JP2011084593A - Method for producing styrene-modified polyethylene-based resin preliminary foamed particles - Google Patents
Method for producing styrene-modified polyethylene-based resin preliminary foamed particles Download PDFInfo
- Publication number
- JP2011084593A JP2011084593A JP2009235990A JP2009235990A JP2011084593A JP 2011084593 A JP2011084593 A JP 2011084593A JP 2009235990 A JP2009235990 A JP 2009235990A JP 2009235990 A JP2009235990 A JP 2009235990A JP 2011084593 A JP2011084593 A JP 2011084593A
- Authority
- JP
- Japan
- Prior art keywords
- styrene
- polyethylene resin
- modified polyethylene
- particles
- expanded particles
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
Abstract
Description
本発明は、スチレン改質ポリエチレン系樹脂予備発泡粒子の製造方法に関する。 The present invention relates to a method for producing styrene-modified polyethylene resin pre-expanded particles.
ポリオレフィン系樹脂の発泡体は一般に弾性が高く、繰り返しの応力に対しても歪の回復力が大きいという特徴の他に、耐油性、耐割れ性に優れることから、包装資材や自動車用部材として広く利用されている。しかし、剛性が低く、型内発泡成形後の発泡成形体の収縮がおこりやすく、圧縮強度が低いという短所を有している。またポリオレフィン系樹脂の中でもポリプロピレンなどは、比較的、圧縮強度が高いものの、融点が高く型内発泡成形時に高い温度が必要であり、設備、エネルギー代などが高価になり、経済性が悪い。また、強度が高い場合には発泡倍率を上げることができるため、軽量化にも有利である。 Polyolefin resin foams are generally highly elastic and have a high strain recovery ability against repeated stresses, as well as excellent oil resistance and crack resistance, so they are widely used as packaging materials and automotive parts. It's being used. However, it has the disadvantages of low rigidity, easy shrinkage of the foam molded product after in-mold foam molding, and low compressive strength. Among polyolefin resins, polypropylene and the like have a relatively high compressive strength, but have a high melting point and require a high temperature at the time of in-mold foam molding, resulting in expensive equipment and energy costs and poor economic efficiency. In addition, when the strength is high, the expansion ratio can be increased, which is advantageous for weight reduction.
このような欠点を改良する方法として、ポリエチレン系樹脂にスチレン系単量体を含浸させて重合を行った、スチレン改質ポリエチレン系樹脂が知られている。このような方法で作製された樹脂粒子は、特許文献1〜2のように、粒子中の構造、組成を変えることが容易であり、優れた耐薬品性、耐衝撃性、型内発泡成形性を有する樹脂粒子が製造可能である。スチレン改質ポリエチレン系樹脂予備発泡粒子を製造する方法としては、プロパン、ブタン、ペンタン、フロンガスなどの樹脂の融点以下に沸点を有する有機系発泡剤を溶融樹脂に圧入し、低圧雰囲気下に放出して発泡させる方法(除圧発泡)や、有機系発泡剤を含浸させた樹脂粒子を、蒸気などによって加熱し発泡させる方法などが開示されている。 As a method for improving such a defect, a styrene-modified polyethylene resin obtained by polymerizing a polyethylene resin by impregnating a styrene monomer is known. The resin particles produced by such a method can easily change the structure and composition in the particles as in Patent Documents 1 and 2, and have excellent chemical resistance, impact resistance, and in-mold foam moldability. Resin particles having can be produced. As a method for producing styrene-modified polyethylene resin pre-expanded particles, an organic foaming agent having a boiling point lower than the melting point of the resin such as propane, butane, pentane, or chlorofluorocarbon gas is injected into the molten resin and released under a low-pressure atmosphere. And a method of foaming by heating the resin particles impregnated with an organic foaming agent with steam or the like.
ただし、特許文献2には、除圧発泡にて使用できる発泡剤として無機系のガスが例示されているものの、実施例では有機系発泡剤を用いた態様しか具体的には開示されていない。 However, although Patent Document 2 exemplifies inorganic gas as a foaming agent that can be used in decompression foaming, only an embodiment using an organic foaming agent is specifically disclosed in the examples.
プロパンやブタンなどの低沸点有機溶剤の場合、発泡体製造時に爆発性のガスが発生するので、爆発の危険性がある。また、予備発泡粒子や型内発泡成形体にも発泡剤が残留し徐々に漏出するため、保管時にも爆発の危険性があり、また、VOCの問題も発生する。 In the case of a low-boiling organic solvent such as propane or butane, an explosive gas is generated during the production of the foam, which may cause an explosion. In addition, since the foaming agent remains in the pre-expanded particles and the in-mold foam molded article and gradually leaks, there is a risk of explosion during storage, and a VOC problem occurs.
フロンガスを発泡剤として用いる場合には、爆発の危険性はないが、フロンガスは、環境の観点から問題がある。 When using chlorofluorocarbon as a blowing agent, there is no risk of explosion, but chlorofluorocarbon has a problem from the viewpoint of the environment.
有機系発泡剤を使用した場合の問題点を解決するために、特許文献3ではポリオレフィン系樹脂、ポリスチレン系樹脂、芳香族ビニル単量体およびラジカル重合開始剤を溶融混合して得られる改質ポリオレフィン系樹脂を炭酸ガスにより発泡させる製造方法が開示されている。このような方法で製造されたスチレン改質ポリエチレン系樹脂予備発泡粒子は、ポリオレフィン系樹脂、ポリスチレン系樹脂、芳香族ビニル単量体およびラジカル重合開始剤を溶融混合して改質ポリオレフィン系樹脂としているため、粒子内の構造制御が困難であると思われる。 In order to solve the problems in the case of using an organic foaming agent, Patent Document 3 discloses a modified polyolefin obtained by melt-mixing a polyolefin resin, a polystyrene resin, an aromatic vinyl monomer, and a radical polymerization initiator. A manufacturing method in which a carbon-based resin is foamed with carbon dioxide gas is disclosed. The styrene-modified polyethylene resin pre-expanded particles produced by such a method are made into a modified polyolefin resin by melting and mixing a polyolefin resin, a polystyrene resin, an aromatic vinyl monomer and a radical polymerization initiator. Therefore, it seems that the structure control inside the particle is difficult.
以上のような状況を鑑み、本発明は有機系発泡剤を用いず、安全で環境負荷の少ない無機ガスを用いて、従来の有機系発泡剤を用いて製造されたスチレン改質ポリエチレン系樹脂予備発泡粒子と同等の物性を有するスチレン改質ポリエチレン系樹脂予備発泡粒子の製造方法を提供することにある。 In view of the circumstances as described above, the present invention does not use an organic foaming agent, and uses a safe and environmentally friendly inorganic gas, and a styrene-modified polyethylene resin preliminary produced using a conventional organic foaming agent. An object of the present invention is to provide a method for producing styrene-modified polyethylene resin pre-expanded particles having the same physical properties as the expanded particles.
本発明者らは、前記課題を解決すべく鋭意検討を行った結果、ポリエチレン系樹脂粒子にスチレン系単量体を含浸、重合させたスチレン改質ポリエチレン系樹脂粒子を、発泡剤として無機ガスを用いて発泡させることによって得られるスチレン改質ポリエチレン系樹脂予備発泡粒子が、有機系発泡剤を用いた場合と同様に、型内発泡成形した際に、得られるスチレン改質ポリエチレン系樹脂型内発泡成形体外観が良好であることを見出した。さらに、意想外にも、発泡剤として無機ガスを用いて得られたスチレン改質ポリエチレン系樹脂予備発泡粒子を型内発泡成形したスチレン改質ポリエチレン系樹脂型内発泡成形体は、有機系発泡剤を用いて作られたものよりも圧縮強度が高いことを見出し、本発明を完成するに至った。 As a result of intensive studies to solve the above-mentioned problems, the present inventors have found that polyethylene resin particles are impregnated with a styrene monomer and polymerized, and styrene-modified polyethylene resin particles are used as a blowing agent with an inorganic gas. Styre-modified polyethylene resin pre-expanded particles obtained by foaming using styrene-modified polyethylene resin in-mold foam obtained when in-mold foam molding is performed, as in the case of using an organic foaming agent It has been found that the appearance of the molded product is good. Furthermore, surprisingly, a styrene-modified polyethylene resin in-mold foam molded product obtained by in-mold foam molding of styrene-modified polyethylene resin pre-expanded particles obtained using inorganic gas as a foaming agent is an organic foaming agent. The present inventors have found that the compressive strength is higher than that produced by using, and have completed the present invention.
すなわち、本発明は、以下の構成よりなる。
〔1〕 ポリエチレン系樹脂粒子にスチレン系単量体を含浸、重合させたスチレン改質ポリエチレン系樹脂粒子を、発泡剤として無機ガスを用いて発泡させることを特徴とする、発泡倍率3倍以上60倍以下のスチレン改質ポリエチレン系樹脂予備発泡粒子の製造方法。
〔2〕 ポリエチレン系樹脂粒子にスチレン系単量体を含浸、重合させたスチレン改質ポリエチレン系樹脂粒子を耐圧容器中に水系分散媒に分散させて加熱し、前記耐圧容器に発泡剤として無機ガスを導入して耐圧容器内を加圧した後、耐圧容器の一端を開放してスチレン改質ポリエチレン系樹脂粒子と水系分散媒を含んでなる混合物を耐圧容器内よりも低圧雰囲気下に放出することを特徴とする〔1〕記載のスチレン改質ポリエチレン系樹脂予備発泡粒子の製造方法。
〔3〕 前記低圧雰囲気が飽和水蒸気で満たされていることを特徴とする〔2〕に記載のスチレン改質ポリエチレン系樹脂予備発泡粒子の製造方法。
〔4〕 前記無機ガスが炭酸ガスである〔1〕〜〔3〕いずれかに記載のスチレン改質ポリエチレン系樹脂予備発泡粒子の製造方法。
〔5〕 〔1〕〜〔4〕いずれか一項に記載の製造方法によって得られたスチレン改質ポリエチレン系樹脂予備発泡粒子を、無機ガスを用いて加圧することにより該スチレン改質ポリエチレン系樹脂予備発泡粒子内の圧力を大気圧よりも高くした後、加熱することにより、更に発泡させることを特徴とするスチレン改質ポリエチレン系樹脂予備発泡粒子の製造方法。
〔6〕 〔1〕〜〔5〕いずれかに記載の製造方法によって得られるスチレン改質ポリエチレン系樹脂予備発泡粒子。
〔7〕 平均気泡径が50μm以上800μm以下である〔6〕記載のスチレン改質ポリエチレン系樹脂予備発泡粒子。
〔8〕 〔6〕または〔7〕に記載のスチレン改質ポリエチレン系樹脂予備発泡粒子を型内発泡成形して得られるスチレン改質ポリエチレン系樹脂型内発泡成形体。
That is, this invention consists of the following structures.
[1] A styrene-modified polyethylene resin particle obtained by impregnating and polymerizing a polyethylene resin particle with a styrene monomer is foamed using an inorganic gas as a foaming agent, and the expansion ratio is 3 times or more and 60 times A method for producing pre-expanded particles of styrene-modified polyethylene resin less than double.
[2] Polyethylene resin particles impregnated with a styrene monomer and polymerized styrene-modified polyethylene resin particles are dispersed in an aqueous dispersion medium in a pressure vessel and heated, and an inorganic gas is used as a foaming agent in the pressure vessel. And then pressurizing the inside of the pressure vessel, and then opening one end of the pressure vessel to release the mixture containing the styrene-modified polyethylene resin particles and the aqueous dispersion medium in a lower pressure atmosphere than in the pressure vessel. [1] The method for producing pre-expanded styrene-modified polyethylene resin particles according to [1].
[3] The process for producing styrene-modified polyethylene resin pre-expanded particles according to [2], wherein the low-pressure atmosphere is filled with saturated steam.
[4] The method for producing styrene-modified polyethylene resin pre-expanded particles according to any one of [1] to [3], wherein the inorganic gas is carbon dioxide.
[5] The styrene-modified polyethylene resin by pressurizing the styrene-modified polyethylene resin pre-expanded particles obtained by the production method according to any one of [1] to [4] with an inorganic gas. A method for producing styrene-modified polyethylene resin pre-foamed particles, wherein the pre-foamed particles are further foamed by heating after the pressure in the pre-foamed particles is higher than atmospheric pressure.
[6] Styrene-modified polyethylene resin pre-expanded particles obtained by the production method according to any one of [1] to [5].
[7] The styrene-modified polyethylene resin pre-expanded particles according to [6], wherein the average cell diameter is 50 μm or more and 800 μm or less.
[8] A styrene-modified polyethylene resin in-mold foam-molded product obtained by in-mold foam molding of the styrene-modified polyethylene resin pre-expanded particles according to [6] or [7].
本発明の製造方法は、爆発などの危険性がなく、環境負荷が少なく、従来の有機系発泡剤と同等の表面性を有するスチレン改質ポリエチレン系樹脂型内発泡成形体を得ることのできる、スチレン改質ポリエチレン系樹脂予備発泡粒子を製造することができる。本発明の製造方法によって得られるスチレン改質ポリエチレン系樹脂予備発泡粒子は、型内発泡成形した際に、有機系発泡剤を使用したものよりも圧縮強度が高い。 The production method of the present invention is capable of obtaining a styrene-modified polyethylene resin-in-mold foam-molded article having no risk of explosion or the like, less environmental load, and having the same surface properties as conventional organic foaming agents. Styrene-modified polyethylene resin pre-expanded particles can be produced. The styrene-modified polyethylene resin pre-expanded particles obtained by the production method of the present invention have higher compressive strength than those using an organic foaming agent when subjected to in-mold foam molding.
本発明のスチレン改質ポリエチレン系樹脂予備発泡粒子の製造方法は、ポリエチレン系樹脂粒子にスチレン系単量体を含浸、重合させたスチレン改質ポリエチレン系樹脂粒子を、発泡剤として無機ガスを用いて発泡させることを特徴とする。 The method for producing styrene-modified polyethylene resin pre-expanded particles according to the present invention uses styrene-modified polyethylene resin particles obtained by impregnating and polymerizing polyethylene resin particles with a styrene monomer, using an inorganic gas as a blowing agent. It is made to foam.
ポリエチレン系樹脂粒子にスチレン系単量体を含浸、重合させたスチレン改質ポリエチレン系樹脂粒子を、発泡剤として無機ガスを用いて発泡させ予備発泡する方法としては、(1)ポリエチレン系樹脂粒子にスチレン系単量体を含浸、重合させたスチレン改質ポリエチレン系樹脂粒子を耐圧容器中に水系分散媒に分散させて加熱し、前記耐圧容器に発泡剤として無機ガスを導入して耐圧容器内を加圧した後、耐圧容器の一端を開放してスチレン改質ポリエチレン系樹脂粒子と水系分散媒を含んでなる混合物を耐圧容器内よりも低圧雰囲気下に放出するいわゆる「除圧発泡」と呼ばれる方法、(2)ポリエチレン系樹脂粒子にスチレン系単量体を含浸、重合させた後、発泡剤として無機ガスを含浸させ発泡性スチレン改質ポリエチレン系樹脂粒子と成し、攪拌機を具備した容器内に発泡性スチレン改質ポリエチレン系樹脂粒子を入れ水蒸気等の熱源により加熱する方法、(3)ポリエチレン系樹脂粒子にスチレン系単量体を含浸、重合させてスチレン改質ポリエチレン系樹脂粒子と成し、攪拌機を具備した容器内にて発泡剤として無機ガスを含浸させ、水蒸気等の熱源により加熱する方法、等があげられるが、特に(1)の方法を選択することが、発泡剤の含浸と発泡を一連の操作で行うために過剰量の発泡剤を必要とせず、好ましい。 As a method of foaming and pre-foaming styrene-modified polyethylene resin particles obtained by impregnating and polymerizing polyethylene resin particles with a styrene monomer using an inorganic gas as a foaming agent, (1) Polyethylene resin particles The styrene-modified polyethylene resin particles impregnated and polymerized with the styrene monomer are dispersed in a water-based dispersion medium in a pressure vessel and heated, and an inorganic gas is introduced into the pressure vessel as a foaming agent. After pressurization, one end of the pressure vessel is opened to release a mixture containing styrene-modified polyethylene resin particles and an aqueous dispersion medium in a lower pressure atmosphere than in the pressure vessel. (2) Polyethylene resin particles are impregnated with a styrene monomer and polymerized, and then impregnated with an inorganic gas as a foaming agent to produce a foamable styrene-modified polyethylene resin. A method in which foamable styrene-modified polyethylene resin particles are placed in a container equipped with a stirrer and heated with a heat source such as water vapor. (3) Polyethylene resin particles are impregnated with styrene monomer and polymerized. And a method of impregnating an inorganic gas as a foaming agent in a container provided with a stirrer, and heating with a heat source such as water vapor. It is preferable that an excessive amount of foaming agent is not required for impregnation and foaming in a series of operations.
(1)の方法において、具体的には、重合反応を行うことによって得られたスチレン改質ポリエチレン系樹脂粒子を、一度耐圧容器より取り出して洗浄・乾燥を行った後に、除圧発泡用の耐圧容器に仕込み、水性分散媒に分散させて加熱し、前記耐圧容器に発泡剤として無機ガスを導入して耐圧容器内を加圧した後、耐圧容器内の温度および圧力を一定に保ちながら容器の一端を開放し、例えば開孔径が1mmから10mmのオリフィス等を通して該耐圧容器内よりも低圧雰囲気下、例えば、飽和水蒸気で満たされている雰囲気中に混合物を放出し発泡させることにより、スチレン改質ポリエチレン系樹脂予備発泡粒子を製造することができる。 In the method (1), specifically, after the styrene-modified polyethylene resin particles obtained by carrying out the polymerization reaction are once taken out from the pressure vessel, washed and dried, the pressure resistance for decompression foaming Charge the container, disperse it in an aqueous dispersion medium, heat it, introduce inorganic gas as a foaming agent into the pressure vessel and pressurize the inside of the pressure vessel, then keep the temperature and pressure inside the pressure vessel constant. One end is opened, and the styrene modification is performed by releasing and foaming the mixture in a low-pressure atmosphere, for example, an atmosphere filled with saturated steam, through an orifice having an opening diameter of 1 to 10 mm, for example. Polyethylene resin pre-expanded particles can be produced.
本発明におけるポリエチレン系樹脂粒子を構成するポリエチレン系樹脂は、高密度ポリエチレン、低密度ポリエチレン等のエチレンの単独重合体、エチレンと、例えば、プロピレン、1−ブテン、1−ペンテン、1−ヘキセン等のα−オレフィンや酢酸ビニル、アクリル酸エステル、塩化ビニル等との共重合体があげられる。また、これらポリエチレン系樹脂にアクリロニトリル−スチレン共重合体を配合しても良い。これらの中でもエチレン・酢酸ビニルの共重合体が重合時の安定性が高いため好ましい。 The polyethylene resin constituting the polyethylene resin particles in the present invention is an ethylene homopolymer such as high-density polyethylene or low-density polyethylene, ethylene and, for example, propylene, 1-butene, 1-pentene, 1-hexene, etc. Examples thereof include copolymers with α-olefin, vinyl acetate, acrylic acid ester, vinyl chloride and the like. Moreover, you may mix | blend an acrylonitrile styrene copolymer with these polyethylene-type resin. Among these, an ethylene / vinyl acetate copolymer is preferable because of its high stability during polymerization.
前記ポリエチレン系樹脂は、あらかじめ、例えば押出し機、ニーダー、バンバリーミキサー、ロール等を用いて溶融し、水中或いは空気中に押出し、ストランドカットまたは水中カットすることによりポリエチレン系樹脂粒子となす。形状はパウダー、ペレット状等の粒子状態であることが好ましい。これら粒子の平均粒重量は0.1mg/粒以上3mg/粒以下が好適な範囲である。0.1mg/粒より小さい場合は発泡剤の逸散が激しく高倍率化させにくくなる場合があり、3mg/粒より大きい場合は成形時の充填性が悪くなる恐れがある。この中でポリエチレン系樹脂を押し出し、水中カット方式により作製されたペレットが、球形化が容易であり好ましい。 The polyethylene resin is melted in advance using, for example, an extruder, a kneader, a Banbury mixer, a roll or the like, extruded into water or air, and cut into strands or underwater to form polyethylene resin particles. The shape is preferably a particle state such as powder or pellet. The average particle weight of these particles is preferably in the range of 0.1 mg / particle to 3 mg / particle. If it is less than 0.1 mg / grain, the foaming agent may dissipate rapidly, making it difficult to increase the magnification. If it is greater than 3 mg / grain, the filling property during molding may be deteriorated. Among them, a pellet made by extruding a polyethylene resin and using an underwater cutting method is preferable because it can be easily spheroidized.
本発明においては、成形性の向上、発泡倍率の向上など、目的に応じて可塑剤、気泡調整剤等の各種添加剤を使用することができる。 In the present invention, various additives such as a plasticizer and a cell regulator can be used depending on the purpose, such as improvement of moldability and improvement of expansion ratio.
可塑剤としては、例えば、ステアリン酸トリグリセライド、パルミチン酸トリグリセライド、ラウリン酸トリグリセライド、ステアリン酸ジグリセライド、ステアリン酸モノグリセライド等の脂肪酸グリセライド、ヤシ油、パーム油、パーム核油等の植物油、ジオクチルアジペート、セバシン酸ジブチル等の脂肪族エステル、流動パラフィン、シクロヘキサン等の有機炭化水素、トルエン、エチルベンゼン等の有機芳香族炭化水素等があげられ、これらは併用しても何ら差し支えない。 Examples of the plasticizer include fatty acid glycerides such as stearic acid triglyceride, palmitic acid triglyceride, lauric acid triglyceride, stearic acid diglyceride, and stearic acid monoglyceride, vegetable oils such as coconut oil, palm oil, and palm kernel oil, dioctyl adipate, dibutyl sebacate And the like, organic hydrocarbons such as liquid paraffin and cyclohexane, and organic aromatic hydrocarbons such as toluene and ethylbenzene. These may be used in combination.
気泡調整剤としては、例えば、メチレンビスステアリン酸アマイド、エチレンビスステアリン酸アマイド等の脂肪族ビスアマイドやステアリン酸アミド等の有機系気泡調整剤、タルク、シリカ、珪酸カルシウム、炭酸カルシウム等の無機系気泡調整剤等があげられる。 Examples of the air conditioner include organic air conditioners such as aliphatic bisamides and stearamide such as methylene bis stearic acid amide and ethylene bis stearic acid amide, inorganic air bubbles such as talc, silica, calcium silicate, and calcium carbonate. Examples thereof include regulators.
気泡調整剤の中でも、無機系気泡調整剤を使用することが好ましく、好ましい使用量としてはポリエチレン系樹脂100重量部に対し、0.01重量部以上0.5重量部以下である。無機系気泡調整剤が0.01重量部より少ないと安定的に気泡を生成することが困難となる場合があり、0.5重量部より多く使用した場合は型内発泡成形時の融着が悪化する傾向がある。 Among the bubble regulators, it is preferable to use an inorganic bubble regulator, and the preferred amount is 0.01 parts by weight or more and 0.5 parts by weight or less with respect to 100 parts by weight of the polyethylene resin. When the amount of the inorganic cell regulator is less than 0.01 parts by weight, it may be difficult to stably generate bubbles. When the amount is more than 0.5 parts by weight, fusion during in-mold foam molding may occur. There is a tendency to get worse.
また、これらの各種添加剤は重合時や発泡剤含浸時に添加し、含浸させることも出来るし、あらかじめ前記ポリエチレン系樹脂に混ぜ込むことで使用することもできる。 These various additives can be added and impregnated at the time of polymerization or impregnation with a foaming agent, or can be used by mixing in the polyethylene resin in advance.
本発明において使用するスチレン系単量体としては、例えば、スチレン、およびα−メチルスチレン、パラメチルスチレン、t−ブチルスチレン、クロルスチレン等のスチレン系誘導体を主成分として使用することができる。また、例えば、メチルアクリレート、ブチルアクリレート、メチルメタクリレート、エチルメタクリレート等のアクリル酸およびメタクリル酸のエステル、あるいはアクリロニトリル、ジメチルフマレート、エチルフマレート等のスチレン系誘導体と共重合が可能な単量体を1種または2種以上併用してもよい。更に、ジビニルベンゼン、アルキレングリコールジメタクリレート等の多官能性単量体を使用することもできる。 As the styrene monomer used in the present invention, for example, styrene and styrene derivatives such as α-methyl styrene, paramethyl styrene, t-butyl styrene, chlorostyrene and the like can be used as a main component. Further, for example, monomers capable of copolymerization with acrylic acid and methacrylic acid esters such as methyl acrylate, butyl acrylate, methyl methacrylate, and ethyl methacrylate, or styrene derivatives such as acrylonitrile, dimethyl fumarate, and ethyl fumarate. You may use together 1 type, or 2 or more types. Furthermore, polyfunctional monomers such as divinylbenzene and alkylene glycol dimethacrylate can also be used.
ポリエチレン系樹脂粒子100重量部に対して、スチレン系単量体を好ましくは150重量部以上400重量部以下、更に好ましくは180重量部以上300重量部重合させる。当該範囲内であれば型内発泡成形性や物性が良好であるスチレン改質ポリエチレン系樹脂予備発泡粒子となる傾向がある。 The styrenic monomer is preferably polymerized in an amount of 150 to 400 parts by weight, more preferably 180 to 300 parts by weight, based on 100 parts by weight of the polyethylene resin particles. If it is in the said range, there exists a tendency to become a styrene modified polyethylene resin pre-expanded particle with favorable in-mold foam moldability and physical properties.
ポリエチレン系樹脂粒子にスチレン系単量体を重合させるのに際し、重合開始剤を使用することが好ましい。使用しうる重合開始剤としては、一般に熱可塑性重合体の製造に用いられるラジカル発生型重合開始剤を用いることができ、代表的なものとしては、例えば、過酸化ベンゾイル、ラウロイルパーオキサイド、t−ブチルパーピバレート、t−ブチルパーオキシイソプロピルカーボネート、ジ−t−ブチルパーオキシヘキサハイドロテレフタレート、1,1−ジ(t−ブチルパーオキシ)3,3,5−トリメチルシクロヘキサン、1,1−ジ(t−ブチルパーオキシ)シクロヘキサンなどの有機過酸化物や、アゾビスイソブチロニトリル、アゾビスジメチルバレロニトリルなどのアゾ化合物が挙げられる。これらの重合開始剤は単独もしくは2種以上を混合して用いることができる。重量平均分子量は重合開始剤の量と反応温度により調整できる。 A polymerization initiator is preferably used when the styrene monomer is polymerized on the polyethylene resin particles. As the polymerization initiator that can be used, radical generating polymerization initiators generally used for the production of thermoplastic polymers can be used. Typical examples include benzoyl peroxide, lauroyl peroxide, t- Butyl perpivalate, t-butyl peroxyisopropyl carbonate, di-t-butyl peroxyhexahydroterephthalate, 1,1-di (t-butylperoxy) 3,3,5-trimethylcyclohexane, 1,1-di Examples thereof include organic peroxides such as (t-butylperoxy) cyclohexane, and azo compounds such as azobisisobutyronitrile and azobisdimethylvaleronitrile. These polymerization initiators can be used alone or in admixture of two or more. The weight average molecular weight can be adjusted by the amount of the polymerization initiator and the reaction temperature.
これら重合開始剤の使用量は、スチレン系単量体100重量部に対して、0.05重量部以上1.0重量部以下であることが好ましく、さらには0.1重量部以上0.5重量部以下であることが好ましい。 The amount of the polymerization initiator used is preferably 0.05 parts by weight or more and 1.0 parts by weight or less, more preferably 0.1 parts by weight or more and 0.5 parts by weight or less with respect to 100 parts by weight of the styrene monomer. It is preferable that it is below the weight part.
本発明において、スチレン改質ポリエチレン系樹脂粒子を含浸、重合させる方法としては、攪拌機を具備した容器内に仕込んだポリエチレン系樹脂粒子を含む水性懸濁液に、スチレン系単量体を連続的にまたは断続的に添加することにより、ポリエチレン系樹脂粒子にスチレン系単量体を含浸させ、重合させる。重合において、添加するスチレン系単量体の添加速度を任意に選択することで、スチレン改質ポリエチレン系樹脂予備発泡粒子の重量平均分子量に調整することが可能である。重合温度は70℃以上90℃以下であると、所望の重量平均分子量であるスチレン改質ポリエチレン系樹脂予備発泡粒子が得られるため好ましい。 In the present invention, as a method of impregnating and polymerizing styrene-modified polyethylene resin particles, a styrene monomer is continuously added to an aqueous suspension containing polyethylene resin particles charged in a container equipped with a stirrer. Alternatively, by intermittent addition, the polyethylene resin particles are impregnated with the styrene monomer and polymerized. In the polymerization, the weight average molecular weight of the styrene-modified polyethylene resin pre-expanded particles can be adjusted by arbitrarily selecting the addition rate of the styrene monomer to be added. The polymerization temperature is preferably 70 ° C. or higher and 90 ° C. or lower because styrene-modified polyethylene resin pre-expanded particles having a desired weight average molecular weight can be obtained.
本発明においては、スチレン改質ポリエチレン系樹脂型内発泡成形体の耐割れ性を向上させるためにスチレン改質ポリエチレン系樹脂粒子内を架橋させることが好ましい。架橋を行うためにはラジカル種発生型架橋剤を使用することが出来る。このようなラジカル種発生型架橋剤としては、ジ−t−ブチルパーオキサイド(10時間半減期温度:123℃)、ジクミルパーオキサイド(10時間半減期温度:116℃)、t−ブチルパーオキシベンゾエート(10時間半減期温度:104℃)、t−ブチルパーオキシアセテート(10時間半減期温度:102℃)、2,2−ビスーt−ブチルパーオキシブタン(10時間半減期温度:103℃)等が挙げられる。これら架橋剤は、スチレン系単量体の添加前あるいはスチレン系単量体と共に重合系に添加することが出来る。架橋反応は、通常は重合時に行うが、除圧発泡を行う場合、除圧発泡時に行ってもよい。 In the present invention, in order to improve the crack resistance of the styrene-modified polyethylene resin-in-mold foam-molded product, the inside of the styrene-modified polyethylene resin particles is preferably cross-linked. In order to perform crosslinking, a radical species generating type crosslinking agent can be used. Examples of such radical species-generating crosslinking agents include di-t-butyl peroxide (10-hour half-life temperature: 123 ° C.), dicumyl peroxide (10-hour half-life temperature: 116 ° C.), and t-butyl peroxy. Benzoate (10-hour half-life temperature: 104 ° C.), t-butyl peroxyacetate (10-hour half-life temperature: 102 ° C.), 2,2-bis-t-butyl peroxybutane (10-hour half-life temperature: 103 ° C.) Etc. These crosslinking agents can be added to the polymerization system before addition of the styrene monomer or together with the styrene monomer. The cross-linking reaction is usually performed at the time of polymerization, but when performing decompression foaming, it may be performed at the time of decompression foaming.
本発明のスチレン改質ポリエチレン系樹脂予備発泡粒子の製造方法は、好ましくは、ポリエチレン系樹脂粒子にスチレン系単量体を含浸、重合させたスチレン改質ポリエチレン系樹脂粒子を耐圧容器中に水系分散媒に分散させて加熱し、前記耐圧容器に発泡剤として無機ガスを導入して耐圧容器内を加圧した後、耐圧容器の一端を開放してスチレン改質ポリエチレン系樹脂粒子と水系分散媒を含んでなる混合物を耐圧容器内よりも低圧雰囲気下に放出することを特徴とする。 The method for producing styrene-modified polyethylene resin pre-expanded particles of the present invention is preferably a water-based dispersion of styrene-modified polyethylene resin particles obtained by impregnating and polymerizing polyethylene resin particles with a styrene monomer in a pressure vessel. Disperse in a medium and heat, introduce an inorganic gas as a foaming agent into the pressure vessel and pressurize the inside of the pressure vessel, then open one end of the pressure vessel and styrene modified polyethylene resin particles and an aqueous dispersion medium. It is characterized in that the mixture comprising it is discharged in a lower pressure atmosphere than in the pressure vessel.
水系分散媒としては、樹脂粒子を溶解させないものであれば特に限定はなく、例えば、水、メタノール、エタノール、グリセリン、エチレングリコール等が挙げられ、これらを併用しても良い。とりわけ水を使用することが好ましい。水系分散媒の使用量は、スチレン改質ポリエチレン系樹脂粒子100重量部に対して、50重量部以上1000重量部以下であることが好ましい。 The aqueous dispersion medium is not particularly limited as long as it does not dissolve the resin particles. Examples thereof include water, methanol, ethanol, glycerin, and ethylene glycol, and these may be used in combination. In particular, it is preferable to use water. The amount of the aqueous dispersion medium used is preferably 50 parts by weight or more and 1000 parts by weight or less with respect to 100 parts by weight of the styrene-modified polyethylene resin particles.
本発明においては、発泡剤として無機ガスを用いる。無機ガスとしては、窒素、酸素、炭酸ガス、空気、ヘリウム、アルゴン、水などが挙げられる。これらの中でも炭酸ガスが好ましい。また、これら無機ガスは併用して使用してもよい。 In the present invention, an inorganic gas is used as the foaming agent. Examples of the inorganic gas include nitrogen, oxygen, carbon dioxide gas, air, helium, argon, and water. Of these, carbon dioxide is preferred. These inorganic gases may be used in combination.
スチレン改質ポリエチレン系樹脂粒子を水系分散媒に分散させる際には、樹脂同士の付着を防止するために、分散剤を使用することが好ましい。分散剤として、例えば、第三リン酸カルシウム、リン酸マグネシウム、塩基性炭酸マグネシウム、炭酸カルシウム、硫酸バリウム、カオリン、タルク、クレー等の無機系分散剤が挙げられる。 When dispersing the styrene-modified polyethylene resin particles in the aqueous dispersion medium, it is preferable to use a dispersant in order to prevent adhesion between the resins. Examples of the dispersant include inorganic dispersants such as tricalcium phosphate, magnesium phosphate, basic magnesium carbonate, calcium carbonate, barium sulfate, kaolin, talc, and clay.
必要に応じて、例えば、ドデシルベンゼンスルホン酸ソーダ、n−パラフィンスルホン酸ソーダ、α−オレフィンスルホン酸ソーダ、硫酸マグネシウム、硝酸マグネシウム、塩化マグネシウム、硫酸アルミニウム、硝酸アルミニウム、塩化アルミニウム、硫酸鉄、硝酸鉄、塩化鉄等の分散助剤を併用することが好ましい。 As necessary, for example, sodium dodecylbenzenesulfonate, sodium n-paraffin sulfonate, sodium α-olefin sulfonate, magnesium sulfate, magnesium nitrate, magnesium chloride, aluminum sulfate, aluminum nitrate, aluminum chloride, iron sulfate, iron nitrate It is preferable to use a dispersion aid such as iron chloride in combination.
これらの中でも、第三リン酸カルシウムとn−パラフィンスルホン酸ソーダの併用が更に好ましい。分散剤や分散助剤の使用量は、その種類や、用いるポリプロピレン系樹脂の種類と使用量によって異なるが、通常、分散媒100重量部に対して分散剤0.2重量部以上3重量部以下を配合することが好ましく、分散助剤0.001重量部以上0.1重量部以下を配合することが好ましい。また、スチレン改質ポリエチレン系樹脂粒子は、水系分散媒中での分散性を良好なものにするために、通常、水系分散媒100重量部に対して、20重量部以上100重量部以下使用することが好ましい。 Among these, combined use of tricalcium phosphate and sodium n-paraffin sulfonate is more preferable. The amount of the dispersant and the dispersion aid varies depending on the type and the type and amount of the polypropylene resin used, but usually 0.2 parts by weight or more and 3 parts by weight or less of the dispersant with respect to 100 parts by weight of the dispersion medium. It is preferable to add 0.001 part by weight or more and 0.1 part by weight or less of a dispersion aid. The styrene-modified polyethylene resin particles are usually used in an amount of 20 to 100 parts by weight with respect to 100 parts by weight of the aqueous dispersion medium in order to improve the dispersibility in the aqueous dispersion medium. It is preferable.
前記のようにして耐圧容器内に調製された混合物は、撹拌下、発泡温度まで昇温され、無機ガスによって発泡圧力まで加圧させた後、好ましくは5分以上180分以下、より好ましくは10分以上60分以下の間、温度、圧力を保持する。こうして発泡温度、発泡圧力で保持されたスチレン改質ポリエチレン系樹脂粒子を、耐圧容器の一端、一般的には耐圧容器の下部に設けられたバルブを開放して耐圧容器内よりも低圧雰囲気下(通常は大気圧下)に放出することにより、スチレン改質ポリエチレン系樹脂予備発泡粒子を得ることが出来る。 The mixture prepared in the pressure vessel as described above is heated to the foaming temperature under stirring and pressurized to the foaming pressure with an inorganic gas, and is preferably 5 minutes to 180 minutes, more preferably 10 minutes. The temperature and pressure are maintained for not less than 60 minutes and not more than 60 minutes. Thus, the styrene-modified polyethylene resin particles held at the foaming temperature and the foaming pressure are opened in a lower pressure atmosphere than the inside of the pressure vessel by opening a valve provided at one end of the pressure vessel, generally at the lower part of the pressure vessel ( Usually, styrene-modified polyethylene resin pre-expanded particles can be obtained by releasing them under atmospheric pressure.
スチレン改質ポリエチレン系樹脂粒子を低圧雰囲気下に放出する際、流量調整、倍率バラつき低減などの目的で、1〜10mmφの開口オリフィスを通して放出することも出来る。また、発泡倍率を高くする目的で、前記低圧雰囲気が飽和水蒸気で満たされていることが好ましい。 When the styrene-modified polyethylene resin particles are discharged under a low-pressure atmosphere, they can be discharged through an opening orifice of 1 to 10 mmφ for the purpose of adjusting the flow rate and reducing the variation in magnification. For the purpose of increasing the expansion ratio, the low-pressure atmosphere is preferably filled with saturated steam.
発泡温度は、120℃以上180℃以下が好ましく、130℃以上165℃以下がより好ましい。発泡温度が高い場合には、設備への負荷が大きい上に、樹脂の分解が生じる可能性がある。発泡温度が低い場合には、発泡倍率が低くなる傾向があり、目的の発泡倍率のスチレン改質ポリエチレン系樹脂予備発泡粒子が得られない可能性がある。発泡圧力は、2MPa以上10MPa以下が好ましく、2.5MPa以上7MPa以下がより好ましい。さらに好ましくは3MPa以上5MPa以下である。発泡圧力が高い場合には設備の負荷が大きく、設備が高価になる傾向がある。発泡圧力が低い場合には、発泡倍率が低くなる傾向があり、目的の発泡倍率のスチレン改質ポリエチレン系樹脂予備発泡粒子が得られない可能性がある。 The foaming temperature is preferably 120 ° C. or higher and 180 ° C. or lower, and more preferably 130 ° C. or higher and 165 ° C. or lower. When the foaming temperature is high, the load on the equipment is large and the resin may be decomposed. When the foaming temperature is low, the expansion ratio tends to be low, and styrene-modified polyethylene resin pre-expanded particles having a target expansion ratio may not be obtained. The foaming pressure is preferably 2 MPa or more and 10 MPa or less, and more preferably 2.5 MPa or more and 7 MPa or less. More preferably, it is 3 MPa or more and 5 MPa or less. When the foaming pressure is high, the load on the equipment is large and the equipment tends to be expensive. When the foaming pressure is low, the expansion ratio tends to be low, and styrene-modified polyethylene resin pre-expanded particles having a target expansion ratio may not be obtained.
以上のようにして得られたスチレン改質ポリエチレン系樹脂予備発泡粒子は、キシレンに不溶なゲルを含むことが望ましい。キシレンに不溶なゲル量は、スチレン改質ポリエチレン系樹脂予備発泡粒子中、10重量%以上50重量%以下であることが好ましく、更に好ましくは15重量%以上40重量%以下である。当該範囲内であると、型内発泡成形を行う場合、予備発泡粒子を高倍化しやすく、成形性、物性が良好なスチレン改質ポリエチレン系樹脂型内発泡成形体が得られる傾向にある。 It is desirable that the styrene-modified polyethylene resin pre-expanded particles obtained as described above contain a gel insoluble in xylene. The amount of gel insoluble in xylene is preferably 10% by weight or more and 50% by weight or less, and more preferably 15% by weight or more and 40% by weight or less in the pre-expanded particles of styrene-modified polyethylene resin. Within the range, when performing in-mold foam molding, the pre-foamed particles tend to be doubled, and a styrene-modified polyethylene resin in-mold foam molded article having good moldability and physical properties tends to be obtained.
なお、キシレンに不溶なゲル分の量は以下のようにして測定する。200メッシュの金網袋中に0.4gの予備発泡樹脂粒子を入れ、大気圧下で沸騰させたキシレン450ml中に2時間浸漬して冷却後に一旦、取り出し、更に新たな沸騰させたキシレン中に樹脂を1時間浸漬して冷却後にキシレンから取り出す。その後、同様に2時間、1時間の浸漬、溶出を繰り返し、その後、常温下で1晩液切りした後に150℃のオーブン中で1時間乾燥させ、常温まで自然冷却させ、冷却後の残留分をゲル分とし、初期の予備発泡粒子量に対するゲル成分の量の重量比率をゲル成分量としている。 The amount of gel insoluble in xylene is measured as follows. Place 0.4 g of pre-expanded resin particles in a 200-mesh wire mesh bag, immerse in 450 ml of xylene boiled under atmospheric pressure for 2 hours, take it out after cooling, and then remove the resin in new boiled xylene. For 1 hour and after cooling, it is taken out from xylene. Thereafter, the immersion and elution were repeated for 2 hours and 1 hour in the same manner. After that, the liquid was drained overnight at room temperature, dried in an oven at 150 ° C. for 1 hour, allowed to cool naturally to room temperature, and the residue after cooling was removed. The gel component is used, and the weight ratio of the amount of the gel component to the initial amount of pre-expanded particles is used as the gel component amount.
また、本発明の製造方法によって得られたスチレン改質ポリエチレン系樹脂予備発泡粒子は、テトラヒドロフランに可溶な成分の重量平均分子量が10万以上25万以下であることが好ましい。当該範囲内であると、型内発泡成形を行う場合に型内発泡成形性が良好である傾向にある。 The styrene-modified polyethylene resin pre-expanded particles obtained by the production method of the present invention preferably have a weight-average molecular weight of a component soluble in tetrahydrofuran of 100,000 to 250,000. Within the range, in-mold foam moldability tends to be good when performing in-mold foam molding.
テトラヒドロフランに可溶な成分の重量平均分子量とは、スチレン改質ポリエチレン系樹脂予備発泡粒子0.02gを常温のテトラヒドロフラン20mlに24時間浸漬させることで抽出される成分を0.2μmのフィルターでろ過し、ゲル・パーミエーション・クロマトグラフィーにより標準ポリスチレン試料を基準に求められた値である。 The weight average molecular weight of the component soluble in tetrahydrofuran is determined by immersing 0.02 g of styrene-modified polyethylene resin pre-expanded particles in 20 ml of normal temperature tetrahydrofuran for 24 hours, and filtering the extracted component with a 0.2 μm filter. The value obtained on the basis of a standard polystyrene sample by gel permeation chromatography.
本発明のスチレン改質ポリエチレン系樹脂予備発泡粒子の独立気泡率は88%以上100%以下であることが好ましく、より好ましくは92%以上100%以下、さらに好ましくは95%以上100%以下である。当該範囲内にない場合、型内発泡成形時に蒸気加熱による発泡性に劣り、得られるスチレン改質ポリエチレン系樹脂型内発泡成形体が収縮したり物性低下が生じるおそれがある。 The closed cell ratio of the styrene-modified polyethylene resin pre-expanded particles of the present invention is preferably 88% or more and 100% or less, more preferably 92% or more and 100% or less, and still more preferably 95% or more and 100% or less. . When it is not within the range, foamability by steam heating is inferior at the time of in-mold foam molding, and the resulting styrene-modified polyethylene resin in-mold foam-molded product may shrink or physical properties may be lowered.
本発明のスチレン改質ポリエチレン系樹脂予備発泡粒子の発泡倍率は、3倍以上60倍以下であり、好ましくは4倍以上50倍以下であり、さらに好ましくは5倍以上40倍以下である。当該範囲外の場合、連泡率が上昇するなど、型内発泡成形の成形性およびチレン改質ポリエチレン系樹脂型内発泡成形体の物性が低下するおそれがある。 The expansion ratio of the styrene-modified polyethylene resin pre-expanded particles of the present invention is 3 to 60 times, preferably 4 to 50 times, more preferably 5 to 40 times. If it is outside the range, the moldability of in-mold foam molding and the physical properties of the styrene-modified polyethylene-based resin in-mold foam molding may be lowered, for example, the open cell ratio is increased.
高い発泡倍率のビーズを得るためには、一旦、前記の発泡方法で製造した、好ましくは発泡倍率が3倍以上25倍以下のスチレン改質ポリエチレン系樹脂予備発泡粒子を、無機ガスを用いて加圧することにより該スチレン改質ポリエチレン系樹脂予備発泡粒子内の圧力を大気圧よりも高くした後、加熱することにより、更に発泡させるという、いわゆる二段発泡法でさらに高い発泡倍率のスチレン改質ポリエチレン系樹脂予備発泡粒子とすることができる。 In order to obtain beads with a high expansion ratio, styrene-modified polyethylene resin pre-expanded particles that have been produced by the above-described foaming method, preferably with a expansion ratio of 3 to 25 times, are added using an inorganic gas. The styrene-modified polyethylene having a higher expansion ratio by a so-called two-stage foaming method in which the pressure in the styrene-modified polyethylene-based resin pre-expanded particles is increased by higher pressure than atmospheric pressure and then further heated by heating. -Based resin pre-expanded particles.
二段発泡法により発泡倍率を高くする場合、元の予備発泡粒子の発泡倍率から7倍以内の発泡倍率にすることが望ましい。発泡倍率が低いスチレン改質ポリエチレン系樹脂予備発泡粒子であっても、二段発泡法を用いることにより、高い倍率のスチレン改質ポリエチレン系樹脂予備発泡粒子とすることが出来る。 When the expansion ratio is increased by the two-stage expansion method, it is desirable that the expansion ratio is within 7 times the expansion ratio of the original pre-expanded particles. Even the styrene-modified polyethylene resin pre-expanded particles having a low expansion ratio can be made into styrene-modified polyethylene resin pre-expanded particles having a high magnification by using the two-stage expansion method.
本発明によって得られるスチレン改質ポリエチレン系樹脂予備発泡粒子の平均気泡径は50μm以上800μm以下であることが好ましく、より好ましくは70μm以上600μm以下、さらに好ましくは100μm以上500μm以下である。当該範囲内であると、型内発泡成形を行う場合に成形性が良好であり、物性も良好なスチレン改質ポリエチレン系樹脂型内発泡成形体が得られる傾向にある。平均気泡径は、スチレン改質ポリエチレン系樹脂予備発泡粒子の中から任意に30個の予備発泡粒子を取り出し、JIS K6402に従い測定する。 The average cell diameter of the styrene-modified polyethylene resin pre-expanded particles obtained by the present invention is preferably 50 μm or more and 800 μm or less, more preferably 70 μm or more and 600 μm or less, and further preferably 100 μm or more and 500 μm or less. Within this range, a styrene-modified polyethylene resin in-mold foam molded article having good moldability and good physical properties when performing in-mold foam molding tends to be obtained. The average cell diameter is measured in accordance with JIS K6402 by arbitrarily removing 30 pre-expanded particles from styrene-modified polyethylene resin pre-expanded particles.
本発明のスチレン改質ポリエチレン系樹脂予備発泡粒子を型内発泡成形する場合には、イ)そのまま用いる方法、ロ)あらかじめスチレン改質ポリエチレン系樹脂予備発泡粒子中に空気等の無機ガスを圧入し、発泡能を付与する方法、ハ)スチレン改質ポリエチレン系樹脂予備発泡粒子を圧縮状態で金型内に充填し型内発泡成形する方法、などの方法が使用しうる。 In the case where the styrene-modified polyethylene resin pre-foamed particles of the present invention are subjected to in-mold foam molding, a) a method of using the styrene-modified polyethylene resin pre-foamed particles, and b) an inorganic gas such as air is press-fitted into the styrene-modified polyethylene resin pre-foamed particles in advance. And (c) a method of imparting foaming ability, and (c) a method of filling pre-expanded styrene-modified polyethylene resin particles in a mold in a compressed state and foam-molding in the mold, and the like.
本発明のスチレン改質ポリエチレン系樹脂予備発泡粒子からスチレン改質ポリエチレン系樹脂型内発泡成形体を型内発泡成形する具体的方法としては、たとえばあらかじめスチレン改質ポリエチレン系樹脂予備発泡粒子を耐圧容器内で空気加圧し、スチレン改質ポリエチレン系樹脂予備発泡粒子に空気を圧入することにより発泡能を付与し、これを2つの金型よりなる閉鎖しうるが密閉し得ない成形空間内に充填し、水蒸気などを加熱媒体として0.03〜0.2MPa程度の水蒸気圧で3〜70秒程度の加熱時間で成形し、スチレン改質ポリエチレン系樹脂予備発泡粒子同士を融着させ、このあと金型を水冷などにより冷却した後、金型を開き、スチレン改質ポリエチレン系樹脂型内発泡成形体を得る方法などが挙げられる。 As a specific method for in-mold foam-molding of a styrene-modified polyethylene resin in-mold foam molded body from the styrene-modified polyethylene resin pre-foamed particles of the present invention, for example, the styrene-modified polyethylene resin pre-foamed particles are preliminarily formed into a pressure vessel. The inside of the styrene-modified polyethylene resin pre-expanded particles is given a foaming ability by pressurizing the air into the molding space that can be closed but cannot be sealed. Then, using water vapor as a heating medium and molding at a water vapor pressure of about 0.03 to 0.2 MPa for a heating time of about 3 to 70 seconds, the pre-expanded particles of styrene-modified polyethylene resin are fused together, and then a mold And a method of obtaining a styrene-modified polyethylene resin-in-mold foam-molded product after cooling the mold by water cooling or the like.
本発明のスチレン改質ポリエチレン系樹脂予備発泡粒子を用いて得られるスチレン改質ポリエチレン系樹脂型内発泡成形体の密度は、10kg/m3以上300kg/m3以下であることが好ましく、より好ましくは15kg/m3以上250kg/m3以下、さらに好ましくは15kg/m3以上150kg/m3以下である。 The density of the styrene-modified polyethylene resin-in-mold foam-molded article obtained using the styrene-modified polyethylene resin pre-expanded particles of the present invention is preferably 10 kg / m 3 or more and 300 kg / m 3 or less, more preferably. Is 15 kg / m 3 or more and 250 kg / m 3 or less, more preferably 15 kg / m 3 or more and 150 kg / m 3 or less.
また、スチレン改質ポリエチレン系樹脂予備発泡粒子を用いて得られるスチレン改質ポリエチレン系樹脂型内発泡成形体の静的圧縮強度とは、型内発泡成形体を徐々に圧縮していったときに生じる各歪時の応力である。静的圧縮応力は、NDS Z 0504−69に準拠し50mm×50mm×25mmのサンプルを10mm/minの試験速度で圧縮し、応力を測定した。 In addition, the static compression strength of the styrene-modified polyethylene resin in-mold foam molding obtained by using the styrene-modified polyethylene resin pre-expanded particles means that the in-mold foam molding is gradually compressed. It is the stress at each strain that occurs. The static compressive stress was measured by compressing a 50 mm × 50 mm × 25 mm sample at a test speed of 10 mm / min in accordance with NDS Z 0504-69.
以下に実施例および比較例を挙げるが、これによって本発明は制限されるものではない。尚、測定、評価については以下の通り実施した。 Examples and Comparative Examples are given below, but the present invention is not limited thereby. Measurement and evaluation were performed as follows.
<発泡倍率>
スチレン改質ポリエチレン系樹脂予備発泡粒子の重量w(g)およびエタノール水没体積v(cm3)を求め、発泡前のスチレン改質ポリエチレン系樹脂粒子の密度d(g/cm3)から次式により求めたものである。
発泡倍率=d×v/w
<Foaming ratio>
The weight w (g) of the styrene-modified polyethylene resin pre-expanded particles and the ethanol submerged volume v (cm 3 ) are obtained, and the density d (g / cm 3 ) of the styrene-modified polyethylene resin particles before foaming is obtained by the following equation. It is what I have sought.
Foaming ratio = d × v / w
<独立気泡率>
空気比較式比重計(BECKMAN社製930型)を用いて、得られたスチレン改質ポリエチレン系樹脂予備発泡粒子の独立気泡体積を求め、かかる独立気泡体積を別途エタノール浸漬法で求めた見かけ体積で除することにより独立気泡率を算出した。
<Closed cell ratio>
Using an air comparison type hydrometer (type 930 manufactured by BECKMAN), the closed cell volume of the obtained styrene-modified polyethylene resin pre-expanded particles was obtained, and the closed cell volume was determined by an ethanol immersion method. The closed cell ratio was calculated by dividing.
<平均気泡径>
スチレン改質ポリエチレン系樹脂予備発泡粒子の中から任意に30個の予備発泡粒子を取り出し、JIS K6402に準拠して気泡径を測定し、平均気泡径を算出した。
<Average bubble diameter>
Thirty pre-expanded particles were arbitrarily taken out from the styrene-modified polyethylene resin pre-expanded particles, the bubble diameter was measured according to JIS K6402, and the average bubble diameter was calculated.
<キシレンに不溶なゲル量>
200メッシュの金網袋中に0.4gの予備発泡粒子を入れ、大気圧下で沸騰させたキシレン450ml中に2時間浸漬して冷却後に一旦取り出し、更に新たに沸騰させたキシレン中に樹脂を1時間浸漬して冷却後にキシレンから取り出す。その後、同様に2時間、1時間の浸漬、溶出を繰り返し、その後、常温下で1晩液切りをした後に150℃のオーブン中で1時間乾燥させ、常温まで自然冷却させ、冷却後の残留分をゲル成分とし、初期の予備発泡粒子に対するゲル成分の量の重量比率を求めた。
<Amount of gel insoluble in xylene>
Place 0.4 g of pre-expanded particles in a 200-mesh wire mesh bag, immerse in 450 ml of xylene boiled under atmospheric pressure for 2 hours, take it out after cooling, and then add 1 resin into the newly boiled xylene. Immerse for a time and remove from xylene after cooling. Thereafter, the immersion and elution were repeated for 2 hours and 1 hour in the same manner. After that, the liquid was drained overnight at room temperature, dried in an oven at 150 ° C. for 1 hour, naturally cooled to room temperature, and the remaining content after cooling. Was the gel component, and the weight ratio of the amount of the gel component to the initial pre-expanded particles was determined.
<スチレン改質ポリエチレン系樹脂型内発泡成形体の表面性>
スチレン改質ポリエチレン系樹脂型内発泡成形体の外観を以下の基準で判断した。
○:予備発泡粒子間の隙間が見当たらない
△:所々隙間があるが全体としては許容レベル
×:隙間が多い
<Surface properties of styrene-modified polyethylene resin in-mold foam molding>
The appearance of the styrene-modified polyethylene resin-in-mold foam-molded product was judged according to the following criteria.
○: There are no gaps between the pre-expanded particles. Δ: There are gaps in some places, but the tolerance level as a whole ×: There are many gaps.
<50%圧縮時の圧縮応力>
NDS Z 0504−69に準拠し、型内発泡成形体からバーチカルスライサーにて50mm×50mm×25mmに切り出し、すべての面が切り出し面となるような試験片を作製する。50mm×50mmの面が上下になるようにして10mm/minの試験速度で圧縮試験を実施し、50%圧縮時の圧縮応力を測定した。
<Compression stress at 50% compression>
In accordance with NDS Z 0504-69, 50 mm × 50 mm × 25 mm is cut out from the in-mold foam-molded product with a vertical slicer, and a test piece is prepared so that all surfaces become cut surfaces. A compression test was performed at a test speed of 10 mm / min so that the surface of 50 mm × 50 mm was up and down, and the compression stress at 50% compression was measured.
試験片の密度は、重量w(g)、縦、横、厚みの長さから体積v(cm3)を求め、次式により求めたものである。
試験片密度=w/v(g/cm3)
The density of the test piece is obtained from the following equation by determining the volume v (cm 3 ) from the weight w (g), length, width, and thickness length.
Test piece density = w / v (g / cm 3 )
(スチレン改質ポリエチレン系樹脂粒子の製造)
ポリエチレン系樹脂として住友化学株式会社製「エバテートF1103−1」を使用し、ポリエチレン系樹脂100重量部に対してタルク0.2重量部を混合し押出機内で溶融混合して造粒し、水中に押出した直後にカッティングすることで粒重量約1mg/粒の球状のポリエチレン系樹脂粒子を作製した。
(Manufacture of styrene-modified polyethylene resin particles)
Using "Evaate F1103-1" manufactured by Sumitomo Chemical Co., Ltd. as the polyethylene resin, 0.2 part by weight of talc is mixed with 100 parts by weight of the polyethylene resin, melt-mixed in the extruder, granulated, and submerged in water. By cutting immediately after extrusion, spherical polyethylene resin particles having a particle weight of about 1 mg / particle were produced.
続いて6Lオートクレーブに水150重量部、第3リン酸カルシウム2重量部、α−オレフィンスルホン酸ソーダ0.048重量部、ポリエチレン系樹脂粒子35重量部を懸濁させ、スチレン17.5重量部に、重合開始剤として過酸化ベンゾイル0.26重量部(10時間半減期温度:74℃)、ラジカル種発生型架橋剤として、t−ブチルパーオキシベンゾエート(10時間半減期温度:104℃)0.65重量部を溶解させた溶液を添加した。その後、この水系懸濁液を70℃まで昇温し、30分間維持することでポリエチレン系樹脂粒子にスチレン単量体溶液を含浸させた。更に、85℃まで昇温し、スチレン単量体47.5重量部を2時間40分かけて反応系中に滴下し重合を行い、追加終了1時間後に120℃まで昇温して50分保持し、冷却後、洗浄・脱水・乾燥することによりスチレン改質ポリエチレン系樹脂粒子を得た。 Subsequently, 150 parts by weight of water, 2 parts by weight of tricalcium phosphate, 0.048 parts by weight of sodium α-olefin sulfonate, and 35 parts by weight of polyethylene resin particles are suspended in a 6 L autoclave and polymerized to 17.5 parts by weight of styrene. 0.26 parts by weight of benzoyl peroxide as an initiator (10-hour half-life temperature: 74 ° C.), and t-butyl peroxybenzoate (10-hour half-life temperature: 104 ° C.) as a radical species-generating crosslinking agent 0.65 weight The solution in which the part was dissolved was added. Thereafter, this aqueous suspension was heated to 70 ° C. and maintained for 30 minutes to impregnate the polyethylene resin particles with the styrene monomer solution. Further, the temperature was raised to 85 ° C., 47.5 parts by weight of a styrene monomer was dropped into the reaction system over 2 hours and 40 minutes to perform polymerization, and after 1 hour from the completion of the addition, the temperature was raised to 120 ° C. and held for 50 minutes. After cooling, washing, dehydration, and drying were performed to obtain styrene-modified polyethylene resin particles.
(実施例1〜6)
10Lオートクレーブに水300重量部、第3リン酸カルシウム2.0重量部、n−パラフィンスルホン酸ソーダ0.02重量部、スチレン改質ポリエチレン系樹脂粒子100重量部、表1に示す量のセバシン酸ジブチルを仕込み、炭酸ガスにて1.0MPaまで加圧した。これらの混合物を表1に示す発泡温度まで加温した後、炭酸ガスにより表1に示す発泡圧力に調整し、50分間保持した。温度、圧力を保持しつつ耐圧容器下部のバルブを開いて水分散物を開孔径4.0mmφのオリフィス板を通して飽和水蒸気で満たされた筒に放出することによって、スチレン改質ポリエチレン系樹脂予備発泡粒子を得た。得られた予備発泡粒子について、発泡倍率、独立気泡率を測定した。結果は表1に示した。
(Examples 1-6)
In a 10 L autoclave, 300 parts by weight of water, 2.0 parts by weight of tricalcium phosphate, 0.02 parts by weight of sodium n-paraffin sulfonate, 100 parts by weight of styrene-modified polyethylene resin particles, and dibutyl sebacate in the amount shown in Table 1 were added. The mixture was charged and pressurized to 1.0 MPa with carbon dioxide gas. These mixtures were heated to the foaming temperature shown in Table 1, adjusted to the foaming pressure shown in Table 1 with carbon dioxide, and held for 50 minutes. While maintaining the temperature and pressure, the valve at the bottom of the pressure vessel is opened, and the aqueous dispersion is discharged through a orifice plate having an aperture diameter of 4.0 mm into a cylinder filled with saturated water vapor, thereby pre-expanding particles of styrene-modified polyethylene resin Got. About the obtained pre-expanded particle, the expansion ratio and the closed cell ratio were measured. The results are shown in Table 1.
得られたスチレン改質ポリエチレン系樹脂予備発泡粒子内に空気含浸により0.15〜0.5MPaの内圧を付与し、0.04〜0.08MPa(ゲージ圧)の蒸気により加熱し、発泡倍率約20倍のスチレン改質ポリエチレン系樹脂予備発泡粒子を得た。得られた予備発泡粒子について、独立気泡率、平均気泡径、ゲル量を測定した。結果は表2に示した。 The obtained styrene-modified polyethylene resin pre-expanded particles are impregnated with air to give an internal pressure of 0.15 to 0.5 MPa, heated with steam of 0.04 to 0.08 MPa (gauge pressure), and an expansion ratio of about 20-fold styrene-modified polyethylene resin pre-expanded particles were obtained. The obtained pre-expanded particles were measured for closed cell ratio, average cell diameter, and gel amount. The results are shown in Table 2.
次に、耐圧容器内で空気加圧し0.14〜0.17MPaの内圧を付与したスチレン改質ポリエチレン系樹脂予備発泡粒子を400mm×300mm×60mmの金型に充填し、予備発泡粒子同士を圧力0.10MPa(ゲージ圧)の水蒸気で加熱、融着させ、スチレン改質ポリエチレン系樹脂型内発泡成形体を得た。得られた型内発泡成形体について、表面性、および、50%圧縮時の圧縮応力、試験片密度を測定した。結果は表2に示した。 Next, pre-expanded styrene-modified polyethylene resin pre-expanded particles, which are pressurized with air in a pressure-resistant container and applied with an internal pressure of 0.14 to 0.17 MPa, are filled in a 400 mm × 300 mm × 60 mm mold, and the pre-expanded particles are pressurized together. Heating and fusing with water vapor of 0.10 MPa (gauge pressure) gave a styrene-modified polyethylene resin in-mold foam molded product. About the obtained in-mold foam molded article, surface properties, compression stress at 50% compression, and test piece density were measured. The results are shown in Table 2.
(実施例7)
実施例3と同じ方法で除圧発泡を行い、発泡倍率9.2倍のスチレン改質ポリエチレン系樹脂予備発泡粒子を得た。得られた予備発泡粒子について、独立気泡率、平均気泡径、ゲル量を測定した。結果は表2に示した。
(Example 7)
Depressurization foaming was performed in the same manner as in Example 3 to obtain styrene-modified polyethylene resin pre-foamed particles having a foaming ratio of 9.2 times. The obtained pre-expanded particles were measured for closed cell ratio, average cell diameter, and gel amount. The results are shown in Table 2.
次に、上記実施例1〜6と同様の方法で型内発泡成形を行い、スチレン改質ポリエチレン系樹脂型内発泡成形体を得た。得られた型内発泡成形体について、表面性、および、50%圧縮時の圧縮応力、試験片密度を測定した。結果は表2に示した。 Next, in-mold foam molding was performed in the same manner as in Examples 1 to 6 to obtain a styrene-modified polyethylene resin in-mold foam molded body. About the obtained in-mold foam molded article, surface properties, compression stress at 50% compression, and test piece density were measured. The results are shown in Table 2.
(比較例1)
10Lオートクレーブに水300重量部、セバシン酸ジブチル0.5重量部、第3リン酸カルシウム2.0重量部、n−パラフィンスルホン酸ソーダ0.02重量部、スチレン改質ポリエチレン系樹脂粒子100重量部を仕込み、発泡剤としてノルマルリッチブタン(ノルマルブタン/イソブタン=70/30)22重量部をオートクレーブに添加した。これらの混合物を140度まで加温した後、ノルマルリッチブタンにて圧力を2.30MPaに調製し、50分間保持した。温度、圧力を保持しつつ耐圧容器下部のバルブを開いて水分散物を開孔径4.0mmφのオリフィス板を通して大気下に放出することによって、発泡倍率約20倍のスチレン改質ポリエチレン系樹脂予備発泡粒子を得た。得られた予備発泡粒子について、独立気泡率、平均気泡径、ゲル量を測定した。結果は表2に示した。
(Comparative Example 1)
A 10 L autoclave is charged with 300 parts by weight of water, 0.5 parts by weight of dibutyl sebacate, 2.0 parts by weight of tricalcium phosphate, 0.02 parts by weight of sodium n-paraffin sulfonate, and 100 parts by weight of styrene-modified polyethylene resin particles. Then, 22 parts by weight of normal rich butane (normal butane / isobutane = 70/30) was added to the autoclave as a blowing agent. After these mixtures were heated to 140 ° C., the pressure was adjusted to 2.30 MPa with normal rich butane and held for 50 minutes. While maintaining the temperature and pressure, the valve at the bottom of the pressure vessel is opened, and the aqueous dispersion is discharged into the atmosphere through an orifice plate having a hole diameter of 4.0 mmφ, thereby pre-foaming a styrene-modified polyethylene resin having a foaming ratio of about 20 times. Particles were obtained. The obtained pre-expanded particles were measured for closed cell ratio, average cell diameter, and gel amount. The results are shown in Table 2.
次に、上記実施例と同様の方法で型内発泡成形を行い、スチレン改質ポリエチレン系樹脂型内発泡成形体を得た。得られた型内発泡成形体について、表面性、および、50%圧縮時の圧縮応力、試験片密度を測定した。結果は表2に示した。 Next, in-mold foam molding was performed in the same manner as in the above example to obtain a styrene-modified polyethylene resin in-mold foam molded body. About the obtained in-mold foam molded article, surface properties, compression stress at 50% compression, and test piece density were measured. The results are shown in Table 2.
(比較例2)
10Lオートクレーブに水300重量部、セバシン酸ジブチル0.5重量部、第3リン酸カルシウム2.0重量部、n−パラフィンスルホン酸ソーダ0.02重量部、スチレン改質ポリエチレン系樹脂粒子100重量部を仕込み、発泡剤としてノルマルリッチブタン(ノルマルブタン/イソブタン=70/30)16重量部をオートクレーブに添加した。これらの混合物を140度まで加温した後、ノルマルリッチブタンにて圧力を1.80MPaに調製し、50分間保持した。温度、圧力を保持しつつ耐圧容器下部のバルブを開いて水分散物を開孔径4.0mmφのオリフィス板を通して大気下に放出することによって、発泡倍率約9.5倍のスチレン改質ポリエチレン系樹脂予備発泡粒子を得た。得られた予備発泡粒子について、独立気泡率、平均気泡径、ゲル量を測定した。結果は表2に示した。
(Comparative Example 2)
A 10 L autoclave is charged with 300 parts by weight of water, 0.5 parts by weight of dibutyl sebacate, 2.0 parts by weight of tricalcium phosphate, 0.02 parts by weight of sodium n-paraffin sulfonate, and 100 parts by weight of styrene-modified polyethylene resin particles. As a blowing agent, 16 parts by weight of normal rich butane (normal butane / isobutane = 70/30) was added to the autoclave. After these mixtures were heated to 140 ° C., the pressure was adjusted to 1.80 MPa with normal rich butane and held for 50 minutes. While maintaining the temperature and pressure, the valve at the bottom of the pressure vessel is opened, and the aqueous dispersion is discharged into the atmosphere through an orifice plate having a hole diameter of 4.0 mmφ, so that a styrene-modified polyethylene resin having an expansion ratio of about 9.5 times is obtained. Pre-expanded particles were obtained. The obtained pre-expanded particles were measured for closed cell ratio, average cell diameter, and gel amount. The results are shown in Table 2.
次に、上記実施例と同様の方法で型内発泡成形を行い、スチレン改質ポリエチレン系樹脂型内発泡成形体を得た。得られた型内発泡成形体について、表面性、および、50%圧縮時の圧縮応力、試験片密度を測定した。結果は表2に示した。 Next, in-mold foam molding was performed in the same manner as in the above example to obtain a styrene-modified polyethylene resin in-mold foam molded body. About the obtained in-mold foam molded article, surface properties, compression stress at 50% compression, and test piece density were measured. The results are shown in Table 2.
安全で環境への影響も少ない無機ガスを用いた場合にも、有機系発泡剤を用いた場合と同等の予備発泡粒子および型内発泡成形体が得られた。また、50%圧縮時の圧縮応力に関しては無機ガスを用いた場合の方が、5〜10%高い結果となった。 Even when an inorganic gas that is safe and has little impact on the environment was used, pre-expanded particles and in-mold foam molded articles equivalent to those obtained using an organic foaming agent were obtained. Further, regarding the compressive stress at the time of 50% compression, the result when the inorganic gas was used was 5 to 10% higher.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009235990A JP2011084593A (en) | 2009-10-13 | 2009-10-13 | Method for producing styrene-modified polyethylene-based resin preliminary foamed particles |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009235990A JP2011084593A (en) | 2009-10-13 | 2009-10-13 | Method for producing styrene-modified polyethylene-based resin preliminary foamed particles |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2011084593A true JP2011084593A (en) | 2011-04-28 |
Family
ID=44077791
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009235990A Pending JP2011084593A (en) | 2009-10-13 | 2009-10-13 | Method for producing styrene-modified polyethylene-based resin preliminary foamed particles |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2011084593A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014177565A (en) * | 2013-03-15 | 2014-09-25 | Kaneka Corp | Styrene-modified polyethylene-based pre-expanded particle and molding thereof |
JP2015124299A (en) * | 2013-12-26 | 2015-07-06 | 株式会社カネカ | Styrene-modified polyethylene-based pre-expanded particles and molded article thereof |
JP2016190551A (en) * | 2015-03-31 | 2016-11-10 | 株式会社ジェイエスピー | Interior parts for vehicles |
JP2021054931A (en) * | 2019-09-30 | 2021-04-08 | 積水化成品工業株式会社 | Styrene composite polyethylene based resin foam particulate, production method thereof, and foam molded article |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005139349A (en) * | 2003-11-07 | 2005-06-02 | Jsp Corp | Method for producing in-mold foam molding |
JP2008239910A (en) * | 2007-03-29 | 2008-10-09 | Sekisui Plastics Co Ltd | Method for producing modified polystyrene resin particles, expandable modified polystyrene resin particles, modified polystyrene resin foam particles, modified polystyrene resin foam molding |
JP2008274133A (en) * | 2007-04-27 | 2008-11-13 | Sekisui Plastics Co Ltd | Expandable resin particles and method for producing the same |
JP2009024140A (en) * | 2007-07-23 | 2009-02-05 | Kaneka Corp | Method for producing preliminarily foamed particle of polyolefin-based resin |
JP2009161749A (en) * | 2007-12-13 | 2009-07-23 | Kaneka Corp | Method for producing pre-expanded particle of styrene modified polyethylene-based resin and foamed molding |
JP2010270209A (en) * | 2009-05-20 | 2010-12-02 | Jsp Corp | Modified resin foam particles and molded articles thereof |
-
2009
- 2009-10-13 JP JP2009235990A patent/JP2011084593A/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005139349A (en) * | 2003-11-07 | 2005-06-02 | Jsp Corp | Method for producing in-mold foam molding |
JP2008239910A (en) * | 2007-03-29 | 2008-10-09 | Sekisui Plastics Co Ltd | Method for producing modified polystyrene resin particles, expandable modified polystyrene resin particles, modified polystyrene resin foam particles, modified polystyrene resin foam molding |
JP2008274133A (en) * | 2007-04-27 | 2008-11-13 | Sekisui Plastics Co Ltd | Expandable resin particles and method for producing the same |
JP2009024140A (en) * | 2007-07-23 | 2009-02-05 | Kaneka Corp | Method for producing preliminarily foamed particle of polyolefin-based resin |
JP2009161749A (en) * | 2007-12-13 | 2009-07-23 | Kaneka Corp | Method for producing pre-expanded particle of styrene modified polyethylene-based resin and foamed molding |
JP2010270209A (en) * | 2009-05-20 | 2010-12-02 | Jsp Corp | Modified resin foam particles and molded articles thereof |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014177565A (en) * | 2013-03-15 | 2014-09-25 | Kaneka Corp | Styrene-modified polyethylene-based pre-expanded particle and molding thereof |
JP2015124299A (en) * | 2013-12-26 | 2015-07-06 | 株式会社カネカ | Styrene-modified polyethylene-based pre-expanded particles and molded article thereof |
JP2016190551A (en) * | 2015-03-31 | 2016-11-10 | 株式会社ジェイエスピー | Interior parts for vehicles |
JP2021054931A (en) * | 2019-09-30 | 2021-04-08 | 積水化成品工業株式会社 | Styrene composite polyethylene based resin foam particulate, production method thereof, and foam molded article |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4718597B2 (en) | Styrene-modified polypropylene resin particles, expandable styrene-modified polypropylene resin particles, styrene-modified polypropylene resin foam particles, styrene-modified polypropylene resin foam moldings | |
JP5815934B2 (en) | Method for producing composite resin expanded particles, and composite resin expanded particles | |
JPWO2010110337A1 (en) | Method for reducing volatile organic compounds in composite resin particles and composite resin particles | |
JP5553983B2 (en) | Styrene-modified polyethylene resin particles and pre-expanded particles obtained from the resin particles | |
JP2008260928A (en) | Method for producing styrene modified polyethylene based resin pre-expansion particle | |
JP2011084593A (en) | Method for producing styrene-modified polyethylene-based resin preliminary foamed particles | |
JP6029500B2 (en) | Styrene-modified polyethylene pre-expanded particles and molded articles thereof | |
JP5664238B2 (en) | Styrene-modified polyethylene resin pre-expanded particles and foam-molded article comprising the styrene-modified polyethylene resin pre-expanded particles | |
JP5493606B2 (en) | Styrene-modified polyethylene resin foamed molded article and method for producing styrene-modified polyethylene resin pre-expanded particles | |
JP4747650B2 (en) | Modified polyethylene resin pre-expanded particles and method for producing the same | |
JP5422970B2 (en) | Method for producing pre-expanded particles of styrene-modified polyethylene resin | |
JP2004131722A (en) | Expandable styrene-based resin particles and expanded styrene-based resin | |
JP5536357B2 (en) | Method for producing pre-expanded particles of styrene-modified polyethylene resin and styrene-modified polyethylene resin foam | |
JP2014189769A (en) | Modified polystyrenic foamable resin particles, method for manufacturing the same, foam particles, and foam molding | |
JP5518562B2 (en) | Method for producing pre-expanded particles of styrene-modified polyethylene resin | |
JP2011068776A (en) | Foam-molded article | |
JP5101358B2 (en) | Method for producing pre-expanded styrene-modified polyethylene resin particles, styrene-modified polyethylene resin pre-expanded particles obtained from the production method, and styrene-modified polyethylene resin foam molded article | |
JP2009102632A (en) | Styrene modified polyethylene based resin prefoamed particle, and foam formed of the prefoamed particle | |
JP2020050790A (en) | Styrene-compounded polyethylene-based resin foam particles, manufacturing method thereof, and foam molded body | |
JP6081266B2 (en) | Foam molding | |
JP6298624B2 (en) | Styrene-modified polyethylene pre-expanded particles and molded articles thereof | |
JP2010043195A (en) | Method for producing pre-expanded particle of styrene-modified polyethylene-based resin and foamed molding of styrene-modified polyethylene-based resin | |
JP2010270284A (en) | Styrene-modified polyethylene resin foamed molded article | |
JP6228610B2 (en) | Polystyrene-based composite resin particles, expandable composite resin particles, pre-expanded particles, and method for producing expanded molded body | |
JP4832716B2 (en) | Small particle size styrenic expandable resin particles, expanded beads and molded products |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20120821 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130827 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20130830 |
|
A02 | Decision of refusal |
Effective date: 20140107 Free format text: JAPANESE INTERMEDIATE CODE: A02 |