[go: up one dir, main page]

JP2011079946A - Manufacturing method for polyamide silicone copolymer - Google Patents

Manufacturing method for polyamide silicone copolymer Download PDF

Info

Publication number
JP2011079946A
JP2011079946A JP2009232772A JP2009232772A JP2011079946A JP 2011079946 A JP2011079946 A JP 2011079946A JP 2009232772 A JP2009232772 A JP 2009232772A JP 2009232772 A JP2009232772 A JP 2009232772A JP 2011079946 A JP2011079946 A JP 2011079946A
Authority
JP
Japan
Prior art keywords
aromatic
group
diorganopolysiloxane
dicarboxylic acid
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009232772A
Other languages
Japanese (ja)
Other versions
JP5646153B2 (en
Inventor
Kazuhiro Nishijima
一裕 西嶋
Sunao Okawa
直 大川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DuPont Toray Specialty Materials KK
Original Assignee
Dow Corning Toray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dow Corning Toray Co Ltd filed Critical Dow Corning Toray Co Ltd
Priority to JP2009232772A priority Critical patent/JP5646153B2/en
Publication of JP2011079946A publication Critical patent/JP2011079946A/en
Application granted granted Critical
Publication of JP5646153B2 publication Critical patent/JP5646153B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Polyamides (AREA)
  • Silicon Polymers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To attain effective utilization of a both-terminal end amino group blocked diorganopolysiloxane in the form of a mixture of an α-adduct and a β-adduct. <P>SOLUTION: The manufacturing method for the polyamide silicone polymer is characterized in that (A) the both-terminal end amino-modified diorganopolysiloxane having groups represented by the formula: -B-NH<SB>2</SB>(B represents divalent hydrocarbon group) at both terminal ends of the molecule chain obtained by addition-reacting (a1) a diorganopolysiloxane having silicon atom-bonded hydrogen atoms at both terminal ends of the molecule chain and (a2) an active hydrogen non-protected amine represented by the formula: R<SP>1</SP>-NH<SB>2</SB>(R<SP>1</SP>represents a monovalent unsaturated hydrocarbon group), (B) an aromatic or aliphatic diamine, and (C) an aromatic or aliphatic dicarboxylic acid or its reactive derivative are reacted with each other. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、ポリアミド部位とポリシロキサン部位を含むポリアミドシリコーンポリマーの製造方法に関する。   The present invention relates to a method for producing a polyamide silicone polymer comprising a polyamide moiety and a polysiloxane moiety.

ポリアミドシリコーンコポリマーは化粧品用ゲル化剤、分離膜、抗血栓材料など種々の用途に使用される高強度の熱可塑性シリコーンコポリマーである。ポリアミドシリコーンコポリマーは、通常、両末端アミノ基封鎖ジオルガノポリシロキサン、脂肪族又は芳香族ジアミン、及び、脂肪族若しくは芳香族カルボン酸又はその反応性誘導体との重縮合反応によって製造される。  Polyamide silicone copolymers are high strength thermoplastic silicone copolymers used in various applications such as cosmetic gelling agents, separation membranes, antithrombotic materials. Polyamide silicone copolymers are usually produced by a polycondensation reaction between a diaminopolysiloxane having both ends of an amino group blocked, an aliphatic or aromatic diamine, and an aliphatic or aromatic carboxylic acid or a reactive derivative thereof.

前記両末端アミノ基封鎖ジオルガノポリシロキサンは、一般に、(1)シリル化アルケニルアミンを両末端Si−H封鎖ポリシロキサンに付加し、脱シリル化反応を行うか、又は、(2)シリル化アルケニルアミンをテトラメチルジシロキサンに付加してから、脱シリル化を行い、得られたジアミノジシロキサンを末端封止剤として塩基触媒による平衡重合を行って得られる。  In general, the both-terminal amino group-capped diorganopolysiloxane is generally obtained by adding (1) silylated alkenylamine to both-terminal Si-H capped polysiloxane and performing a desilylation reaction, or (2) silylated alkenyl. After adding an amine to tetramethyldisiloxane, desilylation is performed, and the resulting diaminodisiloxane is used as a terminal blocking agent to perform equilibrium polymerization using a base catalyst.

これらの(1)及び(2)の従来プロセスではシリル化アルケニルアミンを使用しているので、シリル化アルケニルアミンのアルケニル基の末端に両末端Si−H封鎖ポリシロキサン又はテトラメチルジシロキサンが付加したβ−付加体を得ることができ、アルケニル基の内部に両末端Si−H封鎖ポリシロキサン又はテトラメチルジシロキサンが付加したα−付加体は殆ど生成しない。  In these conventional processes (1) and (2), silylated alkenylamines are used, so that Si-H blocked polysiloxane or tetramethyldisiloxane is added to both ends of the alkenyl groups of silylated alkenylamines. A β-adduct can be obtained, and an α-adduct in which both terminal Si—H blocked polysiloxane or tetramethyldisiloxane is added to the inside of the alkenyl group is hardly formed.

特開平11−209385号公報には、α−付加体を多量に含むジアミノプロピルジシロキサンによって変性されたポリイミドはα−付加体を含まないジアミノプロピルジシロキサンによって変性されたポリイミドと比べて耐熱性等の性能が低下することが記載されている。したがって、これらの(1)及び(2)の従来プロセスは、特開平11−209385号公報では優れているとされる、α−付加体を含まない両末端アミノ基封鎖ジオルガノポリシロキサンの合成には好ましいものである。しかしながら、これらの従来プロセスはいずれもシリル化−付加−脱シリル化、又は、シリル化−付加−脱シリル化−重合という極めて煩雑な工程を必要とし、生産性が低い。  In JP-A-11-209385, polyimide modified with diaminopropyldisiloxane containing a large amount of α-adduct is more resistant to heat and the like than polyimide modified with diaminopropyldisiloxane not containing α-adduct. It is described that the performance of the is reduced. Therefore, these conventional processes (1) and (2) are used for synthesizing diorganopolysiloxanes with amino group-blocked diorganopolysiloxanes that do not contain α-adducts, which are considered excellent in JP-A-11-209385. Is preferred. However, all of these conventional processes require extremely complicated steps of silylation-addition-desilylation or silylation-addition-desilylation-polymerization, and the productivity is low.

そこで、特開平2−49793号公報、及び、特表2003−508403号公報には、活性水素を保護していないアルケニルアミンを両末端Si−H封鎖ポリシロキサンに直接付加して両末端アミノ基封鎖ジオルガノポリシロキサンを得る方法が提案されている。しかしながら、この方法では両末端アミノ基封鎖ジオルガノポリシロキサンがα−付加体とβ−付加体の混合物として得られてしまう。   Therefore, Japanese Patent Application Laid-Open No. 2-49793 and Japanese Patent Publication No. 2003-508403 disclose that an alkenylamine not protecting active hydrogen is directly added to both ends Si—H blocked polysiloxane to block both ends amino groups. A method for obtaining a diorganopolysiloxane has been proposed. However, in this method, both terminal amino group-capped diorganopolysiloxanes are obtained as a mixture of α-adduct and β-adduct.

特開平11−209385号公報JP-A-11-209385 特開平2−49793号公報JP-A-2-49793 特表2003−508403号公報Special table 2003-508403 gazette

本発明は、上記の従来技術の現状に鑑みて為されたものであり、α−付加体とβ−付加体の混合物の形態である両末端アミノ基封鎖ジオルガノポリシロキサンの有効利用を目的とする。   The present invention has been made in view of the above-described conventional state of the art, and aims at effective use of a diorganopolysiloxane having both terminal amino groups blocked in the form of a mixture of an α-adduct and a β-adduct. To do.

本発明の目的は、(a1)分子鎖両末端にケイ素原子結合水素原子を有するジオルガノポリシロキサン、及び、(a2)式:R−NH(Rは一価不飽和炭化水素基を表す)で表される活性水素非保護アミンを付加反応させて得られた(A)分子鎖両末端に式:−B−NH(Bは二価炭化水素基を表す)で表される基を有する両末端アミノ変性ジオルガノポリシロキサン、
(B)芳香族又は脂肪族ジアミン、並びに、
(C)芳香族若しくは脂肪族ジカルボン酸又はその反応性誘導体
を反応させることを特徴とする、ポリアミドシリコーンポリマーの製造方法によって達成される。
The object of the present invention is (a1) a diorganopolysiloxane having silicon-bonded hydrogen atoms at both ends of the molecular chain, and (a2) a formula: R 1 —NH 2 (R 1 is a monounsaturated hydrocarbon group) the active hydrogen unprotected amine represented by represented) obtained by addition reaction (a) with both molecular chain terminals in the formula: -B-NH 2 (group B is represented by a divalent hydrocarbon group) A bi-terminal amino-modified diorganopolysiloxane having
(B) an aromatic or aliphatic diamine, and
(C) It is achieved by a method for producing a polyamide silicone polymer, characterized by reacting an aromatic or aliphatic dicarboxylic acid or a reactive derivative thereof.

前記(a2)活性水素非保護アミンはアリルアミンであることが好ましい。   The (a2) active hydrogen unprotected amine is preferably allylamine.

前記(C)芳香族若しくは脂肪族ジカルボン酸又はその反応性誘導体は芳香族若しくは脂肪族ジカルボン酸のジハロゲン化物であることが好ましい。   The (C) aromatic or aliphatic dicarboxylic acid or a reactive derivative thereof is preferably a dihalide of an aromatic or aliphatic dicarboxylic acid.

前記反応は界面重縮合であることが好ましい。   The reaction is preferably interfacial polycondensation.

本発明では、前記(A)両末端アミノ変性ジオルガノポリシロキサン、前記(B)芳香族又は脂肪族ジアミン、及び、前記(C)芳香族若しくは脂肪族ジカルボン酸又はその反応性誘導体を、
(D)無機塩基の存在下、
(S1)水、及び、(S2)非プロトン性有機溶媒中で、
10℃以上の温度で反応させることが好ましい。
In the present invention, (A) both terminal amino-modified diorganopolysiloxane, (B) aromatic or aliphatic diamine, and (C) aromatic or aliphatic dicarboxylic acid or reactive derivative thereof,
(D) in the presence of an inorganic base;
(S1) in water, and (S2) in an aprotic organic solvent,
It is preferable to make it react at the temperature of 10 degreeC or more.

前記(A)両末端アミノ変性ジオルガノポリシロキサンは下記一般式:

Figure 2011079946
(式中、Bは上記のとおりであり;Aはそれぞれ独立して一価炭化水素基を表し、mは1以上100以下の整数を表す)で表されるものが好ましい。前記mは1以上20以下が好ましい。 The (A) both-terminal amino-modified diorganopolysiloxane has the following general formula:
Figure 2011079946
(Wherein B is as described above; A independently represents a monovalent hydrocarbon group, and m represents an integer of 1 or more and 100 or less) is preferable. The m is preferably 1 or more and 20 or less.

前記(S2)非プロトン性有機溶媒は、水と非混和性であることが好ましい。   The (S2) aprotic organic solvent is preferably immiscible with water.

前記(D)無機塩基は、アルカリ金属水酸化物、アルカリ土類金属水酸化物、アルカリ金属炭酸塩、アルカリ金属炭酸水素塩、及び、アルカリ土類金属炭酸塩からなる群から選択される少なくとも一種であることが好ましい。   The (D) inorganic base is at least one selected from the group consisting of alkali metal hydroxides, alkaline earth metal hydroxides, alkali metal carbonates, alkali metal hydrogen carbonates, and alkaline earth metal carbonates. It is preferable that

前記(S2)非プロトン性有機溶媒は、エーテル系溶媒、ハロゲン化炭化水素系溶媒、スルホキシド系溶媒、アミド系溶媒、エステル系溶媒、及び、エーテルエステル系溶媒からなる群から選択される少なくとも一種であることが好ましい。   The (S2) aprotic organic solvent is at least one selected from the group consisting of ether solvents, halogenated hydrocarbon solvents, sulfoxide solvents, amide solvents, ester solvents, and ether ester solvents. Preferably there is.

前記(a1)分子鎖両末端にケイ素原子結合水素原子を有するジオルガノポリシロキサンのケイ素原子結合水素原子に対する前記(a2)アミンの不飽和の当量比が1以上であることが好ましい。   It is preferable that the equivalent ratio of unsaturation of the (a2) amine to the silicon atom-bonded hydrogen atom of the (a1) diorganopolysiloxane having silicon atom-bonded hydrogen atoms at both ends of the molecular chain is 1 or more.

前記(A)両末端アミノ変性ジオルガノポリシロキサン及び前記(B)芳香族又は脂肪族ジアミンの合計質量に対する前記(B)芳香族又は脂肪族ジアミンの質量の比が0.01〜0.6であることが好ましい。   The ratio of the mass of the (B) aromatic or aliphatic diamine to the total mass of the (A) both terminal amino-modified diorganopolysiloxane and the (B) aromatic or aliphatic diamine is 0.01 to 0.6. Preferably there is.

前記(C)芳香族若しくは脂肪族ジカルボン酸又はその反応性誘導体のモル数に対する前記(A)両末端アミノ変性ジオルガノポリシロキサン及び前記(B)芳香族又は脂肪族ジアミンの合計モル数の比が0.8〜1.2であることが好ましい。   The ratio of the total number of moles of (A) both terminal amino-modified diorganopolysiloxane and (B) aromatic or aliphatic diamine to the number of moles of (C) aromatic or aliphatic dicarboxylic acid or reactive derivative thereof is It is preferable that it is 0.8-1.2.

前記(C)芳香族若しくは脂肪族ジカルボン酸又はその反応性誘導体の当量数に対する前記(D)無機塩基の当量数の比が1〜2であることが好ましい。   The ratio of the number of equivalents of the (D) inorganic base to the number of equivalents of the (C) aromatic or aliphatic dicarboxylic acid or its reactive derivative is preferably 1 to 2.

前記(S1)水、及び、前記(S2)非プロトン性有機溶媒の質量比が1:10〜10:1であることが好ましい。   The mass ratio of the (S1) water and the (S2) aprotic organic solvent is preferably 1:10 to 10: 1.

本発明では、α−付加体とβ−付加体の混合物の形態である両末端アミノ基封鎖ジオルガノポリシロキサンを使用してポリアミドシリコーンポリマーを得るが、このようにα−付加体を多く含む両末端アミノ基封鎖ジオルガノポリシロキサンから得られるポリアミドシリコーンコポリマーであっても、殆どβ−付加体のみからなる両末端アミノ基封鎖ジオルガノポリシロキサンから得られるポリアミドシリコーンコポリマーと物理的強度及び熱的安定性が同等であることが判明した。したがって、本発明により得られるポリアミドシリコーンポリマーは、強度及び熱安定性が求められる用途であっても好適に使用することができる。  In the present invention, a polyamidosilicone polymer is obtained using a diorganopolysiloxane having both terminal amino groups blocked in the form of a mixture of an α-adduct and a β-adduct. Polyamide silicone copolymers obtained from end-amino group-blocked diorganopolysiloxanes, but also polyamide-silicone copolymers obtained from both-end amino group-blocked diorganopolysiloxanes, which are almost exclusively β-adducts, and physical strength and thermal stability The sex was found to be equivalent. Therefore, the polyamide silicone polymer obtained according to the present invention can be suitably used even for applications that require strength and thermal stability.

本発明では、α−付加体を比較的多く含む両末端アミノ基封鎖ジオルガノポリシロキサンを使用するので、上記従来プロセス(1)及び(2)のように煩雑な工程を経て得られた、α−付加体を殆ど含まない両末端アミノ基封鎖ジオルガノポリシロキサンを使用する必要がない。そこで、本発明では、容易に実施することのできる(a1)分子鎖両末端にケイ素原子結合水素原子を有するジオルガノポリシロキサン、及び、(a2)R−NH(Rは一価不飽和炭化水素基を表す)で表される活性水素非保護アミンの付加反応により得られたα−付加体とβ−付加体の混合物の形態である両末端アミノ変性ジオルガノポリシロキサンを使用してポリアミドシリコーンポリマーを得る。したがって、本発明の製造方法は生産性が高く、低コストである。 In the present invention, since both-terminal amino group-capped diorganopolysiloxane containing a relatively large amount of α-adduct is used, α obtained through complicated steps as in the conventional processes (1) and (2) above, -There is no need to use a diorganopolysiloxane having both end amino groups blocked with almost no adduct. Therefore, in the present invention, (a1) diorganopolysiloxane having silicon atom-bonded hydrogen atoms at both ends of the molecular chain, and (a2) R 1 —NH 2 (R 1 is monovalent Using an amino-modified diorganopolysiloxane having both ends in the form of a mixture of an α-adduct and a β-adduct obtained by addition reaction of an active hydrogen unprotected amine represented by a saturated hydrocarbon group) A polyamide silicone polymer is obtained. Therefore, the production method of the present invention has high productivity and low cost.

本発明では、活性水素が保護されておらず、且つ、不飽和基を有するアミンを両末端Si−H封鎖ポリシロキサンにヒドロシリル反応によって直接付加して得られた両末端アミノ変性ジオルガノポリシロキサンを原料として、ポリアミドシリコーンポリマーを製造する。本発明で使用される両末端アミノ変性ジオルガノポリシロキサンはα−付加(内部付加)体とβ−付加(末端付加)体の混合物である。   In the present invention, an amino-modified diorganopolysiloxane having both terminal amino groups obtained by directly adding an amine having an unsaturated group and an unsaturated group to a both-terminal Si-H blocked polysiloxane by a hydrosilyl reaction is obtained. A polyamide silicone polymer is produced as a raw material. The both terminal amino-modified diorganopolysiloxane used in the present invention is a mixture of an α-addition (internal addition) and a β-addition (terminal addition).

本発明者らは鋭意検討した結果、直接ヒドロシリル化法によって得られた比較的多量のα−付加体を含んでいる両末端アミノ変性ジオルガノポリシロキサンから得られたポリアミドシリコーンポリマーの物理的強度及び熱的安定性は、従来プロセスによって得られたα−付加体を殆ど含まない両末端アミノ変性ジオルガノポリシロキサンから得られたポリアミドシリコーンポリマーのものと同等であることを予想外に見出し、本発明に到達した。   As a result of intensive studies, the present inventors have found that the physical strength of the polyamide silicone polymer obtained from the both-end amino-modified diorganopolysiloxane containing a relatively large amount of α-adduct obtained by the direct hydrosilylation method and It was unexpectedly found that the thermal stability was equivalent to that of a polyamide silicone polymer obtained from a both-end amino-modified diorganopolysiloxane containing almost no α-adduct obtained by a conventional process. Reached.

活性水素が保護されておらず、且つ、不飽和基を有するアミンを両末端Si−H封鎖ポリシロキサンと直接付加させて両末端アミノ変性ジオルガノポリシロキサンを得ること自体は特願平2−49793号公報及び特表2003−508403号に記載されるように公知である。しかしながら、これを原料として用いたポリアミドシリコーンポリマーの強度及び熱安定性が従来プロセスによって得られたα−付加体を殆ど含まない両末端アミノ変性ジオルガノポリシロキサンから得られたポリアミドシリコーンポリマーのものと同等であることは知られていない。したがって、本発明において比較的多量のα−付加体を含む両末端アミノ変性ジオルガノポリシロキサンから得られたポリアミドシリコーンコポリマーの強度及び熱安定性が低下しないことは当業者が容易には推測し得ない全く新規な知見である。   Japanese Patent Application No. 2-49793 discloses that an active hydrogen is not protected and an amine having an unsaturated group is directly added to a Si-H blocked polysiloxane at both ends to obtain an amino-modified diorganopolysiloxane at both ends. It is known as described in Japanese Patent Publication No. 2003-508403. However, the strength and thermal stability of the polyamide silicone polymer using this as a raw material is that of the polyamide silicone polymer obtained from the both-terminal amino-modified diorganopolysiloxane containing almost no α-adduct obtained by the conventional process. It is not known to be equivalent. Therefore, it can be easily estimated by those skilled in the art that the strength and thermal stability of the polyamide silicone copolymer obtained from the both-terminal amino-modified diorganopolysiloxane containing a relatively large amount of α-adduct in the present invention does not decrease. There is no completely new knowledge.

具体的には、本発明は、
(a1)分子鎖両末端にケイ素原子結合水素原子を有するジオルガノポリシロキサン、及び、(a2)式:R−NH(Rは一価不飽和炭化水素基を表す)で表される活性水素非保護アミンを付加反応させて得られた(A)分子鎖両末端に式:−B−NH(Bは二価炭化水素基を表す)で表される基を有する両末端アミノ変性ジオルガノポリシロキサン、
(B)芳香族又は脂肪族ジアミン、並びに、
(C)芳香族若しくは脂肪族ジカルボン酸又はその反応性誘導体
を反応させることを特徴とする、ポリアミドシリコーンポリマーの製造方法である。
Specifically, the present invention provides:
(A1) diorganopolysiloxane having silicon atom-bonded hydrogen atoms at both ends of the molecular chain, and (a2) represented by the formula: R 1 —NH 2 (R 1 represents a monounsaturated hydrocarbon group) (A) obtained by addition reaction of an active hydrogen non-protected amine (A) Both-end amino modification having a group represented by the formula: —B—NH 2 (B represents a divalent hydrocarbon group) at both ends of the molecular chain Diorganopolysiloxane,
(B) an aromatic or aliphatic diamine, and
(C) A method for producing a polyamide silicone polymer, comprising reacting an aromatic or aliphatic dicarboxylic acid or a reactive derivative thereof.

本発明で使用される(A)両末端アミノ基変性ジオルガノポリシロキサンは分子鎖両末端に式:−B−NH(Bは二価炭化水素基を表す)で表される基を有するジオルガノポリシロキサンである。一種類の両末端アミノ基変性ジオルガノポリシロキサンを使用してもよく、二種類以上の両末端アミノ基変性ジオルガノポリシロキサンを使用してもよい。 The (A) both-end amino group-modified diorganopolysiloxane used in the present invention has di-groups having groups represented by the formula: —B—NH 2 (B represents a divalent hydrocarbon group) at both ends of the molecular chain. Organopolysiloxane. One kind of both-terminal amino group-modified diorganopolysiloxane may be used, or two or more kinds of both-terminal amino group-modified diorganopolysiloxane may be used.

二価炭化水素基としては、例えば、置換若しくは非置換の炭素数1〜22の直鎖若しくは分岐鎖のアルキレン基、置換若しくは非置換の炭素数6〜22のアリーレン基、又は、置換若しくは非置換の炭素数7〜22のアルキレンアリーレン基が挙げられる。置換若しくは非置換の炭素数1〜22の直鎖若しくは分岐鎖のアルキレン基としては、例えば、メチレン基、ジメチレン基、トリメチレン基、テトラメチレン基、ペンタメチレン基、ヘキサメチレン基、ヘプタメチレン基、オクタメチレン基等が挙げられる。メチレン基、ジメチレン基、トリメチレン基が好ましい。置換若しくは非置換の炭素数6〜22のアリーレン基としては、例えば、フェニレン基、ジフェニレン基等が挙げられる。置換若しくは非置換の炭素数7〜22のアルキレンアリーレン基としては、例えば、ジメチレンフェニレン基等が挙げられる。   Examples of the divalent hydrocarbon group include a substituted or unsubstituted linear or branched alkylene group having 1 to 22 carbon atoms, a substituted or unsubstituted arylene group having 6 to 22 carbon atoms, or a substituted or unsubstituted group. And an alkylenearylene group having 7 to 22 carbon atoms. Examples of the substituted or unsubstituted C1-C22 linear or branched alkylene group include a methylene group, a dimethylene group, a trimethylene group, a tetramethylene group, a pentamethylene group, a hexamethylene group, a heptamethylene group, and an octane group. A methylene group etc. are mentioned. A methylene group, a dimethylene group and a trimethylene group are preferred. Examples of the substituted or unsubstituted arylene group having 6 to 22 carbon atoms include a phenylene group and a diphenylene group. Examples of the substituted or unsubstituted alkylene arylene group having 7 to 22 carbon atoms include a dimethylenephenylene group.

(A)両末端アミノ変性ジオルガノポリシロキサンとしては、下記一般式:

Figure 2011079946
(式中、Bは上記のとおりであり;Aはそれぞれ独立して一価炭化水素基を表し、mは1以上100以下の整数を表す)で表されるものが好ましい。 (A) As both-end amino-modified diorganopolysiloxane, the following general formula:
Figure 2011079946
(Wherein B is as described above; A independently represents a monovalent hydrocarbon group, and m represents an integer of 1 or more and 100 or less) is preferable.

一価炭化水素基としては、例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、デシル基、ドデシル基等のアルキル基;シクロペンチル基、シクロヘキシル基等のシクロアルキル基;ビニル基、アリル基、ブテニル基等のアルケニル基;フェニル基、トリル基、キシリル基、ナフチル基等のアリール基;ベンジル基、フェネチル基等のアラルキル基;及び、これらの基の炭素原子に結合した水素原子が少なくとも部分的にフッ素等のハロゲン原子、又は、エポキシ基、グリシジル基、アシル基、カルボキシル基、アミノ基、メタクリル基、メルカプト基等を含む有機基で置換された基が挙げられる。一価炭化水素基は、アルケニル基以外の基であることが好ましく、メチル基、エチル基、又は、フェニル基が特に好ましい。   Examples of the monovalent hydrocarbon group include alkyl groups such as methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, heptyl group, octyl group, decyl group, dodecyl group; cyclopentyl group, cyclohexyl group, etc. An alkenyl group such as a vinyl group, an allyl group or a butenyl group; an aryl group such as a phenyl group, a tolyl group, a xylyl group or a naphthyl group; an aralkyl group such as a benzyl group or a phenethyl group; A group in which a hydrogen atom bonded to a carbon atom is at least partially substituted with a halogen atom such as fluorine, or an organic group including an epoxy group, glycidyl group, acyl group, carboxyl group, amino group, methacryl group, mercapto group, etc. Is mentioned. The monovalent hydrocarbon group is preferably a group other than an alkenyl group, and particularly preferably a methyl group, an ethyl group, or a phenyl group.

上記一般式中、mは1以上100以下であるが、1以上50以下が好ましく、1以上20以下がより好ましい。mが100以上になると分子中のアミド結合の割合が低下し、得られるポリマーの物理的強度が低下するおそれがある。   In the above general formula, m is 1 or more and 100 or less, preferably 1 or more and 50 or less, and more preferably 1 or more and 20 or less. When m is 100 or more, the proportion of amide bonds in the molecule is lowered, and the physical strength of the resulting polymer may be lowered.

(A)両末端アミノ変性ジオルガノポリシロキサンは、(a1)分子鎖両末端にケイ素原子結合水素原子を有するジオルガノポリシロキサン、及び、(a2)式:R−NH(Rは一価不飽和炭化水素基を表す)で表される活性水素非保護アミンを付加反応(ヒドロシリル化反応)させることによって製造される。 (A) Both-terminal amino-modified diorganopolysiloxane is (a1) diorganopolysiloxane having silicon-bonded hydrogen atoms at both ends of the molecular chain, and (a2) formula: R 1 —NH 2 (R 1 is one It is produced by addition reaction (hydrosilylation reaction) of an active hydrogen non-protected amine represented by (representing a polyunsaturated hydrocarbon group).

(a1)分子鎖両末端にケイ素原子結合水素原子を有するジオルガノポリシロキサンとしては、下記一般式:

Figure 2011079946
(式中、A及びmは上記の通りである)で表されるものが好ましい。 (A1) The diorganopolysiloxane having silicon-bonded hydrogen atoms at both ends of the molecular chain is represented by the following general formula:
Figure 2011079946
(Wherein A and m are as described above) is preferred.

としては、ビニル基、アリル基、ブテニル基、ヘキセニル基、デセニル基等の不飽和脂肪族炭化水素基が挙げられる。アリル基が好ましい。したがって、(a2)活性水素非保護アミンとしてはアリルアミンが好ましい。 Examples of R 1 include unsaturated aliphatic hydrocarbon groups such as vinyl group, allyl group, butenyl group, hexenyl group, and decenyl group. An allyl group is preferred. Accordingly, allylamine is preferred as the (a2) active hydrogen non-protected amine.

上記付加反応は、通常のヒドロシリル化反応条件で実施し得る。ヒドロシリル化反応を促進させるため通常はヒドロシリル化触媒を使用するが、使用する触媒は特に制限はない。触媒としては、例えば、ニッケル、ルテニウム、ロジウム、パラジウム、イリジウム、白金などの第VIII族遷移金属又はそれらの化合物を好適に使用することができる。このような化合物の具体的な例としては、第VIII族遷移金属のクロロ錯体、オレフィン錯体、アルデヒド錯体、ケトン錯体、ボスフィン錯体、スルフィド錯体、ニトリル錯体等を挙げることができる。これらのうち、白金黒、塩化白金酸、又は、白金のオレフィン錯体、アルデヒド錯体、ケトン錯体などの白金系触媒が好ましく、白金のオレフィン錯体が特に好ましい。   The above addition reaction can be carried out under normal hydrosilylation reaction conditions. In order to accelerate the hydrosilylation reaction, a hydrosilylation catalyst is usually used, but the catalyst used is not particularly limited. As the catalyst, for example, a Group VIII transition metal such as nickel, ruthenium, rhodium, palladium, iridium, platinum, or a compound thereof can be preferably used. Specific examples of such compounds include Group VIII transition metal chloro complexes, olefin complexes, aldehyde complexes, ketone complexes, boss fin complexes, sulfide complexes, nitrile complexes, and the like. Among these, platinum black, chloroplatinic acid, or platinum-based catalysts such as platinum olefin complexes, aldehyde complexes, and ketone complexes are preferable, and platinum olefin complexes are particularly preferable.

上記付加反応は無溶媒で行うことができるが、溶媒存在下でも行うことも可能である。溶媒としては、ベンゼン、トルエン、キシレン等の芳香族炭化水素;ヘキサン、ヘプタン、シクロヘキサン等の脂肪族炭化水素;テトラヒドロフラン、ジエチルエーテル等のエーテル類、アセトン、メチルエチルケトン等のケトン類;酢酸エチル、酢酸ブチル等のエステル類が例示される。   The addition reaction can be performed without a solvent, but can also be performed in the presence of a solvent. Solvents include aromatic hydrocarbons such as benzene, toluene and xylene; aliphatic hydrocarbons such as hexane, heptane and cyclohexane; ethers such as tetrahydrofuran and diethyl ether; ketones such as acetone and methyl ethyl ketone; ethyl acetate and butyl acetate. And the like.

(a1)分子鎖両末端にケイ素原子結合水素原子を有するジオルガノポリシロキサンのケイ素原子結合水素原子に対する(a2)活性水素非保護アミンの不飽和の当量比は1以上であることが好ましい。すなわち、(a2)アミン中の不飽和基と(a1)ジオルガノポリシロキサン中のSi−H基の当量比(不飽和基/Si−Hは1以上が好ましい。1未満の場合は付加反応が完結せず、分子鎖片末端にのみ(a2)活性水素非保護アミンが付加した生成物が副生したり、また、副反応としてアミノ基とSi−H基との脱水素縮合反応が顕著となるおそれがある。   (A1) The equivalent ratio of unsaturation of the (a2) active hydrogen unprotected amine to silicon atom-bonded hydrogen atoms of the diorganopolysiloxane having silicon atom-bonded hydrogen atoms at both ends of the molecular chain is preferably 1 or more. That is, the equivalent ratio of (a2) unsaturated group in amine to Si-H group in (a1) diorganopolysiloxane (unsaturated group / Si-H is preferably 1 or more. It is not completed, and (a2) a product in which an active hydrogen unprotected amine is added is produced as a by-product only at one end of the molecular chain, or a dehydrogenative condensation reaction between an amino group and a Si—H group is remarkable as a side reaction. There is a risk.

上記付加反応の方法としては、(a1)分子鎖両末端にケイ素原子結合水素原子を有するジオルガノポリシロキサン及びヒドロシリル化触媒との混合物を加熱し、(a2)活性水素非保護アミンを徐々に滴下していく方法が好ましい。(a2)活性水素非保護アミン及びヒドロシリル化触媒との混合物を加熱し、(a1)分子鎖両末端にケイ素原子結合水素原子を有するジオルガノポリシロキサンを滴下していく方法は、アミノ基が白金に配位してヒドロシリル化触媒が失活し易くなるため好ましくない。また、(a1)分子鎖両末端にケイ素原子結合水素原子を有するジオルガノポリシロキサン及び(a2)活性水素非保護アミンを混合し、加熱してからヒドロシリル化触媒を添加する方法は、付加反応が急速に進行して制御不能となるおそれがあるため好ましくない。   As the method for the above addition reaction, (a1) a mixture of a diorganopolysiloxane having silicon-bonded hydrogen atoms at both ends of a molecular chain and a hydrosilylation catalyst is heated, and (a2) an active hydrogen non-protected amine is gradually added dropwise. The method of doing is preferable. (A2) A method in which a mixture of an active hydrogen unprotected amine and a hydrosilylation catalyst is heated and (a1) a diorganopolysiloxane having silicon atom-bonded hydrogen atoms at both ends of the molecular chain is added dropwise. It is not preferable because the hydrosilylation catalyst is easily deactivated by coordinating with the catalyst. Further, (a1) a method in which a diorganopolysiloxane having silicon-bonded hydrogen atoms at both ends of a molecular chain and (a2) an active hydrogen non-protected amine are mixed and heated before adding a hydrosilylation catalyst is an addition reaction. This is not preferable because it may progress rapidly and become uncontrollable.

上記付加反応の進行はガスクロマトグラフィー、赤外吸光分析等により確認することができる。反応の完結を確認した後、過剰の(a2)活性水素非保護アミンを加熱減圧留去することにより、(A)両末端アミノ変性ジオルガノポリシロキサンを得ることができる。   The progress of the addition reaction can be confirmed by gas chromatography, infrared absorption analysis or the like. After confirming the completion of the reaction, excess (a2) active hydrogen non-protected amine is distilled off under reduced pressure by heating, whereby (A) both-terminal amino-modified diorganopolysiloxane can be obtained.

(A)両末端アミノ変性ジオルガノポリシロキサン中のα−付加体とβ−付加体の割合は核磁気共鳴分析により測定することができる。(a2)活性水素非保護アミンとしてアリルアミンを使用した場合、通常のヒドロシリル化条件ではβ付加とα付加の割合はほぼ7:3である。したがって、(A)両末端アミノ変性ジオルガノポリシロキサン中には、両末端アミノプロピル基封鎖ポリシロキサン、片末端アミノプロピル片末端アミノ(1-メチル)エチル基封鎖ポリシロキサン及び両末端アミノ(1-メチル)エチル基封鎖ポリシロキサンの3種類の異性体が存在し、それぞれの異性体の存在割合は、ほぼ49:42:9となる。本発明では、これらの異性体を分離する必要はない。   (A) The ratio of the α-adduct and β-adduct in the amino-modified diorganopolysiloxane at both ends can be measured by nuclear magnetic resonance analysis. (A2) When allylamine is used as the active hydrogen non-protected amine, the ratio of β addition to α addition is approximately 7: 3 under normal hydrosilylation conditions. Accordingly, (A) both terminal amino-modified diorganopolysiloxanes include both terminal aminopropyl-blocked polysiloxanes, one-terminal aminopropyl one-terminal amino (1-methyl) ethyl-blocked polysiloxane, and both terminal amino- (1- There are three types of isomers of methyl) ethyl-blocked polysiloxane, and the ratio of each isomer is approximately 49: 42: 9. In the present invention, it is not necessary to separate these isomers.

本発明では、このようにして得られた(A)両末端アミノ変性ジオルガノポリシロキサンを、(B)芳香族又は脂肪族ジアミン、並びに、(C)芳香族若しくは脂肪族ジカルボン酸又はその反応性誘導体と反応させる。当該反応は重縮合反応である。   In the present invention, the (A) both-terminal amino-modified diorganopolysiloxane thus obtained is converted into (B) an aromatic or aliphatic diamine, and (C) an aromatic or aliphatic dicarboxylic acid or its reactivity. React with derivative. This reaction is a polycondensation reaction.

本発明で使用される(B)芳香族又は脂肪族ジアミンとしては特に制限はなく、任意のものを使用することができる。(B)芳香族又は脂肪族ジアミンとしては、通常のポリアミドの製造原料として使用されるものが好ましく、脂肪族ジアミンとしては、例えば、エチレンジアミン、ヘキサメチレンジアミン、ノナンジアミン、メチルペンタジアミンシレンジアミン等が好ましく使用され、芳香族ジアミンとしては、例えば、m−フェニレンジアミン、p−フェニレンジアミン、4,4'−ジアミノジフェニルエーテル、3,4'−ジアミノジフェニルエーテル、4,4'−ジアミノジフェニルスルホン、3,3'−ジアミノジフェニルスルホン、2,2'−ジトリフルオロメチル−4,4'−ジアミノビフェニル、9,9−ビス(4−アミノフェニル)フルオレン、9,9−ビス(4−アミノ−3−メチルフェニル)フルオレン、ビス[4−(4−アミノフェノキシ)フェニル]スルホン、ビス[4−(3−アミノフェノキシ)フェニル]スルホン、2,2−ビス[4−(4−アミノフェノキシ)フェニル]プロパン、2,2−ビス(4−アミノフェニル)ヘキサフルオロプロパン等が好ましく使用される。一種類の芳香族又は脂肪族ジアミンを使用してもよく、二種類以上の芳香族又は脂肪族ジアミンを使用してもよい。芳香族ジアミンの使用が好ましい。   There is no restriction | limiting in particular as (B) aromatic or aliphatic diamine used by this invention, Arbitrary things can be used. (B) As aromatic or aliphatic diamine, what is used as a manufacturing raw material of normal polyamide is preferable, and as aliphatic diamine, for example, ethylenediamine, hexamethylenediamine, nonanediamine, methylpentadiaminesilenediamine and the like are preferable. Examples of the aromatic diamine used include m-phenylene diamine, p-phenylene diamine, 4,4′-diaminodiphenyl ether, 3,4′-diaminodiphenyl ether, 4,4′-diaminodiphenyl sulfone, and 3,3 ′. -Diaminodiphenyl sulfone, 2,2'-ditrifluoromethyl-4,4'-diaminobiphenyl, 9,9-bis (4-aminophenyl) fluorene, 9,9-bis (4-amino-3-methylphenyl) Fluorene, bis [4- (4-aminophenoxy) phenyl] sulfone, bis [4- (3-aminophenoxy) phenyl Enyl] sulfone, 2,2-bis [4- (4-aminophenoxy) phenyl] propane, 2,2-bis (4-aminophenyl) hexafluoropropane and the like are preferably used. One kind of aromatic or aliphatic diamine may be used, and two or more kinds of aromatic or aliphatic diamine may be used. The use of aromatic diamines is preferred.

本発明で使用される(C)芳香族若しくは脂肪族ジカルボン酸又はその反応性誘導体についても特に制限はない。(C)芳香族若しくは脂肪族ジカルボン酸又はその反応性誘導体としては、通常のポリアミドの製造原料として使用されるものが好ましく、脂肪族ジカルボン酸としては、例えば、マロン酸、コハク酸、グルタル酸、アジピン酸、ゼバシン酸、シクロヘキサンジカルボン酸等が好ましく使用され、芳香族ジカルボン酸としては、例えば、テレフタル酸、2-クロロ−テレフタル酸、イソフタル酸、ナフタレンジカルボン酸、ビフェニルジカルボン酸、ターフェニルジカルボン酸、2-フロロ−テレフタル酸等が好ましく使用される。反応性誘導体も特に制限はないが、ジハロゲン化物が好ましい。ジハロゲン化物としては、フッ化物、塩化物、臭化物及びヨウ化物のいずれも使用可能であるが、塩化物(クロライド)が好ましい。脂肪族ジカルボン酸ジハロゲン化物としては、例えば、1,4-シクロヘキサンカルボン酸ジクロライド等が挙げられる。芳香族ジカルボン酸ジハロゲン化物としては、例えば、テレフタル酸ジクロライド、2-クロロ−テレフタル酸ジクロライド、イソフタル酸ジクロライド、ナフタレンジカルボニルクロライド、ビフェニルジカルボニルクロライド、ターフェニルジカルボニルクロライド、2-フロロ−テレフタル酸ジクロライド等が挙げられる。一種類の芳香族ジカルボン酸又はその反応性誘導体を使用してもよく、二種類以上の芳香族ジカルボン酸又はその誘導体を使用してもよい。芳香族ジカルボン酸又はその反応性誘導体の使用が好ましい。   The (C) aromatic or aliphatic dicarboxylic acid or reactive derivative thereof used in the present invention is not particularly limited. (C) As an aromatic or aliphatic dicarboxylic acid or a reactive derivative thereof, those used as usual raw materials for producing polyamides are preferable. Examples of the aliphatic dicarboxylic acid include malonic acid, succinic acid, glutaric acid, Adipic acid, zebacic acid, cyclohexane dicarboxylic acid and the like are preferably used, and examples of the aromatic dicarboxylic acid include terephthalic acid, 2-chloro-terephthalic acid, isophthalic acid, naphthalene dicarboxylic acid, biphenyl dicarboxylic acid, terphenyl dicarboxylic acid, 2-Fluoro-terephthalic acid or the like is preferably used. The reactive derivative is not particularly limited, but a dihalide is preferable. As the dihalide, any of fluoride, chloride, bromide and iodide can be used, but chloride (chloride) is preferred. Examples of the aliphatic dicarboxylic acid dihalide include 1,4-cyclohexanecarboxylic acid dichloride. Examples of aromatic dicarboxylic acid dihalides include terephthalic acid dichloride, 2-chloro-terephthalic acid dichloride, isophthalic acid dichloride, naphthalene dicarbonyl chloride, biphenyl dicarbonyl chloride, terphenyl dicarbonyl chloride, and 2-fluoro-terephthalic acid dichloride. Etc. One kind of aromatic dicarboxylic acid or a reactive derivative thereof may be used, or two or more kinds of aromatic dicarboxylic acid or a derivative thereof may be used. Preference is given to using aromatic dicarboxylic acids or reactive derivatives thereof.

(A)両末端アミノ変性ジオルガノポリシロキサン、(B)芳香族又は脂肪族ジアミン、及び、(C)芳香族若しくは脂肪族ジカルボン酸又はその反応性誘導体との反応の実施方法には特に制限はなく、通常のポリアミドシリコーンポリマーの製造に使用される方法を使うことができ、例えば、特開平1−23824号公報で提案されているような10℃未満での低温溶液重縮合法を好適に実施することができる。   There are no particular restrictions on the method of carrying out the reaction with (A) both-terminal amino-modified diorganopolysiloxane, (B) aromatic or aliphatic diamine, and (C) aromatic or aliphatic dicarboxylic acid or a reactive derivative thereof. However, it is possible to use a conventional method for producing a polyamide silicone polymer. For example, a low temperature solution polycondensation method at less than 10 ° C. as proposed in JP-A-1-23824 is suitably carried out. can do.

一方、(D)無機塩基の存在下、(S1)水、及び、(S2)非プロトン性有機溶媒中で、(A)両末端アミノ変性ジオルガノポリシロキサン、(B)芳香族又は脂肪族ジアミン、及び、(C)芳香族若しくは脂肪族ジカルボン酸又はその反応性誘導体を10℃以上の温度で重縮合(以下、ここでは「常温重縮合法」という)させてポリアミドシリコーンポリマーを製造してもよい。常温重縮合法は、特に、アラミド(芳香族ポリアミド)シリコーンポリマーの製造に好適に使用することができる。   On the other hand, (D) in the presence of an inorganic base, (S1) water, and (S2) in an aprotic organic solvent, (A) both terminal amino-modified diorganopolysiloxane, (B) aromatic or aliphatic diamine And (C) polycondensation of aromatic or aliphatic dicarboxylic acid or a reactive derivative thereof at a temperature of 10 ° C. or higher (hereinafter referred to as “room temperature polycondensation method”) to produce a polyamide silicone polymer. Good. The room temperature polycondensation method can be suitably used particularly for the production of an aramid (aromatic polyamide) silicone polymer.

(D)無機塩基については特に制限はなく、任意のものを使用することができる。一種類の無機塩基を使用してもよく、二種類以上の無機塩基を使用してもよい。(D)無機塩基は、アルカリ金属水酸化物、アルカリ土類金属水酸化物、アルカリ金属炭酸塩、アルカリ金属炭酸水素塩、及び、アルカリ土類金属炭酸塩からなる群から選択される少なくとも一種であることが好ましい。例えば、水酸化ナトリウム、水酸化カリウム、水酸化カルシウム、炭酸ナトリウム、炭酸水素ナトリウム、炭酸カルシウム等を好適に使用することができる。   (D) There is no restriction | limiting in particular about an inorganic base, Arbitrary things can be used. One kind of inorganic base may be used, or two or more kinds of inorganic bases may be used. (D) The inorganic base is at least one selected from the group consisting of alkali metal hydroxides, alkaline earth metal hydroxides, alkali metal carbonates, alkali metal hydrogen carbonates, and alkaline earth metal carbonates. Preferably there is. For example, sodium hydroxide, potassium hydroxide, calcium hydroxide, sodium carbonate, sodium hydrogen carbonate, calcium carbonate and the like can be suitably used.

(S2)非プロトン性有機溶媒は、プロトン供与能を有さない有機溶媒である。非プロトン性有機溶媒としては、極性又は無極性のいずれのものであっても使用することができるが、少なくともある程度の極性を有するものが好ましい。また、前記非プロトン性有機溶媒は、水と非混和性であり、水と相分離し得るものが好ましいが、これに限定されない。(S2)非プロトン性有機溶媒として、ジエチルエーテル、テトラヒドロフラン、ジオキサン等のエーテル系溶媒;塩化メチレン、トリクロロエタン、1,2-ジクロロエタン等のハロゲン化炭化水素系溶媒;ジメチルスルホキシド、ジエチルスルポキシド等のスルホキシド系溶媒;N,N-ジメチルホルムアミド、N,N−ジエチルホルムアミド、N,N−ジメチルアセトアミド、N,N−ジエチルアセトアミド、N−メチル−2−ピロリドン、N−ビニル−2−ピロリドン等のアミド系溶媒;酢酸エチル、γ−ブチロラクトン等のエステル系溶媒;プロピレングリコールモノメチルエーテルアセテート、エチレングリコールモノメチルエーテルアセテート等のエーテルエステル系溶媒;ヘキサメチルホスホルアミド等を好適に使用することができる。テトラヒドロフラン、及び、プロピレングリコールモノメチルエーテルアセテートが特に好ましい。一種類の非プロトン性有機溶媒を使用してもよく、二種類以上の非プロトン性有機溶媒を使用してもよい。非プロトン性有機溶媒の使用により、高分子量のポリアミドシリコーンポリマーを得ることができる。   (S2) The aprotic organic solvent is an organic solvent having no proton donating ability. As the aprotic organic solvent, any of polar and nonpolar solvents can be used, but those having at least some polarity are preferred. The aprotic organic solvent is preferably immiscible with water and capable of phase separation with water, but is not limited thereto. (S2) As aprotic organic solvents, ether solvents such as diethyl ether, tetrahydrofuran and dioxane; halogenated hydrocarbon solvents such as methylene chloride, trichloroethane and 1,2-dichloroethane; dimethyl sulfoxide, diethyl sulfoxide and the like Sulphoxide solvents; N, N-dimethylformamide, N, N-diethylformamide, N, N-dimethylacetamide, N, N-diethylacetamide, N-methyl-2-pyrrolidone, N-vinyl-2-pyrrolidone and other amides Suitable solvents include ester solvents such as ethyl acetate and γ-butyrolactone; ether ester solvents such as propylene glycol monomethyl ether acetate and ethylene glycol monomethyl ether acetate; hexamethylphosphoramide and the like. Tetrahydrofuran and propylene glycol monomethyl ether acetate are particularly preferred. One kind of aprotic organic solvent may be used, or two or more kinds of aprotic organic solvents may be used. By using an aprotic organic solvent, a high molecular weight polyamide silicone polymer can be obtained.

常温重縮合法では、アルコール類、フェノール類等のプロトン性有機溶媒、並びに、エノール化して活性水素を生じるアルデヒド類、ケトン類、特にβ−ジケトン類、及び、ケトエステル類、特にβ−ケトエステル類の使用は好ましくない。したがって、これらの有機溶媒は反応系に存在しないことが好ましい。これらの有機溶媒は、芳香族ジカルボン酸又はその反応性誘導体と反応して、ポリアミドシリコーンポリマーの分子量及び物理的強度を低下させると共に、往々にして、望ましくない着色の原因となる。   In the room temperature polycondensation method, protic organic solvents such as alcohols and phenols, and aldehydes, ketones, particularly β-diketones, and ketoesters, particularly β-ketoesters, which are enolized to generate active hydrogen. Use is not preferred. Therefore, it is preferable that these organic solvents are not present in the reaction system. These organic solvents react with aromatic dicarboxylic acids or reactive derivatives thereof to reduce the molecular weight and physical strength of the polyamide silicone polymer and often cause undesirable coloration.

常温重縮合法では、(S1)水、及び、(S2)非プロトン性有機溶媒の混合物中で、(D)無機塩基の存在下、(A)両末端アミノ変性ジオルガノポリシロキサン、(B)芳香族又は脂肪族ジアミン、及び、(C)芳香族若しくは脂肪族ジカルボン酸又はその反応性誘導体を反応させるが、(S1)水、及び、(S2)非プロトン性有機溶媒の混合比は任意であり、1:10〜10:1、より好ましくは20:80〜80:20、更により好ましくは30:80〜80:30の質量比で混合して使用することができる。   In the room-temperature polycondensation method, (D) in the presence of an inorganic base in a mixture of (S1) water and (S2) an aprotic organic solvent, (A) an amino-modified diorganopolysiloxane at both ends, (B) An aromatic or aliphatic diamine and (C) an aromatic or aliphatic dicarboxylic acid or a reactive derivative thereof are reacted, but the mixing ratio of (S1) water and (S2) an aprotic organic solvent is arbitrary. Yes, it can be used by mixing at a mass ratio of 1:10 to 10: 1, more preferably 20:80 to 80:20, and even more preferably 30:80 to 80:30.

(A)両末端アミノ変性ジオルガノポリシロキサン、及び、(B)芳香族又は脂肪族ジアミンの使用割合は任意であるが、後者の割合が多くなると、生成したポリアミドシリコーンポリマーの有機溶媒に対する溶解性が低下し、この結果、ポリアミドシリコーンポリマーの分子量が低下して脆くなるおそれがあるので、後者の割合は(A)両末端アミノ変性ジオルガノポリシロキサン及び(B)芳香族又は脂肪族ジアミンの合計質量の1〜60%が好ましく、1〜50%がより好ましい。すなわち、(A)両末端アミノ変性ジオルガノポリシロキサン及び(B)芳香族又は脂肪族ジアミンの合計質量に対する(B)芳香族又は脂肪族ジアミンの質量の比は0.01〜0.6の範囲が好ましく、0.01〜0.5がより好ましい。   The use ratio of (A) both-terminal amino-modified diorganopolysiloxane and (B) aromatic or aliphatic diamine is arbitrary, but if the latter ratio increases, the solubility of the produced polyamide silicone polymer in organic solvents As a result, the molecular weight of the polyamide silicone polymer may be lowered and become brittle, so the latter ratio is the sum of (A) both terminal amino-modified diorganopolysiloxane and (B) aromatic or aliphatic diamine. 1 to 60% of mass is preferable, and 1 to 50% is more preferable. That is, the ratio of the mass of (B) aromatic or aliphatic diamine to the total mass of (A) both terminal amino-modified diorganopolysiloxane and (B) aromatic or aliphatic diamine is in the range of 0.01 to 0.6. Is preferable, and 0.01 to 0.5 is more preferable.

(A)両末端アミノ変性ジオルガノポリシロキサン、及び、(B)芳香族又は脂肪族ジアミンの合計モル数と(C)芳香族若しくは脂肪族ジカルボン酸又はその反応性誘導体とのモル比も任意であるが、この比が1から大きく離れると、得られるポリアミドシリコーンポリマーの分子量が低下し、その物理的強度が低下するおそれがあるので、1に近い方が好ましい。したがって、(C)芳香族若しくは脂肪族ジカルボン酸又はその反応性誘導体のモル数に対する(A)両末端アミノ変性ジオルガノポリシロキサン及び(B)芳香族又は脂肪族ジアミンの合計モル数の比は0.8〜1.2の範囲が好ましく、0.9〜1.1の範囲がより好ましく、0.95〜1.05の範囲が特に好ましい。   The molar ratio of (A) both-terminal amino-modified diorganopolysiloxane and (B) aromatic or aliphatic diamine and (C) aromatic or aliphatic dicarboxylic acid or reactive derivative thereof is also optional. However, if this ratio is far from 1, the molecular weight of the resulting polyamide silicone polymer is lowered, and the physical strength thereof may be lowered. Therefore, the ratio of the total number of moles of (A) both terminal amino-modified diorganopolysiloxane and (B) aromatic or aliphatic diamine to the number of moles of (C) aromatic or aliphatic dicarboxylic acid or its reactive derivative is 0. The range of 0.8 to 1.2 is preferable, the range of 0.9 to 1.1 is more preferable, and the range of 0.95 to 1.05 is particularly preferable.

また、(D)無機塩基の使用量も任意であるが、(D)無機塩基の当量数は(C)芳香族若しくは脂肪族ジカルボン酸又はその反応性誘導体の当量数以上(即ち、化学量論量以上)であることが好ましい。化学量論量以下では中和が不十分となり、例えば、ポリアミドシリコーンポリマー中のハロゲン濃度等が高くなるおそれがあるためである。しかし、あまり多量に使用すると水洗によってポリアミドシリコーンポリマー中の無機塩基の濃度を低下させることが困難になるので、(D)無機塩基の当量数/(C)芳香族若しくは脂肪族ジカルボン酸又はその反応性誘導体の当量数の比は1以上2以下が好ましく、1以上1.5以下が更に好ましい。したがって、(C)芳香族若しくは脂肪族ジカルボン酸又はその反応性誘導体の当量数に対する(D)無機塩基の当量数の比は1〜2の範囲が好ましく、1〜1.5の範囲がより好ましい。   The amount of (D) inorganic base used is also arbitrary, but the number of equivalents of (D) inorganic base is equal to or greater than the number of equivalents of (C) aromatic or aliphatic dicarboxylic acid or reactive derivative thereof (ie, stoichiometry). It is preferable that the amount is greater than or equal to the amount. This is because neutralization becomes insufficient below the stoichiometric amount, for example, the halogen concentration in the polyamide silicone polymer may be increased. However, if it is used too much, it becomes difficult to reduce the concentration of the inorganic base in the polyamide silicone polymer by washing with water. Therefore, (D) equivalent number of inorganic base / (C) aromatic or aliphatic dicarboxylic acid or reaction thereof The ratio of the number of equivalents of the functional derivative is preferably 1 or more and 2 or less, more preferably 1 or more and 1.5 or less. Therefore, the ratio of the equivalent number of (D) inorganic base to the equivalent number of (C) aromatic or aliphatic dicarboxylic acid or reactive derivative thereof is preferably in the range of 1 to 2, more preferably in the range of 1 to 1.5. .

常温重縮合法では、(D)無機塩基の存在下での、(S1)水、及び、(S2)非プロトン性有機溶媒の混合物中における(A)両末端アミノ変性ジオルガノポリシロキサン、(B)芳香族又は脂肪族ジアミン、及び、(C)芳香族若しくは脂肪族ジカルボン酸又はその反応性誘導体の反応形態は特に限定されるものではないが、(D)無機塩基と(S1)水の混合物と、(A)両末端アミノ変性ジオルガノポリシロキサン、(B)芳香族又は脂肪族ジアミン、及び、(S2)非プロトン性有機溶媒の混合物を混合し、必要に応じて加熱・冷却及び攪拌しながら10℃以上の温度を保ちつつ、(C)芳香族若しくは脂肪族ジカルボン酸又はその反応性誘導体を加える方法が好ましい。   In the room temperature polycondensation method, (D) (A) both-terminal amino-modified diorganopolysiloxane in a mixture of (S1) water and (S2) aprotic organic solvent in the presence of an inorganic base, (B The reaction form of the aromatic or aliphatic diamine and (C) the aromatic or aliphatic dicarboxylic acid or its reactive derivative is not particularly limited, but (D) a mixture of an inorganic base and (S1) water. And (A) a both-end amino-modified diorganopolysiloxane, (B) an aromatic or aliphatic diamine, and (S2) an aprotic organic solvent mixture, and heating, cooling and stirring as necessary. However, a method of adding (C) an aromatic or aliphatic dicarboxylic acid or a reactive derivative thereof while maintaining a temperature of 10 ° C. or higher is preferred.

ここで、(D)無機塩基と(S2)水の混合物は(D)無機塩基の水溶液の形態であることが好ましい。したがって、(D)無機塩基は水溶性であることが好ましい。また、(A)両末端アミノ変性ジオルガノポリシロキサン、(B)芳香族又は脂肪族ジアミン、及び、(S2)非プロトン性有機溶媒の混合物は、(A)両末端アミノ変性ジオルガノポリシロキサン及び(B)芳香族又は脂肪族ジアミンが(S2)非プロトン性有機溶媒に溶解した溶液の形態であることが好ましい。したがって、(A)両末端アミノ変性ジオルガノポリシロキサン、及び、(B)芳香族又は脂肪族ジアミンは(S2)非プロトン性有機溶媒への溶解性を有するものが好ましい。   Here, the mixture of (D) inorganic base and (S2) water is preferably in the form of an aqueous solution of (D) inorganic base. Accordingly, (D) the inorganic base is preferably water-soluble. Also, (A) a mixture of both terminal amino-modified diorganopolysiloxane, (B) an aromatic or aliphatic diamine, and (S2) an aprotic organic solvent, (A) both terminal amino-modified diorganopolysiloxane and (B) The aromatic or aliphatic diamine is preferably in the form of a solution in which (S2) an aprotic organic solvent is dissolved. Therefore, (A) both-terminal amino-modified diorganopolysiloxane and (B) aromatic or aliphatic diamine are preferably those having solubility in (S2) aprotic organic solvent.

また、(C)芳香族若しくは脂肪族ジカルボン酸又はその反応性誘導体は(S2)非プロトン性有機溶媒との混合物であることが好ましい。したがって、(C)芳香族若しくは脂肪族ジカルボン酸又はその反応性誘導体は(S2)非プロトン性有機溶媒への溶解性を有するものが好ましい。この場合は(S2)非プロトン性有機溶媒の一部を(C)芳香族若しくは脂肪族ジカルボン酸又はその反応性誘導体の溶解に使用する一方で残りの(S2)非プロトン性有機溶媒を(A)両末端アミノ変性ジオルガノポリシロキサン及び(B)芳香族又は脂肪族ジアミンの溶解に使用することができる。   Further, (C) the aromatic or aliphatic dicarboxylic acid or the reactive derivative thereof is preferably a mixture with (S2) an aprotic organic solvent. Therefore, (C) aromatic or aliphatic dicarboxylic acid or a reactive derivative thereof is preferably (S2) having solubility in an aprotic organic solvent. In this case, (S2) a part of the aprotic organic solvent is used for dissolving (C) the aromatic or aliphatic dicarboxylic acid or its reactive derivative, while the remaining (S2) aprotic organic solvent is used for (A It can be used for dissolving amino-terminated amino-modified diorganopolysiloxanes and (B) aromatic or aliphatic diamines.

(A)両末端アミノ変性ジオルガノポリシロキサン及び(B)芳香族又は脂肪族ジアミンの混合物への(C)芳香族若しくは脂肪族ジカルボン酸又はその反応性誘導体の添加により、重縮合反応が開始して、ポリアミドシリコーンポリマーが合成される。前記重縮合反応は界面重縮合であることが好ましい。したがって、(A)両末端アミノ変性ジオルガノポリシロキサン及び(B)芳香族又は脂肪族ジアミンの混合物への(C)芳香族若しくは脂肪族ジカルボン酸又はその反応性誘導体の添加方法は、滴下が好ましい。   Addition of (C) an aromatic or aliphatic dicarboxylic acid or a reactive derivative thereof to a mixture of (A) both terminal amino-modified diorganopolysiloxane and (B) aromatic or aliphatic diamine initiates the polycondensation reaction. Thus, a polyamide silicone polymer is synthesized. The polycondensation reaction is preferably interfacial polycondensation. Therefore, the addition method of (C) aromatic or aliphatic dicarboxylic acid or a reactive derivative thereof to a mixture of (A) both-terminal amino-modified diorganopolysiloxane and (B) aromatic or aliphatic diamine is preferably dropwise. .

常温重縮合法の反応温度は10℃以上であるが、更に高温であってもよい。例えば、常温重縮合法は15℃以上で実施可能であり、20℃以上で実施することが好ましく、25℃以上で実施することがより好ましい。但し、(C)芳香族若しくは脂肪族ジカルボン酸の反応性誘導体を使用する場合、当該反応性誘導体の単なる加水分解反応を避けて高分子量のポリマーを得るためには反応温度は40℃以下が好ましい。したがって、常温重縮合法の好ましい反応温度は10〜40℃である。このように、常温重縮合法は低温条件下で行う必要がないので、冷却装置等の特殊な製造装置が不要である。したがって、常温重縮合法はポリアミドシリコーンポリマーを簡便に且つ効率的に製造することができ、コスト的にも有利である。   The reaction temperature of the room temperature polycondensation method is 10 ° C. or higher, but it may be higher. For example, the room temperature polycondensation method can be performed at 15 ° C. or higher, preferably 20 ° C. or higher, and more preferably 25 ° C. or higher. However, when a reactive derivative of (C) aromatic or aliphatic dicarboxylic acid is used, the reaction temperature is preferably 40 ° C. or lower in order to obtain a high molecular weight polymer by avoiding a simple hydrolysis reaction of the reactive derivative. . Therefore, the preferable reaction temperature of the room temperature polycondensation method is 10 to 40 ° C. As described above, since the room temperature polycondensation method does not need to be performed under low temperature conditions, a special manufacturing apparatus such as a cooling apparatus is unnecessary. Therefore, the room temperature polycondensation method can easily and efficiently produce a polyamide silicone polymer, and is advantageous in terms of cost.

常温重縮合法では、(A)両末端アミノ変性ジオルガノポリシロキサン、(B)芳香族又は脂肪族ジアミン、及び、(C)芳香族若しくは脂肪族ジカルボン酸の反応性誘導体の反応により、塩化水素等のハロゲン化水素が生成する可能性があるが、当該ハロゲン化水素は無機塩基によって捕捉されてNaCl等の無機塩に変換される。このように、常温重縮合法では副生成物が無機塩であるので、その処理が容易である。したがって、常温重縮合法は環境負荷が低く、また、低コストである。   In the room temperature polycondensation method, hydrogen chloride is obtained by the reaction of (A) both-terminal amino-modified diorganopolysiloxane, (B) an aromatic or aliphatic diamine, and (C) a reactive derivative of aromatic or aliphatic dicarboxylic acid. May be generated, but the hydrogen halide is captured by an inorganic base and converted into an inorganic salt such as NaCl. Thus, in the room temperature polycondensation method, since the by-product is an inorganic salt, the treatment is easy. Therefore, the room temperature polycondensation method has a low environmental load and is low in cost.

常温重縮合法では、(A)両末端アミノ変性ジオルガノポリシロキサン及び(B)芳香族又は脂肪族ジアミンへの(C)芳香族若しくは脂肪族ジカルボン酸の反応性誘導体の添加後、得られた反応混合物の攪拌を継続し、定期的にpH試験紙等で反応の進行をチェックすることが好ましい。   The room temperature polycondensation method was obtained after addition of (A) a terminal amino-modified diorganopolysiloxane and (B) a reactive derivative of (C) an aromatic or aliphatic dicarboxylic acid to an aromatic or aliphatic diamine. It is preferable to continue stirring the reaction mixture and periodically check the progress of the reaction with a pH test paper or the like.

反応終了後、反応混合物を静置して層分離させ、必要に応じて、水と非混和性の有機溶媒を添加後、有機層の水洗を繰り返して過剰な無機塩基を除き、共沸脱水することによりポリアミドシリコーンポリマーの溶液を得ることができる。そして、必要に応じて、溶媒を加熱減圧留去等によって除去することにより、固体状のポリアミドシリコーンポリマーを得ることができる。なお、前記有機溶媒としては、非プロトン性有機溶媒が好ましく、反応系にもともと存在する(S2)非プロトン性有機溶媒と同一種類のものが更に好ましい。   After completion of the reaction, the reaction mixture is allowed to stand to separate the layers, and if necessary, after adding an organic solvent immiscible with water, the organic layer is repeatedly washed with water to remove excess inorganic base and azeotropically dehydrated. As a result, a solution of the polyamide silicone polymer can be obtained. And if necessary, a solid polyamide silicone polymer can be obtained by removing the solvent by heating under reduced pressure or the like. The organic solvent is preferably an aprotic organic solvent, and more preferably the same kind as the (S2) aprotic organic solvent originally present in the reaction system.

ところで、ポリアミドシリコーンポリマーのシリコーン含有率が低い場合、反応に使用した非プロトン性溶媒の極性が不足し、反応終了後にポリアミドシリコーンポリマーがペースト状に析出してしまうことがある。その際は、水洗を繰り返して過剰の無機塩基を除いた後、このペースト状のポリアミドシリコーンポリマーにトルエン等の非極性溶媒を添加し、共沸脱水を行って水分を除去した後、溶解力の優れたN,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N−メチル-2-ピロリドン等のアミド系溶媒を添加し、先に添加した非極性溶媒を加熱減圧留去することにより、ポリアミドシリコーンポリマーがアミド系溶媒に溶解した溶液を得ることができる。そして、必要に応じて、アミド系溶媒を加熱減圧留去することにより、固体状のポリアミドシリコーンポリマーを得ることができる。   By the way, when the silicone content of the polyamide silicone polymer is low, the polarity of the aprotic solvent used for the reaction is insufficient, and the polyamide silicone polymer may be deposited in a paste form after the reaction is completed. In that case, after washing with water repeatedly to remove excess inorganic base, a non-polar solvent such as toluene is added to this pasty polyamide silicone polymer, and water is removed by azeotropic dehydration. By adding an amide solvent such as excellent N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, etc., and removing the previously added nonpolar solvent by heating under reduced pressure, polyamide silicone A solution in which the polymer is dissolved in an amide solvent can be obtained. And if necessary, a solid polyamide silicone polymer can be obtained by distilling off the amide solvent under heating and reduced pressure.

常温重縮合法では、反応系からのポリアミドシリコーンポリマーの回収のためにメタノール等の再沈殿溶媒を多量に反応系に添加する必要がない。したがって、常温重縮合法は環境負荷が低く、低コストで、更に、ポリアミドシリコーンポリマーの生産性にも優れる。   In the room temperature polycondensation method, it is not necessary to add a large amount of reprecipitation solvent such as methanol to the reaction system in order to recover the polyamide silicone polymer from the reaction system. Therefore, the room temperature polycondensation method has a low environmental load, is low in cost, and is excellent in the productivity of the polyamide silicone polymer.

本発明により得られるポリアミドシリコーンポリマーは、ポリアミド部位とシリコーン部位を含むコポリマーである。ポリアミド部位とシリコーン部位の割合は特に限定されるものではないが、ポリアミド部位:シリコーン部位の質量比で20:80〜80:20が好ましく、30:70〜70:30がより好ましい。なお、ポリアミドシリコーンコポリマーはランダムコポリマー又はブロックコポリマーのいずれでもよい。   The polyamide silicone polymer obtained according to the present invention is a copolymer comprising a polyamide moiety and a silicone moiety. The ratio of the polyamide part to the silicone part is not particularly limited, but is preferably 20:80 to 80:20, and more preferably 30:70 to 70:30 in terms of the mass ratio of the polyamide part to the silicone part. The polyamide silicone copolymer may be a random copolymer or a block copolymer.

本発明により得られるポリアミドシリコーンポリマーは、ポリアミドシリコーンポリマーが従来利用されている用途に好適に使用することができる。例えば、本発明により得られるポリアミドシリコーンポリマーはゲル化剤として使用することができる。また、本発明により得られるポリアミドシリコーンポリマーがアラミドシリコーンポリマーである場合は、アラミド部位の高い強度とシリコーン部位の高い生体適合性、気体透過性、耐熱性等により、例えば、医療機器に使用される医療用材料、半導体デバイス等に使用される電子材料として好適に使用することができる。   The polyamide silicone polymer obtained by the present invention can be suitably used for applications in which a polyamide silicone polymer has been conventionally used. For example, the polyamide silicone polymer obtained according to the present invention can be used as a gelling agent. Further, when the polyamide silicone polymer obtained by the present invention is an aramid silicone polymer, it is used for, for example, a medical device due to the high strength of the aramid site and the high biocompatibility, gas permeability, heat resistance, etc. of the silicone site. It can be suitably used as an electronic material used for medical materials, semiconductor devices and the like.

以下、実施例及び比較例により本発明をより詳細に例証するが、本発明は実施例に限定されるものではない。25℃における粘度は、   EXAMPLES Hereinafter, although an Example and a comparative example illustrate this invention in detail, this invention is not limited to an Example. The viscosity at 25 ° C is

[製造例1]
25℃における粘度が8mPa・sの両末端SiH基封鎖ポリジメチルシロキサン(重合度9) 60グラム(75ミリモル)に白金と1,3-ジビニルテトラメチルジシロキサンとの錯体触媒を、白金金属量が反応混合物全体の10ppmになるようにして添加し、窒素雰囲気下で90℃に加熱した後アリルアミン10.3グラム(180ミリモル)をゆっくり滴下しつつ90〜140℃で加熱した。反応混合物のIR分析でSiH基の特性吸収が消失したことを確認した後、低沸点物を加熱減圧留去して両末端アミノプロピル基封鎖ポリジメチルシロキサンである淡黄色透明液体64グラム(収率93%)を得た。このものを29SiNMRで分析した結果α−付加体とβ−付加体の比が約30:70である異性体混合物であることが判明した。シラノール基に由来するシグナルは観察されなかった。アミノ基含有率測定値は3.51重量%(計算値:3.5重量%)であった。また、得られた両末端アミノプロピル基封鎖ポリジメチルシロキサンの異性体混合物の25℃における粘度は、14mPasであった。
[Production Example 1]
SiH group-blocked polydimethylsiloxane with a viscosity of 8 mPa · s at 25 ° C (polymerization degree 9) A complex catalyst of platinum and 1,3-divinyltetramethyldisiloxane on 60 grams (75 mmol) The total amount of the reaction mixture was added to 10 ppm, and the mixture was heated to 90 ° C. under a nitrogen atmosphere, and then 10.3 g (180 mmol) of allylamine was slowly added dropwise at 90 to 140 ° C. After confirming that the characteristic absorption of the SiH group disappeared by IR analysis of the reaction mixture, the low-boiling point product was distilled off under reduced pressure by heating, and a light yellow transparent liquid 64 g (yield) which was a polydimethylsiloxane blocked with aminopropyl groups at both ends. 93%) was obtained. This was analyzed by 29 Si NMR and found to be an isomer mixture in which the ratio of α-adduct to β-adduct was about 30:70. No signal derived from silanol groups was observed. The measured amino group content was 3.51% by weight (calculated value: 3.5% by weight). Further, the viscosity at 25 ° C. of the obtained isomer mixture of both end aminopropyl group-blocked polydimethylsiloxanes was 14 mPas.

[実施例1]
4,4'-ジアミノジフェニルエーテル0.64グラム(3.2ミリモル)、製造例1で合成した両末端アミノプロピル基封鎖ポリジメチルシロキサン(25℃における粘度:14mPas、重合度9) 10グラム(10.9ミリモル)、炭酸ナトリウム1.9グラム(17.7ミリモル)、PGMEA(プロピレングリコールメチルエーテルアセテート)44グラム及び水42グラムの混合物を攪拌し、水冷しながら25℃でイソフタル酸ジクロライド2.9グラム(14.1ミリモル)のPGMEA20グラム溶液を滴下した。室温で1時間攪拌後、静置して相分離させた。有機層の水洗を繰り返し、有機層を共沸脱水し、固形分濃度21.4重量%、シリコーン含有率80重量%のアラミドシリコーンコポリマーのPGMEA溶液53.5グラムを得た(収率92%)。この溶液をテフロン(登録商標)皿に移し、加熱オーブン中180℃で1時間静置し、淡褐色でほぼ透明なフィルムを得た。このフィルムの引張強度は12.8MPaであり、熱重量分析による10%熱重量損失温度Td10は446℃であった。
[Example 1]
4,4′-diaminodiphenyl ether 0.64 g (3.2 mmol), both end aminopropyl group-blocked polydimethylsiloxane synthesized in Production Example 1 (viscosity at 25 ° C .: 14 mPas, polymerization degree 9) 10 g (10.9 mmol), sodium carbonate A mixture of 1.9 grams (17.7 mmol), 44 grams of PGMEA (propylene glycol methyl ether acetate) and 42 grams of water was stirred, and a solution of 2.9 grams (14.1 mmol) of isophthalic acid dichloride in 20 grams of PGMEA was added dropwise at 25 ° C. with water cooling. After stirring at room temperature for 1 hour, the mixture was allowed to stand to cause phase separation. The organic layer was repeatedly washed with water, and the organic layer was azeotropically dehydrated to obtain 53.5 g of a PGMEA solution of an aramid silicone copolymer having a solid content concentration of 21.4% by weight and a silicone content of 80% by weight (yield 92%). This solution was transferred to a Teflon (registered trademark) dish and allowed to stand at 180 ° C. for 1 hour in a heating oven to obtain a light brown and almost transparent film. The tensile strength of this film was 12.8 MPa, 10% -weight loss by thermogravimetric analysis temperature T d10 was 446 ° C..

[比較例1]
実施例1において、製造例1で合成した両末端アミノプロピル基封鎖ポリジメチルシロキサンの代わりに実質的にα−付加体を含まない両末端アミノプロピル基封鎖ポリジメチルシロキサンとして東レ・ダウコーニング社製BY 16-853U(25℃における粘度:14mPas)を使用する他は実施例1と同様にしてシリコーン含有率80重量%のアラミドシリコーンコポリマーのPGMEA溶液を得た。この溶液をテフロン(登録商標)皿に移し、加熱オーブン中180℃で1時間静置し、淡褐色でほぼ透明なフィルムを得た。このフィルムの引張強度は12.7MPaであり、熱重量分析による10%熱重量損失温度Td10は443℃であった。
[Comparative Example 1]
In Example 1, in place of the both-end aminopropyl group-capped polydimethylsiloxane synthesized in Production Example 1, both end-aminopropyl group-capped polydimethylsiloxane containing substantially no α-adduct is used. A PGMEA solution of an aramid silicone copolymer having a silicone content of 80% by weight was obtained in the same manner as in Example 1 except that 16-853U (viscosity at 25 ° C .: 14 mPas) was used. This solution was transferred to a Teflon (registered trademark) dish and allowed to stand at 180 ° C. for 1 hour in a heating oven to obtain a light brown and almost transparent film. The tensile strength of this film was 12.7 MPa, and the 10% thermogravimetric loss temperature Td10 by thermogravimetric analysis was 443 ° C.

[実施例2]
4,4'-ジアミノジフェニルエーテル1.6グラム(7.9ミリモル)、製造例1で合成した両末端アミノプロピル基封鎖ポリジメチルシロキサン(25℃における粘度:14mPas) 5グラム(5.5ミリモル)、炭酸ナトリウム1.8グラム(16.7ミリモル)、THF(テトラヒドロフラン)30グラム及び水30グラムの混合物を攪拌し、水冷しながら25℃でイソフタル酸ジクロライド2.7グラム(13.4ミリモル)のTHF(10グラム)溶液を滴下した。25℃で1時間攪拌後、100グラムの水に投入して得た固体状のコポリマーから、トルエン30グラムとの共沸脱水で水を除き、N-メチルピロリドン(NMP)40グラムを投入してさらに共沸脱水を行い、トルエンを加熱減圧留去することで、固形分濃度16.9重量%、シリコーン含有率が60重量%のアラミドシリコーンコポリマーのNMP溶液46.9グラムを得た(収率95%)。この溶液をテフロン(登録商標)皿に移し、加熱オーブン中180℃で1時間静置し、淡褐色の白濁したフィルムを得た。このフィルムの引張強度は36MPaであり、熱重量分析による10%熱重量損失温度Td10は438℃であった。
[Example 2]
1.6 g (7.9 mmol) of 4,4′-diaminodiphenyl ether, 5 gram (5.5 mmol) of both end aminopropyl-blocked polydimethylsiloxane synthesized in Preparation Example 1 (viscosity at 25 ° C .: 14 mPas), 1.8 g of sodium carbonate (16.7 Mmol), 30 grams of THF (tetrahydrofuran) and 30 grams of water were stirred and a solution of 2.7 grams (13.4 millimoles) of isophthalic acid dichloride in THF (10 grams) was added dropwise at 25 ° C. with water cooling. After stirring for 1 hour at 25 ° C, water was removed from the solid copolymer obtained by adding it to 100 grams of water by azeotropic dehydration with 30 grams of toluene, and 40 grams of N-methylpyrrolidone (NMP) was added. Further, azeotropic dehydration was carried out, and toluene was distilled off under heating under reduced pressure to obtain 46.9 g of an NMP solution of an aramid silicone copolymer having a solid content concentration of 16.9% by weight and a silicone content of 60% by weight (yield 95%). This solution was transferred to a Teflon (registered trademark) dish and allowed to stand at 180 ° C. for 1 hour in a heating oven to obtain a light brown cloudy film. The tensile strength of this film was 36 MPa, 10% -weight loss by thermogravimetric analysis temperature T d10 was 438 ° C..

[比較例2]
実施例2において、製造例1で合成した両末端アミノプロピル基封鎖ポリジメチルシロキサンの代わりに実質的にα−付加体を含まない両末端アミノプロピル基封鎖ポリジメチルシロキサンとして東レ・ダウコーニング社製BY 16-853U(25℃における粘度:14mPas)を使用する他は実施例2と同様にしてシリコーン含有率60重量%のアラミドシリコーンコポリマーのNMP溶液を得た。この溶液をテフロン(登録商標)皿に移し、加熱オーブン中180℃で1時間静置し、淡褐色の白濁したフィルムを得た。このフィルムの引張強度は35.5MPaであり、熱重量分析による10%熱重量損失温度Td10は440℃であった。
[Comparative Example 2]
In Example 2, instead of both-end aminopropyl group-capped polydimethylsiloxane synthesized in Production Example 1, both end-aminopropyl group-capped polydimethylsiloxane substantially free of an α-adduct was used as a BYTE manufactured by Toray Dow Corning. An NMP solution of an aramid silicone copolymer having a silicone content of 60% by weight was obtained in the same manner as in Example 2 except that 16-853U (viscosity at 25 ° C .: 14 mPas) was used. This solution was transferred to a Teflon (registered trademark) dish and allowed to stand at 180 ° C. for 1 hour in a heating oven to obtain a light brown cloudy film. The tensile strength of this film was 35.5MPa, 10% -weight loss by thermogravimetric analysis temperature T d10 was 440 ° C..

[実施例3]
1.8グラム(5.5ミリモル)のベンゾフェノンテトラカルボン酸無水物にNMP40グラムを添加し、均一溶解させた。次いで水冷しつつ製造例1で合成した両末端アミノプロピル基封鎖ポリジメチルシロキサン(25℃における粘度:14mPas) 5グラム(5.5ミリモル)を滴下した。室温で1時間攪拌した後、4グラムのトルエンを添加し、加熱共沸脱水を175℃〜180℃で2時間行い対応するポリイミドシリコーンコポリマーのNMP溶液を得た。この溶液をテフロン(登録商標)皿に移し、加熱オーブン中180℃で1時間静置し、濃褐色のフィルムを得た。このフィルムの引張強度は10.2MPaであり、熱重量分析による10%熱重量損失温度Td10は485℃であった。
[Example 3]
To 1.8 grams (5.5 mmol) of benzophenone tetracarboxylic anhydride, 40 grams of NMP was added and dissolved uniformly. Next, 5 grams (5.5 mmol) of both end aminopropyl group-blocked polydimethylsiloxane (viscosity at 25 ° C .: 14 mPas) synthesized in Production Example 1 was added dropwise while cooling with water. After stirring at room temperature for 1 hour, 4 grams of toluene was added, and heat azeotropic dehydration was performed at 175 ° C. to 180 ° C. for 2 hours to obtain a corresponding NMP solution of polyimide silicone copolymer. This solution was transferred to a Teflon (registered trademark) dish and allowed to stand at 180 ° C. for 1 hour in a heating oven to obtain a dark brown film. The tensile strength of this film was 10.2 MPa, 10% heat by thermogravimetric analysis weight loss temperature T d10 was 485 ° C..

[比較例3]
製造例1で合成した両末端アミノプロピル基封鎖ポリジメチルシロキサンの代わりに実質的にα−付加体を含まない両末端アミノプロピル基封鎖ポリジメチルシロキサンとして東レ・ダウコーニング社製BY 16-853U(25℃における粘度:14mPas)を使用する他は実施例3と同様にして対応するポリイミドシリコーンコポリマーのNMP溶液を得た。この溶液をテフロン(登録商標)皿に移し、加熱オーブン中180℃で1時間静置し、濃褐色のフィルムを得た。このフィルムの引張強度は17.8MPaであり、熱重量分析による10%熱重量損失温度Td10は485℃であった。
[Comparative Example 3]
BY 16-853U manufactured by Toray Dow Corning Co., Ltd. as a double-terminal aminopropyl group-blocked polydimethylsiloxane containing substantially no α-adduct instead of the double-terminal aminopropyl group-blocked polydimethylsiloxane synthesized in Production Example 1 The corresponding polyimide silicone copolymer NMP solution was obtained in the same manner as in Example 3 except that the viscosity at 14 ° C. was 14 mPas. This solution was transferred to a Teflon (registered trademark) dish and allowed to stand at 180 ° C. for 1 hour in a heating oven to obtain a dark brown film. The tensile strength of this film was 17.8MPa, 10% heat by thermogravimetric analysis weight loss temperature T d10 was 485 ° C..

Claims (15)

(a1)分子鎖両末端にケイ素原子結合水素原子を有するジオルガノポリシロキサン、及び、(a2)式:R−NH(Rは一価不飽和炭化水素基を表す)で表される活性水素非保護アミンを付加反応させて得られた(A)分子鎖両末端に式:−B−NH(Bは二価炭化水素基を表す)で表される基を有する両末端アミノ変性ジオルガノポリシロキサン、
(B)芳香族又は脂肪族ジアミン、並びに、
(C)芳香族若しくは脂肪族ジカルボン酸又はその反応性誘導体
を反応させることを特徴とする、ポリアミドシリコーンポリマーの製造方法。
(A1) diorganopolysiloxane having silicon atom-bonded hydrogen atoms at both ends of the molecular chain, and (a2) represented by the formula: R 1 —NH 2 (R 1 represents a monounsaturated hydrocarbon group) (A) obtained by addition reaction of an active hydrogen non-protected amine (A) Both-end amino modification having a group represented by the formula: —B—NH 2 (B represents a divalent hydrocarbon group) at both ends of the molecular chain Diorganopolysiloxane,
(B) an aromatic or aliphatic diamine, and
(C) A process for producing a polyamide silicone polymer, comprising reacting an aromatic or aliphatic dicarboxylic acid or a reactive derivative thereof.
前記(a2)活性水素非保護アミンがアリルアミンである、請求項1記載の製造方法。   The production method according to claim 1, wherein (a2) the active hydrogen non-protected amine is allylamine. 前記(C)芳香族若しくは脂肪族ジカルボン酸又はその反応性誘導体が芳香族若しくは脂肪族ジカルボン酸のジハロゲン化物である、請求項1又は2記載の製造方法。   The production method according to claim 1 or 2, wherein the (C) aromatic or aliphatic dicarboxylic acid or a reactive derivative thereof is a dihalide of an aromatic or aliphatic dicarboxylic acid. 前記反応が界面重縮合であることを特徴とする、請求項1乃至3のいずれかに記載の製造方法。   The production method according to claim 1, wherein the reaction is interfacial polycondensation. 前記(A)両末端アミノ変性ジオルガノポリシロキサン、前記(B)芳香族又は脂肪族ジアミン、及び、前記(C)芳香族若しくは脂肪族ジカルボン酸又はその反応性誘導体を、
(D)無機塩基の存在下、
(S1)水、及び、(S2)非プロトン性有機溶媒中で、
10℃以上の温度で反応させることを特徴とする、請求項1乃至4のいずれかに記載の製造方法。
(A) both-terminal amino-modified diorganopolysiloxane, (B) aromatic or aliphatic diamine, and (C) aromatic or aliphatic dicarboxylic acid or a reactive derivative thereof,
(D) in the presence of an inorganic base;
(S1) in water, and (S2) in an aprotic organic solvent,
The production method according to claim 1, wherein the reaction is performed at a temperature of 10 ° C. or higher.
前記(A)両末端アミノ変性ジオルガノポリシロキサンが下記一般式:
Figure 2011079946
(式中、Bは上記のとおりであり;Aはそれぞれ独立して一価炭化水素基を表し、mは1以上100以下の整数を表す)で表されることを特徴とする、請求項1乃至5のいずれかに記載の製造方法。
The (A) both-terminal amino-modified diorganopolysiloxane has the following general formula:
Figure 2011079946
(Wherein B is as described above; each A independently represents a monovalent hydrocarbon group, and m represents an integer of 1 or more and 100 or less). The manufacturing method in any one of thru | or 5.
前記mが1以上20以下であることを特徴とする、請求項6記載の製造方法。   The manufacturing method according to claim 6, wherein the m is 1 or more and 20 or less. 前記(S2)非プロトン性有機溶媒が、水と非混和性であることを特徴とする、請求項5乃至7のいずれかに記載の製造方法。   The production method according to claim 5, wherein the (S2) aprotic organic solvent is immiscible with water. 前記(D)無機塩基が、アルカリ金属水酸化物、アルカリ土類金属水酸化物、アルカリ金属炭酸塩、アルカリ金属炭酸水素塩、及び、アルカリ土類金属炭酸塩からなる群から選択される少なくとも一種であることを特徴とする、請求項5乃至8のいずれかに記載の製造方法。   The (D) inorganic base is at least one selected from the group consisting of alkali metal hydroxides, alkaline earth metal hydroxides, alkali metal carbonates, alkali metal hydrogen carbonates, and alkaline earth metal carbonates. The manufacturing method according to claim 5, wherein: 前記(S2)非プロトン性有機溶媒が、エーテル系溶媒、ハロゲン化炭化水素系溶媒、スルホキシド系溶媒、アミド系溶媒、エステル系溶媒、及び、エーテルエステル系溶媒からなる群から選択される少なくとも一種である、請求項5乃至9のいずれかに記載の製造方法。   The (S2) aprotic organic solvent is at least one selected from the group consisting of ether solvents, halogenated hydrocarbon solvents, sulfoxide solvents, amide solvents, ester solvents, and ether ester solvents. The manufacturing method according to any one of claims 5 to 9. 前記(a1)分子鎖両末端にケイ素原子結合水素原子を有するジオルガノポリシロキサンのケイ素原子結合水素原子に対する前記(a2)アミンの不飽和の当量比が1以上である、請求項1乃至10のいずれかに記載の製造方法。   The ratio of unsaturation of the (a2) amine to silicon atom-bonded hydrogen atoms in the (a1) diorganopolysiloxane having silicon-bonded hydrogen atoms at both ends of the molecular chain is 1 or more. The manufacturing method in any one. 前記(A)両末端アミノ変性ジオルガノポリシロキサン及び前記(B)芳香族又は脂肪族ジアミンの合計質量に対する前記(B)芳香族又は脂肪族ジアミンの質量の比が0.01〜0.6である、請求項1乃至11のいずれかに記載の製造方法。   The ratio of the mass of the (B) aromatic or aliphatic diamine to the total mass of the (A) both terminal amino-modified diorganopolysiloxane and the (B) aromatic or aliphatic diamine is 0.01 to 0.6. The manufacturing method in any one of Claims 1 thru | or 11. 前記(C)芳香族若しくは脂肪族ジカルボン酸又はその反応性誘導体のモル数に対する前記(A)両末端アミノ変性ジオルガノポリシロキサン及び前記(B)芳香族又は脂肪族ジアミンの合計モル数の比が0.8〜1.2である、請求項1乃至12のいずれかに記載の製造方法。   The ratio of the total number of moles of (A) both terminal amino-modified diorganopolysiloxane and (B) aromatic or aliphatic diamine to the number of moles of (C) aromatic or aliphatic dicarboxylic acid or reactive derivative thereof is The manufacturing method in any one of Claims 1 thru | or 12 which are 0.8-1.2. 前記(C)芳香族若しくは脂肪族ジカルボン酸又はその反応性誘導体の当量数に対する前記(D)無機塩基の当量数の比が1〜2である、請求項5乃至13のいずれかに記載の製造方法。   14. The production according to claim 5, wherein a ratio of the number of equivalents of the (D) inorganic base to the number of equivalents of the (C) aromatic or aliphatic dicarboxylic acid or a reactive derivative thereof is 1 to 2. Method. 前記(S1)水、及び、前記(S2)非プロトン性有機溶媒の質量比が1:10〜10:1である、請求項5乃至14のいずれかに記載の製造方法。   The production method according to any one of claims 5 to 14, wherein a mass ratio of the (S1) water and the (S2) aprotic organic solvent is 1:10 to 10: 1.
JP2009232772A 2009-10-06 2009-10-06 Method for producing polyamide silicone copolymer Expired - Fee Related JP5646153B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009232772A JP5646153B2 (en) 2009-10-06 2009-10-06 Method for producing polyamide silicone copolymer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009232772A JP5646153B2 (en) 2009-10-06 2009-10-06 Method for producing polyamide silicone copolymer

Publications (2)

Publication Number Publication Date
JP2011079946A true JP2011079946A (en) 2011-04-21
JP5646153B2 JP5646153B2 (en) 2014-12-24

Family

ID=44074329

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009232772A Expired - Fee Related JP5646153B2 (en) 2009-10-06 2009-10-06 Method for producing polyamide silicone copolymer

Country Status (1)

Country Link
JP (1) JP5646153B2 (en)

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3358572A1 (en) 2017-02-06 2018-08-08 Shin-Etsu Chemical Co., Ltd. Bio-electrode composition, bio-electrode, method for manufacturing the bio-electrode, and polymer compound
EP3360473A1 (en) 2017-02-14 2018-08-15 Shin-Etsu Chemical Co., Ltd. Bio-electrode composition, bio-electrode, and method for manufacturing the bio-electrode
EP3360472A1 (en) 2017-02-14 2018-08-15 Shin-Etsu Chemical Co., Ltd. Bio-electrode composition, bio-electrode, method for manufacturing the bio-electrode, and polymer
EP3587473A1 (en) 2018-06-25 2020-01-01 Shin-Etsu Chemical Co., Ltd. Bio-electrode composition, bio-electrode, and method for manufacturing a bio-electrode
EP3587474A1 (en) 2018-06-26 2020-01-01 Shin-Etsu Chemical Co., Ltd. Bio-electrode composition, bio-electrode, and method for manufacturing a bio-electrode
EP3594262A1 (en) 2018-07-12 2020-01-15 Shin-Etsu Chemical Co., Ltd. Bio-electrode composition, bio-electrode, and method for manufacturing a bio-electrode
US10610116B2 (en) 2016-09-29 2020-04-07 Shin-Etsu Chemical Co., Ltd. Adhesive composition, bio-electrode, and method for manufacturing a bio-electrode
EP3718471A1 (en) 2019-04-03 2020-10-07 Shin-Etsu Chemical Co., Ltd. Bio-electrode composition, bio-electrode, and method for manufacturing bio-electrode
US10808148B2 (en) 2016-09-29 2020-10-20 Shin-Etsu Chemical Co., Ltd. Adhesive composition, bio-electrode, method for manufacturing a bio-electrode, and salt
US10844257B2 (en) 2016-09-13 2020-11-24 Shin-Etsu Chemical Co., Ltd. Adhesive composition, bio-electrode, and method for manufacturing a bio-electrode
US10950364B2 (en) 2016-05-09 2021-03-16 Shin-Etsu Chemical Co., Ltd. Bio-electrode and method for manufacturing the same
EP3854303A1 (en) 2020-01-22 2021-07-28 Shin-Etsu Chemical Co., Ltd. Bio-electrode composition, bio-electrode, and method for manufacturing bio-electrode
CN113185689A (en) * 2021-05-28 2021-07-30 湖南工业大学 Low-water-absorption copolymerized nylon resin and preparation method thereof
EP3881766A1 (en) 2020-03-19 2021-09-22 Shin-Etsu Chemical Co., Ltd. Bio-electrode, method for manufacturing bio-electrode, and method for measuring biological signal
US11160480B2 (en) 2018-06-25 2021-11-02 Shin-Etsu Chemical Co., Ltd. Bio-electrode composition, bio-electrode, and method for manufacturing a bio-electrode
US11234606B2 (en) 2018-07-05 2022-02-01 Shin-Etsu Chemical Co., Ltd. Bio-electrode composition, bio-electrode, and method for manufacturing a bio-electrode
EP3968343A2 (en) 2020-09-15 2022-03-16 Shin-Etsu Chemical Co., Ltd. Bio-electrode composition, bio-electrode, method for manufacturing bio-electrode, and silicon material particle
EP3984456A1 (en) 2020-10-13 2022-04-20 Shin-Etsu Chemical Co., Ltd. Bio-electrode composition, bio-electrode, method for manufacturing bio-electrode, polymer compound, and composite
EP3995548A1 (en) 2020-11-05 2022-05-11 Shin-Etsu Chemical Co., Ltd. Bio-electrode composition, bio-electrode, method for manufacturing bioelectrode, and reaction composite
EP4006921A2 (en) 2020-11-26 2022-06-01 Shin-Etsu Chemical Co., Ltd. Bio-electrode composition, bio-electrode, method for manufacturing bio-electrode, and reaction composite
US11357970B2 (en) 2017-01-06 2022-06-14 Shin-Etsu Chemical Co., Ltd. Biomedical electrode composition, biomedical electrode and method for manufacturing the biomedical electrode
US11369299B2 (en) 2019-04-03 2022-06-28 Shin-Etsu Chemical Co., Ltd. Bio-electrode composition, bio-electrode, and method for manufacturing bio-electrode
EP4026860A1 (en) 2021-01-06 2022-07-13 Shin-Etsu Chemical Co., Ltd. Bio-electrode composition, bio-electrode, and method for manufacturing bio-electrode
EP4074754A1 (en) 2021-04-16 2022-10-19 Shin-Etsu Chemical Co., Ltd. Bio-electrode composition, bio-electrode, and method for manufacturing bio-electrode
US11547354B2 (en) 2018-08-23 2023-01-10 Shin-Etsu Chemical Co., Ltd. Bio-electrode composition, bio-electrode, and method for manufacturing a bio-electrode
CN116554466A (en) * 2023-06-12 2023-08-08 广州硅碳新材料有限公司 Organosilicon modified polyamide and preparation method and application thereof
CN116622063A (en) * 2023-04-28 2023-08-22 安徽元琛环保科技股份有限公司 A kind of modified polym-phenylene isophthalamide and its preparation method and application
US11801333B2 (en) 2018-04-02 2023-10-31 Shin-Etsu Chemical Co., Ltd. Bio-electrode composition, bio-electrode, and method for manufacturing a bio-electrode
US11839476B2 (en) 2018-08-27 2023-12-12 Shin-Etsu Chemical Co., Ltd. Bio-electrode composition, bio-electrode, and method for manufacturing a bio-electrode
EP4309582A1 (en) 2022-07-21 2024-01-24 Shin-Etsu Chemical Co., Ltd. Bio-electrode composition, bio-electrode, and method for manufacturing the same
US11911161B2 (en) 2016-03-03 2024-02-27 Shin-Etsu Chemical Co., Ltd. Biological electrode and manufacturing method thereof
US11965095B2 (en) 2020-04-01 2024-04-23 Shin-Etsu Chemical Co., Ltd. Bio-electrode composition, bio-electrode, and method for manufacturing bio-electrode
JP7523967B2 (en) 2020-07-01 2024-07-29 株式会社カネカ Modified siloxane diamine compound and polyimide resin
EP4435803A1 (en) 2023-03-23 2024-09-25 Shin-Etsu Chemical Co., Ltd. Bio-electrode composition, bio-electrode, and method for manufacturing the same
EP4492406A1 (en) 2023-07-10 2025-01-15 Shin-Etsu Chemical Co., Ltd. Bio-electrode composition, bio-electrode, method for manufacturing bio-electrode

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61200124A (en) * 1985-02-28 1986-09-04 Hitachi Chem Co Ltd Production of polyether amide silicone polymer
JPS6440526A (en) * 1987-08-07 1989-02-10 Toshiba Silicone Siloxane-amide block copolymer and production thereof
JP2003508403A (en) * 1999-08-30 2003-03-04 ユナイテッド ケミカル テクノロジーズ インク Method for producing polyalkyl or aryl siloxane having aminopropyl group or aminoalkyl group as functional group

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61200124A (en) * 1985-02-28 1986-09-04 Hitachi Chem Co Ltd Production of polyether amide silicone polymer
JPS6440526A (en) * 1987-08-07 1989-02-10 Toshiba Silicone Siloxane-amide block copolymer and production thereof
JP2003508403A (en) * 1999-08-30 2003-03-04 ユナイテッド ケミカル テクノロジーズ インク Method for producing polyalkyl or aryl siloxane having aminopropyl group or aminoalkyl group as functional group

Cited By (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11911161B2 (en) 2016-03-03 2024-02-27 Shin-Etsu Chemical Co., Ltd. Biological electrode and manufacturing method thereof
US10950364B2 (en) 2016-05-09 2021-03-16 Shin-Etsu Chemical Co., Ltd. Bio-electrode and method for manufacturing the same
US10844257B2 (en) 2016-09-13 2020-11-24 Shin-Etsu Chemical Co., Ltd. Adhesive composition, bio-electrode, and method for manufacturing a bio-electrode
US10610116B2 (en) 2016-09-29 2020-04-07 Shin-Etsu Chemical Co., Ltd. Adhesive composition, bio-electrode, and method for manufacturing a bio-electrode
US10808148B2 (en) 2016-09-29 2020-10-20 Shin-Etsu Chemical Co., Ltd. Adhesive composition, bio-electrode, method for manufacturing a bio-electrode, and salt
US11357970B2 (en) 2017-01-06 2022-06-14 Shin-Etsu Chemical Co., Ltd. Biomedical electrode composition, biomedical electrode and method for manufacturing the biomedical electrode
EP3358572A1 (en) 2017-02-06 2018-08-08 Shin-Etsu Chemical Co., Ltd. Bio-electrode composition, bio-electrode, method for manufacturing the bio-electrode, and polymer compound
US10734132B2 (en) 2017-02-06 2020-08-04 Shin-Etsu Chemical Co., Ltd. Bio-electrode composition, bio-electrode, method for manufacturing the bio-electrode, and polymer compound
US11135422B2 (en) 2017-02-14 2021-10-05 Shin-Etsu Chemical Co., Ltd. Bio-electrode and methods for manufacturing the bio-electrode
US10695554B2 (en) 2017-02-14 2020-06-30 Shin-Etsu Chemical Co., Ltd. Bio-electrode composition, bio-electrode, method for manufacturing the bio-electrode, and polymer
US10792489B2 (en) 2017-02-14 2020-10-06 Shin-Etsu Chemical Co., Ltd. Bio-electrode composition, bio-electrode, and method for manufacturing the bio-electrode
EP3360472A1 (en) 2017-02-14 2018-08-15 Shin-Etsu Chemical Co., Ltd. Bio-electrode composition, bio-electrode, method for manufacturing the bio-electrode, and polymer
EP3360473A1 (en) 2017-02-14 2018-08-15 Shin-Etsu Chemical Co., Ltd. Bio-electrode composition, bio-electrode, and method for manufacturing the bio-electrode
US11801333B2 (en) 2018-04-02 2023-10-31 Shin-Etsu Chemical Co., Ltd. Bio-electrode composition, bio-electrode, and method for manufacturing a bio-electrode
US11896377B2 (en) 2018-06-25 2024-02-13 Shin-Etsu Chemical Co., Ltd. Bio-electrode
EP3587473A1 (en) 2018-06-25 2020-01-01 Shin-Etsu Chemical Co., Ltd. Bio-electrode composition, bio-electrode, and method for manufacturing a bio-electrode
US11160480B2 (en) 2018-06-25 2021-11-02 Shin-Etsu Chemical Co., Ltd. Bio-electrode composition, bio-electrode, and method for manufacturing a bio-electrode
US11612347B2 (en) 2018-06-25 2023-03-28 Shin-Etsu Chemical Co., Ltd. Bio-electrode composition, bio-electrode, and method for manufacturing a bio-electrode
EP3587474A1 (en) 2018-06-26 2020-01-01 Shin-Etsu Chemical Co., Ltd. Bio-electrode composition, bio-electrode, and method for manufacturing a bio-electrode
US11607162B2 (en) 2018-06-26 2023-03-21 Shin-Etsu Chemical Co., Ltd. Bio-electrode composition, bio-electrode, and method for manufacturing a bio-electrode
US11234606B2 (en) 2018-07-05 2022-02-01 Shin-Etsu Chemical Co., Ltd. Bio-electrode composition, bio-electrode, and method for manufacturing a bio-electrode
EP3594262A1 (en) 2018-07-12 2020-01-15 Shin-Etsu Chemical Co., Ltd. Bio-electrode composition, bio-electrode, and method for manufacturing a bio-electrode
US11517236B2 (en) 2018-07-12 2022-12-06 Shin-Etsu Chemical Co., Ltd. Bio-electrode composition, bio-electrode, and method for manufacturing a bio-electrode
US11547354B2 (en) 2018-08-23 2023-01-10 Shin-Etsu Chemical Co., Ltd. Bio-electrode composition, bio-electrode, and method for manufacturing a bio-electrode
US11839476B2 (en) 2018-08-27 2023-12-12 Shin-Etsu Chemical Co., Ltd. Bio-electrode composition, bio-electrode, and method for manufacturing a bio-electrode
EP3718471A1 (en) 2019-04-03 2020-10-07 Shin-Etsu Chemical Co., Ltd. Bio-electrode composition, bio-electrode, and method for manufacturing bio-electrode
US11369299B2 (en) 2019-04-03 2022-06-28 Shin-Etsu Chemical Co., Ltd. Bio-electrode composition, bio-electrode, and method for manufacturing bio-electrode
US11643492B2 (en) 2019-04-03 2023-05-09 Shin-Etsu Chemical Co., Ltd. Bio-electrode composition, bio-electrode, and method for manufacturing bio-electrode
US11998339B2 (en) 2020-01-22 2024-06-04 Shin-Etsu Chemical Co., Ltd. Bio-electrode composition, bio-electrode, and method for manufacturing bio-electrode
EP3854303A1 (en) 2020-01-22 2021-07-28 Shin-Etsu Chemical Co., Ltd. Bio-electrode composition, bio-electrode, and method for manufacturing bio-electrode
EP3881766A1 (en) 2020-03-19 2021-09-22 Shin-Etsu Chemical Co., Ltd. Bio-electrode, method for manufacturing bio-electrode, and method for measuring biological signal
US12036025B2 (en) 2020-03-19 2024-07-16 Shin-Etsu Chemical Co., Ltd. Bio-electrode, method for manufacturing bio-electrode, and method for measuring biological signal
US11965095B2 (en) 2020-04-01 2024-04-23 Shin-Etsu Chemical Co., Ltd. Bio-electrode composition, bio-electrode, and method for manufacturing bio-electrode
JP7523967B2 (en) 2020-07-01 2024-07-29 株式会社カネカ Modified siloxane diamine compound and polyimide resin
EP3968343A2 (en) 2020-09-15 2022-03-16 Shin-Etsu Chemical Co., Ltd. Bio-electrode composition, bio-electrode, method for manufacturing bio-electrode, and silicon material particle
US12262980B2 (en) 2020-09-15 2025-04-01 Shin-Etsu Chemical Co., Ltd. Bio-electrode composition, bio-electrode, method for manufacturing bio-electrode, and silicon material particle
US12324667B2 (en) 2020-10-13 2025-06-10 Shin-Etsu Chemical Co., Ltd. Bio-electrode composition, bio-electrode, method for manufacturing bio-electrode, polymer compound, and composite
EP3984456A1 (en) 2020-10-13 2022-04-20 Shin-Etsu Chemical Co., Ltd. Bio-electrode composition, bio-electrode, method for manufacturing bio-electrode, polymer compound, and composite
EP3995548A1 (en) 2020-11-05 2022-05-11 Shin-Etsu Chemical Co., Ltd. Bio-electrode composition, bio-electrode, method for manufacturing bioelectrode, and reaction composite
EP4006921A2 (en) 2020-11-26 2022-06-01 Shin-Etsu Chemical Co., Ltd. Bio-electrode composition, bio-electrode, method for manufacturing bio-electrode, and reaction composite
EP4026860A1 (en) 2021-01-06 2022-07-13 Shin-Etsu Chemical Co., Ltd. Bio-electrode composition, bio-electrode, and method for manufacturing bio-electrode
EP4074754A1 (en) 2021-04-16 2022-10-19 Shin-Etsu Chemical Co., Ltd. Bio-electrode composition, bio-electrode, and method for manufacturing bio-electrode
US11926766B2 (en) 2021-04-16 2024-03-12 Shin-Etsu Chemical Co., Ltd. Bio-electrode composition, bio-electrode, and method for manufacturing bio-electrode
CN113185689A (en) * 2021-05-28 2021-07-30 湖南工业大学 Low-water-absorption copolymerized nylon resin and preparation method thereof
EP4309582A1 (en) 2022-07-21 2024-01-24 Shin-Etsu Chemical Co., Ltd. Bio-electrode composition, bio-electrode, and method for manufacturing the same
EP4435803A1 (en) 2023-03-23 2024-09-25 Shin-Etsu Chemical Co., Ltd. Bio-electrode composition, bio-electrode, and method for manufacturing the same
CN116622063A (en) * 2023-04-28 2023-08-22 安徽元琛环保科技股份有限公司 A kind of modified polym-phenylene isophthalamide and its preparation method and application
CN116554466A (en) * 2023-06-12 2023-08-08 广州硅碳新材料有限公司 Organosilicon modified polyamide and preparation method and application thereof
CN116554466B (en) * 2023-06-12 2023-11-21 广州硅碳新材料有限公司 Organosilicon modified polyamide and preparation method and application thereof
EP4492406A1 (en) 2023-07-10 2025-01-15 Shin-Etsu Chemical Co., Ltd. Bio-electrode composition, bio-electrode, method for manufacturing bio-electrode

Also Published As

Publication number Publication date
JP5646153B2 (en) 2014-12-24

Similar Documents

Publication Publication Date Title
JP5646153B2 (en) Method for producing polyamide silicone copolymer
KR101748443B1 (en) Organopolysiloxane containing vinylsiloxy group in both ends thereof and isocyanuric ring
TWI538933B (en) Organopolysilmethylenesiloxane and organopolysilmethylenesiloxane composition
KR101480587B1 (en) Novel silphenylene skeleton containing silicone type polymer compound and method for producing the same
US6815519B2 (en) Acidic fluorine-containing poly (siloxane amideimide) silica hybrids
JP2010265374A (en) Isocyanuric ring-containing terminal hydrogen polysiloxane
JPS61258837A (en) Organopolysiloxane/polyamide block copolymer and its production
JP6786081B2 (en) Flexible film using curable resin composition
JPH07313883A (en) Preparation of platinum catalyst, hardenable organosiloxane composition and elastomer and preparation of said composition and elastomer
JP2979145B1 (en) New silsesquioxane-containing polymer and method for producing the same
JPS60252629A (en) Thermosettable silicone-polyimide block copolymer
JPH03263432A (en) Thermosetting composition
JP4834032B2 (en) Curable composition
JPH069781A (en) Siloxane having anhydride group
CN103890086B (en) Based on conducting polymer materials and their preparation method of carbonyl-functionalized polysiloxane
JP2010265372A (en) Both-end monomethylallyl isocyanuric ring-blocked organopolysiloxane
JPH04342723A (en) Solvent-resistant silicone polyimide
EP2486082B1 (en) Process for producing aramid silicone polymer
JP2670250B2 (en) Polyanhydride siloxane
JP6493268B2 (en) Method for producing organopolysiloxane having arylene group in main chain
TWI606055B (en) Alternating phenylene and oxonane structural polymer and its precursor preparation method
JP5258114B2 (en) Isocyanuric ring-containing terminal vinyl polysiloxane
JP7519818B2 (en) Modified siloxane dianhydride and polyimide resin
JP5453037B2 (en) Method for cross-linking aramid silicone polymer and thermosetting composition
Tagle et al. Poly (imide‐amide) s and poly (imide‐ester) s obtained from N, N′‐(4, 4′‐Me, R‐diphthaloyl)‐bis‐glycine acid dichloride (R= Me, Et): Synthesis, characterization, and thermal studies

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121001

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130514

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130618

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130704

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130814

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140507

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140704

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141028

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141105

R150 Certificate of patent or registration of utility model

Ref document number: 5646153

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees