4). Administration method and dosage:
The administration route was intraperitoneal and intratumoral direct administration, and the administration volume was intraperitoneal 0.2 ml / mouse and intratumoral 50 μl / mouse. The doses were set to 30 mg / kg and 60 mg / kg for intraperitoneal administration, and 7.5 mg / kg and 15 mg / kg for intratumoral administration.
5). Number and duration of administration:
a) Intraperitoneal administration: Continuous 30 mg / kg × 10 times (10 days), every other day 60 mg / kg × 5 times (10 days) and continuous 60 mg / kg × 10 times (10 days)
b) Intratumoral administration: Five groups of 7.5 mg / kg continuous administration (10 days) and 15 mg / kg continuous administration (10 days) were set.
6). Tumor volume:
The tumor volume transplanted subcutaneously into the right thigh of a mouse was calculated by the following calculation formula by measuring the tumor diameter using a caliper.

腫瘍体積(mm3)=長径(mm)×短径(mm)×短径(mm)/ 2
投与対象の腫瘍体積=100mm3〜200mm3
7. 投与群を下記の表5に示した。
Tumor volume (mm 3 ) = major axis (mm) x minor axis (mm) x minor axis (mm) / 2
Tumor volume to be administered = 100 mm 3 to 200 mm 3
7). The administration groups are shown in Table 5 below.

Figure 2011084632
Figure 2011084632

(2)Meth-A腫瘍細胞に対する DNA合成阻害効果の検討(インビトロ)
1.腫瘍細胞:
Meth -A 腫瘍細胞(マウス肉腫)
2.培養液:
RPMI-1640 medium(Sigma Chemical, MO, USA)にfetal bovine serum 10 %, L-gluta mne、gentamycinおよびstreptomycinを添加した。
3.試料の調整:
化合物9bwを滅菌蒸留水にて 2mg/mlの濃度に調整し、ゆるやかに撹拝した。この状態で培養液にて96-well plates(F96 microwell plate NUNC)中で2n希釈を行い、各wellにMeth-A 細胞を加えて24時間の培養( 37℃、5 % CO2)を行った。
4.トリチュウム−チミジンの取り込み:
培養終了前に 3H−thymidine(3H-TdR、 methyl-3H, MP Biomedicals, CA, USA)を37 kBq/well添加し、さらに7時間の培養を行った後にシンシレーションカウンター(1450 MicroBeta TriLuX, Wallas, Finland)を用いて放射活性を測定した。
5.脾細胞の調整:
正常マウスの脾臓を無菌的に採取し、脾細胞に含まれる赤血球を塩化アンモニウム・トリス緩衝液にて溶解した。脾細胞はPBSにて2回洗浄し、500万個/ml となるように培養液で調製した。調製した脾リンパ球細胞は、96wellの平底プレートに50万個/wellずつ分注してマイトジェンを添加して培養を行った。
6.マイトジェン反応:
マウス脾リンパ球のマイトジェンとしてConcanavalin A (Con A. Pharmacia Fine chemicals)を用いた。Con A は、5μ/ mlの濃度となるように培養液に添加した。
7.Meth-A 細胞および脾リンパ球細胞の照射:
X線発生装置(日立製作所・MBR-1520R-3)を用いて、3.0 Gy(管電圧 150kv/管電流 20mA、フィルター A1 1.0mm、線量率 2.48 Gy)の照射を行った。
8.培養時間:
Meth -A 細胞は化合物9bw添加後24時間の培養を行い、終了6〜7時間前に3H -TdRを添加した。マウス正常脾リンパ球細胞は、マイトジェン(Con A)および化合物9bwを添加後48時間の培養を行い、Meth -A 細胞と同様に終了6〜7時間前に3H -TdRを添加した。
[試験結果]
1.担癌(Meth-A 腫瘍)マウスに対する化合物9bw投与の抗腫瘍効果
A . 化合物9bw腹腔内投与の効果判定(30mg/kg連日投与および60mg/kg隔日投与)
得られた結果を図5〜9に示す。図6の体重について、化合物9bwの30mg/kgおよび 60mg / kg 投与ともに投与開始から 10 回投与後まで体重の減少は認められなかった。図7の結果においては、腫瘍体積に関して、化合物9bwの30mg/kgおよび60mg/kg投与とも投与開始時の腫瘍体積より減少する傾向が認められた。図8の結果においては、腫瘍体積比に関して、投与前の腫瘍体積を100とした指数で表示すると投与開始後一過性の腫瘍増加がみられるが、投与後6日目以降で明らかな縮小効果が認められた(腫瘍縮小比:30mg/kg、60mg/kg投与群とも50%前後に縮小)。図9の結果においては、解剖時の腫瘍重量について、最終投与24時間後の腫瘍重量は担癌対照群で1459±620mg、30mg/kg投与群で42±22mgおよび60mg/kgで66±18mgであった。
B . 化合物9bw腹腔内投与の効果判定(60mg/kg 連日10回投与)
得られた結果を図10〜図12に示す。図10の結果において、体重に関して化合物9bwの連続10回投与では投与開始から終了まで体重の減少および死亡例は認められなかった。図11の結果において、腫瘍体積に関して60mg/kgの連続投与により投与後6日後から腫瘍体積の縮小効果が認められた。図12の結果において、腫瘍体積比に関して、比較的大きく成長した腫瘍を選択し、60mg/kgの連日10回投与を実施した。個々の投与前体積を1.00とした時の指数では、10回の投与後で約0.5もしくは0.5以下に縮小した個体は7匹中4匹(57%)、0.5〜1.0以下に縮小した個体が2匹(28%)、効果がみられない個体が1匹(14%)であった。
(2) Examination of DNA synthesis inhibitory effect on Meth-A tumor cells (in vitro)
1. Tumor cells:
Meth -A tumor cells (mouse sarcoma)
2. Culture medium:
Fetal bovine serum 10%, L-gluta mne, gentamycin and streptomycin were added to RPMI-1640 medium (Sigma Chemical, MO, USA).
3. Sample preparation:
Compound 9bw was adjusted to a concentration of 2 mg / ml with sterile distilled water and gently stirred. In this state, the culture broth was diluted 2n in 96-well plates (F96 microwell plate NUNC), and Meth-A cells were added to each well and cultured for 24 hours (37 ° C, 5% CO 2 ). .
4). Tritium-thymidine incorporation:
Before completion of the culture, 37 kBq / well of 3H-thymidine (3H-TdR, methyl-3H, MP Biomedicals, CA, USA) was added, and further cultured for 7 hours. Finland) was used to measure radioactivity.
5). Preparation of splenocytes:
The spleen of normal mice was aseptically collected, and erythrocytes contained in spleen cells were lysed with ammonium chloride / Tris buffer. Spleen cells were washed twice with PBS and prepared with a culture solution so as to be 5 million cells / ml. The prepared splenic lymphocytes were dispensed in a 96-well flat-bottom plate at 500,000 cells / well and cultured with mitogen added.
6). Mitogen reaction:
Concanavalin A (Con A. Pharmacia Fine chemicals) was used as a mitogen for mouse spleen lymphocytes. Con A was added to the culture solution to a concentration of 5 μ / ml.
7). Irradiation of Meth-A cells and splenic lymphocyte cells:
Using an X-ray generator (Hitachi, MBR-1520R-3), irradiation was performed with 3.0 Gy (tube voltage 150 kv / tube current 20 mA, filter A1 1.0 mm, dose rate 2.48 Gy).
8). Incubation time:
Meth-A cells were cultured for 24 hours after the addition of Compound 9bw, and 3H-TdR was added 6 to 7 hours before completion. Normal mouse spleen lymphocyte cells were cultured for 48 hours after the addition of mitogen (Con A) and compound 9bw, and 3H-TdR was added 6 to 7 hours before the end in the same manner as Meth-A cells.
[Test results]
1. Antitumor effect of compound 9bw administration on tumor bearing (Meth-A tumor) mice
A. Judgment of the effect of intraperitoneal administration of Compound 9bw (30mg / kg daily administration and 60mg / kg every other day administration)
The obtained results are shown in FIGS. Regarding the body weight in FIG. 6, no decrease in body weight was observed from the start of administration to the 10th administration after administration of Compound 9bw at 30 mg / kg and 60 mg / kg. In the results of FIG. 7, the tumor volume tended to decrease from the tumor volume at the start of administration for both 30 mg / kg and 60 mg / kg administration of Compound 9bw. In the results of FIG. 8, when the tumor volume ratio is expressed as an index with the tumor volume before administration as 100, a transient increase in tumor is observed after the start of administration, but an apparent reduction effect after 6 days after administration. (Tumor reduction ratio: reduced to about 50% in both 30 mg / kg and 60 mg / kg administration groups). In the results of FIG. 9, regarding the tumor weight at the time of dissection, the tumor weight 24 hours after the final administration was 1459 ± 620 mg in the tumor-bearing control group, 42 ± 22 mg in the 30 mg / kg administration group, and 66 ± 18 mg at 60 mg / kg. there were.
B. Effect of compound 9bw intraperitoneal administration (60mg / kg administered 10 times daily)
The obtained results are shown in FIGS. In the results of FIG. 10, no decrease in body weight and no death were observed from the start to the end of administration after continuous administration of Compound 9bw for 10 times with respect to body weight. In the results shown in FIG. 11, the effect of reducing the tumor volume was observed from 6 days after the administration by continuous administration of 60 mg / kg with respect to the tumor volume. In the results of FIG. 12, a tumor that grew relatively large was selected with respect to the tumor volume ratio, and 60 mg / kg was administered 10 times daily. The index when the pre-dose volume is 1.00 is 4 out of 7 individuals (57%) who have reduced to about 0.5 or 0.5 or less after 10 doses, and 2 individuals have reduced to 0.5 to 1.0 or less. One animal (28%) and one animal (14%) had no effect.

更に得られた結果を下記表6−1及び6−2に示す。   The obtained results are shown in Tables 6-1 and 6-2 below.

Figure 2011084632
Figure 2011084632

C.化合物9bw腫瘍内投与の効果判定( 7.5mg/kgおよび15mg/kg、隔日5回投与)
得られた結果を図13〜図16に示す。図13に示す結果において、体重について、化合物9bwの7.5mg/kgおよび15mg/kg腫瘍内投与ともに投与開始から投与後まで体重の減少は認められなかった。図14に示す結果において、腫瘍体積(C -1)について、4匹中1匹(No.3)の個体では腫瘍の増加がみられたが、残り3個体では明らかな腫瘍の縮小効果が認められた。また、腫瘍内投与ではNo.3のように投与前の腫瘍体積(腫瘍の大きさ)に関連すると思われる。図15の結果において、腫瘍体積(C - 2)について、5匹中2匹(No. 4、No. 5)の個体では腫瘍の増加がみられたが、3個体では顕著な腫瘍の縮小効果が認められた。図16に、腫瘍重量に関して、化合物9bwの投与による担癌マウスの解剖時腫瘍重量を図にまとめた。投与開始時に腫瘍長径が7mm前後の腫瘍(A)では抗腫瘍効果が大きい結果が得られた。
C. Compound 9bw Intratumoral effect assessment (7.5 mg / kg and 15 mg / kg, administered 5 times every other day)
The obtained results are shown in FIGS. In the results shown in FIG. 13, with respect to body weight, no decrease in body weight was observed from the start of administration to the end of administration in both 7.5 mg / kg and 15 mg / kg intratumoral administration of Compound 9bw. In the results shown in FIG. 14, with respect to the tumor volume (C-1), an increase in tumor was observed in one of four animals (No. 3), but an obvious tumor shrinking effect was observed in the remaining three individuals. It was. In addition, intratumoral administration seems to be related to the tumor volume (tumor size) before administration as in No.3. In the results of FIG. 15, regarding the tumor volume (C-2), an increase in tumor was observed in 2 out of 5 (No. 4, No. 5) individuals, but a marked tumor reduction effect was observed in 3 individuals. Was recognized. FIG. 16 summarizes the tumor weight at the time of dissection of cancer-bearing mice by administration of Compound 9bw with respect to the tumor weight. The tumor (A) whose tumor major axis was around 7 mm at the start of administration showed a great antitumor effect.

(2)Meth -A 腫瘍細胞に対するDNA合成阻害効果(インビトロ)
得られた結果を図17及び図18に示す。図17の結果において、Meth-A 細胞における 化合物9bwの非添加時で非照射の3H-TdR取り込みは24,407±988cpmであり、3.0 Gy の照射では15,104 ±517cpmであった。したがって、3.0 Gy照射は Meth-A 細胞のDNA合成を約38%抑制する効果を持っと計算される(3.0 Gy 照射時 cpm/非照射−1.0×100==38.1 % )。この3 Gyの照射効果は、化合物9bwを64μl添加した時の3H-TdR取り込み(15,676cpm)とほぼ等しい。また、照射と化合物9bwの併用により、化合物9bwに対する感受性が向上する可能性も示唆された。
(2) DNA synthesis inhibitory effect on Meth-A tumor cells (in vitro)
The obtained results are shown in FIGS. In the results of FIG. 17, the non-irradiated 3H-TdR uptake in Meth-A cells without addition of compound 9bw was 24,407 ± 988 cpm, and that with 3.0 Gy irradiation was 15,104 ± 517 cpm. Therefore, it is calculated that 3.0 Gy irradiation has an effect of suppressing DNA synthesis of Meth-A cells by about 38% (3.0 Gy irradiation cpm / non-irradiation−1.0 × 100 == 38.1%). The irradiation effect of 3 Gy is almost equal to 3H-TdR incorporation (15,676 cpm) when 64 μl of compound 9bw is added. In addition, it was suggested that the sensitivity to compound 9bw may be improved by the combined use of irradiation and compound 9bw.

(実施例5)ヌードマウス(BALB/c-nu/nu、雄)に移植したヒト膵臓がん腫瘍に対する化合物9bw及び8bwの抗腫瘍効果に関する試験
[材料及び方法]
1.実験動物:
ヌードマウス(BALB/c-nu/nu、雄、SLC)を4週令で購入して1週間の予備飼育を実施した後に5週令で使用した。
2.移植腫瘍:
腫瘍はヒト膵臓がん細胞(MIA -PaCa -2)を購入し、直径10cmの培養シャーレに専用の培養液を用いて培養した。成長したMIA-PaCa-2細胞はマイクロシリンジにてマウス右大腿部皮下に約2.5×107/60plの細胞を移植した。移植後3〜4週間で腫瘍径が7mm前後に達したマウスを選別して投与群および担癌対照群を作成した(腫瘍の発育不良な個体および極端な増殖過多な個体は除外した)。
3.試料の調整:化合物8bw及び化合物9bwを使用した。これらのサンプルはPBS(−)で希釈調製した。
4.投与方法および投与量:
投与経路は腹腔内投与とし投与容量は0.2mlで45mg/kgおよび参考試験として60mg/kgを実施した。投与回数は1日1回で20回の連日投与を設定した。また同じく参考試験(本試験前の予備試験)として30mg/kg腹腔内隔日投与および同量の腫瘍内直接投与を行い、腫瘍内には100μl/腫瘍/マウスとして隔日5回の投与を実施した。
5.試験/投与群を下記の表7に示した。
(Example 5) Test on antitumor effect of compounds 9bw and 8bw on human pancreatic cancer tumor transplanted to nude mice (BALB / c-nu / nu, male) [Materials and Methods]
1. Experimental animals:
Nude mice (BALB / c-nu / nu, male, SLC) were purchased at 4 weeks of age and pre-bred for 1 week before being used at 5 weeks of age.
2. Transplanted tumor:
Tumors were purchased from human pancreatic cancer cells (MIA-PaCa-2) and cultured in a culture dish with a diameter of 10 cm using a dedicated culture solution. MIA-PaCa-2 cells grown were transplanted cells about 2.5 × 10 7 / 60pl the right mouse thigh subcutaneously at microsyringe. Mice with tumor diameters of around 7 mm in 3 to 4 weeks after transplantation were selected to create administration groups and tumor-bearing control groups (excluding individuals with poor tumor growth and individuals with excessive growth).
3. Sample preparation: Compound 8bw and Compound 9bw were used. These samples were prepared by diluting with PBS (−).
4). Administration method and dosage:
The administration route was intraperitoneal administration, and the administration volume was 45 ml / kg at 0.2 ml and 60 mg / kg as a reference test. The administration frequency was once a day and 20 daily administrations were set. Similarly, as a reference test (preliminary test prior to this test), 30 mg / kg intraperitoneal administration every other day and the same amount of intratumoral administration were performed, and intra-tumor administration was carried out every other day as 100 μl / tumor / mouse.
5). The test / administration groups are shown in Table 7 below.

Figure 2011084632
Figure 2011084632

[試験結果]
1.本試験:担癌ヌードマウスに対する化合物9bwおよび8bwの45mg/kg連続20回投与の効果
得られた結果を図19〜図25に示す。
[Test results]
1. Main test: Effect of continuous administration of 45 mg / kg of compounds 9bw and 8bw on nude mice bearing tumors 20 times The results obtained are shown in FIGS.

図19の結果において、体重に関して、化合物9bwおよび8bwの45mg/kg(20回)投与では投与開始から投与終了まで体重の減少は認められなかった。図20の結果において、腫瘍重量に関して、化合物9bwおよび8bwの45mg/kgの(20回)投与により、腫瘍の増殖が抑制される結果が得られた。しかし投与開始時の腫瘍体積より減少する傾向は認められなかった。   In the results of FIG. 19, with respect to body weight, no decrease in body weight was observed from the start of administration to the end of administration when Compound 9bw and 8bw were administered at 45 mg / kg (20 times). In the results of FIG. 20, regarding the tumor weight, the results of suppression of tumor growth were obtained by administration of 45 mg / kg of Compound 9bw and 8bw (20 times). However, there was no tendency to decrease from the tumor volume at the start of administration.

化合物9bwまたは8bw投与によるMIA-PaCa-2移植腫瘍の有効抑制率を算出した。その結果を以下の表8に示す。   The effective suppression rate of the MIA-PaCa-2 transplanted tumor by compound 9bw or 8bw administration was computed. The results are shown in Table 8 below.

Figure 2011084632
Figure 2011084632

有効個体:担癌対照群の平均腫瘍重量2404mgの1/3以下(801mg以下)の重量を有する個体を有効と設定した場合。1 ):20回の投与後45mg/kgを2日間追加投与し、さらに60mg/kgに増加して投与したところ翌日死亡した。この継続投与した各3匹の腫瘍重量を加えて有効抑制率を算出した。   Effective individual: When an individual having a weight of 1/3 or less (801 mg or less) of the average tumor weight of 2404 mg in the cancer-bearing control group is set as effective. 1): After 20 doses, 45 mg / kg was additionally administered for 2 days, and the dose was further increased to 60 mg / kg. The effective inhibition rate was calculated by adding the tumor weights of each of these 3 continuously administered animals.

図21の結果において、解剖時の赤血球数は、正常対照群に対して担癌対照群で減少傾向がみられたが化合物9bw投与群および化合物8bw投与群ではやや増加する傾向がみられた。図22の結果において、白血球数は担癌対照群で正常対照群に対して有意な上昇が認められた。化合物9bw投与群および化合物8bw投与群ではやや増加する傾向がみられたが、有意差を伴う数値ではなかった。図23における結果において、血小板数は、正常対照群に対して化合物9bw投与群および化合物8bw投与群で有意な増加が認められた。正常ヌードマウスに対する安全性試験(実施例1)においてもこの傾向がみられ、本剤の特徴と思われる。   In the results of FIG. 21, the number of red blood cells at the time of dissection showed a tendency to decrease in the cancer-bearing control group compared to the normal control group, but a tendency to slightly increase in the compound 9bw administration group and the compound 8bw administration group. In the results shown in FIG. 22, the leukocyte count was significantly increased in the cancer-bearing control group compared to the normal control group. There was a tendency to increase slightly in the compound 9bw administration group and the compound 8bw administration group, but the values were not significantly different. In the results shown in FIG. 23, the platelet count was significantly increased in the compound 9bw administration group and the compound 8bw administration group with respect to the normal control group. This tendency is also observed in the safety test for normal nude mice (Example 1), which seems to be a feature of this drug.

図24の結果において、へモグロビン量は正常対照群、担癌対照群および化合物9bw投与群および化合物8bw投与群で近似の測定値であった。化合物8bw投与群ではやや増加する傾向がみられるが、有意差を伴う増加ではなかった。図25の結果において、ヘマトクリット値は、化合物9bw及び化合物8bw投与群で増加する傾向がみられたが、有意差を伴う変化ではなかった。また、8bw投与群では赤血球数、ヘモグロビン、ヘマトクリットなどの測定値でやや高い傾向がみられた。   In the results of FIG. 24, the amount of hemoglobin was an approximate measured value in the normal control group, the cancer-bearing control group, the compound 9bw administration group and the compound 8bw administration group. The compound 8bw administration group tended to increase slightly, but it was not an increase with a significant difference. In the results of FIG. 25, the hematocrit value tended to increase in the compound 9bw and compound 8bw administration groups, but it was not a change with a significant difference. In addition, in the 8 bw administration group, a slightly high tendency was observed in the measured values of red blood cell count, hemoglobin, hematocrit, and the like.

2.参考試験(1):担癌ヌードマウスに対する化合物9bwの60mg/kg連続投与の抗腫瘍効果
比較的小さい腫瘍に化合物9wbの60mg/kg連日20回投与を実施した。得られた結果を図26~図32に示す。
2. Reference test (1): Antitumor effect of continuous administration of 60 mg / kg of compound 9bw on tumor-bearing nude mice Compound 9wb was administered 20 times daily at 60 mg / kg to relatively small tumors. The obtained results are shown in FIGS.

図26の結果において、化合物9bwの60mg/kg連日20回投においても投与群で体重の減少は認められなかった。図27の結果において、化合物9bwの60mg/kg連日20回腹腔内投与では、腫瘍の増殖抑制が認められ対照群の24.2%の重量であった。図28の結果において、化合物9bw投与群の赤血球数は正常対照群に対し、平均で10%の減少傾向がみられた。図29の結果において、白血球数は化合物9bw投与群で16.2%の増加傾向がみられたが、個体差(バラツキ)がみられ、有意差を伴う変化ではなかった。図30の結果において、血小板数は化合物9bw投与群で増加する傾向がみられた。図31の結果において、ヘモグロビンは化合物9bw投与群および化合物8bw投与群で正常対照群に対し、約10.8%の減少がみられたが有意差を伴うことはなかった。図32の結果において、ヘマトクリット値は正常対照群に対し有意な減少が認められた。化合物9bwの60mg/kgの20回投与では、赤血球数、ヘモグロビン及びヘマトクリット値は減少し、赤血球系に対する抑制が認められた。   In the results of FIG. 26, no decrease in body weight was observed in the administration group even when Compound 9bw was dosed 20 times daily at 60 mg / kg. In the result of FIG. 27, when 60 mg / kg of Compound 9bw was intraperitoneally administered 20 times daily, tumor growth was suppressed and the weight was 24.2% of the control group. In the results of FIG. 28, the number of red blood cells in the compound 9bw administration group showed a tendency of a decrease of 10% on average with respect to the normal control group. In the results of FIG. 29, the white blood cell count showed a 16.2% increasing tendency in the compound 9bw administration group, but there was an individual difference (variation), which was not a change with a significant difference. In the results of FIG. 30, the platelet count tended to increase in the compound 9bw administration group. In the results of FIG. 31, hemoglobin decreased about 10.8% in the compound 9bw administration group and the compound 8bw administration group with respect to the normal control group, but was not significantly different. In the results of FIG. 32, the hematocrit value was significantly decreased as compared with the normal control group. In 20 doses of 60 mg / kg of Compound 9bw, the red blood cell count, hemoglobin and hematocrit values decreased, and suppression of the erythroid system was observed.

3.参考試験(2):担癌ヌードマウスに対する化合物9bwの腹腔内および腫瘍内投与の腫瘍縮小効果
本試験に先立ち、MIA-PaCa-2腫傷細胞の移植数および増殖能力を検討した。また、その際腫瘍細胞が生着したマウスに化合物9bwを投与して抗腫瘍効果について検討した。
1)投与量:
化合物9bw 30mg/kg−腹腔内投与−腫瘍1〜腫瘍3(n=3)
化合物9bw 30mg/kg−腫瘍内投与−腫傷A〜B(n=2)
2)投与回数:
腹腔内投与および腫瘍内投与ともに隔日5回投与
得られた結果を図33に示す。図33の結果において、腫瘍体積は腹腔内投与3匹中1匹が投与前体積の約4.5倍、他の2匹が約2.4倍に増殖した。腫瘍内投与では2匹中1匹が約50%に縮小、他の1匹が約1. 5の増加であった。
3. Reference test (2): Tumor reduction effect of intraperitoneal and intratumoral administration of compound 9bw on tumor-bearing nude mice Prior to this test, the number of transplanted MIA-PaCa-2 tumor cells and their proliferation ability were examined. At that time, the compound 9bw was administered to mice engrafted with tumor cells, and the antitumor effect was examined.
1) Dosage:
Compound 9bw 30 mg / kg-Intraperitoneal administration-Tumor 1 to Tumor 3 (n = 3)
Compound 9bw 30mg / kg-Intratumoral administration-Scars AB (n = 2)
2) Number of doses:
Both intraperitoneal administration and intratumoral administration were administered five times every other day. The results obtained are shown in FIG. In the result of FIG. 33, the tumor volume grew about 4.5 times the pre-dose volume in 1 out of 3 mice administered intraperitoneally, and about 2.4 times the other 2 mice. Intratumoral administration reduced one of two animals to about 50% and the other one an increase of about 1.5.

[まとめ]
1.ヒト膵臓がん細胞であるMIA-PaCa-2は、移植後10〜14日後に一旦移植局所から消失したかの様に縮小し、その後徐々に発育する腫傷である。また、増殖し始めると移植局所で確実な発育を示す腫傷である。
2.化合物9bwまたは8bwの連続20回投与(45mg/kgおよび60mg/kg)による体重の減少はみられず、投与終了後の解剖所見では、臓器の癒着、腫瘍の転移などは認められなかった。また、血液検査では血小板数の増加が認められた。
3.化合物9bwまたは8bwの投与時(45mg/kgおよび60mg/kg)にマウスの自発運動が減少し、ゲージ内にうずくまる状態が約40〜60分継続した。またこの時点で体温が低下する傾向がみられた。この状態は60mg/kg投与時に顕著であった。
4.MIA-PaCa-2腫瘍移植マウスに対する化合物9bwまたは8bwの45mg/kg連日20回腹腔内投与は腫瘍増殖抑制効果が認められた。しかし、投与開始時の腫瘍に対する縮小効果はみられなかった。
5.同腫瘍移植マウスに対する化合物9bwの60mg/kg連日20回腹腔内投与(参考試験)ではさらなる腫傷増殖抑制効果が認められた。
6.同腫瘍移植マウスに対するか化合物9bwの30mg/kg隔日5回(10日間)の腫瘍局所内投与(参考/予備試験)では投与開始前の腫瘍体積が約50%に縮小する効果が認められた。
7.これらの結果から、化合物9bwおよび化合物8bwは低分子であり腹腔内投与後速やかに吸収されて排池されると推測される。この吸収され排池される時間が投与後40〜60分の自発運動低下時期であると思われる。したがって、投与した化合物9bwまたは化合物8が腫傷に到達する量、もしくは到達/循環時間が非常に少なく十分な効果が発揮できないと推側される。仮に、化合物9bwおよび化合物8bwが腫瘍に十分に到達したなら、予備実験で示された腫瘍内投与の結果のように腫瘍縮小効果が示される可能性があると思われる。
[Summary]
1. MIA-PaCa-2, which is a human pancreatic cancer cell, is a tumor that shrinks as if it disappeared from the transplant site 10 to 14 days after transplantation, and then gradually grows. In addition, when the tumor starts to proliferate, it shows a certain growth at the transplant site.
2. No decrease in body weight was observed after 20 consecutive doses of Compound 9bw or 8bw (45 mg / kg and 60 mg / kg), and no anatomical findings after the end of administration showed any organ adhesion or tumor metastasis. Blood tests also showed an increase in platelet count.
3. At the time of administration of Compound 9bw or 8bw (45 mg / kg and 60 mg / kg), the locomotor activity of the mice decreased, and the state of stagnation within the gauge continued for about 40-60 minutes. At this time, the body temperature tended to decrease. This condition was prominent at 60 mg / kg.
4). Inhibition of tumor growth was observed when Compound 9bw or 8bw of 45 mg / kg intraperitoneally administered 20 times daily to mice transplanted with MIA-PaCa-2 tumors. However, there was no reduction effect on the tumor at the start of administration.
5). Further inhibition of tumor growth was observed when Compound 9bw was intraperitoneally administered 20 times daily (reference test) to Compound 9bw mice.
6). In the tumor transplanted mice or when the compound 9bw was administered locally at 30 mg / kg every other day (10 days) in the tumor (reference / preliminary test), the tumor volume before the start of administration was reduced to about 50%.
7). From these results, it is presumed that compound 9bw and compound 8bw are small molecules and are absorbed and drained quickly after intraperitoneal administration. This absorbed and drained time appears to be a period of reduced locomotor activity 40-60 minutes after administration. Therefore, it is presumed that the amount of the administered compound 9bw or compound 8 reaching the wound, or the reaching / circulation time is very small and sufficient effects cannot be exerted. If compound 9bw and compound 8bw reach the tumor sufficiently, it may be possible to show a tumor shrinking effect as shown in the results of intratumoral administration shown in the preliminary experiment.

(実施例6) 細胞レべルでのバイオアッセイ
MTT法を用いて腫瘍細胞に対する細胞毒性の計測を行った。MTT法は比触法の一種である。MTT試薬[3-(4,5-Dimethylthioazol-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide]は生細胞中のミトコンドリア内脱水素酵素により、不溶性のMTT formazan (暗青色)に変換される。このMTT formaznの生成量を測定し、相対的な細胞の生存率として表す。
Example 6 Bioassay at cell level
The cytotoxicity against tumor cells was measured using the MTT method. The MTT method is a kind of specific touch method. MTT reagent [3- (4,5-Dimethylthioazol-2-thiazolyl) -2,5-diphenyl-2H-tetrazolium bromide] is converted into insoluble MTT formazan (dark blue) by mitochondrial dehydrogenase in living cells Is done. The amount of MTT formazn produced is measured and expressed as relative cell viability.

手順
1.細胞の前培養:初発細胞密度が2×104 cells/cm2となるように調整したHela細胞(子宮ガン由来)懸濁液を、50μ1ずつ96 well培養ブレートの各wellに分注した。CO2インキュベーター(37℃で、CO2濃度5 %)を用いて24時問培養した。
2.検定化合物の溶解:超純水に333μg/mlとなるよう溶解した。難溶で白濁するものに関しては、マグネチックスターラーによる撹拌を2時間以上継続することをもって溶解作業が終了したものとみなした。等量の2倍濃度細胞培養液と混合した後、クリーンべンチ内で濾過滅菌と同時に48 well培養ブレートに分注した。
3.検定化合物の希釈系列の作製:クリーンべンチ内で、48well培養プレートを用いて無菌的に、5倍希釈による濃度系列を作製した。細胞毒性活性の強さに応じて以下の2種類の濃度範囲のものを準備した。
1) 100、20、4、0.8およびO(ppm)(本培養時の最終濃度)
2) 4、0.8、0.16、0.032およびO(ppm)(本培養時の最終濃度)
4.本培養:所定濃度の検定化合物を含む培養液75μlを各wellに添加して本培養を開始した(培養液の全俄は125μlとなるため、検定化合物の濃度は60%に希釈される。すなわち、333μg/ml(検定化合物溶解時)→166.5 μg/ml(2倍濃度培養液との混合時)→ 99.9μg/ml(本培養開始時))。培養期間は3日間とした。
5.MTT反応:本培養終了後の培養プレートの各wellに0.5%MTT試薬を12.5μl添加し、C02インキュべーター内に4時間放置した。イソプロパノールに溶解した0.04N HClを各wellに137.5μ1加えて反応を停止させた後、青い粒子が溶けるまで十分にピペッティングを行った。
6.吸光度の測定:プレートリーダーにより570nm(peak)と630nm(bottom)における吸収光度差を測定した。
7.細胞生存率の算出:0ppm 作用区(生存率100%)における値に対する相対値を算出し、当該濃度作用区における細胞生存率(%)とした。なお、この値がマイナスになる場合は一律細胞生存率0%とみなした。
Procedure 1. Pre-culture of cells: Hela cell (uterine cancer-derived) suspension adjusted to have an initial cell density of 2 × 10 4 cells / cm 2 was dispensed into each well of a 96-well culture plate at 50 μl. The cells were cultured for 24 hours using a CO 2 incubator (37 ° C., CO 2 concentration 5%).
2. Dissolution of test compound: Dissolved in ultrapure water to 333 μg / ml. For those which were hardly soluble and clouded, it was considered that the melting operation was completed by continuing stirring with a magnetic stirrer for 2 hours or more. After mixing with an equal volume of double concentration cell culture, it was dispensed into a 48-well culture plate simultaneously with filter sterilization in a clean bench.
3. Preparation of dilution series of test compound: A series of concentrations was prepared by diluting 5 times aseptically using a 48-well culture plate in a clean bench. The following two concentration ranges were prepared according to the strength of cytotoxic activity.
1) 100, 20, 4, 0.8 and O (ppm) (final concentration during main culture)
2) 4, 0.8, 0.16, 0.032 and O (ppm) (final concentration during main culture)
4). Main culture: 75 μl of a culture solution containing a predetermined concentration of test compound was added to each well to initiate main culture (the total volume of the culture solution is 125 μl, so the concentration of the test compound is diluted to 60%. 333 μg / ml (when assay compound is dissolved) → 166.5 μg / ml (when mixed with double concentration culture medium) → 99.9 μg / ml (when main culture is started)). The culture period was 3 days.
5). MTT reaction: a 0.5% MTT reagent into each well of the culture plate after completion of the culture was added 12.5 [mu] l, and allowed to stand for 4 hours in a C0 2 incubator base Ta. After stopping the reaction by adding 137.5 μl of 0.04N HCl dissolved in isopropanol to each well, pipetting was sufficiently performed until the blue particles were dissolved.
6). Absorbance measurement: The difference in absorbance at 570 nm (peak) and 630 nm (bottom) was measured with a plate reader.
7). Calculation of cell viability: A relative value with respect to the value in the 0 ppm action group (survival rate 100%) was calculated and used as the cell viability (%) in the concentration action group. In addition, when this value became negative, it was considered that the uniform cell viability was 0%.

アッセイは3連で行い、数値計算は得られた3つの値の単純平均を用いて行う。   Assays are performed in triplicate and numerical calculations are performed using a simple average of the three values obtained.

(試験結果)
細胞レベルでのバイオアッセイにより得られた結果を以下の表9に示す。表上に試験された化合物番号を記載している。
(Test results)
The results obtained by the bioassay at the cellular level are shown in Table 9 below. The compound numbers tested are listed on the table.

Figure 2011084632
Figure 2011084632

(実施例7)化合物9bw及び8bwの正常細胞と腫瘍細胞に対する選択性
MTT法により化合物9bw及び8bwの腫瘍選択性を調べた。
Example 7 Compound 9bw and 8bw selectivity for normal and tumor cells
The tumor selectivity of compounds 9bw and 8bw was examined by MTT method.

ヒト表皮角化細胞(正常細胞、コージンバイオ株式会社)を使用細胞とし、Cell Counting Kit-8(Dojindo)を用いてMTT法を行って、化合物9bw及び8bwの腫瘍選択性を試験した。培地としては、市販の正常ヒト表皮角化細胞用無血清培地(基礎培地+ウシ脳下垂体エキス)を用い、凍結乾燥による濃縮によって基準の2倍濃度の培地を調製して使用した。   Human epidermal keratinocytes (normal cells, Kojin Bio Inc.) were used as cells, and MTT method was performed using Cell Counting Kit-8 (Dojindo) to test the tumor selectivity of compounds 9bw and 8bw. As a medium, a commercially available serum-free medium for normal human epidermis keratinocytes (basic medium + bovine pituitary extract) was used by preparing a medium having a double concentration as a standard by concentration by freeze-drying.

MTT法は、キットに添付のマニュアルに従って実施した(作用期間:3日間;作用濃度:0.032、0.16、0.8、4(ppm))。   The MTT method was carried out according to the manual attached to the kit (action period: 3 days; action concentration: 0.032, 0.16, 0.8, 4 (ppm)).

得られた結果を図34に示す。   The obtained results are shown in FIG.

(実施例8)化合物9bw及び8bwの各種腫瘍細胞に対する作用
・試験化合物及び対照化合物
試験化合物として化合物9bw及び8bw、対照化合物としてCDDP(シスプラチン、シグマ、フランス)を用いた。
Example 8 Effects of Compounds 9bw and 8bw on Various Tumor Cells Test Compounds and Control Compounds Compounds 9bw and 8bw were used as test compounds and CDDP (cisplatin, Sigma, France) was used as a control compound.

試験化合物(粉末、純度100%)をPBSで溶解し、無血清培地で目的とする濃度に希釈して試料とした。対照化合物は、PBSで所定の濃度に希釈して用いた。
・使用腫瘍細胞
使用した腫瘍細胞を以下の表10に示す。
A test compound (powder, purity 100%) was dissolved in PBS and diluted to a target concentration with a serum-free medium to prepare a sample. The control compound was used after diluting to a predetermined concentration with PBS.
-Used tumor cells The used tumor cells are shown in Table 10 below.

Figure 2011084632
Figure 2011084632

Figure 2011084632
Figure 2011084632

Figure 2011084632
Figure 2011084632

Figure 2011084632
Figure 2011084632

・培養条件
湿度を保った雰囲気(5%CO2、95%空気)内、37℃で腫瘍細胞は付着一層または懸濁状態で培養した。培養液としては2mMのL−グルタミンを含み、10%fetal bovine serum(Lonza)を補充したRPMI1640を用いた。試験を行う際に、付着細胞は、カルシウムまたはマグネシウムを含まないHank's培地で希釈され、完全組成の培地で中和されたtrypsin-versene(Lonza)を用いた5分間の処理で培養フラスコから剥離させた。細胞数はヘモサイトメータで計測し、細胞の生存率は0.25%トリパンブルーの排出に基づいて算出した。各試験に用いる際の各細胞(セルライン)の生存率は少なくとも84%であった。
・試験方法
(A) マイコプラズマ検定(Mycoplasma detection)は、MycoAlert(商標登録)マウコプラズマ検出キット(Lonza)を用い、その使用書の記載に基づいて行った。MycoAlert(商標登録)アッセイは、マイコプラズマ酵素の活性を利用した選択的な生化学試験である。生きているマイコプラズマを溶解し、ADPをATPに変換する触媒であるMycoAlert(商標登録)基質と酵素を反応させる。MycoAlert(商標登録)基質の添加の前後における試料中のATPの量(レベル)を計測することによって、マイコプラズマの有無を示す割合が得られる。マイコプラズマ検定は、細胞培養液の上清から2連で行い、陽性及び陰性の対照(MycoAlert(商標登録) Assay Control Set、Lonza)と比較された。
・結果
使用した細胞全てにおいて陰性の結果が得られた。
(B)IC50測定
・細胞増幅及び培養
腫瘍細胞は96−ウエル平底マイクロタイタープレートに植え付け、190μlの試験化合物を含まない培養液(10%FBS補充)で37℃24時間培養した。HeLa細胞を対照として用いた。各細胞の植え付け密度を下記表11に示す。
-Culture conditions Tumor cells were cultured in an attached layer or in a suspended state at 37 ° C in an atmosphere kept at humidity (5% CO2, 95% air). As the culture solution, RPMI1640 containing 2 mM L-glutamine and supplemented with 10% fetal bovine serum (Lonza) was used. In conducting the test, adherent cells are detached from the culture flask by treatment with trypsin-versene (Lonza) diluted with Hank's medium without calcium or magnesium and neutralized with complete medium for 5 minutes. It was. The number of cells was measured with a hemocytometer, and the cell viability was calculated based on the excretion of 0.25% trypan blue. The survival rate of each cell (cell line) when used in each test was at least 84%.
Test Method (A) Mycoplasma detection was performed using a MycoAlert (registered trademark) Maukoplasma detection kit (Lonza) based on the description in its usage manual. The MycoAlert ™ assay is a selective biochemical test that utilizes the activity of mycoplasma enzymes. The enzyme is reacted with MycoAlert (registered trademark) substrate, which is a catalyst that dissolves live mycoplasma and converts ADP to ATP. By measuring the amount (level) of ATP in the sample before and after the addition of the MycoAlert ™ substrate, a ratio indicating the presence or absence of mycoplasma is obtained. Mycoplasma assays were performed in duplicate from cell culture supernatants and compared to positive and negative controls (MycoAlert ™ Assay Control Set, Lonza).
-Results Negative results were obtained for all the cells used.
(B) IC 50 measurement / cell amplification and culture Tumor cells were seeded in a 96-well flat-bottom microtiter plate and cultured in a medium containing 190 μl of a test compound (supplemented with 10% FBS) at 37 ° C. for 24 hours. HeLa cells were used as a control. The planting density of each cell is shown in Table 11 below.

Figure 2011084632
Figure 2011084632

・IC50測定
細胞は、各試験化合物について1/4の段階希釈で得られた10種の濃度のそれぞれの濃度条件において72時間インキュベータされた。試験化合物(9bw及び8bw)を100μM〜0.28nMの範囲で用い、CDDPは33μM〜0.126nMの範囲で用いた。細胞(190μl)を最終容量200μlの試験化合物または対照化合物を含む培養液(10%FBS補充)中で37℃、5%CO2の雰囲気でインキュベートされた。それぞれの化合物毎に独立した試験を3回行い、各濃度は4連の実験から得た。A−673、KB、MIA−PaCa−2、NIH:OVCAR−3の各細胞については、4回目の試験を行い、3回の試験での結果の確認を行った。コントロール細胞(コントロール)は試験化合物を含まない以外は同じ条件で試験した。処理の最後に、MTSアッセイにより細胞毒性について試験した。
IC 50 measurement Cells were incubated for 72 hours at each of the 10 concentration concentrations obtained at serial dilutions of 1/4 for each test compound. Test compounds (9 bw and 8 bw) were used in the range of 100 μM to 0.28 nM and CDDP was used in the range of 33 μM to 0.126 nM. Cells (190 μl) were incubated at 37 ° C. in an atmosphere of 5% CO 2 in a culture medium (supplemented with 10% FBS) containing a final volume of 200 μl of test compound or control compound. Three independent tests were performed for each compound, and each concentration was obtained from four experiments. About each cell of A-673, KB, MIA-PaCa-2, NIH: OVCAR-3, the 4th test was performed and the result by the 3rd test was confirmed. Control cells (control) were tested under the same conditions except that they did not contain the test compound. At the end of the treatment, it was tested for cytotoxicity by MTS assay.

・MTSアッセイ
テトラゾリウム化合物(MTS、3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethy phenyl)-2-(4-sulfophenyl)-2H-tetrazolium;プロメガ、フランス)及びPMS(エレクトロンカップリング剤:pheazine methosulfate)を用いたMTSアッセイにより試験化合物及び対照化合物のin vitroでの細胞毒性試験を行った。このテトラゾリウム化合物は、細胞により還元されて、別の処理操作をする必要なく培養液に直接溶解するホルマザン化合物を生成する。細胞処理の最後に、Dulbecco's Phosphate Buffered Saline(Lonza)中のMTS(20ml(2mg/ml))とPMS(シグマ、1ml(0.92mg/ml))の混合物(ろ過処理済:0.22μM)の40μlを各ウエルに加えた。培養プレートを37℃で24時間インキュベーとした。各ウエルでにの490nm吸光度(OD)をVICTOR3(商標登録)1420マルチラベルカウンター(パーキンエルマー、フランス)で測定した。
MTS assay Tetrazolium compounds (MTS, 3- (4,5-dimethylthiazol-2-yl) -5- (3-carboxymethy phenyl) -2- (4-sulfophenyl) -2H-tetrazolium; Promega, France) and PMS ( The in vitro cytotoxicity test of the test compound and the control compound was performed by MTS assay using an electron coupling agent: pheazine methosulfate. This tetrazolium compound is reduced by the cells to produce a formazan compound that dissolves directly in the culture without the need for separate processing operations. At the end of cell treatment, a mixture of MTS (20 ml (2 mg / ml)) and PMS (Sigma, 1 ml (0.92 mg / ml)) in Dulbecco's Phosphate Buffered Saline (Lonza) (filtered: 0.22 μM) 40 μl was added to each well. The culture plate was incubated at 37 ° C. for 24 hours. The 490 nm absorbance (OD) in each well was measured with a Victor 3 ™ 1420 multilabel counter (Perkin Elmer, France).

・結果
対照化合物に対する各腫瘍細胞における化合物9bw及び8bwの相対強度(CDDPのIC50を100とした場合の相対値)を表12及び表13に示す。
-Results Tables 12 and 13 show the relative intensities of the compounds 9bw and 8bw in each tumor cell relative to the control compound (relative values when the CDDP IC 50 is taken as 100).

Figure 2011084632
Figure 2011084632

Figure 2011084632
Figure 2011084632

(実施例9)MIA-Pa-Ca-2(すい臓がん)腫瘍移植マウスにおける8bwの抗腫瘍効果
健康なSWISSヌードマウス(雌)にMIA-Pa-Ca-2腫瘍断片を移植した。移植から19日経過後、各マウス10匹からなる4群にランダムに組分けした。マウスの腫瘍体積は100mm3〜200mm3であった。一回当りの投与量及び投与回数を表14に示すように設定して、化合物8bw並びにCDDPの各々について抗腫瘍効果をみた。
Example 9 Antitumor Effect of 8 bw in MIA-Pa-Ca-2 (Pancreatic Cancer) Tumor-Transplanted Mice A healthy SWISS nude mouse (female) was transplanted with the MIA-Pa-Ca-2 tumor fragment. After 19 days from the transplantation, the mice were randomly divided into 4 groups consisting of 10 mice. Tumor volume in mice was 100 mm 3 to 200 mm 3. The dose per administration and the number of administrations were set as shown in Table 14, and antitumor effects were observed for each of Compound 8bw and CDDP.

Figure 2011084632
Figure 2011084632

上記の条件での各投与の結果、10mg/kg投与の群1では、最初の2回の処理において耐性を示し、体重減少及び死亡例は見られなかった。この群では、最終的に、一匹の死亡例が認められ、更なる体重減少は見られない。これらの結果から、ヒト膵臓Mia Paca-2腫瘍を有するマウスでの8bw の10mg/kg投与での顕著な抗腫瘍効果が認められる。   As a result of each administration under the above-mentioned conditions, group 1 administered with 10 mg / kg showed tolerance in the first two treatments, and no weight loss or death was observed. In this group, there was eventually one death and no further weight loss. From these results, a marked antitumor effect is observed at 8 mg of 10 mg / kg administration in mice having human pancreatic Mia Paca-2 tumor.

Claims (3)

下記式(1)で示されるポリエチレングリコールモノエーテル化合物またはその塩。
Figure 2011084632
A polyethylene glycol monoether compound represented by the following formula (1) or a salt thereof.
Figure 2011084632
下記式(2)で示されるポリエチレングリコールモノエーテル化合物またはその塩。
Figure 2011084632
A polyethylene glycol monoether compound represented by the following formula (2) or a salt thereof.
Figure 2011084632
下記式(1)で示されるポリエチレングリコールモノエーテル化合物及びその塩、
Figure 2011084632
ならびに下記式(2)で示されるポリエチレングリコールモノエーテル化合物及びその塩
Figure 2011084632
からなる群から選択される1種の化合物を有効成分として含む抗腫瘍剤。
A polyethylene glycol monoether compound represented by the following formula (1) and a salt thereof;
Figure 2011084632
And a polyethylene glycol monoether compound represented by the following formula (2) and a salt thereof:
Figure 2011084632
An antitumor agent comprising one compound selected from the group consisting of as an active ingredient.
JP2009237627A 2009-10-14 2009-10-14 Polyethylene glycol derivatives and antitumor agents containing them as active ingredients Expired - Fee Related JP5364532B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009237627A JP5364532B2 (en) 2009-10-14 2009-10-14 Polyethylene glycol derivatives and antitumor agents containing them as active ingredients

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009237627A JP5364532B2 (en) 2009-10-14 2009-10-14 Polyethylene glycol derivatives and antitumor agents containing them as active ingredients

Publications (2)

Publication Number Publication Date
JP2011084632A true JP2011084632A (en) 2011-04-28
JP5364532B2 JP5364532B2 (en) 2013-12-11

Family

ID=44077829

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009237627A Expired - Fee Related JP5364532B2 (en) 2009-10-14 2009-10-14 Polyethylene glycol derivatives and antitumor agents containing them as active ingredients

Country Status (1)

Country Link
JP (1) JP5364532B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017002853A1 (en) * 2015-06-30 2017-01-05 株式会社東北テクノアーチ Hetero type monodispersed polyethylene glycol, intermediate for production of hetero type monodispersed polyethylene glycol, methods for producing same, and hetero type monodispersed polyethylene glycol conjugate
KR20190051856A (en) * 2017-11-06 2019-05-15 한미정밀화학주식회사 Polyethylene Glycol Derivatives and Methods for Preparing the same
WO2020203583A1 (en) 2019-03-29 2020-10-08 日油株式会社 Method for producing terminal carboxyl group-containing polyethylene glycol and method for producing activated polyethylene glycol

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4952898A (en) * 1972-07-03 1974-05-22
JPS5953459A (en) * 1982-09-21 1984-03-28 Asahi Glass Co Ltd 4'-(alkoxyalkyl)-4-cyanobiphenyl
WO2006043338A1 (en) * 2004-10-18 2006-04-27 Actice Co., Ltd. Novel polyethylene glycol derivative or pharmaceutically acceptable salt thereof
JP2009256214A (en) * 2008-04-11 2009-11-05 Senka Pharmacy:Kk Polyethylene glycol derivative, and method for producing its intermediate

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4952898A (en) * 1972-07-03 1974-05-22
JPS5953459A (en) * 1982-09-21 1984-03-28 Asahi Glass Co Ltd 4'-(alkoxyalkyl)-4-cyanobiphenyl
WO2006043338A1 (en) * 2004-10-18 2006-04-27 Actice Co., Ltd. Novel polyethylene glycol derivative or pharmaceutically acceptable salt thereof
JP2009256214A (en) * 2008-04-11 2009-11-05 Senka Pharmacy:Kk Polyethylene glycol derivative, and method for producing its intermediate

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10435509B2 (en) 2015-06-30 2019-10-08 Tohoku Techno Arch Co., Ltd. Hetero type monodispersed polyethylene glycol, intermediate for production of hetero type monodispersed polyethylene glycol, methods for producing same, and hetero type monodispersed polyethylene glycol conjugate
JP2017014371A (en) * 2015-06-30 2017-01-19 株式会社 東北テクノアーチ Hetero type single dispersion polyethylene glycol, intermediate for manufacturing hetero type single dispersion polyethylene glycol and manufacturing method therefor and hetero type single dispersion polyethylene glycol bound body
KR20180022919A (en) * 2015-06-30 2018-03-06 가부시키가이샤 토호쿠 테크노 아치 Heteroform monodisperse polyethylene glycols, intermediates for the production of hetero-type monodisperse polyethylene glycols, their preparation method, and hetero-type monodisperse polyethylene glycol conjugates
US20180186931A1 (en) * 2015-06-30 2018-07-05 Tohoku Techno Arch Co., Ltd. Hetero type monodispersed polyethylene glycol, intermediate for production of hetero type monodispersed polyethylene glycol, methods for producing same, and hetero type monodispersed polyethylene glycol conjugate
KR102522413B1 (en) * 2015-06-30 2023-04-17 가부시키가이샤 토호쿠 테크노 아치 Hetero-type monodisperse polyethylene glycol, intermediates for producing hetero-type monodisperse polyethylene glycol, preparation methods thereof, and hetero-type monodisperse polyethylene glycol conjugates
WO2017002853A1 (en) * 2015-06-30 2017-01-05 株式会社東北テクノアーチ Hetero type monodispersed polyethylene glycol, intermediate for production of hetero type monodispersed polyethylene glycol, methods for producing same, and hetero type monodispersed polyethylene glycol conjugate
KR102353479B1 (en) * 2017-11-06 2022-01-21 한미정밀화학주식회사 Polyethylene Glycol Derivatives and Methods for Preparing the same
CN111372911A (en) * 2017-11-06 2020-07-03 韩美精密化学株式会社 Polyethylene glycol derivative and preparation method thereof
JP2021501816A (en) * 2017-11-06 2021-01-21 ハンミ・ファイン・ケミカル・カンパニー・リミテッドHanmi Fine Chemical Co., Ltd. Polyethylene glycol derivative and its manufacturing method
US11168180B2 (en) 2017-11-06 2021-11-09 Hanmi Fine Chemical Co., Ltd. Polyethylene glycol derivative and preparation method thereof
WO2019088800A3 (en) * 2017-11-06 2019-08-01 한미정밀화학주식회사 Polyethylene glycol derivative and preparation method thereof
JP7258019B2 (en) 2017-11-06 2023-04-14 ハンミ・ファイン・ケミカル・カンパニー・リミテッド Polyethylene glycol derivative and method for producing same
KR20190051856A (en) * 2017-11-06 2019-05-15 한미정밀화학주식회사 Polyethylene Glycol Derivatives and Methods for Preparing the same
WO2020203583A1 (en) 2019-03-29 2020-10-08 日油株式会社 Method for producing terminal carboxyl group-containing polyethylene glycol and method for producing activated polyethylene glycol
KR20210148151A (en) 2019-03-29 2021-12-07 니치유 가부시키가이샤 Method for producing polyethylene glycol containing terminal carboxyl group and method for producing activated polyethylene glycol
US12018120B2 (en) 2019-03-29 2024-06-25 Nof Corporation Method for producing terminal carboxyl group-containing polyethylene glycol and method for producing activated polyethylene glycol

Also Published As

Publication number Publication date
JP5364532B2 (en) 2013-12-11

Similar Documents

Publication Publication Date Title
AU2019261702B2 (en) Processes For Preparing Oxathiazin-Like Compounds
JP7398156B2 (en) A class of trialromatic compounds targeting the STAT3 bifunctional phosphorylation site and their applications
TW200815456A (en) Artemisinin derivative dimers, their preparation and their therapeutic application
JP5364532B2 (en) Polyethylene glycol derivatives and antitumor agents containing them as active ingredients
CN101756957B (en) Pharmaceutical composition containing artemisinin, artemisinin derivatives and histone deacetylase inhibitor and application thereof
US6262110B1 (en) Farnesyl-protein transferase inhibitors
JP2009537511A (en) Antibacterial and anticancer novel peptide analogs synthesized and extracted from Gaegrin 5
CN104892626B (en) Semicarbazide dihydroartemisinin derivative as well as preparation method and application of semicarbazide dihydroartemisinin derivative
CN107955059B (en) Sabubuad toxin derivatives and their preparation methods and applications
CN107216283B (en) A kind of beta-elemene derivatives and its preparation method and application containing dihydropyridine structure
WO2011131102A1 (en) Preparation method of lactone and use thereof
US6020365A (en) Arglabin compounds and therapeutic uses thereof
JP3507511B2 (en) Pharmaceutical compositions of arglabin and arglabin derivatives
US8598313B2 (en) Compositions for ameliorating cell proliferative disorders and methods of making and using them
CN102746212B (en) Beta-elemene indole derivative, preparation and application thereof
CN106928074B (en) Isopropanolamine replaces beta-elemene derivatives and its preparation method and application
CN105121447A (en) Vinblastine derivatives, preparation method therefor and application thereof
KR20130120635A (en) Novel antimicrobial comoposition having quorum sensing inhibiting activity and antimicrobial activity
CN101845052B (en) Nitrogen-containing heterocyclic ring thienopyridine ketone derivative, preparation method and application thereof
WO2012111025A2 (en) 1,2,3-triazole containing artemisinin compounds and process for preparation thereof
TW406080B (en) Micacocidin derivatives
CN101805355B (en) Thienopyridone derivative, preparation method and uses thereof
WO2001019810A1 (en) Water-soluble cephalomannine esters with poly-amino-acid or the salts thereof, pharmaceutical compositions containing them and their use in medicine
CN102603635B (en) Geldanamycin derivant and its production and use
US6770673B1 (en) Therapeutic uses of arglabin in combination with other chemotherapy agents

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121009

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130729

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130813

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130909

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees