[go: up one dir, main page]

JP2011076938A - Conductive particulate, and manufacturing method of conductive particulate - Google Patents

Conductive particulate, and manufacturing method of conductive particulate Download PDF

Info

Publication number
JP2011076938A
JP2011076938A JP2009228718A JP2009228718A JP2011076938A JP 2011076938 A JP2011076938 A JP 2011076938A JP 2009228718 A JP2009228718 A JP 2009228718A JP 2009228718 A JP2009228718 A JP 2009228718A JP 2011076938 A JP2011076938 A JP 2011076938A
Authority
JP
Japan
Prior art keywords
fine particles
conductive
resin
conductive layer
resin fine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009228718A
Other languages
Japanese (ja)
Inventor
Takahiro Omura
貴宏 大村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP2009228718A priority Critical patent/JP2011076938A/en
Publication of JP2011076938A publication Critical patent/JP2011076938A/en
Pending legal-status Critical Current

Links

Landscapes

  • Chemically Coating (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a conductive particulate superior in adhesion of a conductive layer, and to provide a manufacturing method of the conductive particulate. <P>SOLUTION: The conductive particulate has a conductive layer on the surface of a composite particulate, and the conductive particulate has a base material particulate and a plurality of resin particulates adhered on the surface of the base material particulate, and is obtained by hetero aggregation of the base material particulate and the resin particulates. The base material particulate has an average particulate size of 0.5-500 μm and the resin particulate has an average particulate size of 1-100 nm. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、導電層の密着性に優れた導電性微粒子に関する。また、本発明は、該導電性微粒子の製造方法に関する。 The present invention relates to conductive fine particles having excellent adhesion of a conductive layer. The present invention also relates to a method for producing the conductive fine particles.

基材微粒子の表面に導電層を有する導電性微粒子は、例えば、異方性導電フィルム、異方性導電ペースト等の異方性導電材料、Ball Grid Array(BGA)実装用はんだボール等の実装用接続材料として広く利用されている。このような導電性微粒子は、通常、基材微粒子の表面に無電解メッキ、又は、無電解メッキの後に更に電解メッキを行うことで導電層を形成することにより作製される。 Conductive fine particles having a conductive layer on the surface of the base fine particles may be used for mounting anisotropic conductive materials such as anisotropic conductive films and anisotropic conductive pastes, ball grid array (BGA) mounting solder balls and the like. Widely used as a connecting material. Such conductive fine particles are usually produced by forming a conductive layer on the surface of the substrate fine particles by electroless plating or by further performing electroplating after electroless plating.

しかしながら、樹脂等の有機物からなる基材微粒子を用いる場合には、基材微粒子と導電層との間に強い化学結合が形成され難く、導電層の密着性が充分に得られないことが問題である。導電層の密着性が低いと、導電性微粒子を用いて対向する回路基板等の電極間を接続した場合には、接続のために必要とされる圧力、熱等に由来する応力によって導電層が割れやすくなり、電極間の導通不良、断線等が生じる。 However, when using substrate fine particles made of organic substances such as resin, it is difficult to form a strong chemical bond between the substrate fine particles and the conductive layer, and the adhesion of the conductive layer cannot be obtained sufficiently. is there. If the adhesion of the conductive layer is low, when the electrodes such as circuit boards facing each other are connected using conductive fine particles, the conductive layer is caused by stress derived from pressure, heat, etc. required for connection. It becomes easy to break, resulting in poor conduction between electrodes and disconnection.

導電層の密着性を改善するために、例えば、微粒子を付着させることで基材微粒子表面を粗化することが検討されている。表面を粗化することで、基材微粒子表面と導電層との間にアンカー効果が生じ、表面が平滑である場合に比べて導電層の密着性が向上する。
表面を粗化した導電性微粒子として、例えば、本発明者らは、表面に突起を持った非導電性微粒子の表面に、金属メッキを施してなる導電性微粒子を特許文献1に開示しており、表面に突起を持った非導電性微粒子を得る方法として、例えば、従来の微粒子を母粒子としてこの表面に子粒子を付着させる方法を挙げている。
In order to improve the adhesion of the conductive layer, for example, it has been studied to roughen the surface of the substrate fine particles by attaching fine particles. By roughening the surface, an anchor effect is generated between the surface of the substrate fine particles and the conductive layer, and the adhesion of the conductive layer is improved as compared with the case where the surface is smooth.
As conductive fine particles having a roughened surface, for example, the present inventors have disclosed conductive fine particles obtained by performing metal plating on the surface of non-conductive fine particles having protrusions on the surface. As a method of obtaining non-conductive fine particles having protrusions on the surface, for example, a method of attaching child particles to the surface using conventional fine particles as mother particles is cited.

また、本発明者らは、接続抵抗値が低く、導電信頼性に優れた導電性微粒子として、基材微粒子の表面に基材微粒子より小さい樹脂微粒子が結合した複合微粒子の表面に、金属メッキを施してなる導電性微粒子であって、導電性微粒子を10%圧縮変形させたときの圧縮弾性率(10%K値)が5000〜8500N/mmで、かつ30%圧縮変形させたときの圧縮弾性率(30%K値)が1500〜3000N/mmである導電性微粒子を特許文献2に開示している。 In addition, the present inventors applied metal plating to the surface of the composite fine particles in which the resin fine particles smaller than the substrate fine particles are bonded to the surface of the substrate fine particles as conductive fine particles having a low connection resistance value and excellent conductive reliability. Compressive elastic modulus (10% K value) when the conductive fine particles are subjected to 10% compression deformation, and 5000 to 8500 N / mm 2 and compression when 30% compression deformation is performed. Patent Document 2 discloses conductive fine particles having an elastic modulus (30% K value) of 1500 to 3000 N / mm 2 .

しかしながら、特許文献1の実施例で用いられている子粒子の平均粒子径は1.2μm、特許文献2の実施例で用いられている樹脂微粒子の平均粒子径は0.3μmであり、表面を粗化するための突起に用いられる微粒子の平均粒子径が比較的大きいことから、これらの導電性微粒子においては、乾燥及び解砕時等に突起に応力が集中して、かえって導電層が剥がれることがある。また、平均粒子径の小さい微粒子を付着させる場合、従来のハイブリダイザ等を用いた機械的な衝突による方法では、微粒子の付着が不均一となり、充分な密着性を有する導電層を得ることは困難である。 However, the average particle diameter of the child particles used in the example of Patent Document 1 is 1.2 μm, the average particle diameter of the resin fine particles used in the example of Patent Document 2 is 0.3 μm, and the surface is Since the average particle size of the fine particles used for the protrusions for roughening is relatively large, in these conductive fine particles, stress concentrates on the protrusions during drying and crushing, and the conductive layer is peeled off instead. There is. In addition, when attaching fine particles with a small average particle diameter, the conventional method using mechanical collision using a hybridizer or the like makes the adhesion of the fine particles non-uniform, and it is difficult to obtain a conductive layer having sufficient adhesion. is there.

特開平4−36902号公報JP-A-4-36902 特開2006−107881号公報JP 2006-107881 A

本発明は、導電層の密着性に優れた導電性微粒子を提供することを目的とする。また、本発明は、該導電性微粒子の製造方法を提供することを目的とする。 An object of this invention is to provide the electroconductive fine particle excellent in the adhesiveness of a conductive layer. Another object of the present invention is to provide a method for producing the conductive fine particles.

本発明は、複合微粒子の表面に導電層を有する導電性微粒子であって、前記複合微粒子は、基材微粒子と、前記基材微粒子の表面に付着した複数の樹脂微粒子とを有し、かつ、前記基材微粒子と前記樹脂微粒子とをヘテロ凝集させることによって得られ、前記基材微粒子は、平均粒子径が0.5〜500μmであり、前記樹脂微粒子は、平均粒子径が1〜100nmである導電性微粒子である。
以下、本発明を詳述する。
The present invention is a conductive fine particle having a conductive layer on the surface of a composite fine particle, the composite fine particle has a base particle and a plurality of resin fine particles attached to the surface of the base particle, and Obtained by hetero-aggregating the substrate fine particles and the resin fine particles, the substrate fine particles have an average particle diameter of 0.5 to 500 μm, and the resin fine particles have an average particle diameter of 1 to 100 nm. Conductive fine particles.
The present invention is described in detail below.

本発明者らは、基材微粒子と基材微粒子の表面に付着した複数の樹脂微粒子とを有する複合微粒子であって、上記基材微粒子が所定の平均粒子径を有し、かつ、上記樹脂微粒子が所定の小さい平均粒子径を有する複合微粒子を、ヘテロ凝集によって作製できることを見出した。本発明者らは、このような複合微粒子の表面に導電層を形成することで、導電層の密着性に優れた導電性微粒子が得られることを見出し、本発明を完成させるに至った。 The inventors of the present invention are composite fine particles having base fine particles and a plurality of resin fine particles attached to the surface of the base fine particles, wherein the base fine particles have a predetermined average particle diameter, and the resin fine particles Has found that composite fine particles having a predetermined small average particle diameter can be produced by heteroaggregation. The present inventors have found that conductive fine particles having excellent adhesion of the conductive layer can be obtained by forming a conductive layer on the surface of such composite fine particles, and have completed the present invention.

本発明の導電性微粒子は、基材微粒子と、基材微粒子の表面に付着した複数の樹脂微粒子とを有する複合微粒子を有する。
上記基材微粒子の平均粒子径は、下限が0.5μm、上限が500μmである。上記基材微粒子の平均粒子径が0.5μm未満であると、基材微粒子が凝集しやすく、凝集した基材微粒子の表面に導電層を形成した導電性微粒子を用いると、隣接する電極間を短絡させやすい。上記基材微粒子の平均粒子径が500μmを超えると、回路基板等の電極間の接続に適した範囲を超えてしまう。上記基材微粒子の平均粒子径の好ましい下限は1μm、好ましい上限は400μmである。
なお、上記基材微粒子の平均粒子径は、光学顕微鏡又は電子顕微鏡を用いて無作為に選んだ50個の基材微粒子の粒子径を測定し、測定した粒子径を算術平均することにより求められる。
The conductive fine particles of the present invention have composite fine particles having substrate fine particles and a plurality of resin fine particles attached to the surface of the substrate fine particles.
The lower limit of the average particle diameter of the substrate fine particles is 0.5 μm, and the upper limit is 500 μm. When the average particle diameter of the above-mentioned substrate fine particles is less than 0.5 μm, the substrate fine particles are likely to aggregate, and when using conductive particles in which a conductive layer is formed on the surface of the aggregated substrate fine particles, Easy to short circuit. When the average particle diameter of the base material fine particles exceeds 500 μm, it exceeds the range suitable for connection between electrodes such as a circuit board. The preferable lower limit of the average particle diameter of the substrate fine particles is 1 μm, and the preferable upper limit is 400 μm.
The average particle size of the above-mentioned substrate fine particles is obtained by measuring the particle sizes of 50 randomly selected substrate fine particles using an optical microscope or an electron microscope and arithmetically averaging the measured particle sizes. .

上記基材微粒子の平均粒子径の変動係数は特に限定されないが、10%以下であることが好ましい。上記変動係数が10%を超えると、導電性微粒子の接続信頼性が低下することがある。なお、上記変動係数は、粒子径分布から得られる標準偏差を平均粒子径で除して得られる値を百分率(%)で示した数値である。 The coefficient of variation of the average particle diameter of the substrate fine particles is not particularly limited, but is preferably 10% or less. If the coefficient of variation exceeds 10%, the connection reliability of the conductive fine particles may be lowered. The above coefficient of variation is a numerical value obtained by dividing the standard deviation obtained from the particle size distribution by the average particle size and expressed as a percentage (%).

上記基材微粒子は特に限定されず、例えば、有機樹脂微粒子、無機微粒子、有機無機ハイブリッド微粒子等が挙げられる。なかでも、有機樹脂微粒子が好ましい。 The substrate fine particles are not particularly limited, and examples thereof include organic resin fine particles, inorganic fine particles, and organic-inorganic hybrid fine particles. Among these, organic resin fine particles are preferable.

上記有機樹脂微粒子は、適度の圧縮特性を有する微粒子であれば特に限定されず、架橋樹脂微粒子であってもよく、非架橋樹脂微粒子であってもよい。なかでも、架橋樹脂微粒子が好ましい。
上記架橋樹脂微粒子を構成するモノマーは、架橋性モノマーを含有していれば特に限定されず、架橋性モノマーのみであってもよく、架橋性モノマーに加えて非架橋性モノマーを含有してもよい。
上記架橋性モノマーとして、例えば、ジビニルベンゼン及びその誘導体、ブタジエン、イソプレン等の共役ジエン類、ポリテトラメチレングリコールジ(メタ)アクリレート、1,6−ヘキサンジオールジ(メタ)アクリレート等の多官能(メタ)アクリレート類等が挙げられる。ここで、(メタ)アクリレートとは、メタクリレート又はアクリレートを意味する。上記架橋性モノマーは、単独で使用されてもよく、2種類以上が併用されてもよい。
The organic resin fine particles are not particularly limited as long as they have fine compression properties, and may be crosslinked resin fine particles or non-crosslinked resin fine particles. Among these, crosslinked resin fine particles are preferable.
The monomer constituting the crosslinked resin fine particles is not particularly limited as long as it contains a crosslinkable monomer, and may be only a crosslinkable monomer, or may contain a non-crosslinkable monomer in addition to the crosslinkable monomer. .
Examples of the crosslinkable monomer include divinylbenzene and its derivatives, conjugated dienes such as butadiene and isoprene, polyfunctional (meta) such as polytetramethylene glycol di (meth) acrylate and 1,6-hexanediol di (meth) acrylate. ) Acrylates and the like. Here, (meth) acrylate means methacrylate or acrylate. The said crosslinkable monomer may be used independently and 2 or more types may be used together.

上記非架橋性モノマーとして、例えば、スチレン、α−メチルスチレン、p−メチルスチレン、p−クロロスチレン、クロロメチルスチレン等のスチレン誘導体、塩化ビニル、アクリロニトリル等の不飽和ニトリル類、イソブチル(メタ)アクリレート、イソオクチル(メタ)アクリレート等の単官能(メタ)アクリレート類等が挙げられる。上記非架橋性モノマーは、単独で使用されてもよく、2種類以上が併用されてもよい。 Examples of the non-crosslinkable monomer include styrene derivatives such as styrene, α-methylstyrene, p-methylstyrene, p-chlorostyrene, and chloromethylstyrene, unsaturated nitriles such as vinyl chloride and acrylonitrile, and isobutyl (meth) acrylate. And monofunctional (meth) acrylates such as isooctyl (meth) acrylate. The said non-crosslinkable monomer may be used independently and 2 or more types may be used together.

上記有機樹脂微粒子を得る方法は特に限定されず、例えば、懸濁重合、シード重合、分散重合、分散シード重合、乳化重合等の重合法による方法等が挙げられる。 The method for obtaining the organic resin fine particles is not particularly limited, and examples thereof include a method using a polymerization method such as suspension polymerization, seed polymerization, dispersion polymerization, dispersion seed polymerization, and emulsion polymerization.

上記無機微粒子は特に限定されず、例えば、シリカ、アルミナ等の金属酸化物で構成される微粒子が挙げられる。
上記有機無機ハイブリッド微粒子は特に限定されず、例えば、オルガノシロキサン骨格の中にアクリルポリマーを含有するハイブリッド微粒子が挙げられる。
The inorganic fine particles are not particularly limited, and examples thereof include fine particles composed of metal oxides such as silica and alumina.
The organic-inorganic hybrid fine particles are not particularly limited, and examples thereof include hybrid fine particles containing an acrylic polymer in an organosiloxane skeleton.

上記基材微粒子が有機樹脂微粒子である場合、上記有機樹脂微粒子の10%K値の好ましい下限は1000MPa、好ましい上限は15000MPaである。上記10%K値が1000MPa未満であると、有機樹脂微粒子を圧縮変形させると、有機樹脂微粒子が破壊されることがある。上記10%K値が15000MPaを超えると、導電性微粒子が電極を傷つけることがある。上記10%K値のより好ましい下限は2000MPa、より好ましい上限は10000MPaである。 When the substrate fine particles are organic resin fine particles, the preferred lower limit of the 10% K value of the organic resin fine particles is 1000 MPa, and the preferred upper limit is 15000 MPa. When the 10% K value is less than 1000 MPa, the organic resin fine particles may be destroyed when the organic resin fine particles are compressed and deformed. When the 10% K value exceeds 15000 MPa, the conductive fine particles may damage the electrode. The more preferable lower limit of the 10% K value is 2000 MPa, and the more preferable upper limit is 10,000 MPa.

なお、上記10%K値は、微小圧縮試験器(例えば、島津製作所社製「PCT−200」)を用い、有機樹脂微粒子を直径50μmのダイアモンド製円柱の平滑圧子端面で、圧縮速度2.6mN/秒、最大試験荷重10gの条件下で圧縮した場合の圧縮変位(mm)を測定し、下記式(1)により求められる。
K値(N/mm)=(3/√2)・F・S−3/2・R−1/2 (1)
F:有機樹脂微粒子の10%圧縮変形における荷重値(N)
S:有機樹脂微粒子の10%圧縮変形における圧縮変位(mm)
R:有機樹脂微粒子の半径(mm)
The 10% K value is obtained by using a micro compression tester (for example, “PCT-200” manufactured by Shimadzu Corporation), and using a smooth indenter end face of a diamond cylinder having a diameter of 50 μm and a compression speed of 2.6 mN. The compression displacement (mm) when compressed under the conditions of 10 g / second and a maximum test load of 10 g is measured, and is obtained by the following formula (1).
K value (N / mm 2) = ( 3 / √2) · F · S -3/2 · R -1/2 (1)
F: Load value at 10% compression deformation of organic resin fine particles (N)
S: Compression displacement (mm) in 10% compression deformation of organic resin fine particles
R: Radius of organic resin fine particles (mm)

上記基材微粒子の形状は特に限定されず、例えば、球状、楕円球状等が挙げられる。なかでも、球状が好ましい。 The shape of the substrate fine particles is not particularly limited, and examples thereof include a spherical shape and an elliptical spherical shape. Of these, spherical is preferable.

上記基材微粒子の表面には、複数の樹脂微粒子が付着している。
上記樹脂微粒子の平均粒子径は、下限が1nm、上限が100nmである。上記樹脂微粒子の平均粒子径が1nm未満であると、表面を粗化することによるアンカー効果が低下し、導電性微粒子の導電層の密着性が低下する。上記樹脂微粒子の平均粒子径が100nmを超えると、導電性微粒子の乾燥及び解砕時等に上記樹脂微粒子に応力が集中して、導電性微粒子の導電層の密着性が低下する。上記樹脂微粒子の平均粒子径の好ましい下限は10nm、好ましい上限は80nmである。
なお、上記樹脂微粒子の平均粒子径は、光学顕微鏡又は電子顕微鏡を用いて無作為に選んだ50個の樹脂微粒子の粒子径を測定し、測定した粒子径を算術平均することにより求められる。
A plurality of resin fine particles are attached to the surface of the substrate fine particles.
The average particle diameter of the resin fine particles has a lower limit of 1 nm and an upper limit of 100 nm. When the average particle diameter of the resin fine particles is less than 1 nm, the anchor effect by roughening the surface is lowered, and the adhesion of the conductive layer of the conductive fine particles is lowered. When the average particle diameter of the resin fine particles exceeds 100 nm, stress concentrates on the resin fine particles during drying and pulverization of the conductive fine particles, and the adhesion of the conductive layer of the conductive fine particles decreases. The preferable lower limit of the average particle diameter of the resin fine particles is 10 nm, and the preferable upper limit is 80 nm.
In addition, the average particle diameter of the resin fine particles is obtained by measuring the particle diameters of 50 resin fine particles randomly selected using an optical microscope or an electron microscope, and arithmetically averaging the measured particle diameters.

上記樹脂微粒子の平均粒子径の変動係数は特に限定されないが、10%以下であることが好ましい。上記変動係数が10%を超えると、導電性微粒子の接続信頼性が低下することがある。なお、上記変動係数は、粒子径分布から得られる標準偏差を平均粒子径で除して得られる値を百分率(%)で示した数値である。 The coefficient of variation of the average particle diameter of the resin fine particles is not particularly limited, but is preferably 10% or less. If the coefficient of variation exceeds 10%, the connection reliability of the conductive fine particles may be lowered. The above coefficient of variation is a numerical value obtained by dividing the standard deviation obtained from the particle size distribution by the average particle size and expressed as a percentage (%).

上記基材微粒子の表面に付着して、上記基材微粒子の表面を被覆する上記樹脂微粒子の割合(以下、表面被覆率ともいう)は、好ましい下限が5%、好ましい上限が90%である。上記樹脂微粒子の表面被覆率が5%未満であると、表面を粗化することによるアンカー効果が低下し、導電性微粒子の導電層の密着性が低下することがある。上記樹脂微粒子の表面被覆率が90%を超えると、上記基材微粒子の表面を上記樹脂微粒子が積み重なって被覆することとなり、導電性微粒子を異方性導電材料として用いた接続時に、上記樹脂微粒子による突起が電極と接触して、良好な接続状態とならないことがある。上記樹脂微粒子の表面被覆率は、より好ましい下限が10%、より好ましい上限が60%である。 The ratio of the resin fine particles adhering to the surface of the substrate fine particles and covering the surface of the substrate fine particles (hereinafter also referred to as surface coverage) has a preferred lower limit of 5% and a preferred upper limit of 90%. When the surface coverage of the resin fine particles is less than 5%, the anchor effect due to the roughening of the surface is lowered, and the adhesion of the conductive fine particles to the conductive layer may be lowered. When the surface coverage of the resin fine particles exceeds 90%, the surface of the substrate fine particles is covered with the resin fine particles, and the resin fine particles are connected at the time of connection using the conductive fine particles as an anisotropic conductive material. The protrusion due to contact with the electrode may not be in a good connection state. A more preferable lower limit of the surface coverage of the resin fine particles is 10%, and a more preferable upper limit is 60%.

なお、上記樹脂微粒子の表面被覆率は、上記基材微粒子の表面積に対する上記樹脂微粒子の投影面積の和の割合で与えられる。具体的には、上記樹脂微粒子の表面被覆率は、無作為に選んだ50個の導電性微粒子について、上記樹脂微粒子による突起の個数をカウントし、下記式(2)により求められる。
表面被覆率(%)=(πr×N/4πR)×100 (2)
N:付着した樹脂微粒子による突起の個数
r:付着した樹脂微粒子の平均半径
R:基材微粒子の平均半径
上記樹脂微粒子の表面被覆率は、例えば、上記基材微粒子に対して、添加する上記樹脂微粒子の量を変化させることにより容易に制御することができる。
The surface coverage of the resin fine particles is given by the ratio of the sum of the projected areas of the resin fine particles to the surface area of the substrate fine particles. Specifically, the surface coverage of the resin fine particles is obtained by the following formula (2) by counting the number of protrusions due to the resin fine particles for 50 randomly selected conductive fine particles.
Surface coverage (%) = (πr 2 × N / 4πR 2 ) × 100 (2)
N: Number of protrusions due to adhering resin particles r: Average radius of adhering resin particles R: Average radius of substrate particles The surface coverage of the resin particles is, for example, the resin added to the substrate particles It can be easily controlled by changing the amount of fine particles.

上記樹脂微粒子は、適度の圧縮特性を有する樹脂微粒子であれば特に限定されず、架橋樹脂微粒子でもあってもよく、非架橋樹脂微粒子であってもよい。
上記架橋樹脂微粒子を構成するモノマーは、架橋性モノマーを含有していれば特に限定されず、架橋性モノマーのみであってもよく、架橋性モノマーに加えて非架橋性モノマーを含有してもよい。上記架橋性モノマーとして、例えば、上記基材微粒子を構成する架橋性モノマーと同様の架橋性モノマー等が挙げられる。
上記非架橋樹脂微粒子を構成するモノマーは、非架橋性モノマーであれば特に限定されず、例えば、上記基材微粒子を構成する非架橋性モノマーと同様の非架橋性モノマー等が挙げられる。
The resin fine particles are not particularly limited as long as they are resin fine particles having appropriate compression characteristics, and may be crosslinked resin fine particles or non-crosslinked resin fine particles.
The monomer constituting the crosslinked resin fine particles is not particularly limited as long as it contains a crosslinkable monomer, and may be only a crosslinkable monomer, or may contain a non-crosslinkable monomer in addition to the crosslinkable monomer. . Examples of the crosslinkable monomer include crosslinkable monomers similar to the crosslinkable monomer constituting the substrate fine particles.
The monomer constituting the non-crosslinked resin fine particles is not particularly limited as long as it is a non-crosslinkable monomer, and examples thereof include the same non-crosslinkable monomer as the non-crosslinkable monomer constituting the substrate fine particles.

上記樹脂微粒子を得る方法は特に限定されず、例えば、懸濁重合、シード重合、分散重合、分散シード重合、乳化重合等の重合法による方法等が挙げられる。 The method for obtaining the resin fine particles is not particularly limited, and examples thereof include a method using a polymerization method such as suspension polymerization, seed polymerization, dispersion polymerization, dispersion seed polymerization, and emulsion polymerization.

上記樹脂微粒子の形状は特に限定されず、例えば、球状、楕円球状等が挙げられる。なかでも、球状が好ましい。 The shape of the resin fine particles is not particularly limited, and examples thereof include a spherical shape and an elliptical spherical shape. Of these, spherical is preferable.

上記複合微粒子は、上記基材微粒子と上記樹脂微粒子とをヘテロ凝集させることによって得られる。なお、一般的に、ヘテロ凝集とは、性質の異なる少なくとも2種の微粒子をファンデルワールス力又は静電相互作用により凝集させることをいう。
上記ヘテロ凝集を用いることで、上記範囲の比較的小さい平均粒子径を有する樹脂微粒子を付着させる場合でも、上記樹脂微粒子が上記基材微粒子の表面に均一に、重なり合うことなく付着して、導電層の密着性に優れた導電性微粒子が得られる。また、上記ヘテロ凝集を用いれば、溶媒効果により上記基材微粒子と上記樹脂微粒子との間の化学反応が迅速かつ確実に起こる。これに対し、従来の高速攪拌機、ハイブリダイザ等の乾式方法により、上記基材微粒子の表面に上記樹脂微粒子を付着させると、上記樹脂微粒子の付着が不均一となり、また、上記基材微粒子に圧力、摩擦熱等の負荷がかかりやすい。更に、上記樹脂微粒子が上記基材微粒子より硬いと、上記基材微粒子に傷がつくことがあり、上記樹脂微粒子が上記基材微粒子より柔らかいと、上記基材微粒子との衝突、摩擦熱等により、上記樹脂微粒子が変形することがある。
The composite fine particles can be obtained by hetero-aggregating the substrate fine particles and the resin fine particles. In general, heteroaggregation means that at least two kinds of fine particles having different properties are aggregated by van der Waals force or electrostatic interaction.
By using the hetero-aggregation, even when resin fine particles having a relatively small average particle diameter in the above range are adhered, the resin fine particles adhere uniformly to the surface of the substrate fine particles without overlapping, and the conductive layer Conductive fine particles having excellent adhesion can be obtained. Further, when the heteroaggregation is used, a chemical reaction between the substrate fine particles and the resin fine particles occurs quickly and reliably due to the solvent effect. On the other hand, when the resin fine particles are attached to the surface of the substrate fine particles by a dry method such as a conventional high-speed stirrer or a hybridizer, the adhesion of the resin fine particles becomes uneven. Loads such as frictional heat are likely to be applied. Further, if the resin fine particles are harder than the substrate fine particles, the substrate fine particles may be damaged. If the resin fine particles are softer than the substrate fine particles, collision with the substrate fine particles, frictional heat, etc. The resin fine particles may be deformed.

上記基材微粒子と上記樹脂微粒子とをヘテロ凝集させる方法として、例えば、イオン交換水に上記基材微粒子を添加して得られるスラリーに、上記樹脂微粒子を含有するスラリーを添加した後、例えば、電解質水溶液等を添加する方法、酸又は塩基を添加してpHを変化させる方法等が挙げられる。
上記電解質の種類は特に限定されず、例えば、塩化ナトリウム、塩化カリウム、塩化カルシウム、塩化マグネシウム、炭酸ナトリウム、炭酸水素ナトリウム、硝酸ナトリウム、亜硝酸ナトリウム、硫酸ナトリウム等が挙げられる。
As a method of heteroaggregating the base material fine particles and the resin fine particles, for example, after adding the slurry containing the resin fine particles to a slurry obtained by adding the base material fine particles to ion-exchanged water, for example, an electrolyte Examples thereof include a method of adding an aqueous solution and the like, a method of changing pH by adding an acid or a base, and the like.
The kind of said electrolyte is not specifically limited, For example, sodium chloride, potassium chloride, calcium chloride, magnesium chloride, sodium carbonate, sodium hydrogencarbonate, sodium nitrate, sodium nitrite, sodium sulfate etc. are mentioned.

上記基材微粒子と上記樹脂微粒子とをヘテロ凝集させる際、上記基材微粒子と上記樹脂微粒子との配合比は特に限定されず、目的とする上記樹脂粒子の表面被覆率に合わせて、適宜設定される。 When hetero-aggregating the substrate fine particles and the resin fine particles, the mixing ratio of the substrate fine particles and the resin fine particles is not particularly limited, and is appropriately set according to the target surface coverage of the resin particles. The

本発明の導電性微粒子は、上記複合微粒子の表面に導電層を有する。上記導電層は、単層であってもよく、複数の層を有していてもよい。
上記導電層として、例えば、金、銀、銅、プラチナ、パラジウム、ニッケル、ロジウム、ルテニウム、コバルト、錫等を含有する金属層が挙げられる。上記導電層が複数の層を有する場合、最外層は、金層であることが好ましく、ニッケル層又はパラジウム層であることがより好ましい。上記最外層が金層であることで、電極間の接続抵抗値が低くなる。また、上記最外層がニッケル層又はパラジウム層であることで、上記導電層が硬くなり、導電性が向上する。
The conductive fine particles of the present invention have a conductive layer on the surface of the composite fine particles. The conductive layer may be a single layer or may have a plurality of layers.
Examples of the conductive layer include metal layers containing gold, silver, copper, platinum, palladium, nickel, rhodium, ruthenium, cobalt, tin, and the like. When the conductive layer has a plurality of layers, the outermost layer is preferably a gold layer, and more preferably a nickel layer or a palladium layer. Since the outermost layer is a gold layer, the connection resistance value between the electrodes is lowered. Moreover, the said outermost layer is a nickel layer or a palladium layer, The said conductive layer becomes hard and electroconductivity improves.

また、上記導電層は、錫又は錫と他の金属の合金からなる低融点金属層であってもよい。上記合金は特に限定されず、例えば、錫−銅合金、錫−銀合金、錫−ビスマス合金、錫−亜鉛合金、錫−インジウム合金等が挙げられる。なかでも、形成される低融点金属層の融点を低下させることができることから、錫−銀合金が好ましい。 The conductive layer may be a low melting point metal layer made of tin or an alloy of tin and another metal. The said alloy is not specifically limited, For example, a tin-copper alloy, a tin-silver alloy, a tin-bismuth alloy, a tin-zinc alloy, a tin-indium alloy etc. are mentioned. Among these, a tin-silver alloy is preferable because the melting point of the low melting point metal layer to be formed can be lowered.

更に、上記低融点金属層と電極との接合強度を向上させるために、上記低融点金属層に、ニッケル、アンチモン、アルミニウム、鉄、金、チタン、リン、ゲルマニウム、テルル、ガリウム、コバルト、マンガン、クロム、モリブデン、パラジウム、インジウム等の金属を含有させてもよい。なかでも、上記低融点金属層と電極との接合強度を向上させる効果に優れていることから、上記低融点金属層にニッケル、アンチモン、アルミニウムを含有させることが好ましい。
上記低融点金属層に含有される金属の合計に占める上記金属の含有量は特に限定されないが、好ましい下限は0.0001重量%、好ましい上限は2重量%である。上記金属の含有量が0.0001重量%未満であると、上記低融点金属層と電極との接合強度が充分に得られないことがある。上記金属の含有量が2重量%を超えると導電性微粒子の融点が変わることがある。
なお、上記導電層は、上記金属層又は上記低融点金属層のいずれか一方を有していてもよく、両方を有してしてもよい。
Furthermore, in order to improve the bonding strength between the low-melting-point metal layer and the electrode, the low-melting-point metal layer includes nickel, antimony, aluminum, iron, gold, titanium, phosphorus, germanium, tellurium, gallium, cobalt, manganese, A metal such as chromium, molybdenum, palladium, or indium may be contained. Especially, since it is excellent in the effect which improves the joining strength of the said low melting metal layer and an electrode, it is preferable to contain nickel, antimony, and aluminum in the said low melting metal layer.
The content of the metal in the total of metals contained in the low melting point metal layer is not particularly limited, but a preferred lower limit is 0.0001% by weight and a preferred upper limit is 2% by weight. When the content of the metal is less than 0.0001% by weight, the bonding strength between the low melting point metal layer and the electrode may not be sufficiently obtained. If the metal content exceeds 2% by weight, the melting point of the conductive fine particles may change.
Note that the conductive layer may have either one of the metal layer or the low-melting-point metal layer, or may have both.

上記導電層を形成する方法は特に限定されず、例えば、金属蒸着法、無電解メッキ法等の方法が挙げられる。なかでも、上記複合微粒子の表面に上記導電層を容易に形成できるため、無電解メッキ法が好ましい。
例えば、上記無電解メッキ法により無電解ニッケルメッキを行う場合には、例えば、次亜リン酸ナトリウムを還元剤として構成される無電解ニッケルメッキ液を所定の方法にしたがって建浴、加温したところに、触媒付与された上記複合微粒子を浸漬し、Ni2++HPO2−+HO→Ni+HPO3−+2Hからなる還元反応でニッケル層を析出させる方法等が用いられる。
The method for forming the conductive layer is not particularly limited, and examples thereof include a metal vapor deposition method and an electroless plating method. Of these, the electroless plating method is preferable because the conductive layer can be easily formed on the surface of the composite fine particles.
For example, when electroless nickel plating is performed by the above electroless plating method, for example, an electroless nickel plating solution composed of sodium hypophosphite as a reducing agent is bathed and heated according to a predetermined method. A method of immersing the composite fine particles provided with a catalyst and depositing a nickel layer by a reduction reaction of Ni 2+ + H 2 PO 2 + + H 2 O → Ni + H 2 PO 3 + 2H + is used.

上記触媒付与を行う方法として、例えば、上記複合微粒子に、アルカリ脱脂、酸中和、二塩化スズ(SnCl)溶液におけるセンシタイジングと、二塩化パラジウム(PdCl)溶液におけるアクチベイチングとを有する無電解メッキ前処理工程を行う方法等が挙げられる。
なお、センシタイジングとは、非導電性物質の表面にSn2+イオンを吸着させる工程であり、アクチベイチングとは、Sn2++Pd2+→Sn4++Pdなる反応を非導電性物質表面に起こしてパラジウムを無電解メッキの触媒核とする工程である。
As a method for applying the catalyst, for example, the composite fine particles may be subjected to alkali degreasing, acid neutralization, sensitizing in a tin dichloride (SnCl 2 ) solution, and activation in a palladium dichloride (PdCl 2 ) solution. And a method of performing an electroless plating pretreatment step.
Sensitizing is a process of adsorbing Sn 2+ ions on the surface of a non-conductive substance, and activating is a reaction of Sn 2+ + Pd 2+ → Sn 4+ + Pd 0 on the surface of a non-conductive substance. In this process, palladium is used as a catalyst core for electroless plating.

上記導電層の厚さは特に限定されないが、好ましい下限が0.02μm、好ましい上限が5μmである。上記導電層の厚さが0.02μm未満であると、導電性微粒子は、導電層が薄く、充分な導電性が得られないことがある。上記導電層の厚さが5μmを超えると、上記複合微粒子を構成する非導電性物質と上記導電層を構成する金属とで熱膨張率が異なることから、上記導電層が剥がれやすくなることがある。
なお、上記導電層の厚さは、無作為に選んだ10個の導電性微粒子の断面を走査顕微鏡(SEM)により観察して測定し、測定値を算術平均した厚さである。
Although the thickness of the said conductive layer is not specifically limited, A preferable minimum is 0.02 micrometer and a preferable upper limit is 5 micrometers. When the thickness of the conductive layer is less than 0.02 μm, the conductive fine particles may be thin and the conductive layer may not have sufficient conductivity. If the thickness of the conductive layer exceeds 5 μm, the conductive layer may be easily peeled off because the non-conductive substance constituting the composite fine particles and the metal constituting the conductive layer have different coefficients of thermal expansion. .
The thickness of the conductive layer is a thickness obtained by observing and measuring a cross section of ten randomly selected conductive fine particles with a scanning microscope (SEM) and arithmetically averaging the measured values.

このような導電層を上記複合微粒子の表面に形成することで、本発明の導電性微粒子が得られる。
本発明の導電性微粒子を製造する方法であって、基材微粒子と樹脂微粒子とをヘテロ凝集させることにより、前記基材微粒子と、前記基材微粒子の表面に付着した複数の樹脂微粒子とを有する複合微粒子を得る工程と、前記複合微粒子の表面に導電層を形成する工程とを有する導電性微粒子の製造方法もまた、本発明の1つである。
By forming such a conductive layer on the surface of the composite fine particles, the conductive fine particles of the present invention can be obtained.
In the method for producing conductive fine particles of the present invention, the base fine particles and a plurality of resin fine particles attached to the surface of the base fine particles are obtained by heteroaggregating the base fine particles and the resin fine particles. A method for producing conductive fine particles comprising a step of obtaining composite fine particles and a step of forming a conductive layer on the surface of the composite fine particles is also one aspect of the present invention.

本発明の導電性微粒子の用途として、例えば、メッキ用基材粒子、異方性導電フィルム、異方性導電ペースト等の異方性導電材料、Ball Grid Array(BGA)実装用はんだボール等の実装用接続材料等が挙げられる。
本発明の導電性微粒子は導電層の密着性に優れることから、例えば、導電性微粒子を用いて対向する回路基板等の電極間を接続する場合の接続信頼性に優れ、接続のために必要とされる圧力、熱等に由来する応力が生じても、電極間の導通不良、断線等を抑制することができる。
Examples of the use of the conductive fine particles of the present invention include mounting of anisotropic conductive materials such as plating base particles, anisotropic conductive films, and anisotropic conductive paste, and solder balls for mounting Ball Grid Array (BGA). Connection materials and the like.
Since the conductive fine particles of the present invention are excellent in adhesion of the conductive layer, for example, the conductive fine particles are excellent in connection reliability when connecting electrodes such as circuit boards facing each other using the conductive fine particles, and are necessary for connection. Even if stress derived from the applied pressure, heat, or the like occurs, poor conduction between electrodes, disconnection, or the like can be suppressed.

本発明によれば、導電層の密着性に優れた導電性微粒子を提供することができる。また、本発明によれば、該導電性微粒子の製造方法を提供することができる。 According to the present invention, it is possible to provide conductive fine particles having excellent adhesion of the conductive layer. Moreover, according to this invention, the manufacturing method of this electroconductive fine particle can be provided.

以下に実施例を掲げて本発明の態様を更に詳しく説明するが、本発明はこれら実施例のみに限定されない。 The embodiments of the present invention will be described in more detail with reference to the following examples, but the present invention is not limited to these examples.

(実施例1)
(基材微粒子の作製)
シード粒子としてのスチレン粒子(平均粒子径0.75μm)5gと、イオン交換水500gと、5重量%のポリビニルアルコール水溶液100gとを混合し、超音波を加え分散させた後、混合液をセパラブルフラスコに入れて均一に撹拌した。次に、モノマーとしてポリテトラメチレングリコールジアクリレート128g及びジビニルベンゼン32gと、油溶性重合開始剤12gと、臭化セチルトリメチルアンモニウム9gと、エタノール118gと、イオン交換水1035gとから調製した乳化液をセパラブルフラスコに加え、12時間撹拌を行い、シード粒子にモノマーを吸収させた。その後、セパラブルフラスコに5重量%のポリビニルアルコール水溶液500gを加え、窒素ガスを導入し、オートクレーブ中にて130℃で9時間反応させて、平均粒子径が4.0μmの架橋樹脂微粒子からなる基材微粒子を得た。
Example 1
(Preparation of substrate fine particles)
5 g of styrene particles (average particle size of 0.75 μm) as seed particles, 500 g of ion-exchanged water and 100 g of a 5 wt% polyvinyl alcohol aqueous solution are mixed and dispersed by applying ultrasonic waves, and then the mixture is separable. It put into the flask and stirred uniformly. Next, an emulsion prepared from 128 g of polytetramethylene glycol diacrylate and 32 g of divinylbenzene, 12 g of an oil-soluble polymerization initiator, 9 g of cetyltrimethylammonium bromide, 118 g of ethanol, and 1035 g of ion-exchanged water as monomers is separated. In addition to the bull flask, the mixture was stirred for 12 hours to allow the seed particles to absorb the monomer. Thereafter, 500 g of a 5% by weight aqueous polyvinyl alcohol solution was added to the separable flask, nitrogen gas was introduced, and the mixture was reacted in an autoclave at 130 ° C. for 9 hours to form a group consisting of crosslinked resin fine particles having an average particle size of 4.0 μm. Material fine particles were obtained.

(樹脂微粒子の作製)
イオン交換水900gにアニオン性反応乳化剤(第一工業製薬社製、アクアロンHS−10)1gを混合溶解し、攪拌しながら70℃まで昇温した。ラジカル重合開始剤として過硫酸カリウム2gを加えた後、メチルメタクリレート80gと、エチレングリコールジメタクリレート18gと、メタクリル酸3gとからなるモノマー混合物を1g/分の速度で滴下し反応を開始した。モノマー滴下完了後、更に70℃で1時間熟成させて、平均粒子径が18nmの架橋樹脂微粒子からなる樹脂微粒子を得た。
(Preparation of resin fine particles)
1 g of an anionic emulsifier (Daiichi Kogyo Seiyaku Co., Ltd., Aqualon HS-10) was mixed and dissolved in 900 g of ion-exchanged water, and the temperature was raised to 70 ° C. while stirring. After adding 2 g of potassium persulfate as a radical polymerization initiator, a monomer mixture composed of 80 g of methyl methacrylate, 18 g of ethylene glycol dimethacrylate and 3 g of methacrylic acid was added dropwise at a rate of 1 g / min to initiate the reaction. After completion of the monomer dropping, the mixture was further aged at 70 ° C. for 1 hour to obtain resin fine particles composed of crosslinked resin fine particles having an average particle diameter of 18 nm.

(複合微粒子の作製)
イオン交換水95gと、得られた基材微粒子の乾燥粉体5gとからなるスラリーに、得られた樹脂微粒子を5重量%含むスラリー60gを添加した後、500mMの塩化ナトリウム水溶液40gを添加してヘテロ凝集物を得た。得られたヘテロ凝集物を遠心分離し、イオン交換水で洗浄した後、乾燥させて、複合微粒子を得た。なお、得られた複合微粒子について求めた樹脂微粒子の表面被覆率(%)を、表1に示す。
(Preparation of composite fine particles)
After adding 60 g of a slurry containing 5% by weight of the obtained resin fine particles to a slurry composed of 95 g of ion-exchanged water and 5 g of the obtained dry powder of base fine particles, 40 g of a 500 mM sodium chloride aqueous solution was added. Heteroaggregates were obtained. The obtained hetero-aggregate was centrifuged, washed with ion exchange water, and then dried to obtain composite fine particles. Table 1 shows the surface coverage (%) of the resin fine particles obtained for the obtained composite fine particles.

(導電層の形成)
得られた複合微粒子10gに、水酸化ナトリウム水溶液によるアルカリ脱脂、酸中和、二塩化スズ溶液におけるセンシタイジングを行った。その後、二塩化パラジウム溶液におけるアクチベイチングからなる無電解メッキ前処理を施し、濾過洗浄後、粒子表面にパラジウムを付着させた複合微粒子を得た。得られたパラジウムを付着させた複合微粒子を更に水1200mLで希釈し、メッキ安定剤4mLを添加後、この水溶液に硫酸ニッケル450g/L、次亜リン酸ナトリウム150g/L、クエン酸ナトリウム116g/L、メッキ安定剤6mLの混合溶液120mLを8定量ポンプを通して添加した。その後、pH が安定するまで攪拌し、水素の発泡が停止するのを確認し、無電解メッキ前期工程を行った。
次いで、更に硫酸ニッケル450g/L、次亜リン酸ナトリウム150g/L、クエン酸ナトリウム116g/L、メッキ安定剤35mlの混合溶液650mLを定量ポンプを通して添加した。その後、pHが安定するまで攪拌し、水素の発泡が停止するのを確認し、無電解メッキ後期工程を行った。次いで、メッキ液を濾過し、濾過物を水で洗浄した後、80℃の真空乾燥機で乾燥してニッケルメッキされた導電性微粒子を得た。
(Formation of conductive layer)
10 g of the obtained composite fine particles were subjected to alkali degreasing with an aqueous sodium hydroxide solution, acid neutralization, and sensitizing in a tin dichloride solution. Thereafter, an electroless plating pretreatment consisting of activation in a palladium dichloride solution was performed, and after filtering and washing, composite fine particles having palladium adhered to the particle surface were obtained. The obtained composite fine particles adhered with palladium were further diluted with 1200 mL of water, and after adding 4 mL of plating stabilizer, nickel sulfate 450 g / L, sodium hypophosphite 150 g / L, sodium citrate 116 g / L were added to this aqueous solution. Then, 120 mL of a mixed solution of 6 mL of plating stabilizer was added through an 8 metering pump. Thereafter, the mixture was stirred until the pH became stable, and it was confirmed that hydrogen bubbling stopped, and the first electroless plating step was performed.
Next, 650 mL of a mixed solution of 450 g / L of nickel sulfate, 150 g / L of sodium hypophosphite, 116 g / L of sodium citrate, and 35 ml of plating stabilizer was added through a metering pump. Then, it stirred until pH became stable, it confirmed that hydrogen foaming stopped, and the electroless-plating late process was performed. Next, the plating solution was filtered, and the filtrate was washed with water, and then dried with a vacuum dryer at 80 ° C. to obtain nickel-plated conductive fine particles.

(実施例2)
(基材微粒子の作製)
1重量%のポリビニルアルコール水溶液896gと、臭化セチルトリメチルアンモニウム4gとをセパラブルフラスコに入れて均一に撹拌した。次に、モノマーとしてスチレン68g及びジビニルベンゼン30gと、油溶性重合開始剤2gとの混合溶液をセパラブルフラスコに加え、窒素ガスを導入し、オートクレーブ中にて130℃で9時間反応させて樹脂粒子を得た。得られた樹脂粒子を篩によって分級し、平均粒子径が102μmの架橋樹脂微粒子からなる基材微粒子を得た。
(Example 2)
(Preparation of substrate fine particles)
896 g of a 1% by weight aqueous polyvinyl alcohol solution and 4 g of cetyltrimethylammonium bromide were placed in a separable flask and stirred uniformly. Next, a mixed solution of 68 g of styrene and 30 g of divinylbenzene as a monomer and 2 g of an oil-soluble polymerization initiator is added to a separable flask, nitrogen gas is introduced, and the mixture is reacted at 130 ° C. for 9 hours in an autoclave. Got. The obtained resin particles were classified with a sieve to obtain substrate fine particles composed of crosslinked resin fine particles having an average particle diameter of 102 μm.

(樹脂微粒子の作製)
イオン交換水900gにアニオン性反応乳化剤(第一工業製薬社製、アクアロンHS−10)1gを混合溶解し、乳化剤水溶液を得た。メチルメタクリレート80gと、エチレングリコールジメタクリレート18gと、メタクリル酸3gとからなるモノマー混合物を、上記乳化剤水溶液に一括添加し、攪拌により乳化混合した。攪拌しながら70℃まで昇温し、ラジカル重合開始剤として過硫酸カリウム2gを加えて反応を開始した。70℃で2時間熟成させて、平均粒子径が83nmの架橋樹脂微粒子からなる樹脂微粒子を得た。
(Preparation of resin fine particles)
1 g of an anionic reaction emulsifier (Daiichi Kogyo Seiyaku Co., Ltd., Aqualon HS-10) was mixed and dissolved in 900 g of ion-exchanged water to obtain an aqueous emulsifier solution. A monomer mixture composed of 80 g of methyl methacrylate, 18 g of ethylene glycol dimethacrylate, and 3 g of methacrylic acid was added all at once to the above emulsifier aqueous solution and emulsified and mixed by stirring. The temperature was raised to 70 ° C. with stirring, and 2 g of potassium persulfate was added as a radical polymerization initiator to initiate the reaction. Aging was performed at 70 ° C. for 2 hours to obtain resin fine particles composed of crosslinked resin fine particles having an average particle diameter of 83 nm.

(複合微粒子の作製、及び、導電層の形成)
得られた基材微粒子、樹脂微粒子を用いたこと以外は実施例1と同様にして、ニッケルメッキされた導電性微粒子を得た。
(Production of composite fine particles and formation of conductive layer)
Nickel-plated conductive fine particles were obtained in the same manner as in Example 1 except that the obtained base material fine particles and resin fine particles were used.

(比較例1)
(基材微粒子の作製)
イオン交換水895gと、ポリオキシエチレンノニルフェニルエーテル5gとをセパラブルフラスコに入れて均一になるまで撹拌した。次に、モノマーとしてメチルメタクリレート68g及びジエチレングリコールジメタクリレート30gと、油溶性重合開始剤2gと、ヘキサデカン10gとの混合溶液をセパラブルフラスコに加え、超音波乳化機により乳化混合を行った。窒素ガスを導入し、オートクレーブ中にて70℃で4時間反応させて樹脂粒子を得た。得られた樹脂粒子を篩によって分級し、平均粒子径が0.32μmの架橋樹脂微粒子からなる基材微粒子を得た。
(Comparative Example 1)
(Preparation of substrate fine particles)
895 g of ion-exchanged water and 5 g of polyoxyethylene nonylphenyl ether were placed in a separable flask and stirred until uniform. Next, 68 g of methyl methacrylate and 30 g of diethylene glycol dimethacrylate as monomers, 2 g of an oil-soluble polymerization initiator, and 10 g of hexadecane were added to a separable flask, and emulsified and mixed by an ultrasonic emulsifier. Nitrogen gas was introduced, and reaction was performed in an autoclave at 70 ° C. for 4 hours to obtain resin particles. The obtained resin particles were classified with a sieve to obtain substrate fine particles composed of crosslinked resin fine particles having an average particle diameter of 0.32 μm.

(複合微粒子の作製、及び、導電層の形成)
得られた基材微粒子を用いたこと以外は実施例1と同様にして複合微粒子の作製を試みたところ、基材微粒子が凝集し、複合微粒子を得ることができなかった。
(Production of composite fine particles and formation of conductive layer)
An attempt was made to produce composite fine particles in the same manner as in Example 1 except that the obtained base fine particles were used. As a result, the base fine particles were aggregated and composite fine particles could not be obtained.

(比較例2)
(基材微粒子の作製)
実施例1と同様にして平均粒子径4.0μmの基材微粒子を得た。
(樹脂微粒子の作製)
イオン交換水400gにアニオン性反応乳化剤(第一工業製薬社製、アクアロンHS−10)1gを混合溶解し、乳化剤水溶液を得た。メチルメタクリレート80gと、エチレングリコールジメタクリレート20gとからなるモノマー混合物を、上記乳化剤水溶液に一括添加し、攪拌により乳化混合液を得た。イオン交換水500gをセパラブルフラスコに加え、攪拌しながら70℃まで昇温した。ラジカル重合開始剤として過硫酸カリウム2gと、上記乳化混合液のうち10gを加え反応を開始した。続いて残りの乳化混合液を5g/分の速度で滴下した。滴下完了後、更に70℃で1時間熟成させて、平均粒子径が250nmの架橋樹脂微粒子からなる樹脂微粒子を得た。
(Comparative Example 2)
(Preparation of substrate fine particles)
In the same manner as in Example 1, substrate fine particles having an average particle size of 4.0 μm were obtained.
(Preparation of resin fine particles)
1 g of an anionic reactive emulsifier (Daiichi Kogyo Seiyaku Co., Ltd., Aqualon HS-10) was mixed and dissolved in 400 g of ion-exchanged water to obtain an aqueous emulsifier solution. A monomer mixture composed of 80 g of methyl methacrylate and 20 g of ethylene glycol dimethacrylate was added all at once to the aqueous emulsifier solution, and an emulsified mixed solution was obtained by stirring. 500 g of ion-exchanged water was added to the separable flask, and the temperature was raised to 70 ° C. while stirring. As a radical polymerization initiator, 2 g of potassium persulfate and 10 g of the emulsified mixed solution were added to initiate the reaction. Subsequently, the remaining emulsified mixture was added dropwise at a rate of 5 g / min. After completion of dropping, the mixture was further aged at 70 ° C. for 1 hour to obtain resin fine particles composed of crosslinked resin fine particles having an average particle diameter of 250 nm.

(複合微粒子の作製、及び、導電層の形成)
得られた基材微粒子、樹脂微粒子を用いたこと以外は実施例1と同様にして、ニッケルメッキされた導電性微粒子を得た。
(Production of composite fine particles and formation of conductive layer)
Nickel-plated conductive fine particles were obtained in the same manner as in Example 1 except that the obtained base material fine particles and resin fine particles were used.

(比較例3)
(基材微粒子の作製)
実施例1と同様にして平均粒子径4.0μmの基材微粒子を得た。
(樹脂微粒子の作製)
実施例1と同様にして平均粒子径が18nmの樹脂微粒子を得た。
(複合微粒子の作製、及び、導電層の形成)
得られた基材微粒子の乾燥粉体10gと樹脂微粒子の乾燥粉体10gとを、ハイブリダイゼーションシステムNHS−0(奈良機械製作所社製)にて混合及び付着させて複合微粒子を得た。得られた複合微粒子を用いたこと以外は実施例1と同様にして、ニッケルメッキされた導電性微粒子を得た。
(Comparative Example 3)
(Preparation of substrate fine particles)
In the same manner as in Example 1, substrate fine particles having an average particle size of 4.0 μm were obtained.
(Preparation of resin fine particles)
In the same manner as in Example 1, resin fine particles having an average particle diameter of 18 nm were obtained.
(Production of composite fine particles and formation of conductive layer)
10 g of the obtained dry powder of substrate fine particles and 10 g of the dry powder of resin fine particles were mixed and adhered by a hybridization system NHS-0 (manufactured by Nara Machinery Co., Ltd.) to obtain composite fine particles. Nickel-plated conductive fine particles were obtained in the same manner as in Example 1 except that the obtained composite fine particles were used.

(評価)
実施例、比較例で得られた導電性微粒子について、以下の評価を行った。結果を表1に示す。
(Evaluation)
The following evaluation was performed about the electroconductive fine particles obtained by the Example and the comparative example. The results are shown in Table 1.

(1)導電層の密着性
得られた導電性微粒子1gを10mLのイオン交換水に分散させ、超音波照射装置(アズワン製「USD−1R」)を用いて、超音波照射(50℃、2時間、28kHz)を行った。照射後の導電性微粒子を走査型電子顕微鏡(日立ハイテクノロジーズ社製「S−3000N」)にて2000倍で観察し、任意の導電性微粒子100個において、導電層の割れが生じている導電性微粒子の個数を確認し、以下の基準により導電層の密着性を評価した。
○ 導電層の割れが確認された導電性微粒子が10個未満
△ 導電層の割れが確認された導電性微粒子が10個以上50個未満
× 導電層の割れが確認された導電性微粒子が50個以上
(1) Adhesiveness of conductive layer 1 g of the obtained conductive fine particles is dispersed in 10 mL of ion-exchanged water, and is irradiated with ultrasonic waves (50 ° C., 2 ° C. using an ultrasonic irradiation device (“USD-1R” manufactured by ASONE)). Time, 28 kHz). The conductive fine particles after irradiation are observed with a scanning electron microscope ("S-3000N" manufactured by Hitachi High-Technologies Corporation) at a magnification of 2000 times, and the conductive layer cracks in any 100 conductive fine particles. The number of fine particles was confirmed, and the adhesion of the conductive layer was evaluated according to the following criteria.
○ Less than 10 conductive particles in which cracking of conductive layer was confirmed Δ 10 or more and less than 50 conductive particles in which cracking of conductive layer was confirmed × 50 conductive particles in which cracking of conductive layer was confirmed more than

Figure 2011076938
Figure 2011076938

本発明によれば、導電層の密着性に優れた導電性微粒子を提供することができる。また、本発明によれば、該導電性微粒子の製造方法を提供することができる。 According to the present invention, it is possible to provide conductive fine particles having excellent adhesion of the conductive layer. Moreover, according to this invention, the manufacturing method of this electroconductive fine particle can be provided.

Claims (2)

複合微粒子の表面に導電層を有する導電性微粒子であって、
前記複合微粒子は、基材微粒子と、前記基材微粒子の表面に付着した複数の樹脂微粒子とを有し、かつ、前記基材微粒子と前記樹脂微粒子とをヘテロ凝集させることによって得られ、
前記基材微粒子は、平均粒子径が0.5〜500μmであり、
前記樹脂微粒子は、平均粒子径が1〜100nmである
ことを特徴とする導電性微粒子。
Conductive fine particles having a conductive layer on the surface of the composite fine particles,
The composite fine particles are obtained by heteroaggregating the substrate fine particles and the resin fine particles, having base fine particles and a plurality of resin fine particles attached to the surface of the substrate fine particles,
The substrate fine particles have an average particle diameter of 0.5 to 500 μm,
The fine resin particles have an average particle diameter of 1 to 100 nm.
請求項1記載の導電性微粒子を製造する方法であって、
基材微粒子と樹脂微粒子とをヘテロ凝集させることにより、前記基材微粒子と、前記基材微粒子の表面に付着した複数の樹脂微粒子とを有する複合微粒子を得る工程と、
前記複合微粒子の表面に導電層を形成する工程とを有する
ことを特徴とする導電性微粒子の製造方法。
A method for producing the conductive fine particles according to claim 1,
Obtaining a composite fine particle having the base fine particles and a plurality of resin fine particles attached to the surface of the base fine particles by heteroaggregating the base fine particles and the resin fine particles;
And a step of forming a conductive layer on the surface of the composite fine particles.
JP2009228718A 2009-09-30 2009-09-30 Conductive particulate, and manufacturing method of conductive particulate Pending JP2011076938A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009228718A JP2011076938A (en) 2009-09-30 2009-09-30 Conductive particulate, and manufacturing method of conductive particulate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009228718A JP2011076938A (en) 2009-09-30 2009-09-30 Conductive particulate, and manufacturing method of conductive particulate

Publications (1)

Publication Number Publication Date
JP2011076938A true JP2011076938A (en) 2011-04-14

Family

ID=44020713

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009228718A Pending JP2011076938A (en) 2009-09-30 2009-09-30 Conductive particulate, and manufacturing method of conductive particulate

Country Status (1)

Country Link
JP (1) JP2011076938A (en)

Similar Documents

Publication Publication Date Title
JP4387175B2 (en) Coated conductive particles, anisotropic conductive material, and conductive connection structure
JP4563110B2 (en) Method for producing conductive fine particles
CN101065421B (en) Polymer particles, conductive particles, and an anisotropic conductive packaging materials containing the same
KR100650284B1 (en) Polymer resin fine particles, conductive fine particles and anisotropic conductive connection materials including the same having excellent conductivity
JP5395482B2 (en) Coated conductive fine particles, anisotropic conductive material, and conductive connection structure
JP5368760B2 (en) Insulating coating conductive particles, anisotropic conductive material, and connection structure
JPWO2003025955A1 (en) Coated conductive fine particles, method for producing coated conductive fine particles, anisotropic conductive material, and conductive connection structure
JP2009522716A (en) Conductive particles for anisotropic conductive connection
JP2010073578A (en) Conducting particles, anisotropic conducting material and connecting structure
JP2006228475A (en) Conductive fine particles and anisotropic conductive material
TW201841170A (en) Conductive particles, conductive material, and connection structure
JP2002033022A (en) Conductive multilayer structure resin particle and anisotropic conductive adhesive using it
JP2005149764A (en) Covered conductive particle, anisotropic conductive material, and conductive connection structure
JP5476210B2 (en) Conductive particles, anisotropic conductive materials, and connection structures
KR102624796B1 (en) Conductive particles, conductive material, and connection structure
JP5535507B2 (en) Conductive particles and manufacturing method thereof
JP5982217B2 (en) Conductive particles, anisotropic conductive materials, and connection structures
JP4662748B2 (en) Conductive fine particles and anisotropic conductive materials
JP2007250464A (en) Conductive particulate, manufacturing method of conductive particulate, and anisotropic conductive material
JP2013229240A (en) Conductive particle and method for producing the same
JP5583714B2 (en) Conductive fine particles and anisotropic conductive material using the same
JP2006216388A (en) Conductive fine particle and anisotropic conductive material
JP2011076938A (en) Conductive particulate, and manufacturing method of conductive particulate
JP2007035574A (en) Conductive particulates, anisotropic conductive material, and connection structural body
JP2005325383A (en) Method for producing electroconductive fine particle, electroconductive fine particle and anisotropic electroconductive material