[go: up one dir, main page]

JP2011075514A - エンジンベンチ - Google Patents

エンジンベンチ Download PDF

Info

Publication number
JP2011075514A
JP2011075514A JP2009229938A JP2009229938A JP2011075514A JP 2011075514 A JP2011075514 A JP 2011075514A JP 2009229938 A JP2009229938 A JP 2009229938A JP 2009229938 A JP2009229938 A JP 2009229938A JP 2011075514 A JP2011075514 A JP 2011075514A
Authority
JP
Japan
Prior art keywords
engine
damper
shaft
case
oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009229938A
Other languages
English (en)
Inventor
Katsuhiko Furuya
克彦 古谷
Chiaki Yahagi
千秋 矢作
Akira Furukawa
陽 古川
Takahiro Suzuki
貴博 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
A&D Holon Holdings Co Ltd
Original Assignee
A&D Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by A&D Co Ltd filed Critical A&D Co Ltd
Priority to JP2009229938A priority Critical patent/JP2011075514A/ja
Publication of JP2011075514A publication Critical patent/JP2011075514A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Testing Of Engines (AREA)

Abstract

【課題】回転速度追従性を低下させることなく、共振による不具合の発生を防止することができるエンジンベンチを提供する。
【解決手段】エンジンベンチ10は、エンジン11の出力軸にシャフト21を介して接続されるダイナモメータ20と、エンジン11の出力軸のトルクを検出するトルクメータ24と、を備え、シャフト21には、シャフト21のねじり振動を流体を利用して吸収するロータリー式のオイルダンパ70が取り付けられる。
【選択図】図1

Description

本発明はエンジンベンチに係り、特にシャフトの共振を抑制して高精度の計測を行うエンジンベンチに関する。
エンジンベンチは、開発・製造された供試エンジンが所定の性能を備えているかを評価する試験装置であり、試験対象であるエンジンは、台上試験機(エンジンベンチ)に取り付けられ、その出力軸がトルク計や回転数計を介してダイナモメータに接続される。このダイナモメータでエンジンの出力軸の回転力を吸収することによって台上試験が行われ、エンジンの性能が測定・評価される。
ところで、このようなエンジンベンチでは、いずれかの回転数領域において共振現象が発生することが知られており、共振現象が発生すると、測定精度が低下したり、装置が損傷したりするおそれがある。そこで、従来から様々な対応策が採られており、たとえば特許文献1は、軸にフライホイルを着脱自在に取り付けたり、剛性の異なるカップリングを用いたりすることによって共振域をずらしている。また、特許文献2は、共振点をアイドリング周波数以下に設定しており、特許文献3は、駆動側と被試験機との間に制振合金であるD2052合金を設けている。
特開平9-178616号公報 特許3918435号 特開2006-162486号公報
しかしながら、特許文献1、2は、試験で使用する回転数領域で応答性が低下する等の問題があった。一方、特許文献3は、ねじり方向以外の力も減衰させてしまうため、回転力が低下し、回転への速度追従性が低下するという問題がある。
本発明はこのような事情に鑑みてなされたもので、回転速度追従性を低下させることなく、共振による不具合の発生を防止することができるエンジンベンチを提供することを目的とする。
請求項1に記載の発明は前記目的を達成するために、エンジンの出力軸にシャフトを介して接続されるダイナモメータを備えたエンジンベンチにおいて、前記シャフトに取り付けられ、該シャフトが回転した際に発生するねじり振動を流体により吸収するロータリー式流体ダンパを備えることを特徴とするエンジンベンチを提供する。本発明によれば、シャフトにロータリー式流体ダンパが取り付けられているので、シャフトのねじり振動を流体ダンパで吸収することができ、共振による不具合の発生を防止することができる。
請求項2に記載の発明は請求項1の発明において、前記流体ダンパは、中空のリング状に形成され、前記シャフトが挿通されて該シャフトに固定されるケースと、前記ケース内に回動自在に設けられたリング状の慣性体と、前記慣性体と前記ケースとの隙間に充填されるオイルと、を備えることを特徴とする。本発明の流体ダンパは、シャフトが回転することによってケースが回転し、その内部の慣性体が流体の粘性によってケースに追従して回転する。このような構成の流体ダンパによれば、シャフトの回転速度追従性を低下させることなく、シャフトのねじり振動を吸収することができる。したがって、シャフトの共振を抑え、精度の良いエンジン試験を行うことができる。
請求項3に記載の発明は請求項1または2の発明において、前記流体ダンパの形状または前記流体の物性は、前記流体ダンパをモデル化したダンパモデルを用いて実行したシミュレーションの結果を解析することによって決定されることを特徴とする。本発明によれば、ダンパモデルを用いたシミュレーションの結果を解析することによって、適切な流体ダンパの形状や流体の物性を決定するので、この流体ダンパを用いることで、回転速度追従性を低下させることなく、シャフトのねじり振動を確実に防止できる。なお、請求項2の構成の流体ダンパの場合、流体ダンパの形状は慣性体の大きさ(重さ)であり、流体の物性は流体の粘度である。
請求項4に記載の発明は請求項1〜3のいずれか1の発明において、前記流体ダンパをモデル化したダンパモデルを用いてシミュレーションを行うシミュレーション部と、前記シミュレーションの結果と前記流体ダンパを用いて行った実機試験の結果との適合を行う検証部と、を備えることを特徴とする。本発明によれば、シミュレーションの結果と実機試験の結果とを比較して適合をとるので、シミュレーションの精度を確認することができる。その結果、ダンパモデルを補正して精度を向上させたり、流体ダンパの形状や流体ダンパの物性を修正したりすることができる。
請求項5に記載の発明は請求項1〜4のいずれか1において、前記エンジンの実機試験によりエンジンモデルを作成するモデル作成部を備え、該モデル作成部は、前記流体ダンパをモデル化したダンパモデルを考慮したエンジンモデルを作成することを特徴とする。本発明によれば、ダンパモデルを考慮してエンジンモデルを作成するので、エンジンモデルの精度を高めることができる。
請求項6に記載の発明は請求項1〜5のいずれか1において、前記慣性体の側面にリング状の凹部または凸部が形成され、前記ケースの側面に、前記慣性体の凹部または凸部に対向するリング状の凸部または凹部が形成されることを特徴とする。本発明によれば、慣性体の側面とケースの側面に凹部または凸部が形成されるので、流体との接触面積が増加し、流体による振動吸収作用を増加させることができる。
本発明によれば、シャフトにロータリー式流体ダンパが取り付けられているので、回転速度追従性を低下させることなく、シャフトのねじり振動を流体ダンパで吸収することができる。したがって、本発明によれば、共振による不具合の発生を防止しつつ、精度の高い試験を行うことができる。
本実施の形態のエンジンベンチを示す概略構成図 流体ダンパの構成を示す斜視図 流体ダンパの部分断面図 ダンパのモデルを示す図 本実施の形態のエンジンベンチの作用を示す図
以下、添付図面に従って、本発明に係るエンジンベンチの好ましい実施形態について説明する。図1は本実施の形態のエンジンベンチの概略構成図である。
同図に示すエンジンベンチ10は、試験対象であるエンジン11を性能測定・性能評価する装置であり、主としてダイナモメータ20、ダイナモメータ制御部30、エンジン制御部31、測定部40、モデルシミュレーション部50、システム制御部60で構成されている。
エンジン11は、保持機構(不図示)を介して架台12に固定されており、エンジン11の内部には燃焼室(不図示)が設けられている。この燃焼室には吸気管13と排気管14が接続されており、吸気管13から空気が吸引され、燃焼室で燃焼した後の排ガスが排気管14から排気される。吸気管13にはスロットル15が設けられており、このスロットル15によって空気の流入量が調節される。排気管14は触媒装着部16に接続されており、この触媒装着部16に装着された触媒によって排ガスを浄化できるようになっている。
エンジン11は、その出力軸がシャフト21を介してダイナモメータ20に接続されている。ダイナモメータ20は、エンジン11に所定の負荷トルクを与える装置であり、電流・電圧を可変させることで負荷トルクを設定できるようになっている。ダイナモメータ20としては、低慣性ダイナモメータを用いることが好ましく、低慣性ダイナモを用いることにより、低速回転から高速回転までの急激な回転数Nの変化に応じた安定した出力が得られる。
エンジン11とダイナモメータ20を接続するシャフト21は、メインシャフトなどの複数の軸部材を連結して構成されており、その連結部分にはユニバーサルジョイント22が介在されている。また、エンジン11とダイナモメータ20との間には中間軸受23が設けられており、この中間軸受23にシャフト21が回動自在に支持されている。中間軸受23のエンジン11側にはトルクメータ24が設けられ、このトルクメータ24でシャフト21のトルクが測定される。なお、本実施の形態は、トルクメータ24でトルクを測定するようにしたが、これに限定するものではなく、たとえばダイナモメータ20の出力からトルクを検出してもよい。また、本実施の形態では、シャフト21にトルクメータ24を取り付けたが、この他にクラッチ、変速機、各種の連結手段等を目的に応じて挿入してもよく、さらにはトルク以外のエンジン11の状態、たとえば排ガスの温度などを測定してもよい。
中間軸受23のダイナモメータ20側には、オイルダンパ70が設けられており、このオイルダンパ70によってシャフト21のねじり振動が吸収される。なお、本実施の形態はオイルダンパ70を中間軸受23とダイナモメータ20との間に設けたが、オイルダンパ70の取付位置はこれに限定するものではなく、中間軸受23とエンジン11との間に取り付けたり、カップリング部材や中間軸受23、シャフト21などに組み込んでもよい。オイルダンパ70は本発明の特徴部分であり、後で詳説する。
上述したダイナモメータ20はダイナモメータ制御部30に接続されている。ダイナモメータ制御部30は、ダイナモメータ20に印加する電流・電圧を可変制御する手段であり、このダイナモメータ制御部20で電流・電圧を可変制御することによって、ダイナモメータ20に接続されたエンジン11の負荷トルクが制御される。なお、ダイナモメータ20としては低慣性ダイナモメータを使用することが好ましい。この場合、ダイナモメータ20で検出される負荷トルクと、トルクメータ24で検出される軸トルクは実質的に同一になる。
一方、エンジン11はそれぞれエンジン制御部31に接続されている。エンジン制御部31は、スロットル開度や点火進角等の制御パラメータをエンジン11に与えてエンジン11を駆動制御する手段であり、通常はECU、もしくはECUにバイパス回路を付加したエンジン制御回路で実現される。ECUの代わりに仮想ECUと称するDSP(Digital
Signal Processor)で実現してもよい。このエンジン制御部31によってエンジン11に制御パラメータ(たとえば所定のスロットル開度)が与えられる。これにより、エンジン11が回転し、その回転がシャフト21を介してダイナモメータ20に伝達される。なお、エンジン制御部31から与えられる制御パラメータとしては、回転数、スロットル開度の他、燃料注入量、空気注入量、燃料と空気の混合比、点火時間(ガソリンエンジンの場合)、燃料噴射制御方法(ジーゼルエンジンの場合)など様々なパラメータがある。
エンジン制御部31とトルクメータ23は、測定部40に接続されている。測定部40は、エンジン11の動作状態を示す信号を入力して各種の信号処理を行う手段であり、主として入力部41、データメモリ42、信号処理部43で構成される。入力部41は、エンジン制御部31、トルクメータ24からデータを取り入れる入力回路を有しており、トルクメータ24からのトルク・回転数などのデータとエンジン制御部31からのスロットル開度等の制御データとが入力される。なお、スロットル開度等の時系列データは、エンジン制御部31からではなく、後述のシステム制御部50から直接入力されてもよいし、エンジン11に設けられたスロットル開度検出器等からエンジン制御部31を介して入力されてもよい。また、入力部(測定部)41は、入力データがアナログ信号の場合、A/D変換を行い、複数の入力データの時間的同期をとることが好ましい。
入力部41に入力されたデータは、メモリ42によって一時的に格納される。このメモリ42は、信号処理部43での信号処理途中のデータ、信号処理結果のデータを一時的に格納することもできる。メモリ42に保存されたデータは、信号処理部43で信号処理される。信号処理部43は、後述のモデル作成シミュレーション部50で作成するモデルの最適値を決定するための信号処理を行う手段であり、たとえばデータのノイズを除去するノイズ除去器(フィルター)、加減乗除器、微分積分器、平均値演算器、標準偏差演算器、データ度数等の計数器(カウンタ)、周波数解析器(FFT)等、公知の演算器が含まれる。
モデル作成シミュレーション部50は、測定部40で得られたデータに基づいてエンジン11のモデルを作成するとともに、作成したモデルに基づいてエンジン制御部31及びダイナモメータ制御部30を制御してシミュレーションを行う手段であり、モデル作成部51、データメモリ52、シミュレーション部53、検証部54を備える。
モデル作成部51は、エンジン11のモデルを作成する手段であり、信号処理部43で選択された制御パラメータやトルクメータ24で計測されたデータに基づいて、任意の入力と出力に介在する関係(伝達特性)を式、グラフ等で表現したモデルを作成する。なお、モデル作成部51における制御パラメータの選択は、必ずしも信号処理部43で行われる必要はなく、システム制御部60やモデル作成シミュレーション部50において行われてもよい。また、モデル作成部51で作成されるモデルは特に限定するものではないが、たとえば点火進角と負荷トルクの関係を表すエンジンモデルなどがある。さらに、モデル作成部51でのモデルの作成は、定常状態及び過渡状態での試験で得られたデータに基づいて作成するとよい。ここで、定常状態とは、モデルを作成するのに必要なパラメータの値(本実施例では点火進角)を一定時間、一定値に安定させた状態(例えば、パラメータをステップ状に変化させること)を示し、このようにパラメータを制御して行う試験を定常試験という。一方、過渡状態とは、モデルを作成するのに必要なパラメータの値(本実施例では点火進角)を時間的に連続的に変化させた状態(例えば、パラメータを正弦波形状、三角波形状に変化させること)を示し、このようにパラメータを制御して行う試験を過渡試験という。
モデル作成部51で作成されたモデルは、メモリ52に格納される。シミュレーション部53は、そのモデルに基づいて仮想シミュレーションまたは実機シミュレーションを行い、特に実機シミュレーションはエンジン制御部31とダイナモメータ制御部30を制御しながら行う。検証部54は、そのシミュレーション結果と実測値とを比較し、モデルの有効性・妥当性を検証してモデルの修正やパラメータ値の調整等を行う。
上述したエンジン制御部31、ダイナモメータ制御部30、測定部40、モデル作成シミュレーション部50は、システム制御部60に接続される。システム制御部60は各種の制御を行う手段であり、定義部61と実行部62を備える。定義部61は、計測内容の各種条件を設定する機能を備えており、たとえばアクセル開度、燃料噴射時期、点火進角、噴射時間、VVT、EGRなどの制御パラメータや、吸気温度、排気温度、燃料注入量、空気注入量、NО密度、HC密度、CО濃度、CО濃度、燃料消費量、水温などの計測パラメータについて、その入出力の有無や入出力の範囲などを設定することができる。また、定義部61には、使用頻度の高い設定条件が予め標準アクションとして登録されており、たとえば矩形波状に入力条件を変化させたり、ステップ状に徐々に入力条件を変化させたりする設定が予め登録されている。作業者はこれらの標準アクションのなかから選択することによって、計測条件を簡単に設定することができる。また、定義部61は、予め設定された標準アクションの他、自由にシーケンスを作成できる機能を備えている。シーケンスの作成手段は特に限定するものではないが、たとえば、MATLAB(登録商標)のm−fileやSimulink(登録商標)を使用することにより作成される。このようにシーケンスを作成することによって、作業者がシミュレーションの条件を自在に設定することができる。
定義部61における入力設定では、実験計画法(DОE)や中心複合計画(CCF)に基づいて設定することが好ましい。その際、出力値により応答曲面が十分に得られるように設定することが好ましい。また、制御パラメータの入力間隔(変化幅)は一定でなくてもよく、たとえば予想される最適点の近辺で変化幅が小さくなるように設定してもよい。さらに、重要度の高いパラメータほど変化幅を小さく設定してもよい。
定義部61におけるこれらの操作はキーボードや複数の操作ボタンなどから成る操作部64を用いて行われる。定義部61で設定された条件は、不図示のメモリに記憶される。
実行部62は、計測を実行させる機能を備えており、前述の定義部61で設定された条件(またはシーケンス)に基づいて計測を実行させるように構成される。なお、システム制御部60は、境界エラー(たとえばノッキングや失火など)の境界値を自動で探索する自動探索機能を備えていてもよい。また、システム制御部60に解析装置を接続し、この解析装置によってパラメータの測定値の最適点を策定し、ECUマップを作成するようにしてもよい。その際、最適点の策定方法は特に限定するものではなく、たとえば最小二乗法を用いて応答曲面を作成して最適点を策定するとよい。
上述したシステム制御部60には、表示部65が接続される。表示部65には、メモリ42に格納されている各種データ、メモリ52に格納されているエンジンモデル、信号処理部43での演算結果、シミュレーション部53でのシミュレーション結果などが表示される。また、表示部65には、複数のデータの関係グラフ、軌跡、度数分布表、標準偏差グラフなど、様々な画像が表示される。この表示部65にシミュレーションの結果をグラフ化して表示することにより、ロバスト性のチェックを行うことができる。なお、表示部65は、データ、マップ、グラフなど複数のものを同一画面に同時に表示するようにしてもよい。
次に本発明の特徴部分であるオイルダンパ70について説明する。図2は、オイルダンパ70を示す斜視図であり、ケース71の一部を切り欠いてその内部を示している。図3は、オイルダンパ70の回転中心を通る面で切断した断面図である。
これらの図に示すように、オイルダンパ70は、ケース71、慣性体72及びオイル73で構成されている。ケース71はリング状に形成されており、その中心にシャフト21が挿通され、シャフト21に固定されている。したがって、シャフト21が回転することによってケース71も回転するようになっている。
ケース71の内側面には、複数の凸部71Aが形成されている。この凸部71Aはケース71の回転軸を中心としてリング状に形成されており、且つ、凸部71A同士が一定の間隔で形成されている。これにより、後述のオイル73とケース71との接触面積が増加し、後述のダンピング係数を増加させることができる。
ケース71の内部は中空になっており、その中空部分にリング状(ドーナツ型)の慣性体72が設けられている。慣性体72はケース71に対して回動自在であり、後述のオイル73を介してケース71の回転力が慣性体72に伝達されるようになっている。
慣性体72の側面には、複数の凹部72Aが形成されている。この凹部72Aは慣性体72の回転軸を中心としてリング状に形成されており、前述のケース71の凸部71Aに対向して形成されている。これにより、後述のオイル73と慣性体72との接触面積が増加し、後述のダンピング係数を増加させることができる。なお、本実施の形態では凸部71Aと凹部72Aを設けたが、これに限定するものではなく、オイル73の粘度を高くしたり、ケース71と慣性体72の隙間量を小さくしたりするなどによって、凸部71Aや凹部72Aがない構成とすることも可能である。
ケース71の内部(すなわちケース71と慣性体72との隙間)にはオイル73が充填されている。オイル73は適度な粘性を有するものが選択され、その適性値はオイルダンパ70の形状や設備の慣性値によって決定されるが、たとえば常温(25℃程度)で粘度3〜50Pa・s程度のものが使用される。このオイル73を充填することによって、ケース71の回転力がオイル73を介して慣性体72に伝達される。なお、オイル73の交換のメンテナンス性のため、図3に示すようにケース71に蓋71Bを設けることが好ましい。蓋71Bは、ケース本体71Cに着脱自在に設けられ、ネジ74によってケース本体71Cに固定される。また、ケース本体71Cと蓋71Bとの間にはパッキン75が配設され、オイル73の漏れが防止される。オイルダンパ70をこのように構成することによって、オイル73の交換を容易に行うことができる。
上記の如く構成されたオイルダンパ70によれば、シャフト21が回転することによってケース71が回転し、その回転力が粘性のオイル73を介して慣性体72に伝達され、慣性体72が回転される。そして、通常の回転時にはケース71と慣性体72が同位相になり、シャフト21の回転力が確実に伝達される。一方、共振の発生時には、ケース71の位相に対して慣性体72の位相の遅れが発生し、オイル73の粘性が抵抗となってシャフト21の共振の振幅が抑制される。すなわち、共振の発生時には、オイル73の粘性抵抗による減衰力によって、振動エネルギーが熱エネルギーに変換され、共振の振幅が抑制される。
オイルダンパ70は、共振の振幅の抑制力として、共振倍率(トルク出力値の振幅を入力値で割った値)が所定値以下になるように設定される。これにより、シャフト21に発生する共振を所望の共振倍率以下に抑制することができる。ここで、共振倍率の所定値としては、3以下が好ましく、このような値に設定することによって共振による装置の損傷を回避することができる。ただし、装置の損傷防止効果を考えると、共振倍率の上限値は小さいほど好ましく、2.5以下がより好ましい。
ここで、上述したオイルダンパ70のモデルを考えると、共振倍率に寄与するパラメータは、慣性値(たとえば慣性体72の容量)と減衰係数(ダンピング係数ともいい、オイルダンパ70の形状や設備の慣性値などに応じて決定し、たとえばオイル73の粘性)の二つである。したがって、所定の共振倍率以下に設定するためにはこの二つを適正値に設定することが重要になる。そこで、本実施の形態では、シミュレーションを行い、その結果を解析することによって仕様を決定している。
シミュレーションで使用されるダンパモデルは、以下のようにして求めることができる。すなわち、ケース71内の流体(オイル)を層流と仮定すると、オイルダンパ70のトルクは下式になる。この式において、Tはトルク、r1は慣性体の内径、r2は慣性体の外径、hは慣性体とケースとの隙間量、ωは回転速度、μは粘度を表している。
Figure 2011075514
エンジン11、オイルダンパ70、ダイナモメータ20の系のうち、ダイナモメータ20とオイルダンパ70との間のねじり剛性は比較的大きいので、一体と想定する。これを図示のためにバネ−質量系に置き換えると、図4のようになり、モデルは下式になる。この式において、bはダンピング係数である。
Figure 2011075514
この系における特性方程式は、下式のようになる。この式において、m1はエンジン11の慣性値、m2はダイナモメータ20とオイルダンパ70の慣性値、kはねじりバネ定数である。
Figure 2011075514
m1、m2は予め決まった値であり、kは共振周波数をR[Hz]とすると以下の式で求まる。
Figure 2011075514
したがって、必要な減衰比が得られればb以外の値が与えられることになり、bが求まる。
次に、ダンパでの発熱を考慮すると、ダンパでの発熱量は下式で表される。
Figure 2011075514
ここで、特性方程式の実根をα(α<0)とすると、振動に関する根は下式から求められる。
Figure 2011075514
これらの式によるダンパモデルを用いてシミュレーションを行い、その結果を解析することによって、ダンピング係数b(すなわちオイルの適切な物性、たとえばオイルの粘度)やバネ定数k(オイルダンパ70の形状、たとえば慣性体の容量)を決定することができる。なお、決定したオイルダンパ70を用いて実機試験を行った後、その試験結果とシミュレーションの結果との適合を行い、検証するとよい。また、検証の結果、必要であればダンパモデルを修正したり、オイルダンパ70の形状やオイル73の物性を変更したりするとよい。
次に上記の如く構成されたエンジンベンチ10の作用について図5に基づいて説明する。図5は、試験結果により得られたトルクの共振倍率と周波数との関係を示している。同図において、太い実線は本実施の形態のエンジンベンチ10による結果であり、細い実践はオイルダンパ70のない比較例1での結果であり、点線は動力伝達部分にゴムを介在させた比較例2の結果である。
図5に示すように、オイルダンパ70のない比較例1は、周波数aにおいて共振が発生しており、その共振倍率は3以上になっている。このため、周波数aで共振が発生し、装置が共振により損傷するおそれがある。一方、比較例2は、動力伝達部分にゴムを介在させているため、バネ定数が下がり、共振点が周波数bまで下がっている。したがって、周波数bがアイドリング周波数未満であれば、アイドリング周波数以上の試験において共振が発生せず、良好な試験を行うことができるとされている。
しかし、比較例2の場合、共振倍率そのものは低下していないので、周波数bでの試験は全く行うことができない。また、比較例2は、周波数bを超えた直後の周波数域において、比較例1と異なる挙動を示すという問題があり、周波数a近辺ではゲインが急激に落ち込んでトルクの伝達遅れが発生し、試験精度が低下するという問題が発生する。
これに対して、本実施の形態のエンジンベンチ10は、オイルダンパ70を設けたので、オイル73の流動抵抗による減衰力によって振動が吸収され、共振域での共振倍率そのものが低下し、3以下になっている。このように本実施の形態によれば、共振倍率を設定値以下に抑制することができるので、共振による装置の損傷を回避することができる。
また、本実施の形態によれば、共振域での共振倍率が低下する一方で、それ以外の周波数域では比較例1と殆ど同じ傾向を示しており、共振点も比較例1の周波数aと略等しい周波数cになっている。したがって、トルクの伝達遅れなどによる測定精度の低下を抑制しつつ、共振倍率を低下させることができる。
なお、本発明における流体ダンパの構成は、上述したオイルダンパ70に限定されるものではなく、流体を利用した様々なダンパを使用することができる。たとえば、上述のダンパ70において、ケース71の外周部分の内側に多数のバネ成分(たとえば板バネ、スプリング、ゴム等)を所定角度ごとに複数設け、このバネ成分に慣性体72を接続してもよい。また、全く異なる構成として、シャフト21に円盤状のディスク(慣性体と略同じもの)を固定し、このディスクを囲む固定ケースを中間軸受等に固定し、固定ケースとディスクとの間にオイルを充填した構成としてもよい。この場合、固定ケースが動かないので、後述の冷却機構や圧力調整機構を接続するのに適している。さらに別の構成として、円盤状のディスクをシャフト21に取り付けるとともに、このディスクを囲む非固定ケースをシャフト21に回動自在に取り付け、非固定ケースとディスクとの間にオイル73を充填してもよい。この場合、シャフト21が回転することによってディスクが回転し、オイル73の流動抵抗によって非固定ケースが回転するので、流動抵抗による減衰力が得られ、共振倍率を低下させることができる。
また、上述した実施形態では省略したが、オイル73の冷却機構を設けてオイル73の温度上昇を抑制するとよい。オイル73の冷却機構としては、たとえばケース71の外面に送風を行うファンを設けたり、ケース71を囲むように配置したジャケットに冷媒を循環させたりする方法が考えられる。また別の冷却方法として、ロータリージョイントを介してケース71にオイル73の循環路を接続し、この循環路に配したオイルポンプ(インペラ構造たとえばギア、ベーン、ブッシュの推力を用いるもの)によってオイル73を冷却装置に循環させる方法が考えられる。その際、オイル73の循環量や冷却量は、エンジン11の発熱量や回転数に応じて制御することが好ましい。さらに別の方法として、ペルチェ素子の一端をオイル73内に配し、他端をケース71の外に配して通電することにより、オイル73を冷却する方法が考えられる。
また、上述した実施形態では省略したが、オイル73の圧力調整機構を設けてもよい。オイル73の圧力調整機構としては、たとえば上述したオイル73の冷却機構と同様に、ケース71にオイル73の循環路を接続し、この循環路に圧力調整弁を設ける方法が考えられる。また、別の方法として、ケース71の内側に圧電素子を設け、この圧電素子に電圧を印加してオイル73の容積を増減して圧力を調整するようにしてもよい。
また、上述した実施形態において、オイル73の粘性を調整する粘性調整機構を設けてもよい。粘性調整機構としては、たとえば電気粘性流体のオイル73を用いるとともに、このオイル73に電流を付与する機構をケース73に取り付ける方法が考えられる。この場合、オイル73に電流を流すことによってオイル73の粘性を調整することができる。また、別の方法として、磁気粘性流体のオイル73を用いるとともに、このオイル73に磁界を付与する機構をケース73の近辺に配設する方法が考えられる。この場合、オイル73に磁界を付与することによって、オイル73の粘性を調整することができる。
なお、上述した実施形態は、予め入力されたダンパモデルを用いたが、これに限定するものではなく、試験結果に基づいてモデル作成部51が作成したダンパモデルを用いたり、検証部54で修正したダンパモデルを用いたりしてもよい。
10 エンジンベンチ
11 エンジン
20 ダイナモメータ
30 ダイナモメータ制御部
31 エンジン制御部
40 測定部
50 モデルシミュレーション部
60 システム制御部
70 オイルダンパ
71 ケース
72 慣性体
73 オイル

Claims (6)

  1. エンジンの出力軸にシャフトを介して接続されるダイナモメータを備えたエンジンベンチにおいて、
    前記シャフトに取り付けられ、該シャフトが回転した際に発生するねじり振動を流体により吸収するロータリー式流体ダンパを備えることを特徴とするエンジンベンチ。
  2. 前記流体ダンパは、
    中空のリング状に形成され、前記シャフトが挿通されて固定されるケースと、
    前記ケース内に回動自在に設けられたリング状の慣性体と、
    前記慣性体と前記ケースとの隙間に充填されるオイルと、
    を備えることを特徴とする請求項1に記載のエンジンベンチ。
  3. 前記流体ダンパの形状または前記流体の物性は、前記流体ダンパをモデル化したダンパモデルを用いて実行したシミュレーションの結果を解析することによって決定されることを特徴とする請求項1または2に記載のエンジンベンチ。
  4. 前記流体ダンパをモデル化したダンパモデルを用いてシミュレーションを行うシミュレーション部と、前記シミュレーションの結果と前記流体ダンパを用いて行った実機試験の結果との適合を行う検証部と、を備えることを特徴とする請求項1〜3のいずれか1に記載のエンジンベンチ。
  5. 前記エンジンの実機試験によりエンジンモデルを作成するモデル作成部を備え、該モデル作成部は、前記流体ダンパをモデル化したダンパモデルを考慮したエンジンモデルを作成することを特徴とする請求項1〜4のいずれか1に記載のエンジンベンチ。
  6. 前記慣性体の側面にリング状の凹部または凸部が形成され、
    前記ケースの側面に、前記慣性体の凹部または凸部に対向するリング状の凸部または凹部が形成されることを特徴とする請求項1〜5のいずれか1に記載のエンジンベンチ。
JP2009229938A 2009-10-01 2009-10-01 エンジンベンチ Pending JP2011075514A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009229938A JP2011075514A (ja) 2009-10-01 2009-10-01 エンジンベンチ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009229938A JP2011075514A (ja) 2009-10-01 2009-10-01 エンジンベンチ

Publications (1)

Publication Number Publication Date
JP2011075514A true JP2011075514A (ja) 2011-04-14

Family

ID=44019643

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009229938A Pending JP2011075514A (ja) 2009-10-01 2009-10-01 エンジンベンチ

Country Status (1)

Country Link
JP (1) JP2011075514A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013036809A (ja) * 2011-08-05 2013-02-21 A & D Co Ltd 動力伝達用シャフト
WO2017188271A1 (ja) * 2016-04-28 2017-11-02 株式会社明電舎 試験システムのダイナモメータ制御装置
CN109724806A (zh) * 2019-03-11 2019-05-07 汉腾汽车有限公司 发动机后支架工装
JP2021081217A (ja) * 2019-11-14 2021-05-27 株式会社小野測器 エンジン試験システム

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2838955A (en) * 1954-04-30 1958-06-17 Gen Motors Corp Vibration damper
US2987938A (en) * 1960-06-09 1961-06-13 Gen Motors Corp Viscous fluid torsional vibration damper
JPS6244155U (ja) * 1985-09-05 1987-03-17
JPH1182631A (ja) * 1997-09-12 1999-03-26 Nok Corp 磁気カップリングの振動低減方法とこれに使用するダンパ
JPH11230255A (ja) * 1998-02-12 1999-08-27 Nok Corp イナーシャダンパ
JP2004053008A (ja) * 2002-05-31 2004-02-19 Fukoku Co Ltd ビスカスダンパ
JP2007163164A (ja) * 2005-12-09 2007-06-28 A & D Co Ltd エンジン計測装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2838955A (en) * 1954-04-30 1958-06-17 Gen Motors Corp Vibration damper
US2987938A (en) * 1960-06-09 1961-06-13 Gen Motors Corp Viscous fluid torsional vibration damper
JPS6244155U (ja) * 1985-09-05 1987-03-17
JPH1182631A (ja) * 1997-09-12 1999-03-26 Nok Corp 磁気カップリングの振動低減方法とこれに使用するダンパ
JPH11230255A (ja) * 1998-02-12 1999-08-27 Nok Corp イナーシャダンパ
JP2004053008A (ja) * 2002-05-31 2004-02-19 Fukoku Co Ltd ビスカスダンパ
JP2007163164A (ja) * 2005-12-09 2007-06-28 A & D Co Ltd エンジン計測装置

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013036809A (ja) * 2011-08-05 2013-02-21 A & D Co Ltd 動力伝達用シャフト
WO2017188271A1 (ja) * 2016-04-28 2017-11-02 株式会社明電舎 試験システムのダイナモメータ制御装置
JP2017198605A (ja) * 2016-04-28 2017-11-02 株式会社明電舎 試験システムのダイナモメータ制御装置
US11313761B2 (en) 2016-04-28 2022-04-26 Medensha Corporation Test system
CN109724806A (zh) * 2019-03-11 2019-05-07 汉腾汽车有限公司 发动机后支架工装
JP2021081217A (ja) * 2019-11-14 2021-05-27 株式会社小野測器 エンジン試験システム
JP7240302B2 (ja) 2019-11-14 2023-03-15 株式会社小野測器 エンジン試験システム

Similar Documents

Publication Publication Date Title
JP2011145081A (ja) エンジン試験方法及び装置
CN204535980U (zh) 多自由度扭振减振器减振性能测试台
JP2011075514A (ja) エンジンベンチ
JP6139896B2 (ja) エンジン試験装置及び方法
JP5658530B2 (ja) エンジン試験装置
CN103821567A (zh) 一种航空发动机高压转子结构动力学设计方法
JP2008128742A (ja) 回転構造体の振動解析装置および振動解析方法
Serrano et al. A procedure to achieve 1D predictive modeling of turbochargers under hot and pulsating flow conditions at the turbine inlet
Nester et al. Experimental observations of centrifugal pendulum vibration absorbers
Okamoto et al. Visualization of wave rotor inner flow dynamics
Ohadi et al. Simulation of engine vibration on nonlinear hydraulic engine mounts
Robinette et al. Dynamic torque characteristics of the hydrodynamic torque converter
Duan et al. Stick-slip behavior of torque converter clutch
JP5801549B2 (ja) 動力伝達用シャフト
JP2003207424A (ja) エンジンベンチシステム
Meymian et al. Quantification of windage and vibrational losses in flexure springs of a one kW two-stroke free piston linear engine alternator
Iacobellis et al. Experimental investigation of the effects of squeeze film damper design on highspeed rotor system
Hage et al. Improving low frequency torsional vibrations NVH performance through analysis and test
CN112881025B (zh) 一种航空发动机振动控制与能量收集的方法
Boyle et al. DGEN Aeropropulsion Research Turbofan Core/Combustor-Noise Measurements—Experiment and Modal Structure at Core-Nozzle Exit
Kiselev et al. Multifactorial mathematical models of the functioning of gas-turbine aviation engines in a phase-chronometric representation
Smith Analysis and simulation of centrifugal pendulum vibration absorbers
Katayama et al. Experimental investigation on cavitation performance of torque converter using transparent model
Kabral et al. Experimental acoustic characterization of automotive twin-scroll turbine
Jeon Study on structure borne noise prediction and reduction design of underwater platform mounted equipment for military

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120906

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130618

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131119