JP2011074152A - Prefoamed particle and process for producing the same - Google Patents
Prefoamed particle and process for producing the same Download PDFInfo
- Publication number
- JP2011074152A JP2011074152A JP2009225216A JP2009225216A JP2011074152A JP 2011074152 A JP2011074152 A JP 2011074152A JP 2009225216 A JP2009225216 A JP 2009225216A JP 2009225216 A JP2009225216 A JP 2009225216A JP 2011074152 A JP2011074152 A JP 2011074152A
- Authority
- JP
- Japan
- Prior art keywords
- particles
- expanded particles
- resin
- mass
- expanded
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000002245 particle Substances 0.000 title claims abstract description 261
- 238000000034 method Methods 0.000 title claims abstract description 45
- 229920005989 resin Polymers 0.000 claims abstract description 126
- 239000011347 resin Substances 0.000 claims abstract description 126
- 239000004743 Polypropylene Substances 0.000 claims abstract description 58
- 239000006260 foam Substances 0.000 claims abstract description 54
- -1 polypropylene Polymers 0.000 claims abstract description 52
- 239000004088 foaming agent Substances 0.000 claims abstract description 46
- 229920001155 polypropylene Polymers 0.000 claims abstract description 42
- 229920005990 polystyrene resin Polymers 0.000 claims abstract description 24
- 238000010521 absorption reaction Methods 0.000 claims abstract description 19
- 238000005452 bending Methods 0.000 claims abstract description 18
- 238000004519 manufacturing process Methods 0.000 claims abstract description 17
- 238000006073 displacement reaction Methods 0.000 claims abstract description 13
- 239000000805 composite resin Substances 0.000 claims abstract description 9
- 238000002835 absorbance Methods 0.000 claims description 17
- 239000000463 material Substances 0.000 claims description 16
- 239000004745 nonwoven fabric Substances 0.000 claims description 4
- 238000010097 foam moulding Methods 0.000 abstract description 34
- 238000005187 foaming Methods 0.000 abstract description 26
- 230000004927 fusion Effects 0.000 abstract description 9
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 51
- 238000006116 polymerization reaction Methods 0.000 description 33
- 238000010438 heat treatment Methods 0.000 description 28
- 239000007789 gas Substances 0.000 description 27
- 238000000465 moulding Methods 0.000 description 21
- 239000004793 Polystyrene Substances 0.000 description 17
- 239000012736 aqueous medium Substances 0.000 description 16
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 16
- 238000012360 testing method Methods 0.000 description 14
- 239000003112 inhibitor Substances 0.000 description 13
- 230000000052 comparative effect Effects 0.000 description 11
- 238000000691 measurement method Methods 0.000 description 11
- 239000000203 mixture Substances 0.000 description 9
- 239000003431 cross linking reagent Substances 0.000 description 8
- 239000000178 monomer Substances 0.000 description 8
- 239000003505 polymerization initiator Substances 0.000 description 8
- 238000005259 measurement Methods 0.000 description 7
- OFBQJSOFQDEBGM-UHFFFAOYSA-N n-pentane Natural products CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 7
- 230000006835 compression Effects 0.000 description 6
- 238000007906 compression Methods 0.000 description 6
- 239000002270 dispersing agent Substances 0.000 description 6
- 238000002844 melting Methods 0.000 description 6
- 230000008018 melting Effects 0.000 description 6
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 6
- 239000003963 antioxidant agent Substances 0.000 description 5
- 235000006708 antioxidants Nutrition 0.000 description 5
- 239000002657 fibrous material Substances 0.000 description 5
- 230000000379 polymerizing effect Effects 0.000 description 5
- 238000003756 stirring Methods 0.000 description 5
- 239000003981 vehicle Substances 0.000 description 5
- XMNIXWIUMCBBBL-UHFFFAOYSA-N 2-(2-phenylpropan-2-ylperoxy)propan-2-ylbenzene Chemical compound C=1C=CC=CC=1C(C)(C)OOC(C)(C)C1=CC=CC=C1 XMNIXWIUMCBBBL-UHFFFAOYSA-N 0.000 description 4
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 4
- 238000005520 cutting process Methods 0.000 description 4
- 238000010030 laminating Methods 0.000 description 4
- 230000000704 physical effect Effects 0.000 description 4
- 238000010526 radical polymerization reaction Methods 0.000 description 4
- 239000002516 radical scavenger Substances 0.000 description 4
- 239000002904 solvent Substances 0.000 description 4
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 125000000217 alkyl group Chemical group 0.000 description 3
- 150000001412 amines Chemical class 0.000 description 3
- 238000011088 calibration curve Methods 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 239000004744 fabric Substances 0.000 description 3
- 239000000835 fiber Substances 0.000 description 3
- 238000011049 filling Methods 0.000 description 3
- 238000001746 injection moulding Methods 0.000 description 3
- 239000010410 layer Substances 0.000 description 3
- 239000004014 plasticizer Substances 0.000 description 3
- 230000035939 shock Effects 0.000 description 3
- 150000003440 styrenes Chemical class 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- XMGQYMWWDOXHJM-JTQLQIEISA-N (+)-α-limonene Chemical compound CC(=C)[C@@H]1CCC(C)=CC1 XMGQYMWWDOXHJM-JTQLQIEISA-N 0.000 description 2
- MYRTYDVEIRVNKP-UHFFFAOYSA-N 1,2-Divinylbenzene Chemical compound C=CC1=CC=CC=C1C=C MYRTYDVEIRVNKP-UHFFFAOYSA-N 0.000 description 2
- RNFJDJUURJAICM-UHFFFAOYSA-N 2,2,4,4,6,6-hexaphenoxy-1,3,5-triaza-2$l^{5},4$l^{5},6$l^{5}-triphosphacyclohexa-1,3,5-triene Chemical compound N=1P(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP=1(OC=1C=CC=CC=1)OC1=CC=CC=C1 RNFJDJUURJAICM-UHFFFAOYSA-N 0.000 description 2
- OZAIFHULBGXAKX-UHFFFAOYSA-N 2-(2-cyanopropan-2-yldiazenyl)-2-methylpropanenitrile Chemical compound N#CC(C)(C)N=NC(C)(C)C#N OZAIFHULBGXAKX-UHFFFAOYSA-N 0.000 description 2
- PMNLUUOXGOOLSP-UHFFFAOYSA-N 2-mercaptopropanoic acid Chemical compound CC(S)C(O)=O PMNLUUOXGOOLSP-UHFFFAOYSA-N 0.000 description 2
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 2
- 239000004604 Blowing Agent Substances 0.000 description 2
- NLZUEZXRPGMBCV-UHFFFAOYSA-N Butylhydroxytoluene Chemical compound CC1=CC(C(C)(C)C)=C(O)C(C(C)(C)C)=C1 NLZUEZXRPGMBCV-UHFFFAOYSA-N 0.000 description 2
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- 229920000742 Cotton Polymers 0.000 description 2
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 2
- RGSFGYAAUTVSQA-UHFFFAOYSA-N Cyclopentane Chemical compound C1CCCC1 RGSFGYAAUTVSQA-UHFFFAOYSA-N 0.000 description 2
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- YNQLUTRBYVCPMQ-UHFFFAOYSA-N Ethylbenzene Chemical compound CCC1=CC=CC=C1 YNQLUTRBYVCPMQ-UHFFFAOYSA-N 0.000 description 2
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 2
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 2
- XQVWYOYUZDUNRW-UHFFFAOYSA-N N-Phenyl-1-naphthylamine Chemical compound C=1C=CC2=CC=CC=C2C=1NC1=CC=CC=C1 XQVWYOYUZDUNRW-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- 239000007983 Tris buffer Substances 0.000 description 2
- 239000011358 absorbing material Substances 0.000 description 2
- 238000000862 absorption spectrum Methods 0.000 description 2
- 230000003078 antioxidant effect Effects 0.000 description 2
- 239000001273 butane Substances 0.000 description 2
- 125000004432 carbon atom Chemical group C* 0.000 description 2
- 239000012159 carrier gas Substances 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 229920001577 copolymer Polymers 0.000 description 2
- 239000011162 core material Substances 0.000 description 2
- 238000005336 cracking Methods 0.000 description 2
- 238000004132 cross linking Methods 0.000 description 2
- XZTWHWHGBBCSMX-UHFFFAOYSA-J dimagnesium;phosphonato phosphate Chemical compound [Mg+2].[Mg+2].[O-]P([O-])(=O)OP([O-])([O-])=O XZTWHWHGBBCSMX-UHFFFAOYSA-J 0.000 description 2
- DMBHHRLKUKUOEG-UHFFFAOYSA-N diphenylamine Chemical compound C=1C=CC=CC=1NC1=CC=CC=C1 DMBHHRLKUKUOEG-UHFFFAOYSA-N 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- GVGUFUZHNYFZLC-UHFFFAOYSA-N dodecyl benzenesulfonate;sodium Chemical compound [Na].CCCCCCCCCCCCOS(=O)(=O)C1=CC=CC=C1 GVGUFUZHNYFZLC-UHFFFAOYSA-N 0.000 description 2
- BXKDSDJJOVIHMX-UHFFFAOYSA-N edrophonium chloride Chemical compound [Cl-].CC[N+](C)(C)C1=CC=CC(O)=C1 BXKDSDJJOVIHMX-UHFFFAOYSA-N 0.000 description 2
- 239000003063 flame retardant Substances 0.000 description 2
- 230000002431 foraging effect Effects 0.000 description 2
- 239000001307 helium Substances 0.000 description 2
- 229910052734 helium Inorganic materials 0.000 description 2
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 2
- 238000005470 impregnation Methods 0.000 description 2
- QWTDNUCVQCZILF-UHFFFAOYSA-N isopentane Chemical compound CCC(C)C QWTDNUCVQCZILF-UHFFFAOYSA-N 0.000 description 2
- 238000004898 kneading Methods 0.000 description 2
- 239000004611 light stabiliser Substances 0.000 description 2
- 239000002609 medium Substances 0.000 description 2
- IJDNQMDRQITEOD-UHFFFAOYSA-N n-butane Chemical compound CCCC IJDNQMDRQITEOD-UHFFFAOYSA-N 0.000 description 2
- 150000001451 organic peroxides Chemical class 0.000 description 2
- NWVVVBRKAWDGAB-UHFFFAOYSA-N p-methoxyphenol Chemical compound COC1=CC=C(O)C=C1 NWVVVBRKAWDGAB-UHFFFAOYSA-N 0.000 description 2
- 239000008188 pellet Substances 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- 229920005673 polypropylene based resin Polymers 0.000 description 2
- 239000007870 radical polymerization initiator Substances 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 238000005070 sampling Methods 0.000 description 2
- 229940080264 sodium dodecylbenzenesulfonate Drugs 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 238000001179 sorption measurement Methods 0.000 description 2
- 239000002344 surface layer Substances 0.000 description 2
- 239000004094 surface-active agent Substances 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 2
- 238000010998 test method Methods 0.000 description 2
- CWERGRDVMFNCDR-UHFFFAOYSA-N thioglycolic acid Chemical compound OC(=O)CS CWERGRDVMFNCDR-UHFFFAOYSA-N 0.000 description 2
- HVLLSGMXQDNUAL-UHFFFAOYSA-N triphenyl phosphite Chemical compound C=1C=CC=CC=1OP(OC=1C=CC=CC=1)OC1=CC=CC=C1 HVLLSGMXQDNUAL-UHFFFAOYSA-N 0.000 description 2
- 239000011800 void material Substances 0.000 description 2
- HGTUJZTUQFXBIH-UHFFFAOYSA-N (2,3-dimethyl-3-phenylbutan-2-yl)benzene Chemical compound C=1C=CC=CC=1C(C)(C)C(C)(C)C1=CC=CC=C1 HGTUJZTUQFXBIH-UHFFFAOYSA-N 0.000 description 1
- QEQBMZQFDDDTPN-UHFFFAOYSA-N (2-methylpropan-2-yl)oxy benzenecarboperoxoate Chemical compound CC(C)(C)OOOC(=O)C1=CC=CC=C1 QEQBMZQFDDDTPN-UHFFFAOYSA-N 0.000 description 1
- KDGNCLDCOVTOCS-UHFFFAOYSA-N (2-methylpropan-2-yl)oxy propan-2-yl carbonate Chemical compound CC(C)OC(=O)OOC(C)(C)C KDGNCLDCOVTOCS-UHFFFAOYSA-N 0.000 description 1
- GPOGLVDBOFRHDV-UHFFFAOYSA-N (2-nonylphenyl) dihydrogen phosphite Chemical compound CCCCCCCCCC1=CC=CC=C1OP(O)O GPOGLVDBOFRHDV-UHFFFAOYSA-N 0.000 description 1
- LNAZSHAWQACDHT-XIYTZBAFSA-N (2r,3r,4s,5r,6s)-4,5-dimethoxy-2-(methoxymethyl)-3-[(2s,3r,4s,5r,6r)-3,4,5-trimethoxy-6-(methoxymethyl)oxan-2-yl]oxy-6-[(2r,3r,4s,5r,6r)-4,5,6-trimethoxy-2-(methoxymethyl)oxan-3-yl]oxyoxane Chemical compound CO[C@@H]1[C@@H](OC)[C@H](OC)[C@@H](COC)O[C@H]1O[C@H]1[C@H](OC)[C@@H](OC)[C@H](O[C@H]2[C@@H]([C@@H](OC)[C@H](OC)O[C@@H]2COC)OC)O[C@@H]1COC LNAZSHAWQACDHT-XIYTZBAFSA-N 0.000 description 1
- RGASRBUYZODJTG-UHFFFAOYSA-N 1,1-bis(2,4-ditert-butylphenyl)-2,2-bis(hydroxymethyl)propane-1,3-diol dihydroxyphosphanyl dihydrogen phosphite Chemical compound OP(O)OP(O)O.C(C)(C)(C)C1=C(C=CC(=C1)C(C)(C)C)C(O)(C(CO)(CO)CO)C1=C(C=C(C=C1)C(C)(C)C)C(C)(C)C RGASRBUYZODJTG-UHFFFAOYSA-N 0.000 description 1
- LGKVAJZZWOFYSZ-UHFFFAOYSA-N 1,1-bis(2-tert-butyl-4-methylphenyl)-2,2-bis(hydroxymethyl)propane-1,3-diol dihydroxyphosphanyl dihydrogen phosphite Chemical compound OP(O)OP(O)O.C(C)(C)(C)C1=C(C=CC(=C1)C)C(O)(C(CO)(CO)CO)C1=C(C=C(C=C1)C)C(C)(C)C LGKVAJZZWOFYSZ-UHFFFAOYSA-N 0.000 description 1
- NZUPFZNVGSWLQC-UHFFFAOYSA-N 1,3,5-tris(2,3-dibromopropyl)-1,3,5-triazinane-2,4,6-trione Chemical compound BrCC(Br)CN1C(=O)N(CC(Br)CBr)C(=O)N(CC(Br)CBr)C1=O NZUPFZNVGSWLQC-UHFFFAOYSA-N 0.000 description 1
- KOMNUTZXSVSERR-UHFFFAOYSA-N 1,3,5-tris(prop-2-enyl)-1,3,5-triazinane-2,4,6-trione Chemical compound C=CCN1C(=O)N(CC=C)C(=O)N(CC=C)C1=O KOMNUTZXSVSERR-UHFFFAOYSA-N 0.000 description 1
- VNQNXQYZMPJLQX-UHFFFAOYSA-N 1,3,5-tris[(3,5-ditert-butyl-4-hydroxyphenyl)methyl]-1,3,5-triazinane-2,4,6-trione Chemical compound CC(C)(C)C1=C(O)C(C(C)(C)C)=CC(CN2C(N(CC=3C=C(C(O)=C(C=3)C(C)(C)C)C(C)(C)C)C(=O)N(CC=3C=C(C(O)=C(C=3)C(C)(C)C)C(C)(C)C)C2=O)=O)=C1 VNQNXQYZMPJLQX-UHFFFAOYSA-N 0.000 description 1
- WNPSAOYKQQUALV-UHFFFAOYSA-N 1,3-bis(sulfanyl)propan-2-ol Chemical compound SCC(O)CS WNPSAOYKQQUALV-UHFFFAOYSA-N 0.000 description 1
- XZZWOTQMUOIIFX-UHFFFAOYSA-N 1-(2-diphenoxyphosphanyloxypropoxy)propan-2-yl diphenyl phosphite Chemical compound C=1C=CC=CC=1OP(OC=1C=CC=CC=1)OC(C)COCC(C)OP(OC=1C=CC=CC=1)OC1=CC=CC=C1 XZZWOTQMUOIIFX-UHFFFAOYSA-N 0.000 description 1
- PAOHAQSLJSMLAT-UHFFFAOYSA-N 1-butylperoxybutane Chemical compound CCCCOOCCCC PAOHAQSLJSMLAT-UHFFFAOYSA-N 0.000 description 1
- VETPHHXZEJAYOB-UHFFFAOYSA-N 1-n,4-n-dinaphthalen-2-ylbenzene-1,4-diamine Chemical compound C1=CC=CC2=CC(NC=3C=CC(NC=4C=C5C=CC=CC5=CC=4)=CC=3)=CC=C21 VETPHHXZEJAYOB-UHFFFAOYSA-N 0.000 description 1
- GXURZKWLMYOCDX-UHFFFAOYSA-N 2,2-bis(hydroxymethyl)propane-1,3-diol;dihydroxyphosphanyl dihydrogen phosphite Chemical compound OP(O)OP(O)O.OCC(CO)(CO)CO GXURZKWLMYOCDX-UHFFFAOYSA-N 0.000 description 1
- UFBJCMHMOXMLKC-UHFFFAOYSA-N 2,4-dinitrophenol Chemical compound OC1=CC=C([N+]([O-])=O)C=C1[N+]([O-])=O UFBJCMHMOXMLKC-UHFFFAOYSA-N 0.000 description 1
- SBYMUDUGTIKLCR-UHFFFAOYSA-N 2-chloroethenylbenzene Chemical class ClC=CC1=CC=CC=C1 SBYMUDUGTIKLCR-UHFFFAOYSA-N 0.000 description 1
- WBIQQQGBSDOWNP-UHFFFAOYSA-N 2-dodecylbenzenesulfonic acid Chemical compound CCCCCCCCCCCCC1=CC=CC=C1S(O)(=O)=O WBIQQQGBSDOWNP-UHFFFAOYSA-N 0.000 description 1
- SUODCTNNAKSRHB-UHFFFAOYSA-N 2-ethylhexyl 3-sulfanylpropanoate Chemical compound CCCCC(CC)COC(=O)CCS SUODCTNNAKSRHB-UHFFFAOYSA-N 0.000 description 1
- XKZGIJICHCVXFV-UHFFFAOYSA-N 2-ethylhexyl diphenyl phosphite Chemical compound C=1C=CC=CC=1OP(OCC(CC)CCCC)OC1=CC=CC=C1 XKZGIJICHCVXFV-UHFFFAOYSA-N 0.000 description 1
- YAQDPWONDFRAHF-UHFFFAOYSA-N 2-methyl-2-(2-methylpentan-2-ylperoxy)pentane Chemical compound CCCC(C)(C)OOC(C)(C)CCC YAQDPWONDFRAHF-UHFFFAOYSA-N 0.000 description 1
- RFSCGDQQLKVJEJ-UHFFFAOYSA-N 2-methylbutan-2-yl benzenecarboperoxoate Chemical compound CCC(C)(C)OOC(=O)C1=CC=CC=C1 RFSCGDQQLKVJEJ-UHFFFAOYSA-N 0.000 description 1
- YLZOPXRUQYQQID-UHFFFAOYSA-N 3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)-1-[4-[2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidin-5-yl]piperazin-1-yl]propan-1-one Chemical compound N1N=NC=2CN(CCC=21)CCC(=O)N1CCN(CC1)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F YLZOPXRUQYQQID-UHFFFAOYSA-N 0.000 description 1
- WPMYUUITDBHVQZ-UHFFFAOYSA-M 3-(3,5-ditert-butyl-4-hydroxyphenyl)propanoate Chemical compound CC(C)(C)C1=CC(CCC([O-])=O)=CC(C(C)(C)C)=C1O WPMYUUITDBHVQZ-UHFFFAOYSA-M 0.000 description 1
- XLZHGKDRKSKCAU-UHFFFAOYSA-N 3-isopropylcatechol Chemical compound CC(C)C1=CC=CC(O)=C1O XLZHGKDRKSKCAU-UHFFFAOYSA-N 0.000 description 1
- JIGUICYYOYEXFS-UHFFFAOYSA-N 3-tert-butylbenzene-1,2-diol Chemical compound CC(C)(C)C1=CC=CC(O)=C1O JIGUICYYOYEXFS-UHFFFAOYSA-N 0.000 description 1
- UJAWGGOCYUPCPS-UHFFFAOYSA-N 4-(2-phenylpropan-2-yl)-n-[4-(2-phenylpropan-2-yl)phenyl]aniline Chemical compound C=1C=C(NC=2C=CC(=CC=2)C(C)(C)C=2C=CC=CC=2)C=CC=1C(C)(C)C1=CC=CC=C1 UJAWGGOCYUPCPS-UHFFFAOYSA-N 0.000 description 1
- JLBJTVDPSNHSKJ-UHFFFAOYSA-N 4-Methylstyrene Chemical compound CC1=CC=C(C=C)C=C1 JLBJTVDPSNHSKJ-UHFFFAOYSA-N 0.000 description 1
- VSAWBBYYMBQKIK-UHFFFAOYSA-N 4-[[3,5-bis[(3,5-ditert-butyl-4-hydroxyphenyl)methyl]-2,4,6-trimethylphenyl]methyl]-2,6-ditert-butylphenol Chemical compound CC1=C(CC=2C=C(C(O)=C(C=2)C(C)(C)C)C(C)(C)C)C(C)=C(CC=2C=C(C(O)=C(C=2)C(C)(C)C)C(C)(C)C)C(C)=C1CC1=CC(C(C)(C)C)=C(O)C(C(C)(C)C)=C1 VSAWBBYYMBQKIK-UHFFFAOYSA-N 0.000 description 1
- AESQDCMZHBUWPN-UHFFFAOYSA-N 4h-1,3,2-dioxaphosphinine Chemical compound C1OPOC=C1 AESQDCMZHBUWPN-UHFFFAOYSA-N 0.000 description 1
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 description 1
- 239000004342 Benzoyl peroxide Substances 0.000 description 1
- OMPJBNCRMGITSC-UHFFFAOYSA-N Benzoylperoxide Chemical compound C=1C=CC=CC=1C(=O)OOC(=O)C1=CC=CC=C1 OMPJBNCRMGITSC-UHFFFAOYSA-N 0.000 description 1
- LSNNMFCWUKXFEE-UHFFFAOYSA-M Bisulfite Chemical compound OS([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-M 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 1
- RDOFJDLLWVCMRU-UHFFFAOYSA-N Diisobutyl adipate Chemical compound CC(C)COC(=O)CCCCC(=O)OCC(C)C RDOFJDLLWVCMRU-UHFFFAOYSA-N 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 1
- 238000005033 Fourier transform infrared spectroscopy Methods 0.000 description 1
- YIVJZNGAASQVEM-UHFFFAOYSA-N Lauroyl peroxide Chemical compound CCCCCCCCCCCC(=O)OOC(=O)CCCCCCCCCCC YIVJZNGAASQVEM-UHFFFAOYSA-N 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- AFCARXCZXQIEQB-UHFFFAOYSA-N N-[3-oxo-3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propyl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C(CCNC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)N1CC2=C(CC1)NN=N2 AFCARXCZXQIEQB-UHFFFAOYSA-N 0.000 description 1
- IOVCWXUNBOPUCH-UHFFFAOYSA-M Nitrite anion Chemical compound [O-]N=O IOVCWXUNBOPUCH-UHFFFAOYSA-M 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- JKIJEFPNVSHHEI-UHFFFAOYSA-N Phenol, 2,4-bis(1,1-dimethylethyl)-, phosphite (3:1) Chemical compound CC(C)(C)C1=CC(C(C)(C)C)=CC=C1OP(OC=1C(=CC(=CC=1)C(C)(C)C)C(C)(C)C)OC1=CC=C(C(C)(C)C)C=C1C(C)(C)C JKIJEFPNVSHHEI-UHFFFAOYSA-N 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 241001483078 Phyto Species 0.000 description 1
- 229920005830 Polyurethane Foam Polymers 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- BGNXCDMCOKJUMV-UHFFFAOYSA-N Tert-Butylhydroquinone Chemical compound CC(C)(C)C1=CC(O)=CC=C1O BGNXCDMCOKJUMV-UHFFFAOYSA-N 0.000 description 1
- ZMZDMBWJUHKJPS-UHFFFAOYSA-M Thiocyanate anion Chemical compound [S-]C#N ZMZDMBWJUHKJPS-UHFFFAOYSA-M 0.000 description 1
- CGRTZESQZZGAAU-UHFFFAOYSA-N [2-[3-[1-[3-(3-tert-butyl-4-hydroxy-5-methylphenyl)propanoyloxy]-2-methylpropan-2-yl]-2,4,8,10-tetraoxaspiro[5.5]undecan-9-yl]-2-methylpropyl] 3-(3-tert-butyl-4-hydroxy-5-methylphenyl)propanoate Chemical compound CC(C)(C)C1=C(O)C(C)=CC(CCC(=O)OCC(C)(C)C2OCC3(CO2)COC(OC3)C(C)(C)COC(=O)CCC=2C=C(C(O)=C(C)C=2)C(C)(C)C)=C1 CGRTZESQZZGAAU-UHFFFAOYSA-N 0.000 description 1
- YAAUVJUJVBJRSQ-UHFFFAOYSA-N [3-(3-sulfanylpropanoyloxy)-2-[[3-(3-sulfanylpropanoyloxy)-2,2-bis(3-sulfanylpropanoyloxymethyl)propoxy]methyl]-2-(3-sulfanylpropanoyloxymethyl)propyl] 3-sulfanylpropanoate Chemical compound SCCC(=O)OCC(COC(=O)CCS)(COC(=O)CCS)COCC(COC(=O)CCS)(COC(=O)CCS)COC(=O)CCS YAAUVJUJVBJRSQ-UHFFFAOYSA-N 0.000 description 1
- 239000006096 absorbing agent Substances 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 239000002671 adjuvant Substances 0.000 description 1
- XYLMUPLGERFSHI-UHFFFAOYSA-N alpha-Methylstyrene Chemical compound CC(=C)C1=CC=CC=C1 XYLMUPLGERFSHI-UHFFFAOYSA-N 0.000 description 1
- SOIFLUNRINLCBN-UHFFFAOYSA-N ammonium thiocyanate Chemical compound [NH4+].[S-]C#N SOIFLUNRINLCBN-UHFFFAOYSA-N 0.000 description 1
- 239000007900 aqueous suspension Substances 0.000 description 1
- 150000004982 aromatic amines Chemical class 0.000 description 1
- 229960005070 ascorbic acid Drugs 0.000 description 1
- 235000010323 ascorbic acid Nutrition 0.000 description 1
- 239000011668 ascorbic acid Substances 0.000 description 1
- 239000010426 asphalt Substances 0.000 description 1
- 125000000751 azo group Chemical group [*]N=N[*] 0.000 description 1
- 235000019400 benzoyl peroxide Nutrition 0.000 description 1
- FLPKSBDJMLUTEX-UHFFFAOYSA-N bis(1,2,2,6,6-pentamethylpiperidin-4-yl) 2-butyl-2-[(3,5-ditert-butyl-4-hydroxyphenyl)methyl]propanedioate Chemical compound C1C(C)(C)N(C)C(C)(C)CC1OC(=O)C(C(=O)OC1CC(C)(C)N(C)C(C)(C)C1)(CCCC)CC1=CC(C(C)(C)C)=C(O)C(C(C)(C)C)=C1 FLPKSBDJMLUTEX-UHFFFAOYSA-N 0.000 description 1
- RSOILICUEWXSLA-UHFFFAOYSA-N bis(1,2,2,6,6-pentamethylpiperidin-4-yl) decanedioate Chemical compound C1C(C)(C)N(C)C(C)(C)CC1OC(=O)CCCCCCCCC(=O)OC1CC(C)(C)N(C)C(C)(C)C1 RSOILICUEWXSLA-UHFFFAOYSA-N 0.000 description 1
- XITRBUPOXXBIJN-UHFFFAOYSA-N bis(2,2,6,6-tetramethylpiperidin-4-yl) decanedioate Chemical compound C1C(C)(C)NC(C)(C)CC1OC(=O)CCCCCCCCC(=O)OC1CC(C)(C)NC(C)(C)C1 XITRBUPOXXBIJN-UHFFFAOYSA-N 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- 229960003563 calcium carbonate Drugs 0.000 description 1
- 235000010216 calcium carbonate Nutrition 0.000 description 1
- JUNWLZAGQLJVLR-UHFFFAOYSA-J calcium diphosphate Chemical compound [Ca+2].[Ca+2].[O-]P([O-])(=O)OP([O-])([O-])=O JUNWLZAGQLJVLR-UHFFFAOYSA-J 0.000 description 1
- 239000001506 calcium phosphate Substances 0.000 description 1
- 229910000389 calcium phosphate Inorganic materials 0.000 description 1
- 229960001714 calcium phosphate Drugs 0.000 description 1
- 235000011010 calcium phosphates Nutrition 0.000 description 1
- 229940043256 calcium pyrophosphate Drugs 0.000 description 1
- 239000000378 calcium silicate Substances 0.000 description 1
- 229910052918 calcium silicate Inorganic materials 0.000 description 1
- OYACROKNLOSFPA-UHFFFAOYSA-N calcium;dioxido(oxo)silane Chemical compound [Ca+2].[O-][Si]([O-])=O OYACROKNLOSFPA-UHFFFAOYSA-N 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 239000001768 carboxy methyl cellulose Substances 0.000 description 1
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 1
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 1
- 239000012986 chain transfer agent Substances 0.000 description 1
- 239000012295 chemical reaction liquid Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 125000001309 chloro group Chemical group Cl* 0.000 description 1
- 235000019864 coconut oil Nutrition 0.000 description 1
- 239000003240 coconut oil Substances 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- UFULAYFCSOUIOV-UHFFFAOYSA-N cysteamine Chemical compound NCCS UFULAYFCSOUIOV-UHFFFAOYSA-N 0.000 description 1
- GLOQRSIADGSLRX-UHFFFAOYSA-N decyl diphenyl phosphite Chemical compound C=1C=CC=CC=1OP(OCCCCCCCCCC)OC1=CC=CC=C1 GLOQRSIADGSLRX-UHFFFAOYSA-N 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 125000004386 diacrylate group Chemical group 0.000 description 1
- 235000019821 dicalcium diphosphate Nutrition 0.000 description 1
- SPBMDAHKYSRJFO-UHFFFAOYSA-N didodecyl hydrogen phosphite Chemical compound CCCCCCCCCCCCOP(O)OCCCCCCCCCCCC SPBMDAHKYSRJFO-UHFFFAOYSA-N 0.000 description 1
- ZJIPHXXDPROMEF-UHFFFAOYSA-N dihydroxyphosphanyl dihydrogen phosphite Chemical compound OP(O)OP(O)O ZJIPHXXDPROMEF-UHFFFAOYSA-N 0.000 description 1
- 229940031769 diisobutyl adipate Drugs 0.000 description 1
- WQABCVAJNWAXTE-UHFFFAOYSA-N dimercaprol Chemical compound OCC(S)CS WQABCVAJNWAXTE-UHFFFAOYSA-N 0.000 description 1
- AFABGHUZZDYHJO-UHFFFAOYSA-N dimethyl butane Natural products CCCC(C)C AFABGHUZZDYHJO-UHFFFAOYSA-N 0.000 description 1
- OGVJEUDMQQIAPV-UHFFFAOYSA-N diphenyl tridecyl phosphite Chemical compound C=1C=CC=CC=1OP(OCCCCCCCCCCCCC)OC1=CC=CC=C1 OGVJEUDMQQIAPV-UHFFFAOYSA-N 0.000 description 1
- CIKJANOSDPPCAU-UHFFFAOYSA-N ditert-butyl cyclohexane-1,4-dicarboperoxoate Chemical compound CC(C)(C)OOC(=O)C1CCC(C(=O)OOC(C)(C)C)CC1 CIKJANOSDPPCAU-UHFFFAOYSA-N 0.000 description 1
- 229940060296 dodecylbenzenesulfonic acid Drugs 0.000 description 1
- DNJIEGIFACGWOD-UHFFFAOYSA-N ethyl mercaptane Natural products CCS DNJIEGIFACGWOD-UHFFFAOYSA-N 0.000 description 1
- 229920005674 ethylene-propylene random copolymer Polymers 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 238000007667 floating Methods 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 239000011491 glass wool Substances 0.000 description 1
- 235000011187 glycerol Nutrition 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 125000005843 halogen group Chemical group 0.000 description 1
- DMEGYFMYUHOHGS-UHFFFAOYSA-N heptamethylene Natural products C1CCCCCC1 DMEGYFMYUHOHGS-UHFFFAOYSA-N 0.000 description 1
- ZMZDMBWJUHKJPS-UHFFFAOYSA-N hydrogen thiocyanate Natural products SC#N ZMZDMBWJUHKJPS-UHFFFAOYSA-N 0.000 description 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 1
- 239000012770 industrial material Substances 0.000 description 1
- 238000012844 infrared spectroscopy analysis Methods 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- ZFSLODLOARCGLH-UHFFFAOYSA-N isocyanuric acid Chemical compound OC1=NC(O)=NC(O)=N1 ZFSLODLOARCGLH-UHFFFAOYSA-N 0.000 description 1
- ZLNQQNXFFQJAID-UHFFFAOYSA-L magnesium carbonate Chemical compound [Mg+2].[O-]C([O-])=O ZLNQQNXFFQJAID-UHFFFAOYSA-L 0.000 description 1
- 239000001095 magnesium carbonate Substances 0.000 description 1
- 229910000021 magnesium carbonate Inorganic materials 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 1
- GVALZJMUIHGIMD-UHFFFAOYSA-H magnesium phosphate Chemical compound [Mg+2].[Mg+2].[Mg+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O GVALZJMUIHGIMD-UHFFFAOYSA-H 0.000 description 1
- 239000004137 magnesium phosphate Substances 0.000 description 1
- 229910000157 magnesium phosphate Inorganic materials 0.000 description 1
- 229960002261 magnesium phosphate Drugs 0.000 description 1
- 235000010994 magnesium phosphates Nutrition 0.000 description 1
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 150000002688 maleic acid derivatives Chemical class 0.000 description 1
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical compound O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 description 1
- 229960003151 mercaptamine Drugs 0.000 description 1
- 125000005395 methacrylic acid group Chemical group 0.000 description 1
- 229920000609 methyl cellulose Polymers 0.000 description 1
- 239000001923 methylcellulose Substances 0.000 description 1
- 235000010981 methylcellulose Nutrition 0.000 description 1
- PJUIMOJAAPLTRJ-UHFFFAOYSA-N monothioglycerol Chemical compound OCC(O)CS PJUIMOJAAPLTRJ-UHFFFAOYSA-N 0.000 description 1
- RKISUIUJZGSLEV-UHFFFAOYSA-N n-[2-(octadecanoylamino)ethyl]octadecanamide Chemical compound CCCCCCCCCCCCCCCCCC(=O)NCCNC(=O)CCCCCCCCCCCCCCCCC RKISUIUJZGSLEV-UHFFFAOYSA-N 0.000 description 1
- DAHPIMYBWVSMKQ-UHFFFAOYSA-N n-hydroxy-n-phenylnitrous amide Chemical compound O=NN(O)C1=CC=CC=C1 DAHPIMYBWVSMKQ-UHFFFAOYSA-N 0.000 description 1
- MAXCWSIJKVASQC-UHFFFAOYSA-N n-methyl-n-phenylnitrous amide Chemical compound O=NN(C)C1=CC=CC=C1 MAXCWSIJKVASQC-UHFFFAOYSA-N 0.000 description 1
- 125000000018 nitroso group Chemical group N(=O)* 0.000 description 1
- 239000002667 nucleating agent Substances 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- NFHFRUOZVGFOOS-UHFFFAOYSA-N palladium;triphenylphosphane Chemical compound [Pd].C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 NFHFRUOZVGFOOS-UHFFFAOYSA-N 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- OJMIONKXNSYLSR-UHFFFAOYSA-N phosphorous acid Chemical compound OP(O)O OJMIONKXNSYLSR-UHFFFAOYSA-N 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- DOIRQSBPFJWKBE-UHFFFAOYSA-N phthalic acid di-n-butyl ester Natural products CCCCOC(=O)C1=CC=CC=C1C(=O)OCCCC DOIRQSBPFJWKBE-UHFFFAOYSA-N 0.000 description 1
- 229920000058 polyacrylate Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229920005672 polyolefin resin Polymers 0.000 description 1
- 239000011496 polyurethane foam Substances 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 1
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 1
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 1
- ZNNZYHKDIALBAK-UHFFFAOYSA-M potassium thiocyanate Chemical compound [K+].[S-]C#N ZNNZYHKDIALBAK-UHFFFAOYSA-M 0.000 description 1
- 229940116357 potassium thiocyanate Drugs 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- HJWLCRVIBGQPNF-UHFFFAOYSA-N prop-2-enylbenzene Chemical class C=CCC1=CC=CC=C1 HJWLCRVIBGQPNF-UHFFFAOYSA-N 0.000 description 1
- 125000002572 propoxy group Chemical group [*]OC([H])([H])C(C([H])([H])[H])([H])[H] 0.000 description 1
- 229920001384 propylene homopolymer Polymers 0.000 description 1
- 229920005675 propylene-butene random copolymer Polymers 0.000 description 1
- 238000000197 pyrolysis Methods 0.000 description 1
- 230000002000 scavenging effect Effects 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- VGTPCRGMBIAPIM-UHFFFAOYSA-M sodium thiocyanate Chemical compound [Na+].[S-]C#N VGTPCRGMBIAPIM-UHFFFAOYSA-M 0.000 description 1
- PPASLZSBLFJQEF-RXSVEWSESA-M sodium-L-ascorbate Chemical compound [Na+].OC[C@H](O)[C@H]1OC(=O)C(O)=C1[O-] PPASLZSBLFJQEF-RXSVEWSESA-M 0.000 description 1
- 239000007779 soft material Substances 0.000 description 1
- 125000001424 substituent group Chemical group 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 238000010557 suspension polymerization reaction Methods 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- 150000003568 thioethers Chemical class 0.000 description 1
- 229940035024 thioglycerol Drugs 0.000 description 1
- NJRXVEJTAYWCQJ-UHFFFAOYSA-N thiomalic acid Chemical compound OC(=O)CC(S)C(O)=O NJRXVEJTAYWCQJ-UHFFFAOYSA-N 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 1
- BDZBKCUKTQZUTL-UHFFFAOYSA-N triethyl phosphite Chemical compound CCOP(OCC)OCC BDZBKCUKTQZUTL-UHFFFAOYSA-N 0.000 description 1
- ILLOBGFGKYTZRO-UHFFFAOYSA-N tris(2-ethylhexyl) phosphite Chemical compound CCCCC(CC)COP(OCC(CC)CCCC)OCC(CC)CCCC ILLOBGFGKYTZRO-UHFFFAOYSA-N 0.000 description 1
- QQBLOZGVRHAYGT-UHFFFAOYSA-N tris-decyl phosphite Chemical compound CCCCCCCCCCOP(OCCCCCCCCCC)OCCCCCCCCCC QQBLOZGVRHAYGT-UHFFFAOYSA-N 0.000 description 1
- PEXOFOFLXOCMDX-UHFFFAOYSA-N tritridecyl phosphite Chemical compound CCCCCCCCCCCCCOP(OCCCCCCCCCCCCC)OCCCCCCCCCCCCC PEXOFOFLXOCMDX-UHFFFAOYSA-N 0.000 description 1
- 239000003021 water soluble solvent Substances 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
- MLVWCBYTEFCFSG-UHFFFAOYSA-L zinc;dithiocyanate Chemical compound [Zn+2].[S-]C#N.[S-]C#N MLVWCBYTEFCFSG-UHFFFAOYSA-L 0.000 description 1
- 239000004711 α-olefin Substances 0.000 description 1
- DGVVWUTYPXICAM-UHFFFAOYSA-N β‐Mercaptoethanol Chemical compound OCCS DGVVWUTYPXICAM-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Laminated Bodies (AREA)
- Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
Abstract
【課題】発泡粒子同士の熱融着の低下を抑制し、それにより型内発泡成形体の機械的強度の低下を抑制する方法を提供することを課題とする。
【解決手段】5〜60倍の発泡倍数、10〜30%の空隙率、0.3以上の吸音率、10mm以上の曲げ破断点変位及び1.5%以下の寸法変化率の型内発泡成形体の製造に使用される予備発泡粒子の製造方法であって、発泡剤を含有し20/80〜50/50の質量比のポリプロピレン系樹脂とポリスチレン系樹脂の複合樹脂粒子に由来する発泡性樹脂粒子を予備発泡させ、次いで残発泡剤量を0〜3質量%に減少するように調製することで予備発泡粒子を得ることを特徴とする予備発泡粒子の製造方法により上記課題を解決する。
【選択図】なしIt is an object of the present invention to provide a method for suppressing a decrease in thermal fusion between expanded particles, thereby suppressing a decrease in mechanical strength of an in-mold foam molded product.
SOLUTION: In-mold foam molding having a foaming ratio of 5 to 60 times, a porosity of 10 to 30%, a sound absorption rate of 0.3 or more, a bending break point displacement of 10 mm or more, and a dimensional change rate of 1.5% or less. A method for producing pre-foamed particles used in the production of a body, comprising a foaming agent and having a mass ratio of 20/80 to 50/50 and derived from composite resin particles of polypropylene resin and polystyrene resin The above-mentioned problems are solved by a method for producing pre-expanded particles, characterized in that the pre-expanded particles are obtained by pre-expanding the particles and then preparing the residual foaming agent amount to be reduced to 0 to 3% by mass.
[Selection figure] None
Description
本発明は、予備発泡粒子及びその製造方法に関する。更に詳しくは、本発明は、特定の物性値の型内発泡成形体を製造するための予備発泡粒子及びその製造方法に関する。本発明の予備発泡粒子は、衝撃吸収性と吸音性が要求される用途、例えば車両用衝撃吸収材の製造に好適である。 The present invention relates to pre-expanded particles and a method for producing the same. More specifically, the present invention relates to pre-expanded particles for producing an in-mold foam molded product having specific physical properties and a method for producing the same. The pre-expanded particles of the present invention are suitable for uses that require shock absorption and sound absorption, for example, for the production of vehicle shock absorbers.
型内発泡成形体は、空隙部を形成することで吸音材として使用されている。空隙部を有する型内発泡成形体は、例えば、特開平7−80873号公報(特許文献1)や特開2008−239793号公報(特許文献2)に記載されている。
特開平7−80873号公報によれば、予備発泡粒子を加熱発泡させて、粒子相互間を熱融着させつつ、粒子間に10〜40%の粒子間の空間に由来する空隙率を備えた型内発泡成形体を得る方法が記載されている。
また、特開2008−239793号公報には、粒子表面の吸光度比(D698/D1376)が0.1〜2.5の範囲であり、ポリオレフィン樹脂成分100質量部とスチレン系樹脂成分100〜400質量部とを含む予備発泡粒子を加熱発泡させて、粒子相互間を熱融着させつつ、5〜50%の粒子間の空間に由来する空隙率を備えた型内発泡成形体を得る方法が記載されている。
The in-mold foam molded body is used as a sound absorbing material by forming a void. An in-mold foam-molded article having a void is described in, for example, Japanese Patent Application Laid-Open No. 7-80873 (Patent Document 1) and Japanese Patent Application Laid-Open No. 2008-239793 (Patent Document 2).
According to Japanese Patent Application Laid-Open No. 7-80873, pre-expanded particles are heated and foamed, and the particles are provided with a porosity derived from a space of 10 to 40% between the particles while thermally fusing between the particles. A method for obtaining an in-mold foam molded article is described.
Japanese Patent Application Laid-Open No. 2008-239793 discloses that the particle surface absorbance ratio (D 698 / D 1376 ) is in the range of 0.1 to 2.5, and 100 parts by mass of the polyolefin resin component and 100 to styrene resin component. A method for obtaining an in-mold foam molded article having a porosity derived from a space of 5 to 50% of particles while thermally foaming pre-foamed particles containing 400 parts by mass and thermally fusing the particles together Is described.
型内発泡成形体の空隙率を大きくするには、成形時の予備発泡粒子の二次発泡を抑える必要がある。二次発泡を抑える方法としては、成形時の蒸気温度を下げる方法や、加熱時間を短くする方法がある。しかし、両方法とも、予備発泡粒子の発泡圧が低下する方法であるため、発泡粒子同士の熱融着が低下し、得られた型内発泡成形体の機械的強度が低下するという課題があった。 In order to increase the porosity of the in-mold foam molded product, it is necessary to suppress secondary foaming of the pre-foamed particles during molding. As a method of suppressing secondary foaming, there are a method of lowering the steam temperature during molding and a method of shortening the heating time. However, since both methods are methods in which the foaming pressure of the pre-foamed particles is lowered, there is a problem that the thermal fusion between the foamed particles is lowered, and the mechanical strength of the obtained in-mold foam molded product is lowered. It was.
本発明の発明者等は、発泡粒子同士の熱融着の低下を抑制し、それにより型内発泡成形体の機械的強度の低下を抑制する方法について検討したところ、残発泡剤量が減少するように調製された予備発泡粒子を用いて型内発泡成形体を形成すれば、抑制が可能であること意外にも見い出すことで、本発明に至った。 The inventors of the present invention have studied a method for suppressing a decrease in thermal fusion between foamed particles and thereby suppressing a decrease in mechanical strength of the in-mold foam molded product, and the amount of residual foaming agent is reduced. When the in-mold foam molded body is formed using the pre-expanded particles prepared as described above, the present invention has been found by surprisingly finding that the suppression is possible.
かくして本発明によれば、5〜60倍の発泡倍数、10〜30%の空隙率、0.3以上の吸音率、10mm以上の曲げ破断点変位及び1.5%以下の寸法変化率の型内発泡成形体の製造に使用される予備発泡粒子の製造方法であって、
発泡剤を含有し20/80〜50/50の質量比のポリプロピレン系樹脂とポリスチレン系樹脂の複合樹脂粒子に由来する発泡性樹脂粒子を予備発泡させ、次いで残発泡剤量を0〜3質量%に減少するように調製することで予備発泡粒子を得ることを特徴とする予備発泡粒子の製造方法が提供される。
Thus, according to the present invention, a mold having a foaming factor of 5 to 60 times, a porosity of 10 to 30%, a sound absorption rate of 0.3 or more, a bending break point displacement of 10 mm or more, and a dimensional change rate of 1.5% or less. A method for producing pre-expanded particles used for the production of an inner foam molded article,
Foamable resin particles containing a foaming agent and having a mass ratio of 20/80 to 50/50 and derived from a composite resin particle of a polypropylene resin and a polystyrene resin are prefoamed, and then the amount of residual foaming agent is 0 to 3% by mass. A method for producing pre-expanded particles is provided, characterized in that the pre-expanded particles are obtained by preparing the particles so as to be reduced to a minimum.
更に、本発明によれば、発泡剤を含有し20/80〜50/50の質量比のポリプロピレン系樹脂とポリスチレン系樹脂の複合樹脂粒子に由来する発泡性樹脂粒子を予備発泡させ、次いで残発泡剤量を0〜3質量%に減少するように調製することで得られた予備発泡粒子であり、前記予備発泡粒子が、5〜60倍の発泡倍数、10〜30%の空隙率、0.3以上の吸音率、10mm以上の曲げ破断点変位及び1.5%以下の寸法変化率の型内発泡成形体の製造に使用される予備発泡粒子が提供される。 Further, according to the present invention, expandable resin particles derived from a composite resin particle of a polypropylene resin and a polystyrene resin containing a foaming agent and having a mass ratio of 20/80 to 50/50 are pre-foamed, and then the residual foam is formed. Pre-expanded particles obtained by adjusting the amount of the agent to 0 to 3% by mass, wherein the pre-expanded particles are 5 to 60 times expanded, 10 to 30% porosity, Pre-expanded particles for use in the production of in-mold foam molded articles having a sound absorption of 3 or more, a bending break point displacement of 10 mm or more and a dimensional change rate of 1.5% or less are provided.
本発明は、発泡剤を含有し20/80〜50/50の質量比のポリプロピレン系樹脂とポリスチレン系樹脂の複合樹脂粒子に由来する発泡性樹脂粒子を予備発泡させ、次いで残発泡剤量を0〜3質量%に減少するように調製することで予備発泡粒子を得る方法である。この方法により得られた予備発泡粒子は、5〜60倍の発泡倍数、10〜30%の空隙率、0.3以上の吸音率、10mm以上の曲げ破断点変位及び1.5%以下の寸法変化率の型内発泡成形体を効率よく得ることができる。 The present invention pre-foams expandable resin particles derived from composite resin particles of a polypropylene resin and a polystyrene resin containing a foaming agent and having a mass ratio of 20/80 to 50/50, and then the amount of residual foaming agent is reduced to 0. It is a method of obtaining pre-expanded particles by preparing to reduce to ˜3% by mass. The pre-expanded particles obtained by this method have an expansion ratio of 5 to 60 times, a porosity of 10 to 30%, a sound absorption rate of 0.3 or more, a bending break point displacement of 10 mm or more, and a dimension of 1.5% or less. An in-mold foam molded product with a change rate can be obtained efficiently.
また、予備発泡粒子が、0.1〜2.5の吸光度比(D698/D1376)の表面を有する場合、より強固に発泡粒子間の融着が確保された型内発泡成形を提供できる。
更に、型内発泡成形体を、不織布又はフェルトからなる外装材と積層して車内用内装部品として用いれば、衝撃吸収性及び消音性、外装材の優れた擦れや力による音鳴り低減性を備えた部品を提供できる。
Further, when the pre-expanded particles have a surface with an absorbance ratio (D 698 / D 1376 ) of 0.1 to 2.5, it is possible to provide in-mold foam molding in which fusion between the expanded particles is more securely secured. .
Furthermore, if the in-mold foamed molded body is laminated with an exterior material made of nonwoven fabric or felt and used as an interior part for vehicles, it has shock absorption and noise reduction, and noise reduction due to excellent friction and force of the exterior material. Parts can be provided.
本発明の予備発泡粒子の製造方法は、発泡剤を含有しポリプロピレン系樹脂とポリスチレン系樹脂の複合樹脂粒子に由来する発泡性樹脂粒子を予備発泡させ、次いで残発泡剤量を0〜3質量%に減少するように調製する工程を含んでいる。
この工程で使用される予備発泡粒子は、発泡剤を含有する発泡性樹脂粒子を予備発泡させることにより得られる。発泡工程に使用される発泡性樹脂粒子は、樹脂粒子に発泡剤を含浸させることにより得られる。
The pre-foamed particle production method of the present invention pre-foams expandable resin particles containing a foaming agent and derived from a composite resin particle of a polypropylene resin and a polystyrene resin, and then the amount of the remaining foaming agent is 0 to 3% by mass. And a step of preparing to reduce the amount.
The pre-expanded particles used in this step are obtained by pre-expanding expandable resin particles containing a foaming agent. Expandable resin particles used in the foaming step are obtained by impregnating resin particles with a foaming agent.
(1)発泡剤
発泡剤としては、公知の種々の揮発性発泡剤が使用できる。例えば、ブタン、ペンタン(ノルマルペンタン、イソペンタンの単独又は混合物、工業用ペンタン)、石油エーテル、シクロヘキサン、シクロペンタン、ヘキサン等が挙げられる。
発泡剤の含有量としては、発泡性樹脂粒子に対して、7.5〜13質量%であることが好ましい。発泡剤の含有量が7.5質量%未満であると、発泡性樹脂粒子の発泡性が低下することがある。発泡性が低下すると、嵩倍数の高い低嵩密度の予備発泡粒子が得られ難くなると共に、この予備発泡粒子を型内成形して得られる型内発泡成形体は融着率が低下し、耐割れ性が低下することがある。一方、13質量%を超えると、嵩倍数65倍以上の低嵩密度の予備発泡粒子を得ることができる。しかし、予備発泡粒子中の気泡サイズが過大となり易く、成形性の低下や、得られる型内発泡成形体の圧縮、曲げ等の強度特性の低下が発生することがある。より好ましい発泡剤の含有量は、8.0〜12.5質量%の範囲である。
(1) Foaming agent Various known volatile foaming agents can be used as the foaming agent. For example, butane, pentane (normal pentane, isopentane alone or as a mixture, industrial pentane), petroleum ether, cyclohexane, cyclopentane, hexane and the like can be mentioned.
As content of a foaming agent, it is preferable that it is 7.5-13 mass% with respect to an expandable resin particle. When the content of the foaming agent is less than 7.5% by mass, the foamability of the foamable resin particles may be lowered. When the foamability is lowered, it becomes difficult to obtain low-bulk density pre-expanded particles having a high bulk ratio, and the in-mold foam-molded product obtained by molding the pre-expanded particles in the mold has a reduced fusion rate, resulting in resistance to resistance. Crackability may be reduced. On the other hand, when it exceeds 13% by mass, pre-expanded particles having a low bulk density of 65 times or more can be obtained. However, the bubble size in the pre-expanded particles tends to be excessive, and the moldability and the strength characteristics such as compression and bending of the obtained in-mold foam molded product may be deteriorated. A more preferable foaming agent content is in the range of 8.0 to 12.5% by mass.
更に、発泡助剤を用いてもよい。発泡助剤としては、例えば、トルエン、キシレン、エチルベンゼン、シクロヘキサン、d−リモネン等の溶剤、ジイソブチルアジペート、グリセリン、ジアセチル化モノラウレート、やし油等の可塑剤(高沸点溶剤)が挙げられる。なお、発泡助剤の添加量としては、樹脂粒子100質量部に対して0.5〜10質量部が好ましい。 Further, a foaming aid may be used. Examples of the foaming aid include solvents such as toluene, xylene, ethylbenzene, cyclohexane, and d-limonene, and plasticizers (high boiling solvents) such as diisobutyl adipate, glycerin, diacetylated monolaurate, and coconut oil. In addition, as addition amount of a foaming adjuvant, 0.5-10 mass parts is preferable with respect to 100 mass parts of resin particles.
(2)樹脂粒子
樹脂粒子を構成する樹脂としては、予備発泡粒子を形成でき、型内発泡成形できる樹脂であれば、特に限定されない。樹脂粒子として、ポリプロピレン系樹脂とポリスチレン系樹脂の複合樹脂粒子が使用される。ポリプロピレン系樹脂とポリスチレン系樹脂の複合樹脂粒子としては、ポリプロピレン系樹脂とポリスチレン系樹脂とを混合した樹脂粒子、ポリプロピレン系樹脂からなる種粒子(マイクロペレット)にスチレン系単量体を含浸(吸収)させた後、重合させることで得られる樹脂粒子(以下、改質樹脂粒子ともいう)が挙げられる。上記樹脂粒子の内、改質樹脂粒子が好ましい。以下、改質樹脂粒子について説明する。
(2) Resin Particles The resin constituting the resin particles is not particularly limited as long as it is a resin that can form pre-foamed particles and can be subjected to in-mold foam molding. As the resin particles, composite resin particles of polypropylene resin and polystyrene resin are used. As composite resin particles of polypropylene resin and polystyrene resin, resin particles mixed with polypropylene resin and polystyrene resin, seed particles (micropellets) made of polypropylene resin are impregnated (absorbed) with styrene monomer Then, resin particles (hereinafter, also referred to as modified resin particles) obtained by polymerization are exemplified. Of the resin particles, modified resin particles are preferred. Hereinafter, the modified resin particles will be described.
ポリスチレン系樹脂としては、スチレン系単量体由来の樹脂が挙げられる。スチレン系単量体としては、スチレン及び置換スチレン(置換基には、低級アルキル、ハロゲン原子(特に塩素原子)等が含まれる)のいずれも使用できる。置換スチレンとしては、例えば、クロルスチレン類、p−メチルスチレン等のビニルトルエン類、α−メチルスチレン等が挙げられる。この内、スチレンが好ましい。また、スチレン系単量体は、スチレンと、置換スチレンとの混合物、スチレンと共重合可能な少量の他の単量体(例えば、アクリロニトリル、メタクリル酸アルキルエステル(アルキル部分の炭素数1〜8程度)、マレイン酸モノないしジアルキル(アルキル部分の炭素数1〜4程度)、ジビニルベンゼン、エチレングリコールのモノないしジアクリル酸ないしメタクリル酸エステル、無水マレイン酸、N−フェニルマレイド等)との混合物が使用できる。これら混合物中、スチレンが優位量(例えば、50質量%以上)を占めることが好ましい。 Examples of polystyrene resins include resins derived from styrene monomers. As the styrene monomer, any of styrene and substituted styrene (substituent includes lower alkyl, halogen atom (especially chlorine atom) and the like) can be used. Examples of the substituted styrene include chlorostyrenes, vinyltoluenes such as p-methylstyrene, and α-methylstyrene. Of these, styrene is preferred. The styrene monomer is a mixture of styrene and substituted styrene, a small amount of other monomers copolymerizable with styrene (for example, acrylonitrile, alkyl methacrylate ester (the alkyl portion has about 1 to 8 carbon atoms). ), Mono- or dialkyl maleates (alkyl moieties of about 1 to 4 carbon atoms), divinylbenzene, mono- or diacrylic or methacrylic esters of ethylene glycol, maleic anhydride, N-phenylmaleide, etc.) it can. In these mixtures, styrene preferably occupies a dominant amount (for example, 50% by mass or more).
ポリプロピレン系樹脂としては、特に限定されず、公知の樹脂が使用できる。また、ポリプロピレン系樹脂は、架橋していてもよい。例えば、プロピレン単独重合体、エチレン−プロピレンランダム共重合体、プロピレン−1−ブテン共重合体、エチレン−プロピレン−ブテンランダム共重合体等のポリプロピレン系樹脂が挙げられる。
上記樹脂粒子の内、改質樹脂粒子が好ましい。以下、改質樹脂粒子について説明する。
It does not specifically limit as a polypropylene resin, A well-known resin can be used. Moreover, the polypropylene resin may be crosslinked. Examples thereof include polypropylene resins such as a propylene homopolymer, an ethylene-propylene random copolymer, a propylene-1-butene copolymer, and an ethylene-propylene-butene random copolymer.
Of the resin particles, modified resin particles are preferred. Hereinafter, the modified resin particles will be described.
改質樹脂粒子を構成するポリプロピレン系樹脂とポリスチレン系樹脂の含有量は、ポリプロピレン系樹脂とポリスチレン系樹脂の質量比で表して20/80〜50/50である。
ポリスチレン系樹脂の含有量が20/80より多いと、ポリスチレン系樹脂成分が発泡剤の保持性が高いため、予備発泡粒子の発泡剤量を減少させづらくなることがある。一方、50/50より少ないと、発泡剤の拡散性が高いため、予備発泡粒子の嵩密度を上げにくく、嵩密度の調整し難くなることがある。
The content of the polypropylene resin and the polystyrene resin constituting the modified resin particles is 20/80 to 50/50 in terms of the mass ratio of the polypropylene resin and the polystyrene resin.
When the content of the polystyrene resin is more than 20/80, the polystyrene resin component has high retention of the foaming agent, and thus it may be difficult to reduce the amount of the foaming agent of the pre-expanded particles. On the other hand, when the ratio is less than 50/50, the diffusibility of the foaming agent is high, so that it is difficult to increase the bulk density of the pre-expanded particles and the bulk density may be difficult to adjust.
改質樹脂粒子の平均粒子径は、800〜2400μmであることが好ましい。800μmを下回る平均粒子径の改質樹脂粒子は、その原料のポリプロピレン系樹脂粒子の平均粒子径を小さくする必要がある。その場合、ポリプロピレン系樹脂粒子の収率が悪化してコストアップすることがある。2400μmを越えると、予備発泡粒子が大きくなりすぎ、その予備発泡粒子は、複雑な形状をした型内発泡成形体を成形する際、金型への充填性が悪くなる傾向がある。好ましい平均粒子径は、1200〜2000μmである。 The average particle diameter of the modified resin particles is preferably 800 to 2400 μm. The modified resin particles having an average particle size of less than 800 μm are required to reduce the average particle size of the raw material polypropylene resin particles. In that case, the yield of polypropylene resin particles may deteriorate and the cost may increase. If it exceeds 2400 μm, the pre-expanded particles become too large, and the pre-expanded particles tend to have poor filling properties in the mold when forming an in-mold expanded molded article having a complicated shape. A preferable average particle diameter is 1200-2000 micrometers.
ポリプロピレン系樹脂からなる種粒子は、公知の方法で得ることができる。例えば、まず、押出機を使用してポリプロピレン系樹脂を溶融押出した後、水中カット、ストランドカット等により造粒することで、種粒子を作製できる。通常、使用するポリプロピレン系樹脂の形状は、例えば、真球状、楕円球状(卵状)、円柱状、角柱状、ペレット状又はグラニュラー状である。 Seed particles made of polypropylene resin can be obtained by a known method. For example, seed particles can be prepared by first melt-extruding a polypropylene-based resin using an extruder and granulating by underwater cutting, strand cutting, or the like. Usually, the shape of the polypropylene resin used is, for example, a true sphere, an elliptic sphere (egg), a cylinder, a prism, a pellet, or a granular.
ポリプロピレン系樹脂は、ラジカル補足剤が含まれていてもよい。ラジカル捕捉剤は、予めポリプロピレン系樹脂に添加しておくか、もしくは溶融押出と同時に添加してもよい。ラジカル補足剤としては、重合禁止剤(重合抑制剤を含む)、連鎖移動剤、酸化防止剤、ヒンダードアミン系光安定剤等のラジカルを捕捉する作用を有する化合物で、水に溶解し難いものが好ましい。 The polypropylene resin may contain a radical scavenger. The radical scavenger may be added to the polypropylene resin in advance, or may be added simultaneously with melt extrusion. The radical scavenger is preferably a compound having an action of scavenging radicals such as a polymerization inhibitor (including a polymerization inhibitor), a chain transfer agent, an antioxidant, a hindered amine light stabilizer, and the like, which is hardly soluble in water. .
重合禁止剤としは、t−ブチルハイドロキノン、パラメトキシフェノール、2,4−ジニトロフェノール、t−ブチルカテコール、sec−プロピルカテコール、N−メチル−N−ニトロソアニリン、N−ニトロソフェニルヒドロキシルアミン、トリフェニルフォスファイト、トリス(ノニルフェニルフォスファイト)、トリエチルフォスファイト、トリス(2−エチルヘキシル)フォスファイト、トリデシルフォスファイト、トリス(トリデシル)フォスファイト、ジフェニルモノ(2−エチルヘキシル)フォスファイト、ジフェニルモノデシルフォスファイト、ジフェニルモノ(トリデシル)フォスファイト、ジラウリルハイドロゲンフォスファイト、テトラフェニルジプロピレングリコールジフォスファイト、テトラフェニルテトラ(トリデシル)ペンタエリスリトールテトラフォスファイト等のフェノール系重合禁止剤、ニトロソ系重合禁止剤、芳香族アミン系重合禁止剤、亜リン酸エステル系重合禁止剤、チオエーテル系重合禁止剤等が例示される。
また、連鎖移動剤としては、β−メルカプトプロピオン酸2−エチルヘキシルエステル、ジペンタエリスリトールヘキサキス(3−メルカプトプロピオネート)、トリス[(3−メルカプトプロピオニロキシ)−エチル]イソシアヌレート等が例示される。
As the polymerization inhibitor, t-butylhydroquinone, paramethoxyphenol, 2,4-dinitrophenol, t-butylcatechol, sec-propylcatechol, N-methyl-N-nitrosoaniline, N-nitrosophenylhydroxylamine, triphenyl Phosphite, tris (nonylphenyl phosphite), triethyl phosphite, tris (2-ethylhexyl) phosphite, tridecyl phosphite, tris (tridecyl) phosphite, diphenyl mono (2-ethylhexyl) phosphite, diphenyl monodecyl phosphite Phyto, diphenyl mono (tridecyl) phosphite, dilauryl hydrogen phosphite, tetraphenyl dipropylene glycol diphosphite, tetraphenyl tetra ( Rideshiru) phenol-based polymerization inhibitor such as pentaerythritol diphosphite, nitroso-based polymerization inhibitor, an aromatic amine-based polymerization inhibitor, a phosphite-based polymerization inhibitor, a thioether-based polymerization inhibitor, and the like.
Examples of chain transfer agents include β-mercaptopropionic acid 2-ethylhexyl ester, dipentaerythritol hexakis (3-mercaptopropionate), tris [(3-mercaptopropionyloxy) -ethyl] isocyanurate, and the like. Is done.
酸化防止剤としては、2,6−ジ−t−ブチル−4−メチルフェノール(BHT)、n−オクタデシル−3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート、ペンタエリスリチル−テトラキス〔3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート〕、1,3,5−トリス(3,5−ジ−tert−ブチル−4−ヒドロキシベンジル)イソシアヌレート、1,3,5−トリメチル−2,4,6−トリス(3,5−ジ−t−ブチル−4−ヒドロキシベンジル)ベンゼン、3、9−ビス〔2−{3−(3−t−ブチル−4−ヒドロキシ−5−メチルフェニル)プロピオニルオキシ}−1,1−ジメチルエチル〕−2,4,8,10−テトラオキサスピロ〔5・5〕ウンデカン、ジステアリルペンタエリスリトールジフォスファイト、トリス(2,4−ジ−t−ブチルフェニル)フォスファイト、ビス(2,4−ジ−t−ブチルフェニル)ペンタエリスリトールジフォスファイト、テトラキス(2,4−ジ−t−ブチルフェニル)4,4’−ビフェニレンジフォスフォナイト、ビス(2−t−ブチル−4−メチルフェニル)ペンタエリスリトールジフォスファイト、2,4,8,10−テトラ−t−ブチル−6−[3−(3−メチル−4−ヒドロキシ−5−t−ブチルフェニル)プロポキシ]ジベンゾ[d,f][1,3,2]ジオキサホスフェピン、フェニル−1−ナフチルアミン、オクチル化ジフェニルアミン、4,4−ビス(α,α−ジメチルベンジル)ジフェニルアミン、N,N’−ジ−2−ナフチル−p−フェニレンジアミン等のフェノール系酸化防止剤、リン系酸化防止剤、アミン系酸化防止剤等が例示できる。 Antioxidants include 2,6-di-t-butyl-4-methylphenol (BHT), n-octadecyl-3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate, pentaerythris Lithyl-tetrakis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate], 1,3,5-tris (3,5-di-tert-butyl-4-hydroxybenzyl) isocyanurate 1,3,5-trimethyl-2,4,6-tris (3,5-di-t-butyl-4-hydroxybenzyl) benzene, 3,9-bis [2- {3- (3-t- Butyl-4-hydroxy-5-methylphenyl) propionyloxy} -1,1-dimethylethyl] -2,4,8,10-tetraoxaspiro [5.5] undecane, distearyl pentae Thritol diphosphite, tris (2,4-di-t-butylphenyl) phosphite, bis (2,4-di-t-butylphenyl) pentaerythritol diphosphite, tetrakis (2,4-di-t -Butylphenyl) 4,4'-biphenylenediphosphonite, bis (2-tert-butyl-4-methylphenyl) pentaerythritol diphosphite, 2,4,8,10-tetra-tert-butyl-6- [3- (3-methyl-4-hydroxy-5-t-butylphenyl) propoxy] dibenzo [d, f] [1,3,2] dioxaphosphine, phenyl-1-naphthylamine, octylated diphenylamine, 4,4-bis (α, α-dimethylbenzyl) diphenylamine, N, N′-di-2-naphthyl-p-phenylenediamine, etc. Nord antioxidants, phosphorus antioxidants, etc., an amine-based antioxidant may be exemplified.
ヒンダードアミン系光安定剤としては、ビス(2,2,6,6−テトラメチル−4−ピペリジル)セバケート、ビス(1,2,2,6,6−ペンタメチル−4−ピペリジル)セバケート、ビス(1,2,2,6,6−ペンタメチル−4−ピペリジル)−2−(3,5−ジ−t−ブチル−4−ヒドロキシベンジル)−2−n−ブチルマロネート等が例示できる。
ラジカル補足剤の使用量としては、ポリプロピレン系樹脂100質量部に対して0.005〜0.5質量部であることが好ましい。
Examples of hindered amine light stabilizers include bis (2,2,6,6-tetramethyl-4-piperidyl) sebacate, bis (1,2,2,6,6-pentamethyl-4-piperidyl) sebacate, and bis (1 , 2,2,6,6-pentamethyl-4-piperidyl) -2- (3,5-di-t-butyl-4-hydroxybenzyl) -2-n-butylmalonate and the like.
As a usage-amount of a radical scavenger, it is preferable that it is 0.005-0.5 mass part with respect to 100 mass parts of polypropylene resins.
ポリプロピレン系樹脂は、他に、タルク、珪酸カルシウム、合成あるいは天然に産出される二酸化ケイ素、エチレンビスステアリン酸アミド、メタクリル酸エステル系共重合体等の発泡核剤、トリアリルイソシアヌレート6臭素化物等の難燃剤、カーボンブラック、酸化鉄、グラファイト等の着色剤等を含んでいてもよい。 Polypropylene resins include, in addition, nucleating agents such as talc, calcium silicate, synthetically or naturally produced silicon dioxide, ethylene bis stearamide, methacrylic acid ester copolymers, triallyl isocyanurate hexabromide, etc. In addition, a colorant such as carbon black, iron oxide, and graphite may be included.
次に、種粒子を重合容器内の水性媒体中に分散させ、スチレン系単量体を種粒子に含浸させながら重合させる。
水性媒体としては、水、水と水溶性溶媒(例えば、アルコール)との混合媒体が挙げられる。
種粒子へのスチレン系単量体の含浸は、重合させつつ行ってもよく、重合を開始する前に行ってもよい。この内、重合させつつ行うことが好ましい。なお、含浸させた後に重合を行う場合、種粒子の表面近傍でのスチレン系単量体の重合が起こり易い。また、種粒子中に含浸されなかったスチレン系単量体が単独で重合し易い。その結果、多量の微粒子状のポリスチレン系樹脂粒子が生成する場合がある。
Next, the seed particles are dispersed in an aqueous medium in a polymerization vessel, and polymerization is performed while impregnating the styrene monomer with the seed particles.
Examples of the aqueous medium include water and a mixed medium of water and a water-soluble solvent (for example, alcohol).
Impregnation of the seed particles with the styrene monomer may be performed while polymerizing, or may be performed before the polymerization is started. Of these, it is preferable to carry out the polymerization. In addition, when superposing | polymerizing after impregnating, superposition | polymerization of the styrene-type monomer near the surface of a seed particle occurs easily. In addition, the styrene monomer not impregnated in the seed particles is easily polymerized alone. As a result, a large amount of fine particle polystyrene resin particles may be generated.
重合させつつ含浸を行う場合、上記含有量を算出する場合の種粒子とは、ポリプロピレン系樹脂と含浸されたスチレン系単量体、更に含浸されて既に重合したポリスチレン系樹脂とから構成された粒子を意味する。
含有量を0〜35質量%に維持するために、スチレン系単量体を重合容器内の水性媒体に連続的にあるいは断続的に添加できる。特に、スチレン系単量体を水性媒体中に徐々に添加していくのが好ましい
スチレン系単量体の重合には、油溶性のラジカル重合開始剤を使用できる。この重合開始剤としては、スチレン系単量体の重合に汎用されている重合開始剤を使用できる。例えば、ベンゾイルパーオキサイド、ラウロイルパーオキサイド、t−ブチルパーオキシオクトエート、t−ヘキシルパーオキシオクトエート、t−ブチルパーオキシベンゾエート、t−アミルパーオキシベンゾエート、t−ブチルパーオキシビバレート、t−ブチルパーオキシイソプロピルカーボネート、t−ヘキシルパーオキシイソプロピルカーボネート、t−ブチルパーオキシ−3,3,5−トリメチルシクロヘキサノエート、ジ−t−ブチルパーオキシヘキサハイドロテレフタレート、2,2−ジ−t−ブチルパーオキシブタン、ジ−t−ヘキシルパーオキサイド、ジクミルパーオキサイド等の有機過酸化物、アゾビスイソブチロニトリル、アゾビスジメチルバレロニトリル等のアゾ化合物が挙げられる。なお、これら油溶性のラジカル重合開始剤は、単独で用いられても併用されてもよい。
When impregnating while polymerizing, the seed particles in the case of calculating the above content are particles composed of a polypropylene resin, an impregnated styrene monomer, and an impregnated polystyrene resin that has already been impregnated. Means.
In order to maintain the content at 0 to 35% by mass, the styrenic monomer can be continuously or intermittently added to the aqueous medium in the polymerization vessel. In particular, it is preferable to gradually add the styrene monomer to the aqueous medium. For the polymerization of the styrene monomer, an oil-soluble radical polymerization initiator can be used. As this polymerization initiator, a polymerization initiator generally used for the polymerization of styrene monomers can be used. For example, benzoyl peroxide, lauroyl peroxide, t-butyl peroxy octoate, t-hexyl peroxy octoate, t-butyl peroxy benzoate, t-amyl peroxy benzoate, t-butyl peroxybivalate, t- Butyl peroxyisopropyl carbonate, t-hexyl peroxyisopropyl carbonate, t-butyl peroxy-3,3,5-trimethylcyclohexanoate, di-t-butylperoxyhexahydroterephthalate, 2,2-di-t- Examples thereof include organic peroxides such as butyl peroxybutane, di-t-hexyl peroxide, and dicumyl peroxide, and azo compounds such as azobisisobutyronitrile and azobisdimethylvaleronitrile. These oil-soluble radical polymerization initiators may be used alone or in combination.
重合開始剤を重合容器内の水性媒体に添加する方法としては、種々の方法が挙げられる。例えば、
(1)重合容器とは別の容器内でスチレン系単量体に重合開始剤を溶解して含有させ、このスチレン系単量体を重合容器内に供給する方法、
(2)重合開始剤をスチレン系単量体の一部、イソパラフィン等の溶剤又は可塑剤に溶解させて溶液を作製する。この溶液と、所定量のスチレン系単量体とを重合容器内に同時に供給する方法、
(3)重合開始剤を水性媒体に分散させた分散液を作製する。この分散液とスチレン系単量体とを重合容器内に供給する方法
等が挙げられる。
上記重合開始剤の使用量は、通常スチレン系単量体の使用総量の0.02〜2.0質量%添加することが好ましい。
Various methods can be used as a method of adding the polymerization initiator to the aqueous medium in the polymerization vessel. For example,
(1) A method in which a polymerization initiator is dissolved and contained in a styrene monomer in a container different from the polymerization container, and the styrene monomer is supplied into the polymerization container.
(2) A solution is prepared by dissolving a polymerization initiator in a part of a styrene monomer, a solvent such as isoparaffin, or a plasticizer. A method of simultaneously supplying this solution and a predetermined amount of a styrenic monomer into a polymerization vessel,
(3) A dispersion in which a polymerization initiator is dispersed in an aqueous medium is prepared. Examples thereof include a method of supplying the dispersion and the styrene monomer into the polymerization vessel.
The amount of the polymerization initiator used is usually preferably 0.02 to 2.0% by mass based on the total amount of styrene monomer used.
水性媒体中には、水溶性のラジカル重合禁止剤を溶解させておくことが好ましい。水溶性のラジカル重合禁止剤は種粒子表面におけるスチレン系単量体の重合を抑制するだけでなく、水性媒体中に浮遊するスチレン系単量体が単独で重合するのを防止して、ポリスチレン系樹脂の微粒子の生成を減らすことができるからである。 It is preferable to dissolve a water-soluble radical polymerization inhibitor in the aqueous medium. The water-soluble radical polymerization inhibitor not only suppresses the polymerization of the styrene monomer on the seed particle surface, but also prevents the styrene monomer floating in the aqueous medium from being polymerized alone. This is because the generation of fine resin particles can be reduced.
水溶性のラジカル重合禁止剤としては、水100gに対して1g以上溶解する重合禁止剤が使用でき、例えば、チオシアン酸アンモニウム、チオシアン酸亜鉛、チオシアン酸ナトリウム、チオシアン酸カリウム、チオシアン酸アルミニウム等のチオシアン酸塩、亜硝酸ナトリウム、亜硝酸カリウム、亜硝酸アンモニウム、亜硝酸カルシウム、亜硝酸銀、亜硝酸ストロンチウム、亜硝酸セシウム、亜硝酸バリウム、亜硝酸マグネシウム、亜硝酸リチウム、亜硝酸ジシクロヘキシルアンモニウム等の亜硝酸塩、メルカプトエタノール、モノチオプロピレングリコール、チオグリセロール、チオグリコール酸、チオヒドロアクリル酸、チオ乳酸、チオリンゴ酸、チオエタノールアミン、1,2−ジチオグリセロール、1,3−ジチオグリセロール等の水溶性イオウ含有有機化合物、更にアスコルビン酸、アスコルビン酸ソーダ等を挙げることができる。これらの中でも特に亜硝酸塩が好ましい。
上記水溶性のラジカル重合禁止剤の使用量としては、水性媒体の水100質量部に対して0.001〜0.04質量部が好ましい。
As the water-soluble radical polymerization inhibitor, a polymerization inhibitor that dissolves 1 g or more in 100 g of water can be used. For example, thiocyanate such as ammonium thiocyanate, zinc thiocyanate, sodium thiocyanate, potassium thiocyanate, aluminum thiocyanate Nitrate, mercapto Ethanol, monothiopropylene glycol, thioglycerol, thioglycolic acid, thiohydroacrylic acid, thiolactic acid, thiomalic acid, thioethanolamine, 1,2-dithioglycerol, 1,3-dithioglycerol, etc. Water-soluble sulfur-containing organic compounds, may be mentioned addition of ascorbic acid, ascorbic acid sodium or the like. Of these, nitrite is particularly preferable.
As the usage-amount of the said water-soluble radical polymerization inhibitor, 0.001-0.04 mass part is preferable with respect to 100 mass parts of water of an aqueous medium.
なお、上記水性媒体中に分散剤を添加しておくことが好ましい。このような分散剤としては、例えば、部分ケン化ポリビニルアルコール、ポリアクリル酸塩、ポリビニルピロリドン、カルボキシメチルセルロース、メチルセルロース等の有機系分散剤、ピロリン酸マグネシウム、ピロリン酸カルシウム、リン酸カルシウム、炭酸カルシウム、リン酸マグネシウム、炭酸マグネシウム、酸化マグネシウム等の無機系分散剤が挙げられる。この内、無機系分散剤が好ましい。 In addition, it is preferable to add a dispersant to the aqueous medium. Examples of such a dispersant include organic dispersants such as partially saponified polyvinyl alcohol, polyacrylate, polyvinyl pyrrolidone, carboxymethyl cellulose, and methyl cellulose, magnesium pyrophosphate, calcium pyrophosphate, calcium phosphate, calcium carbonate, and magnesium phosphate. And inorganic dispersants such as magnesium carbonate and magnesium oxide. Of these, inorganic dispersants are preferred.
無機系分散剤を用いる場合には、界面活性剤を併用することが好ましい。このような界面活性剤としては、例えば、ドデシルベンゼンスルホン酸ソーダ、α−オレフィンスルホン酸ソーダ等が挙げられる。 When an inorganic dispersant is used, it is preferable to use a surfactant in combination. Examples of such surfactants include dodecyl benzene sulfonic acid soda and α-olefin sulfonic acid soda.
重合容器の形状及び構造としては、従来からスチレン系単量体の懸濁重合に用いられているものであれば、特に限定されない。
また、攪拌翼の形状についても特に限定はなく、具体的には、V型パドル翼、ファードラー翼、傾斜パドル翼、平パドル翼、プルマージン翼等のパドル翼、タービン翼、ファンタービン翼等のタービン翼、マリンプロペラ翼のようなプロペラ翼等が挙げられる。これら攪拌翼の内では、パドル翼が好ましい。攪拌翼は、単段翼であっても多段翼であってもよい。重合容器に邪魔板(バッフル)を設けてもよい。
The shape and structure of the polymerization vessel are not particularly limited as long as they are conventionally used for suspension polymerization of styrene monomers.
Further, the shape of the stirring blade is not particularly limited, and specifically, a paddle blade such as a V-shaped paddle blade, a fiddler blade, an inclined paddle blade, a flat paddle blade, a pull margin blade, a turbine blade, a fan turbine blade, etc. Examples include a turbine blade and a propeller blade such as a marine propeller blade. Of these stirring blades, paddle blades are preferred. The stirring blade may be a single-stage blade or a multi-stage blade. A baffle may be provided in the polymerization container.
また、スチレン系単量体を種粒子中にて重合させる際の水性媒体の温度は、特に限定されないが、使用するポリプロピレン系樹脂の融点の−30〜+20℃の範囲であることが好ましい。より具体的には、100〜160℃が好ましく、110〜150℃がより好ましい。更に、水性媒体の温度は、スチレン系単量体の重合開始から終了までの間、一定温度であってもよいし、段階的に上昇させてもよい。水性媒体の温度を上昇させる場合には、0.1〜2℃/分の昇温速度で上昇させることが好ましい。 The temperature of the aqueous medium when polymerizing the styrene monomer in the seed particles is not particularly limited, but is preferably in the range of −30 to + 20 ° C. of the melting point of the polypropylene resin used. More specifically, 100 to 160 ° C is preferable, and 110 to 150 ° C is more preferable. Furthermore, the temperature of the aqueous medium may be a constant temperature from the start to the end of the polymerization of the styrenic monomer, or may be increased stepwise. When raising the temperature of an aqueous medium, it is preferable to make it raise at the temperature increase rate of 0.1-2 degree-C / min.
更に、架橋したポリプロピレン系樹脂からなる種粒子を使用する場合、架橋は、スチレン系単量体を含浸させる前に予め行なっておいてもよいし、種粒子中にスチレン系単量体を含浸、重合させている間に行なってもよいし、種粒子中にスチレン系単量体を含浸、重合させた後に行なってもよい。 Furthermore, when using seed particles made of a crosslinked polypropylene resin, the crosslinking may be performed in advance before impregnating the styrene monomer, or the seed particles are impregnated with the styrene monomer. It may be performed during the polymerization, or may be performed after impregnating and polymerizing the styrene monomer in the seed particles.
ポリプロピレン系樹脂の架橋に用いられる架橋剤としては、例えば、2,2−ジ−t−ブチルパーオキシブタン、ジクミルパーオキサイド、2,5−ジメチル−2,5−ジ−t−ブチルパーオキシヘキサン等の有機過酸化物が挙げられる。なお、架橋剤は、単独でも二種以上併用してもよい。また、架橋剤の使用量は、通常、種粒子100質量部に対して0.05〜1.0質量部が好ましい。 Examples of the crosslinking agent used for crosslinking the polypropylene resin include 2,2-di-t-butylperoxybutane, dicumyl peroxide, 2,5-dimethyl-2,5-di-t-butylperoxy. An organic peroxide such as hexane may be mentioned. In addition, a crosslinking agent may be individual or may be used together 2 or more types. Moreover, the usage-amount of a crosslinking agent has preferable 0.05-1.0 mass part normally with respect to 100 mass parts of seed particles.
架橋剤を添加する方法としては、例えば、架橋剤をポリプロピレン系樹脂に直接添加する方法、溶剤、可塑剤又はスチレン系単量体に架橋剤を溶解させた上で添加する方法、架橋剤を水に分散させた上で添加する方法等が挙げられる。この内、スチレン系単量体に架橋剤を溶解させた上で添加する方法が好ましい。 Examples of the method of adding the crosslinking agent include a method of directly adding the crosslinking agent to the polypropylene resin, a method of adding the crosslinking agent after dissolving it in a solvent, a plasticizer or a styrene monomer, and a method of adding the crosslinking agent to water. The method of adding after dispersing in, etc. is mentioned. Among these, a method of adding a crosslinking agent after dissolving it in a styrene monomer is preferable.
(3)発泡剤の含浸
樹脂粒子には、公知の方法で発泡剤が含浸されて、発泡性樹脂粒子となる。
樹脂粒子中に発泡剤を含浸させる方法は、発泡剤の種類に応じて適宜変更可能である。例えば、樹脂粒子が分散している水性媒体中に発泡剤を圧入して、樹脂粒子中に発泡剤を含浸させる方法、樹脂粒子を回転混合機に供給し、この回転混合機内に発泡剤を圧入して樹脂粒子に発泡剤を含浸させる方法等が挙げられる。なお、樹脂粒子に発泡剤を含浸させる温度は、通常、50〜90℃とすることが好ましい。
(3) Impregnation with foaming agent The resin particles are impregnated with a foaming agent by a known method to form foamable resin particles.
The method of impregnating the resin particles with the foaming agent can be appropriately changed according to the type of the foaming agent. For example, a foaming agent is pressed into an aqueous medium in which resin particles are dispersed, and the resin particles are impregnated with the foaming agent. The resin particles are supplied to a rotary mixer, and the foaming agent is pressed into the rotary mixer. And a method of impregnating the resin particles with a foaming agent. The temperature at which the resin particles are impregnated with the foaming agent is usually preferably 50 to 90 ° C.
(4)予備発泡粒子の製造
発泡剤が含浸された発泡性樹脂粒子を、水蒸気等の加熱媒体を用いて加熱して所定の嵩密度に発泡させることで、予備発泡粒子を得ることができる。
予備発泡粒子は、嵩倍数5〜60倍(嵩密度0.016〜0.2g/cm3)を有している。好ましい嵩倍数は10〜55倍であり、更に好ましい嵩倍数は30〜45倍である。嵩倍数が60倍より大きいと、予備発泡粒子の独立気泡率が低下して、予備発泡粒子を発泡させて得られる型内発泡成形体の強度が低下することがある。一方、5倍より小さいと、予備発泡粒子を発泡させて得られる型内発泡成形体の質量が増加することがある。
(4) Production of pre-expanded particles Pre-expanded particles can be obtained by heating the expandable resin particles impregnated with the foaming agent using a heating medium such as water vapor so as to foam to a predetermined bulk density.
The pre-expanded particles have a bulk ratio of 5 to 60 times (bulk density 0.016 to 0.2 g / cm 3 ). A preferred bulk multiple is 10 to 55 times, and a more preferred bulk multiple is 30 to 45 times. When the bulk multiple is larger than 60 times, the closed cell ratio of the pre-expanded particles is lowered, and the strength of the in-mold foam molded product obtained by foaming the pre-expanded particles may be lowered. On the other hand, if it is less than 5 times, the mass of the in-mold foam molded product obtained by foaming the pre-foamed particles may increase.
予備発泡粒子の平均粒子径は、2.00〜7.00mmの範囲が好ましい。予備発泡粒子の粒子径が2.00mm未満の場合、型内発泡成形時に発泡粒を吸引充填する際、発泡粒の充填不良をなくすために、金型のオスとメスの間に若干の隙(クラッキング)を空けるが、この隙間から予備発泡粒子がこぼれてしまうことがある。予備発泡粒子の粒子径が7.00mmを越えると、型内発泡成形時に発泡粒を吸引充填する際、成形金型の細い部分が充填不良になってしまうことがある。より好ましい粒子径は、3.00〜5.50mmの範囲である。 The average particle diameter of the pre-expanded particles is preferably in the range of 2.00 to 7.00 mm. When the particle diameter of the pre-expanded particles is less than 2.00 mm, a slight gap (middle between the male and female of the mold is used to eliminate the filling failure of the expanded particles when the expanded particles are sucked and filled during in-mold expansion molding. Cracking), but pre-expanded particles may spill out from this gap. When the particle diameter of the pre-expanded particles exceeds 7.00 mm, when the foamed particles are sucked and filled at the time of in-mold foam molding, the thin portion of the molding die may be poorly filled. A more preferable particle diameter is in the range of 3.00 to 5.50 mm.
予備発泡粒子のセル厚みは、1.0〜20.0μmの範囲が好ましい。より好ましくは、2.5〜13.0μmの範囲が好ましい。予備発泡粒子のセル厚みが1.0μm未満の場合、セル厚みが薄すぎるため、型内発泡成形時において予備発泡粒子の発泡圧が弱くなって、十分な熱融着性を得ることができないことがある。更に、型内発泡成形体を構成している発泡粒子のセル厚みが薄くなりすぎるため、得られた発泡樹脂成型体の外観及び機械強度が低下してしまうことがある。また、予備発泡粒子のセル厚みが20.0μmを越えた場合、セル厚みが厚すぎるため、型内発泡成形時において、予備発泡粒子の表面を溶融させるための熱量が大きくなりすぎて、十分な熱融着性を得られないことがある。また、成形時の水蒸気が発泡粒子内を通過しにくく、発泡粒子内の結晶化度を十分に上げることができず、型内発泡成形体の耐熱性を十分に発揮することができないことがある。 The cell thickness of the pre-expanded particles is preferably in the range of 1.0 to 20.0 μm. More preferably, the range of 2.5-13.0 micrometers is preferable. When the cell thickness of the pre-expanded particles is less than 1.0 μm, the cell thickness is too thin, so that the foaming pressure of the pre-expanded particles becomes weak at the time of in-mold foam molding, and sufficient heat-fusibility cannot be obtained. There is. Furthermore, since the cell thickness of the foamed particles constituting the in-mold foam-molded product becomes too thin, the appearance and mechanical strength of the obtained foamed resin-molded product may be lowered. In addition, when the cell thickness of the pre-expanded particles exceeds 20.0 μm, the cell thickness is too thick, and the amount of heat for melting the surface of the pre-expanded particles is too large at the time of in-mold foam molding. In some cases, heat fusion cannot be obtained. In addition, water vapor during molding does not easily pass through the foamed particles, the crystallinity in the foamed particles cannot be sufficiently increased, and the heat resistance of the in-mold foam molded product may not be sufficiently exhibited. .
予備発泡粒子の気泡径は、5〜1500μmの範囲が好ましい。予備発泡粒子の気泡径が5μm未満の場合、気泡径が小さすぎて、型内発泡成形時に予備発泡粒子の発泡圧が低下して予備発泡粒子同士の熱融着が発生しやすくなることがある。気泡径が1500μmを越える場合、気泡径が大きすぎて、得られた型内発泡成形品の外観及び機械強度が劣ることがある。より好ましい気泡径は、10〜600μmの範囲である。 The bubble diameter of the pre-expanded particles is preferably in the range of 5 to 1500 μm. When the cell diameter of the pre-expanded particles is less than 5 μm, the cell diameter may be too small, and the foaming pressure of the pre-expanded particles may be reduced during in-mold foam molding, and heat fusion between the pre-expanded particles may easily occur. . When the bubble diameter exceeds 1500 μm, the bubble diameter is too large, and the appearance and mechanical strength of the obtained in-mold foam-molded product may be inferior. A more preferable bubble diameter is in the range of 10 to 600 μm.
なお、予備発泡粒子のセル厚みは、予備発泡粒子の最表層のセル厚みの測定値であり、気泡径は、表層から内部にかけて計測した気泡径の平均値である。セル厚みと気泡径は、予備発泡粒子を剃刀で切断し、切断面を走査型電子顕微鏡で撮影した写真から計測できる。 The cell thickness of the pre-expanded particles is a measured value of the cell thickness of the outermost surface layer of the pre-expanded particles, and the bubble diameter is an average value of the bubble diameters measured from the surface layer to the inside. The cell thickness and the cell diameter can be measured from a photograph obtained by cutting the pre-foamed particles with a razor and photographing the cut surface with a scanning electron microscope.
ここで、予備発泡粒子が上記改質樹脂粒子から構成されている場合、予備発泡粒子の表面部の吸光度比を0.1〜2.5とすることができる。この吸光度比とすることで、予備発泡粒子の表面部におけるポリプロピレン系樹脂とポリスチレン系樹脂との含有比率が最適化されており、型内発泡成形時において予備発泡粒子が収縮することなく十分な発泡圧で熱融着一体化することを期待できる。吸光度比は、1.5〜2.4がより好ましい。更に、上記吸光度比を有する予備発泡粒子から型内発泡成形によって得られた型内発泡成形体は、それを構成している発泡粒子が、その表面にポリプロピレン系樹脂が適度に含有されているので、耐薬品性、耐衝撃性及び耐熱性にも優れている。 Here, when the pre-expanded particles are composed of the modified resin particles, the absorbance ratio of the surface portion of the pre-expanded particles can be 0.1 to 2.5. By using this absorbance ratio, the content ratio of the polypropylene resin and the polystyrene resin in the surface portion of the pre-expanded particles is optimized, and the pre-expanded particles are sufficiently expanded without contraction during in-mold foam molding. It can be expected that heat fusion is integrated with pressure. The absorbance ratio is more preferably 1.5 to 2.4. Furthermore, in the in-mold foam molded product obtained by in-mold foam molding from the pre-foamed particles having the above-mentioned absorbance ratio, the foam particles constituting the mold contain moderately polypropylene resin on the surface thereof. Excellent chemical resistance, impact resistance and heat resistance.
(5)残発泡剤量調製
得られた予備発泡粒子は、それに含まれる残発泡剤量を0〜3質量%に減少するように調整される。残発泡剤量が3質量%より多い場合、型内発泡成形させる際に予備発泡粒子の二次発泡性が大きくなり、凹凸を備えた表面を得難くなる。好ましい残発泡材量は0〜2.8質量%である。なお、一般的な予備発泡粒子の残発泡剤量は、3.1質量%以上である。
(5) Residual foaming agent amount preparation The obtained pre-expanded particles are adjusted so that the residual foaming agent amount contained therein is reduced to 0 to 3 mass%. When the amount of the remaining foaming agent is more than 3% by mass, the secondary foaming property of the pre-foamed particles becomes large when foam-molding in the mold, and it becomes difficult to obtain a surface with unevenness. A preferable amount of the remaining foaming material is 0 to 2.8% by mass. In addition, the amount of residual foaming agents of general pre-expanded particles is 3.1% by mass or more.
発泡剤量は、特に限定されないが、例えば、次のように調整できる。即ち、予備発泡直後の予備発泡粒子を、常温にて12時間程度静置して熟成させた後、タフクロス等(穴あきビニール袋等)に移し、オーブン等(熱風乾燥機等)で60℃(50〜80℃)で数時間〜数日加温する。加温の結果、予備発泡粒子内の残存発泡剤量を0.0〜3.0質量%にまで減らすことができる。この方法に代えて、予備発泡直後の予備発泡粒子をタフクロス等に移した後、23±2℃の恒温室に静置しておいても、発泡粒子内の残存発泡剤量を0.0〜3.0質量%にまで減らすことができる。 The amount of the foaming agent is not particularly limited, but can be adjusted as follows, for example. That is, the pre-foamed particles immediately after the pre-foaming are left to stand at room temperature for about 12 hours for aging, then transferred to a tough cloth or the like (perforated plastic bag or the like), and heated at 60 ° C. in an oven or the like (hot air dryer or the like). (50-80 ° C.) for several hours to several days. As a result of heating, the amount of the remaining foaming agent in the pre-expanded particles can be reduced to 0.0 to 3.0% by mass. Instead of this method, after the pre-foamed particles immediately after the pre-foaming are transferred to tough cloth or the like, the amount of the remaining foaming agent in the foamed particles is 0.0 to It can be reduced to 3.0% by mass.
(型内発泡成形工程)
本発明では、予備発泡粒子の残発泡剤量が0〜3質量%に調製されているため、発泡粒子の二次発泡力が抑えられている。型内発泡成形は、予備発泡粒子の二次発泡力を利用する成形であり、通常、型内に水蒸気を導入することで行われる。この工程に使用される型は、所望する成形体の形状に応じた内型を有している。また、水蒸気の導入は公知の方法で行うことができる。
ここで、型内発泡成形体の各種物性値の範囲は、水蒸気の圧力及び水蒸気の導入時間を調製することで、設定できる。例えば、水蒸気の圧力は、0.13〜0.25MPaであることが好ましい。導入時間は、20〜60秒間であることが好ましい。
(In-mold foam molding process)
In the present invention, since the amount of the remaining foaming agent in the pre-foamed particles is adjusted to 0 to 3% by mass, the secondary foaming force of the foamed particles is suppressed. In-mold foam molding is molding that uses the secondary foaming power of pre-expanded particles, and is usually performed by introducing water vapor into the mold. The mold used in this step has an inner mold corresponding to the desired shape of the molded body. The introduction of water vapor can be performed by a known method.
Here, the range of various physical property values of the in-mold foam-molded product can be set by adjusting the pressure of water vapor and the introduction time of water vapor. For example, the pressure of water vapor is preferably 0.13 to 0.25 MPa. The introduction time is preferably 20 to 60 seconds.
(型内発泡成形体)
本発明の予備発泡粒子から製造された型内発泡成形体は、5〜60倍の発泡倍数、10〜30%の空隙率、0.3以上の吸音率、10mm以上の曲げ破断点変位及び1.5%以下の寸法変化率の各種物性値を有している。発泡倍率が5倍未満の場合、型内発泡成形体の質量が増加するので好ましくない。60倍より大きい場合、予備発泡粒子の独立気泡率が低下するので、型内成形時に収縮が発生し、良好な型内発泡成形体が得られないので好ましくない。また、空隙率が10%未満及び吸音率が0.3未満の場合、十分な吸音性が得られないことがある。30%より大きい場合、型内発泡成形体の強度が低下することがある。曲げ破断点変位が10mm未満及び寸法変化率が1.5%より大きい場合は十分な強度ではない。
(In-mold foam molding)
The in-mold foam molded product produced from the pre-expanded particles of the present invention has an expansion ratio of 5 to 60 times, a porosity of 10 to 30%, a sound absorption rate of 0.3 or more, a bending break point displacement of 1 mm or more, and 1 It has various physical properties with a dimensional change rate of 5% or less. When the expansion ratio is less than 5 times, the mass of the in-mold foam molded article is not preferable. When the ratio is larger than 60 times, the closed cell ratio of the pre-expanded particles is lowered, so that shrinkage occurs during in-mold molding, and a good in-mold foam molded article cannot be obtained. Further, when the porosity is less than 10% and the sound absorption coefficient is less than 0.3, sufficient sound absorption may not be obtained. If it is larger than 30%, the strength of the in-mold foam molded product may be lowered. When the bending break point displacement is less than 10 mm and the dimensional change rate is more than 1.5%, the strength is not sufficient.
(型内発泡成形体の用途)
型内発泡成形体は、家電製品等の緩衝材(クッション材)、電子部品、各種工業資材、食品等の搬送容器、吸音材、排水材等の用途に用いることができる。また、車両用バンパーの芯材、ドア内装緩衝材等の車両用内装材として好適に用いることもできる。
特に外装材と積層することで、より吸音性が要求される車両用内装材に使用できる。
(Use of in-mold foam moldings)
The in-mold foam molded product can be used for applications such as cushioning materials (cushion materials) for home appliances, electronic parts, various industrial materials, food containers, sound absorbing materials, drainage materials, and the like. Moreover, it can also be used suitably as interior materials for vehicles, such as a core material of a bumper for vehicles, and a door interior cushioning material.
In particular, by laminating with an exterior material, it can be used as an interior material for a vehicle that requires more sound absorption.
外装材としては、繊維材、多孔性フィルム等が挙げられる。この内、擦れによる音鳴りをより低減できる繊維材が好ましい。
繊維材としては、フェルト、不織布等が挙げられる。繊維材の種類は、本発明の積層体が使用される用途に応じて選択できる。例えば、自動車の分野で一般に使用されているものを適宜用いることができる。具体的には、フェルト(例えば、綿、化学繊維等の雑反毛をPETで固めたもの)、ポリウレタンフォーム、不織布等、車両用部材のリサイクル材(ウレタン、綿、化学繊維等の粉砕品)をPET樹脂で固めたもの、解繊繊維や動植物製繊維材料、グラスウール、アスファルト発泡体等を挙げることができる。
外装材と型内発泡成形体との積層法としては、接着剤による積層法や、外装材及び/又は型内発泡成形体の熔融による積層法等が挙げられる。
Examples of the exterior material include a fiber material and a porous film. Among these, a fiber material that can further reduce noise caused by rubbing is preferable.
Examples of the fiber material include felt and nonwoven fabric. The kind of fiber material can be selected according to the use for which the laminated body of this invention is used. For example, those generally used in the field of automobiles can be used as appropriate. Specifically, recycled materials (for example, crushed products of urethane, cotton, chemical fibers, etc.) such as felt (for example, cotton, chemical fibers, etc., which are solidified with PET), polyurethane foam, nonwoven fabric, etc. Can be enumerated with PET resin, defibrated fibers, animal and plant fiber materials, glass wool, asphalt foams, and the like.
Examples of the laminating method of the exterior material and the in-mold foam molded body include a laminating method using an adhesive, a laminating method by melting the exterior material and / or the in-mold foam molded body, and the like.
以下、実施例により本発明を具体的に説明するが、本発明はこれに限定されるものではない。なお、以下の実施例における各種の測定法を下記する。
(樹脂粒子の平均粒子径)
ノギス(ミツトヨ社製)を使用し、改質樹脂粒子10個の粒子径を測定する。平均粒子径は、10個の測定値の平均を意味する。
EXAMPLES Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto. Various measurement methods in the following examples are described below.
(Average particle diameter of resin particles)
Using a vernier caliper (manufactured by Mitutoyo Corporation), the particle diameter of 10 modified resin particles is measured. The average particle diameter means the average of 10 measured values.
(予備発泡粒子のポリスチレン系樹脂比率の測定法)
吸光度比(D698/D1376)を下記の要領で測定する。
すなわち、無作為に選択した10個の予備発泡粒子の粒子表面をATR法赤外分光分析を行って赤外吸収スペクトルを得る。表面の測定では、各予備発泡粒子の表面にATRプリズムを密着させて測定する。
各赤外吸収スペクトルから吸光度比(D698/D1376)をそれぞれ算出し、最小の吸光度比と最大の吸光度比を除外する。そして、残余8個の吸光度比の相加平均を吸光度比(D698/D1376))とする。なお、吸光度比は、例えば、Nicolet社(現Thermofisher社)から商品名「フーリエ変換赤外分光光度計 MAGMA560」で販売されている測定装置を用いて測定する。PS比率(質量%)は、標準品を用いて予め作製しておいた検量線に基づいて、吸光度比(D698/D1376)から算出する。
(Measurement method of polystyrene resin ratio of pre-expanded particles)
The absorbance ratio (D 698 / D 1376 ) is measured as follows.
That is, the infrared absorption spectrum is obtained by performing ATR infrared spectroscopic analysis on the surface of 10 randomly selected pre-expanded particles. In the measurement of the surface, the ATR prism is closely attached to the surface of each pre-expanded particle.
An absorbance ratio (D 698 / D 1376 ) is calculated from each infrared absorption spectrum, and the minimum absorbance ratio and the maximum absorbance ratio are excluded. The arithmetic average of the remaining 8 absorbance ratios is taken as the absorbance ratio (D 698 / D 1376 )). The absorbance ratio is measured by using, for example, a measuring apparatus sold under the trade name “Fourier Transform Infrared Spectrophotometer MAGMA 560” from Nicolet (currently Thermofisher). The PS ratio (mass%) is calculated from the absorbance ratio (D 698 / D 1376 ) based on a calibration curve prepared in advance using a standard product.
標準試料は、次の方法により得る。まず、組成割合(ポリスチレン系樹脂/ポリプロピレン系樹脂)が下記比率になるように測定しようとする予備発泡粒子に含まれるものと同じ組成のポリスチレン系樹脂及びポリプロピレン系樹脂を合計2g精秤する。
組成割合(PS/PP;質量比):0/10=PP系樹脂のみ、1/9、2/8、3/7、4/6、5/5、6/4、7/3、8/2、10/0=PS樹脂のみ
これを小型射出成形機にて下記条件に加熱混練して、直径が25mmでかつ高さが2mmの円柱状に成形することによって標準試料を得る。
A standard sample is obtained by the following method. First, a total of 2 g of a polystyrene resin and a polypropylene resin having the same composition as those contained in the pre-expanded particles to be measured so that the composition ratio (polystyrene resin / polypropylene resin) is the following ratio is precisely weighed.
Composition ratio (PS / PP; mass ratio): 0/10 = PP resin only, 1/9, 2/8, 3/7, 4/6, 5/5, 6/4, 7/3, 8 / 2, 10/0 = PS resin only This is heated and kneaded under the following conditions with a small injection molding machine and molded into a cylindrical shape having a diameter of 25 mm and a height of 2 mm to obtain a standard sample.
なお、小型射出成形機としては、例えば、CSI社から商品名「CS−183」で販売されているものを用い、例えば、下記の条件で成形できる。
射出成形条件:加熱温度200〜250℃、混練時間10分
上記比率の標準試料の吸光度比を前記測定装置で測定し、ポリスチレン系樹脂比率(質量%)と吸光度比(D698/D1376)の関係をグラフ化することで、検量線が得られる。
予備発泡粒子のポリスチレン系樹脂比率(質量%)が、検量線を基に算出される。
In addition, as a small-sized injection molding machine, it can shape | mold on the following conditions, for example using the thing sold by CSI with the brand name "CS-183".
Injection molding conditions: heating temperature 200 to 250 ° C., kneading time 10 minutes The absorbance ratio of the standard sample of the above ratio was measured with the measuring device, and the polystyrene resin ratio (mass%) and the absorbance ratio (D 698 / D 1376 ) A calibration curve can be obtained by graphing the relationship.
The polystyrene resin ratio (mass%) of the pre-expanded particles is calculated based on the calibration curve.
(予備発泡粒子の嵩密度の測定法)
予備発泡粒子の嵩密度は下記の要領で測定する。
まず、予備発泡粒子を500cm3、メスシリンダ内に500cm3の目盛りまで充填する。なお、メスシリンダを水平方向から目視し、予備発泡粒子が一粒でも500cm3の目盛りに達しているものがあれば、その時点で予備発泡粒子のメスシリンダ内への充填を終了する。
次に、メスシリンダ内に充填した予備発泡粒子の質量を小数点以下2位の有効数字で秤量し、その質量をW(g)とする。
そして、下記の式により予備発泡粒子の嵩密度を算出する。
嵩密度(g/cm3)=W/500
嵩発泡倍数は嵩密度の逆数である。
(Method for measuring bulk density of pre-expanded particles)
The bulk density of the pre-expanded particles is measured as follows.
First, the pre-expanded particles 500 cm 3, filled into the graduated cylinder to the scale of 500 cm 3. When the graduated cylinder is visually observed from the horizontal direction and any pre-expanded particles reach a scale of 500 cm 3 , the filling of the pre-expanded particles into the graduated cylinder is terminated at that point.
Next, the mass of the pre-expanded particles filled in the graduated cylinder is weighed with two significant figures after the decimal point, and the mass is defined as W (g).
Then, the bulk density of the pre-expanded particles is calculated by the following formula.
Bulk density (g / cm 3 ) = W / 500
The bulk foaming factor is the reciprocal of the bulk density.
(予備発泡粒子の平均粒子径の測定法)
ノギス(ミツトヨ社製)を使用し、予備発泡粒子10個の粒子径を測定する。平均粒子径は、10個の測定値の平均を意味する。
(Measurement method of average particle diameter of pre-expanded particles)
Using a vernier caliper (manufactured by Mitutoyo Corporation), the particle diameter of 10 pre-expanded particles is measured. The average particle diameter means the average of 10 measured values.
(予備発泡粒子の平均気泡径の測定法)
予備発泡粒子の平均気泡径は、ASTM D2842−69の試験方法に準拠して測定する。具体的には、予備発泡粒子を略二等分となるように切断し、切断面を走査型電子顕微鏡(JOEL社製商品名「JSM−6360LV」)を用いて15倍に拡大して撮影する。
次に、撮影した画像をA4用紙上に印刷し、任意の箇所に長さ60mmの直線を一本、描く、この直線上に存在する気泡数から気泡の平均弦長(t)を下記式により算出する。
(Measurement method of average cell diameter of pre-expanded particles)
The average cell diameter of the pre-expanded particles is measured according to the test method of ASTM D2842-69. Specifically, the pre-expanded particles are cut so as to be approximately bisected, and the cut surface is enlarged and photographed 15 times using a scanning electron microscope (trade name “JSM-6360LV” manufactured by JOEL). .
Next, the photographed image is printed on A4 paper, and a straight line having a length of 60 mm is drawn at an arbitrary location. The average chord length (t) of the bubbles is calculated from the number of bubbles existing on the straight line by the following formula. calculate.
平均弦長t=60/(気泡数×写真の倍率)
なお、直線を描くにあたっては、できるだけ直線が気泡に点接触することなく貫通した状態となるようにする。また、一部の気泡が直線に点接触してしまう場合には、この気泡も気泡数に含め、更に、直線の両端部が気泡を貫通することなく、気泡内に位置した状態となる場合には、直線の両端部が位置している気泡も気泡数に含める。
Average string length t = 60 / (number of bubbles × photo magnification)
When drawing a straight line, the straight line should be penetrated as much as possible without making point contact with the bubbles. Also, if some of the bubbles come into point contact with a straight line, this bubble is included in the number of bubbles, and if both ends of the straight line are located in the bubble without penetrating the bubbles Includes the bubbles in which both ends of the straight line are located in the number of bubbles.
そして、算出された平均弦長tに基づいて次式により気泡径を算出する。
気泡径(mm)D=t/0.616
更に、撮影した画像の任意の5箇所において上述と同様の要領で気泡径を算出する。平均気泡径は、これらの気泡径の相加平均値である。
Based on the calculated average chord length t, the bubble diameter is calculated by the following equation.
Bubble diameter (mm) D = t / 0.616
Furthermore, the bubble diameter is calculated in the same manner as described above at any five locations in the photographed image. The average bubble diameter is an arithmetic average value of these bubble diameters.
(予備発泡粒子のセル厚みの測定法)
予備発泡粒子の中から任意に選択した10個について、剃刀刃を用いて、それぞれ粒子の中心を通る平面で二等分し、その一方の切断面の最表層部を走査型電子顕微鏡JSM−6360LV(日本電気社製)を用いて、500倍に拡大した画像を作成する。その後、測長機能を用いて最外にある非発泡層に任意に15点線を引き、厚みを測定する。各画像について、同様に測定し、計10画像分の平均値をセル厚みとする。
(Method for measuring cell thickness of pre-expanded particles)
About 10 arbitrarily selected from the pre-foamed particles, a razor blade is used to bisect each of the planes through the center of each particle, and the outermost layer portion of one of the cut surfaces is scanned with an electron microscope JSM-6360LV. Using (NEC Corporation), create an image magnified 500 times. Thereafter, using the length measurement function, a 15 dotted line is arbitrarily drawn on the outermost non-foamed layer, and the thickness is measured. Each image is measured in the same manner, and the average value for a total of 10 images is defined as the cell thickness.
(予備発泡粒子の残存ガス量(残発泡剤量)の測定法)
予備発泡粒子の残存ガス量は下記の要領で測定する。
予備発泡粒子を20mg程度の量を精秤し、島津製作所社製熱分解炉PYR−1Aの分解炉入り口にセットし、15秒間ほどヘリウムでパージしてサンプルセット時の混入ガスを排出する。密閉後試料を200℃の炉心に挿入し、120秒間加熱してガスを放出させ、この放出ガスを島津製作所社製ガスクロマトグラフ GC−14B(検出器:TCD)を用いて定量することで残ガス量を得る。その測定条件はカラムがジーエルサイエンス社製ポラパックQ(80/100)3mmf×1.5mを用い、カラム温度(100℃)、キャリアーガス(ヘリウム)、キャリアーガス流量(1ml/min)、注入口温度(120℃)、検出器温度(120℃)とする。
(Measurement method of residual gas amount of pre-expanded particles (residual foaming agent amount))
The residual gas amount of the pre-expanded particles is measured as follows.
Pre-expanded particles are weighed in an amount of about 20 mg, set at the cracking furnace entrance of a pyrolysis furnace PYR-1A manufactured by Shimadzu Corporation, and purged with helium for about 15 seconds to discharge the mixed gas at the time of sample setting. After sealing, the sample was inserted into a 200 ° C. core, heated for 120 seconds to release the gas, and the released gas was quantified using a gas chromatograph GC-14B (detector: TCD) manufactured by Shimadzu Corporation. Get quantity. The measurement conditions were: Polapack Q (80/100) 3 mmf × 1.5 m manufactured by GL Sciences Inc., column temperature (100 ° C.), carrier gas (helium), carrier gas flow rate (1 ml / min), inlet temperature (120 ° C.) and detector temperature (120 ° C.).
(型内発泡成形体の密度の測定法)
型内発泡成形体の密度は下記の要領で測定する。
JIS K7222:2005「発泡プラスチック及びゴム−見掛け密度の測定」記載の方法で測定する。
50cm3以上(半硬質及び軟質材料の場合は100cm3以上)の試験片を材料の元のセル構造を変えない様に切断し、その質量を測定し、次式により密度を算出する。
密度(g/cm3)=試験片質量(g)/試験片体積(cm3)
測定用試験片は、成形後72時間以上経過した型内発泡成形体から切り取り、23℃±2℃×50%±5%又は27℃±2℃×65%±5%の雰囲気条件に16時間以上放置したものである。
発泡倍数は密度の逆数である。
(Measuring method of density of in-mold foam molding)
The density of the in-mold foam molded product is measured as follows.
Measured by the method described in JIS K7222: 2005 "Foamed plastics and rubbers-Measurement of apparent density".
A test piece of 50 cm 3 or more (100 cm 3 or more in the case of semi-hard and soft materials) is cut so as not to change the original cell structure of the material, its mass is measured, and the density is calculated by the following formula.
Density (g / cm 3 ) = Test piece mass (g) / Test piece volume (cm 3 )
A test specimen for measurement was cut from an in-mold foam molded article that had passed 72 hours or more after molding, and was subjected to atmospheric conditions of 23 ° C. ± 2 ° C. × 50% ± 5% or 27 ° C. ± 2 ° C. × 65% ± 5% for 16 hours That's what I left.
The expansion factor is the reciprocal of the density.
(吸音率の測定法)
吸音率はISO 10534−2(Determination of sound Absorption coefficient and Impedance in impedance tubes Part2:Transfer−function method)及びASTM E 1050に準拠して測定する。
(Measurement method of sound absorption coefficient)
The sound absorption coefficient is measured in accordance with ISO 10534-2 (Determination of sound absorption coefficent and Impedance in impulse tubes Part 2: Transfer-function method) and ASTM E 1050.
すなわち、垂直入射吸音率測定システム4206型音響インピーダンス管(ブリューエル&ケアー社製)および計測ソフトウェアMS1021型(松下テクノトレーディング社製)を使い、測定条件は温度20℃、試料厚み30mm、試料の背面空気層なしで周波数領域500Hz以上6000Hz以下の範囲を測定する。
吸音率Tは、以下の基準で評価する。
○:T≧0.3;吸着率が高く、実用上使用可能である。
×:T<0.3;吸着率が低く、実用上使用不可能である。
That is, using a normal incidence sound absorption coefficient measurement system 4206 type acoustic impedance tube (manufactured by Bruel & Care) and measurement software MS1021 type (manufactured by Matsushita Techno Trading), measurement conditions are a temperature of 20 ° C., a sample thickness of 30 mm, and the back surface of the sample. A frequency range of 500 Hz to 6000 Hz is measured without an air layer.
The sound absorption rate T is evaluated according to the following criteria.
○: T ≧ 0.3; the adsorption rate is high and can be used practically.
X: T <0.3; the adsorption rate is low and cannot be used practically.
(空隙率の測定法)
発泡成形体の空隙率は、ASTM D2856−87に記載の測定方法に準拠して測定する。具体的には、六面との成形面などの表皮を有しない切断面で構成された試験片(一辺25mmの立方体)を発泡成形体より5個切出し、ノギスを用いて、試験片の見掛け体積W4を測定する。次に空気比較式比重計を用いて、1−1/2−1気圧法により試験片の体積W5を測定し、下記式に基づいて発泡成形体の空隙率を算出することができる。なお、空気比較式比重計は、東京サイエンス社から商品名「1000型」にて市販されているものを使用することができる。
発泡成形体の空隙率(%)=100×(W4−W5)/W4
(Measurement method of porosity)
The porosity of the foamed molded product is measured according to the measuring method described in ASTM D2856-87. Specifically, five test pieces (cubes each having a side of 25 mm) made of a cut surface having no skin such as a molding surface with six surfaces were cut out from the foamed molded product, and the apparent volume of the test piece was measured using calipers. Measure W4. Next, the volume W5 of the test piece can be measured by an 1-1 / 2 atm method using an air comparison type hydrometer, and the porosity of the foamed molded product can be calculated based on the following formula. In addition, the air comparison type hydrometer can use what is marketed by Tokyo Science company by the brand name "1000 type | mold".
Porosity (%) of foam molded article = 100 × (W4−W5) / W4
(曲げの破断点変位量の測定法)
曲げ強さは、JIS K7221−2:2006「硬質発泡プラスチック−曲げ試験−第2部:曲げ特性の求め方」記載の方法に準じて測定する。すなわち、テンシロン万能試験機UCT−10T(オリエンテック社製)を用いて、試験体サイズは75×300×25mmとし、圧縮速度を10mm/分、先端冶具は加圧くさび10R、支持台10Rで、支点間距離は200mmとして測定する。
(Measurement method of bending displacement at bending)
The bending strength is measured according to the method described in JIS K7221-2: 2006 “Hard foamed plastic—Bending test—Part 2: Determination of bending characteristics”. That is, using a Tensilon universal testing machine UCT-10T (Orientec Co., Ltd.), the specimen size is 75 × 300 × 25 mm, the compression speed is 10 mm / min, the tip jig is a pressure wedge 10R, and a support base 10R. The distance between fulcrums is measured as 200 mm.
曲げの破断点変位量は、曲げ試験において以下の現象が発生した点を、破断点変位量とする。破断検出感度を0.5%に設定し、直前荷重サンプリング点と比較して、その減少が設定値0.5%を越えた時、直前のサンプリング点を測定する。
曲げの破断点変位量Hは、以下の基準で評価する。
○:H≧10;融着性が良好で、実用上使用可能である。
×:H<10;融着性が不十分で、実用上使用不可能である。
The breaking point displacement amount of bending is defined as the breaking point displacement point where the following phenomenon occurs in the bending test. The fracture detection sensitivity is set to 0.5%, and when the decrease exceeds the set value of 0.5% compared with the immediately preceding load sampling point, the immediately preceding sampling point is measured.
The bending break point displacement amount H is evaluated according to the following criteria.
○: H ≧ 10; good fusing property and practically usable.
X: H <10; Fusing property is insufficient and practical use is impossible.
(圧縮強度の測定法)
圧縮強度は、JIS K7220:2006「硬質発泡プラスチック−圧縮物性の求め方」記載の方法により測定する。すなわち、テンシロン万能試験機UCT−10T(オリエンテック社製)を用いて、試験体サイズは50×50×25mmで圧縮速度を10mm/分として40%圧縮時の圧縮強度を測定する。
(Measurement method of compressive strength)
The compressive strength is measured by the method described in JIS K7220: 2006 “Rigid foamed plastic-Determination of compression properties”. That is, using Tensilon universal testing machine UCT-10T (manufactured by Orientec Co., Ltd.), the test specimen size is 50 × 50 × 25 mm, the compression speed is 10 mm / min, and the compression strength at 40% compression is measured.
(加熱寸法変化率の測定法)
加熱寸法変化率はJIS K 6767:1999「発泡プラスチック−ポリエチレン−試験方法」記載のB法にて測定する。
試験片は150×150×原厚み(mm)として、その中央部に縦および横方向にそれぞれ互いに平行に3本の直線を50mm間隔になるよう記入し、80℃の熱風循環式乾燥機の中に22時間置いた後に取出し、標準状態の場所に1時間放置後、縦および横線の寸法を下記式によって測定する。
(Measurement method of heating dimensional change rate)
The heating dimensional change rate is measured by the method B described in JIS K 6767: 1999 “Foamed Plastics—Polyethylene—Test Method”.
The test piece is 150 x 150 x original thickness (mm), and three straight lines are written in the center part in parallel with each other in the vertical and horizontal directions at intervals of 50 mm. After being left for 22 hours, it is taken out and left in a standard state for 1 hour, and then the vertical and horizontal line dimensions are measured by the following formula.
S=(L1−L0)/L0×100
式中、Sは加熱寸法変化率(%)、L1は加熱後の平均寸法(mm)、L0は初めの平均寸法(mm)をそれぞれ表す。
加熱寸法変化率Sは、以下の基準で評価する。
○:0≦S<1.5;寸法変化率が低く、寸法の安定性が良好である。
×:S>1.5;寸法の変化が著しくみられ、実用上使用不可能である。
S = (L1-L0) / L0 × 100
In the formula, S represents a heating dimensional change rate (%), L1 represents an average dimension (mm) after heating, and L0 represents an initial average dimension (mm).
The heating dimensional change rate S is evaluated according to the following criteria.
○: 0 ≦ S <1.5; dimensional change rate is low, and dimensional stability is good.
X: S>1.5; dimensional change is remarkably seen and cannot be used practically.
(燃焼速度の測定法)
燃焼速度は、米国自動車安全基準FMVSS 302に準拠した方法で測定する。試験片は、350×100×12mmとし、少なくとも350mm×100mmの二面には表皮が存在するものとする。
燃焼速度の評価方法は、燃焼速度が80mm/min以下であるものを「○」、80mm/minを越えるものを「×」とする。
(Measurement method of burning rate)
The burning rate is measured by a method in accordance with the US automobile safety standard FMVSS 302. The test piece is 350 × 100 × 12 mm, and the skin is present on at least two sides of 350 mm × 100 mm.
The evaluation method for the burning rate is “◯” when the burning rate is 80 mm / min or less, and “x” when the burning rate exceeds 80 mm / min.
実施例1
ポリプロピレン系樹脂(プライムポリマー社製、商品名「F−744NP」、融点:140℃)100質量部を押出機に供給して溶融混練してストランドカットにより造粒ペレット化することにより、球状(卵状)のポリプロピレン系樹脂粒子を得た。
このときのポリプロピレン系樹脂粒子を100粒あたり56mmg、平均粒子径約1mmに調整した。
Example 1
By supplying 100 parts by mass of a polypropylene-based resin (manufactured by Prime Polymer Co., Ltd., trade name “F-744NP”, melting point: 140 ° C.) to an extruder, melt-kneading, granulating pellets by strand cutting, ) Polypropylene resin particles were obtained.
The polypropylene resin particles at this time were adjusted to 56 mmg per 100 grains and an average particle diameter of about 1 mm.
次に、攪拌機付5Lオートクレーブに、前記ポリプロピレン系樹脂粒子800gを入れ、水性媒体として純水2kg、ピロリン酸マグネシウム20g、ドデシルベンゼンスルホン酸ソーダ0.5gを加え、攪拌して水性媒体中に懸濁させ、10分間保持し、その後60℃に昇温して水系懸濁液とした。 Next, 800 g of the polypropylene resin particles are put into a 5 L autoclave with a stirrer, and 2 kg of pure water, 20 g of magnesium pyrophosphate and 0.5 g of sodium dodecylbenzenesulfonate are added as an aqueous medium, and the mixture is stirred and suspended in the aqueous medium. Held for 10 minutes, and then heated to 60 ° C. to obtain an aqueous suspension.
次に、この懸濁液中にジクミルパーオキサイド0.8gを溶解させたスチレン400gを30分で滴下した。滴下後30分保持し、ポリプロピレン系樹脂粒子にスチレンを吸収させた。
次に、反応系の温度をポリプロピレン系樹脂粒子の融点と同じ140℃に昇温して2時間保持し、スチレンをポリプロピレン系樹脂粒子中で重合(第1の重合)させた。
Next, 400 g of styrene in which 0.8 g of dicumyl peroxide was dissolved in this suspension was dropped in 30 minutes. After dropping, the mixture was held for 30 minutes, and styrene was absorbed by the polypropylene resin particles.
Next, the temperature of the reaction system was raised to 140 ° C., which is the same as the melting point of the polypropylene resin particles, and maintained for 2 hours, and styrene was polymerized (first polymerization) in the polypropylene resin particles.
次に、第1の重合の反応液をポリプロピレン系樹脂粒子の融点より20℃低い120℃にして、この懸濁液中に、ドデシルベンゼンスルホン酸ソーダ1.5gを加えた後、重合開始剤としてジクミルパーオキサイド3.6gを溶解したスチレン800gを4時間かけて滴下し、ポリプロピレン系樹脂粒子に吸収させながら重合(第2の重合)を行った(PP樹脂/PS比率=40/60)。
この滴下終了後、120℃で1時間保持した後に140℃に昇温し3時間保持して重合を完結し、改質樹脂粒子を得た。
Next, the reaction liquid of the first polymerization is set to 120 ° C. that is 20 ° C. lower than the melting point of the polypropylene resin particles, and 1.5 g of sodium dodecylbenzenesulfonate is added to this suspension, and then the polymerization initiator is used. 800 g of styrene in which 3.6 g of dicumyl peroxide was dissolved was dropped over 4 hours, and polymerization (second polymerization) was performed while absorbing the polypropylene resin particles (PP resin / PS ratio = 40/60).
After the completion of the dropping, the mixture was held at 120 ° C. for 1 hour, then heated to 140 ° C. and held for 3 hours to complete the polymerization, and modified resin particles were obtained.
その後、反応系の温度を60℃にして、この懸濁液中に、難燃剤としてトリ(2,3−ジブロモプロピル)イソシアネート(日本化成社製)20gと、難燃助剤として2,3−ジメチル−2,3−ジフェニルブタン(化薬アクゾ社製)10gとを投入し、反応系の温度を130℃に昇温し、2時間攪拌を続け、難燃処理された改質樹脂粒子を得た。次に、常温まで冷却し、該樹脂粒子を5Lオートクレーブから取り出した。改質樹脂粒子の平均粒子径は1400μmであった。 Thereafter, the temperature of the reaction system was set to 60 ° C., and 20 g of tri (2,3-dibromopropyl) isocyanate (manufactured by Nippon Kasei Co., Ltd.) as a flame retardant and 2,3- 10 g of dimethyl-2,3-diphenylbutane (manufactured by Kayaku Akzo) was added, the temperature of the reaction system was raised to 130 ° C., and stirring was continued for 2 hours to obtain flame retardant modified resin particles. It was. Next, it was cooled to room temperature, and the resin particles were taken out from the 5 L autoclave. The average particle diameter of the modified resin particles was 1400 μm.
取り出し後の改質樹脂粒子2kgと水2Lを再び攪拌機付5Lオートクレーブに投入し、発泡剤としてブタン300gを攪拌機付5Lオートクレーブに注入した。注入後、70℃に昇温し、4時間攪拌を続けた。その後、常温まで冷却して5Lオートクレーブから取り出し、脱水乾燥することで発泡性樹脂粒子を得た。 2 kg of the modified resin particles and 2 L of water after taking out were again put into a 5 L autoclave with a stirrer, and 300 g of butane as a blowing agent was injected into the 5 L autoclave with a stirrer. After the injection, the temperature was raised to 70 ° C. and stirring was continued for 4 hours. Then, it cooled to normal temperature, took out from the 5L autoclave, and dehydrated and dried and obtained the expandable resin particle.
次に、得られた発泡性樹脂粒子を嵩発泡倍数40倍(嵩密度0.025g/m3)に予備発泡させ、予備発泡粒子を得た。そして、得られた予備発泡粒子を用いて、吸光度の測定を行い、ポリスチレン系樹脂比率を算出した。そして、予備発泡後の予備発泡粒子を、常温にて12時間程度静置して熟成させた後、タフクロスに移し、オーブン(熱風乾燥機)で60℃(50〜80℃)で数日アニールする発泡剤除去を行った。この発泡剤除去後の予備発泡粒子の残ガス量を測定した。本実施例では、予備発泡粒子内の残存ガス量を0.0質量%にまでに減らした。 Next, the obtained expandable resin particles were pre-expanded to a bulk expansion ratio 40 times (bulk density 0.025 g / m 3 ) to obtain pre-expanded particles. And the light absorbency was measured using the obtained pre-expanded particle | grains, and the polystyrene-type resin ratio was computed. The pre-foamed particles after pre-foaming are allowed to stand at room temperature for about 12 hours for aging, then transferred to tough cloth, and annealed at 60 ° C. (50-80 ° C.) for several days in an oven (hot air dryer). The blowing agent was removed. The residual gas amount of the pre-expanded particles after removing the foaming agent was measured. In this example, the amount of residual gas in the pre-expanded particles was reduced to 0.0% by mass.
次に、発泡剤除去後の予備発泡粒子を、400mm×300mm×30mmの大きさのキャビティを有する成形型のキャビティ内に充填し、成形型に0.16MPaの水蒸気を60秒間導入し、その後、発泡成形体の最高面圧が0.001MPaに低下するまで冷却して、型内発泡成形体を得た。この成形条件により外観、融着とも良好な空隙を有する型内発泡成形体を得た。
なお、発泡成形には、発泡成形機(積水工機社製、商品名「ACE−11QS」)を使用した。
そして、得られた型内発泡成形体の密度、曲げの破断点変位量、空隙率、吸音率、加熱寸法変化率、圧縮強度、燃焼試験の測定を行った。
Next, the pre-expanded particles after removing the foaming agent are filled into a cavity of a molding die having a size of 400 mm × 300 mm × 30 mm, 0.16 MPa water vapor is introduced into the molding die for 60 seconds, and then It cooled until the maximum surface pressure of the foaming molding fell to 0.001 MPa, and the in-mold foaming molding was obtained. Under these molding conditions, an in-mold foam molded article having good voids in appearance and fusion was obtained.
For foam molding, a foam molding machine (manufactured by Sekisui Koki Co., Ltd., trade name “ACE-11QS”) was used.
And the density of the obtained in-mold foam-molded product, bending break point displacement, porosity, sound absorption rate, heating dimensional change rate, compressive strength, and combustion test were measured.
実施例2
予備発泡粒子の残ガス量を0.9質量%にしたこと、発泡体成型時の加熱時間を50秒にしたこと以外は、実施例1と同様にして、型内発泡成形体を得た。
実施例3
予備発泡粒子の残ガス量を2.9質量%にしたこと、発泡体成型時の加熱時間を30秒にしたこと以外は、実施例1と同様にして、型内発泡成形体を得た。
Example 2
An in-mold foam molded article was obtained in the same manner as in Example 1 except that the residual gas amount of the pre-foamed particles was 0.9 mass% and the heating time during foam molding was 50 seconds.
Example 3
An in-mold foam molded body was obtained in the same manner as in Example 1 except that the residual gas amount of the pre-foamed particles was 2.9% by mass and the heating time during foam molding was 30 seconds.
実施例4
改質樹脂粒子のPP樹脂/PS比率を30/70にしたこと、発泡体成型時の蒸気圧を0.14Mpaにしたこと以外は、実施例1と同様にして、型内発泡成形体を得た。
実施例5
改質樹脂粒子のPP樹脂/PS比率を30/70にしたこと、予備発泡粒子の残ガス量を2.7質量%にしたこと、発泡体成型時の蒸気圧を0.14Mpaに、加熱時間を30秒にしたこと以外は、実施例1と同様にして、型内発泡成形体を得た。
Example 4
An in-mold foam molded article was obtained in the same manner as in Example 1 except that the PP resin / PS ratio of the modified resin particles was 30/70 and the vapor pressure during foam molding was 0.14 Mpa. It was.
Example 5
The PP resin / PS ratio of the modified resin particles was 30/70, the residual gas amount of the pre-expanded particles was 2.7% by mass, the vapor pressure during foam molding was 0.14 Mpa, and the heating time The in-mold foam-molded article was obtained in the same manner as in Example 1 except that was changed to 30 seconds.
実施例6
改質樹脂粒子のPP樹脂/PS比率を20/80にしたこと、発泡体成型時の蒸気圧を0.13Mpaにしたこと以外は、実施例1と同様にして、型内発泡成形体を得た。
実施例7
改質樹脂粒子のPP樹脂/PS比率を20/80にしたこと、予備発泡粒子の残ガス量を2.8質量%にしたこと、発泡体成型時の蒸気圧を0.13Mpaに、加熱時間を40秒にしたこと以外は、実施例1と同様にして、型内発泡成形体を得た。
Example 6
An in-mold foam molded article was obtained in the same manner as in Example 1 except that the PP resin / PS ratio of the modified resin particles was 20/80 and the vapor pressure during foam molding was 0.13 Mpa. It was.
Example 7
The PP resin / PS ratio of the modified resin particles was set to 20/80, the residual gas amount of the pre-expanded particles was set to 2.8% by mass, the vapor pressure at the time of molding the foam was set to 0.13 Mpa, the heating time The in-mold foam-molded article was obtained in the same manner as in Example 1 except that was changed to 40 seconds.
実施例8
改質樹脂粒子のPP樹脂/PS比率を50/50にしたこと、予備発泡粒子の嵩発泡倍数を30倍(嵩密度0.033g/m3)にしたこと、発泡体成型時の蒸気圧を0.17Mpaにしたこと以外は、実施例1と同様にして、型内発泡成形体を得た。
実施例9
改質樹脂粒子のPP樹脂/PS比率を50/50にしたこと、予備発泡粒子の嵩発泡倍数を30倍(嵩密度0.033g/m3)にしたこと、残ガス量を3.0質量%にしたこと、発泡体成型時の蒸気圧を0.17Mpaに、加熱時間を45秒にしたこと以外は、実施例1と同様にして、型内発泡成形体を得た。
Example 8
The PP resin / PS ratio of the modified resin particles was 50/50, the bulk foaming factor of the pre-foamed particles was 30 times (bulk density 0.033 g / m 3 ), and the vapor pressure during foam molding was An in-mold foam molded article was obtained in the same manner as in Example 1 except that the pressure was 0.17 Mpa.
Example 9
The PP resin / PS ratio of the modified resin particles was 50/50, the bulk expansion ratio of the pre-expanded particles was 30 times (bulk density 0.033 g / m 3 ), and the residual gas amount was 3.0 mass. %, A vapor pressure at the time of foam molding was set to 0.17 Mpa, and a heating time was set to 45 seconds.
実施例10
予備発泡粒子の嵩発泡倍数を5倍(嵩密度0.200g/m3)にしたこと、残ガス量を0.8質量%にしたこと、発泡体成型時の蒸気圧を0.15Mpaにしたこと以外は、実施例1と同様にして、型内発泡成形体を得た。
実施例11
予備発泡粒子の嵩発泡倍数を60倍(嵩密度0.016g/m3)にしたこと、残ガス量を0.7質量%にしたこと、発泡体成型時の蒸気圧を0.15Mpaに、加熱時間を30秒にしたこと以外は、実施例1と同様にして、型内発泡成形体を得た。
Example 10
The bulk expansion ratio of the pre-expanded particles was 5 times (bulk density 0.200 g / m 3 ), the residual gas amount was 0.8% by mass, and the vapor pressure during molding of the foam was 0.15 MPa. Except that, an in-mold foam molded article was obtained in the same manner as in Example 1.
Example 11
The bulk expansion ratio of the pre-expanded particles was 60 times (bulk density 0.016 g / m 3 ), the residual gas amount was 0.7% by mass, the vapor pressure at the time of foam molding was 0.15 Mpa, An in-mold foam molded article was obtained in the same manner as in Example 1 except that the heating time was 30 seconds.
実施例12
予備発泡粒子の残ガス量を1.5量%にしたこと、発泡体成型時の蒸気圧を0.16Mpaにしたこと以外は、実施例1と同様にして、型内発泡成形体を得た。
実施例13
発泡体成型時の蒸気圧を0.12Mpaに、加熱時間を30秒にしたこと以外は、実施例1と同様にして、型内発泡成形体を得た。
Example 12
An in-mold foam molded article was obtained in the same manner as in Example 1 except that the residual gas amount of the pre-foamed particles was 1.5% by mass and the vapor pressure during foam molding was 0.16 MPa. .
Example 13
An in-mold foam molded article was obtained in the same manner as in Example 1 except that the vapor pressure during foam molding was 0.12 MPa and the heating time was 30 seconds.
比較例1
改質樹脂粒子のPP樹脂/PS比率を55/45にしたこと、予備発泡粒子の嵩発泡倍数を4.5倍(嵩密度0.21g/m3)にしたこと、残ガス量を3.2質量%にしたこと、発泡体成型時の蒸気圧を0.17Mpaに、加熱時間を45秒にしたこと以外は、実施例1と同様にして、型内発泡成形体を得た。
比較例2
改質樹脂粒子のPP樹脂/PS比率を60/40にしたこと、予備発泡粒子の嵩発泡倍数を4.5倍(嵩密度0.21g/m3)にしたこと、残ガス量を3.3質量%にしたこと、発泡体成型時の蒸気圧を0.17Mpaに、加熱時間を45秒にしたこと以外は、実施例1と同様にして、型内発泡成形体を得た。
Comparative Example 1
2. The PP resin / PS ratio of the modified resin particles was 55/45, the bulk expansion ratio of the pre-expanded particles was 4.5 times (bulk density 0.21 g / m 3 ), and the residual gas amount was 3. An in-mold foam molded article was obtained in the same manner as in Example 1 except that the content was 2% by mass, the vapor pressure during foam molding was 0.17 MPa, and the heating time was 45 seconds.
Comparative Example 2
2. The PP resin / PS ratio of the modified resin particles was set to 60/40, the bulk foaming factor of the pre-foamed particles was 4.5 times (bulk density 0.21 g / m 3 ), and the residual gas amount was 3. An in-mold foam molded article was obtained in the same manner as in Example 1 except that the content was 3% by mass, the vapor pressure during foam molding was 0.17 MPa, and the heating time was 45 seconds.
比較例3
改質樹脂粒子のPP樹脂/PS比率を10/90にしたこと、予備発泡粒子の嵩発泡倍数を65倍(嵩密度0.015g/m3)にしたこと、残ガス量を3.3質量%にしたこと、発泡体成型時の蒸気圧を0.12Mpaに、加熱時間を45秒にしたこと以外は、実施例1と同様にして、型内発泡成形体を得た。
比較例4
改質樹脂粒子のPP樹脂/PS比率を16/84にしたこと、予備発泡粒子の嵩発泡倍数を65倍(嵩密度0.015g/m3)にしたこと、残ガス量を3.5質量%にしたこと、発泡体成型時の蒸気圧を0.12Mpaに、加熱時間を45秒にしたこと以外は、実施例1と同様にして、型内発泡成形体を得た。
Comparative Example 3
The PP resin / PS ratio of the modified resin particles was set to 10/90, the bulk expansion ratio of the pre-expanded particles was increased to 65 times (bulk density 0.015 g / m 3 ), and the residual gas amount was 3.3 mass. %, A foam pressure in the mold was obtained in the same manner as in Example 1, except that the vapor pressure during foam molding was 0.12 MPa and the heating time was 45 seconds.
Comparative Example 4
The PP resin / PS ratio of the modified resin particles was 16/84, the bulk expansion ratio of the pre-expanded particles was 65 times (bulk density 0.015 g / m 3 ), and the residual gas amount was 3.5 mass. %, A foam pressure in the mold was obtained in the same manner as in Example 1, except that the vapor pressure during foam molding was 0.12 MPa and the heating time was 45 seconds.
比較例5
予備発泡粒子の残ガス量を3.3質量%にしたこと、発泡体成型時の蒸気圧を0.15Mpaに、加熱時間を15秒にしたこと以外は、実施例1と同様にして、型内発泡成形体を得た。
比較例6
予備発泡粒子の残ガス量を3.2質量%にしたこと、発泡体成型時の蒸気圧を0.15Mpaに、加熱時間を35秒にしたこと以外は、実施例1と同様にして、型内発泡成形体を得た。
Comparative Example 5
In the same manner as in Example 1, except that the residual gas amount of the pre-expanded particles was 3.3% by mass, the vapor pressure during foam molding was 0.15 Mpa, and the heating time was 15 seconds. An inner foamed molded product was obtained.
Comparative Example 6
In the same manner as in Example 1, except that the residual gas amount of the pre-expanded particles was 3.2% by mass, the vapor pressure during foam molding was 0.15 Mpa, and the heating time was 35 seconds. An inner foamed molded product was obtained.
比較例7
予備発泡粒子の残ガス量を3.9質量%にしたこと、発泡体成型時の蒸気圧を0.12Mpaに、加熱時間を30秒にしたこと以外は、実施例1と同様にして、型内発泡成形体を得た。
比較例8
改質樹脂粒子のPP樹脂/PS比率を30/70にしたこと、予備発泡粒子の残ガス量を3.5質量%にしたこと、発泡体成型時の蒸気圧を0.12Mpaに、加熱時間を30秒にしたこと以外は、実施例1と同様にして、型内発泡成形体を得た。
Comparative Example 7
In the same manner as in Example 1, except that the residual gas amount of the pre-expanded particles was 3.9% by mass, the vapor pressure at the time of foam molding was 0.12 Mpa, and the heating time was 30 seconds. An inner foamed molded product was obtained.
Comparative Example 8
The PP resin / PS ratio of the modified resin particles was set to 30/70, the residual gas amount of the pre-expanded particles was set to 3.5% by mass, the vapor pressure at the time of molding the foam was set to 0.12 Mpa, the heating time The in-mold foam-molded article was obtained in the same manner as in Example 1 except that was changed to 30 seconds.
比較例9
改質樹脂粒子のPP樹脂/PS比率を20/80にしたこと、予備発泡粒子の残ガス量を4.0質量%にしたこと、発泡体成型時の蒸気圧を0.12Mpaに、加熱時間を30秒にしたこと以外は、実施例1と同様にして、型内発泡成形体を得た。
比較例10
改質樹脂粒子のPP樹脂/PS比率を50/50にしたこと、予備発泡粒子の嵩発泡倍数を30倍(嵩密度0.033g/m3)にしたこと、残ガス量を3.8質量%にしたこと、発泡体成型時の蒸気圧を0.12Mpaに、加熱時間を30秒にしたこと以外は、実施例1と同様にして、型内発泡成形体を得た。
上記実施例及び比較例の樹脂原料のポリプロピレン系樹脂とポリスチレン系樹脂の割合、予備発泡粒子の性質、成形条件、成形体の各種測定値を表1及び2に示す。
Comparative Example 9
The PP resin / PS ratio of the modified resin particles was set to 20/80, the residual gas amount of the pre-expanded particles was set to 4.0% by mass, the vapor pressure at the time of molding the foam was set to 0.12 Mpa, the heating time The in-mold foam-molded article was obtained in the same manner as in Example 1 except that was changed to 30 seconds.
Comparative Example 10
The PP resin / PS ratio of the modified resin particles was 50/50, the bulk expansion ratio of the pre-expanded particles was 30 times (bulk density 0.033 g / m 3 ), and the residual gas amount was 3.8 masses. %, A foam pressure in the mold was obtained in the same manner as in Example 1 except that the vapor pressure at the time of molding the foam was 0.12 MPa and the heating time was 30 seconds.
Tables 1 and 2 show the ratios of the polypropylene resin and polystyrene resin, the properties of the pre-foamed particles, the molding conditions, and various measured values of the molded body of the resin raw materials of the above Examples and Comparative Examples.
表1及び2によれば、発泡粒子の残ガス量が3.0質量%以下であれば、各種物性値を満足する型内発泡成形体を得られることが分かる。 According to Tables 1 and 2, it can be seen that if the residual gas amount of the expanded particles is 3.0% by mass or less, an in-mold expanded molded article satisfying various physical property values can be obtained.
Claims (4)
発泡剤を含有し20/80〜50/50の質量比のポリプロピレン系樹脂とポリスチレン系樹脂の複合樹脂粒子に由来する発泡性樹脂粒子を予備発泡させ、次いで残発泡剤量を0〜3質量%に減少するように調製することで予備発泡粒子を得ることを特徴とする予備発泡粒子の製造方法。 For the production of in-mold foam molded articles with 5 to 60 times the expansion ratio, 10 to 30% porosity, 0.3 or more sound absorption rate, 10 mm or more bending break point displacement and 1.5% or less dimensional change rate A method of producing pre-expanded particles used,
Foamable resin particles containing a foaming agent and having a mass ratio of 20/80 to 50/50 and derived from a composite resin particle of a polypropylene resin and a polystyrene resin are prefoamed, and then the amount of residual foaming agent is 0 to 3% by mass. A method for producing pre-expanded particles, characterized in that the pre-expanded particles are obtained by preparing the particles so as to be reduced.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009225216A JP2011074152A (en) | 2009-09-29 | 2009-09-29 | Prefoamed particle and process for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009225216A JP2011074152A (en) | 2009-09-29 | 2009-09-29 | Prefoamed particle and process for producing the same |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2011074152A true JP2011074152A (en) | 2011-04-14 |
Family
ID=44018483
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009225216A Pending JP2011074152A (en) | 2009-09-29 | 2009-09-29 | Prefoamed particle and process for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2011074152A (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013035256A (en) * | 2011-08-11 | 2013-02-21 | Daisen Co Ltd | Composite molded article, and method of manufacturing the same |
WO2013031417A1 (en) * | 2011-09-01 | 2013-03-07 | 株式会社ジェイエスピー | Composite resin foam particles and molded article thereof |
JP2013159783A (en) * | 2012-02-06 | 2013-08-19 | Synbra Technology Bv | Method for producing foam molded part |
WO2014157647A1 (en) * | 2013-03-29 | 2014-10-02 | 積水化成品工業株式会社 | Composite resin particles and foamable composite resin particles, pre-foamed resin particles, and molded foam body using same |
JP2016069556A (en) * | 2014-09-30 | 2016-05-09 | 積水化成品工業株式会社 | Method for producing composite resin particle |
JP2017043011A (en) * | 2015-08-27 | 2017-03-02 | 積水化成品工業株式会社 | Method for producing fiber-reinforced composite foam and foamed thermoplastic resin particles usable in the method |
JP2018141087A (en) * | 2017-02-28 | 2018-09-13 | 積水化成品工業株式会社 | Method for producing foamed particle and method for producing foam molded body |
WO2023153310A1 (en) * | 2022-02-14 | 2023-08-17 | 株式会社ジェイエスピー | Expanded crystalline-thermoplastic-resin particles, molded object from expanded crystalline-thermoplastic-resin particles, and production method therefor |
-
2009
- 2009-09-29 JP JP2009225216A patent/JP2011074152A/en active Pending
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013035256A (en) * | 2011-08-11 | 2013-02-21 | Daisen Co Ltd | Composite molded article, and method of manufacturing the same |
TWI557170B (en) * | 2011-09-01 | 2016-11-11 | Jsp Corp | Composite resin foamed particles and their molded bodies |
JPWO2013031417A1 (en) * | 2011-09-01 | 2015-03-23 | 株式会社ジェイエスピー | Composite resin foam particles and molded body thereof |
JP2015129315A (en) * | 2011-09-01 | 2015-07-16 | 株式会社ジェイエスピー | Composite resin expanded particle and molded body of the same |
US9309398B2 (en) | 2011-09-01 | 2016-04-12 | Jsp Corporation | Expanded composite resin beads and molded article thereof |
WO2013031417A1 (en) * | 2011-09-01 | 2013-03-07 | 株式会社ジェイエスピー | Composite resin foam particles and molded article thereof |
JP2013159783A (en) * | 2012-02-06 | 2013-08-19 | Synbra Technology Bv | Method for producing foam molded part |
WO2014157647A1 (en) * | 2013-03-29 | 2014-10-02 | 積水化成品工業株式会社 | Composite resin particles and foamable composite resin particles, pre-foamed resin particles, and molded foam body using same |
JP5918905B2 (en) * | 2013-03-29 | 2016-05-18 | 積水化成品工業株式会社 | Composite resin particles and expandable composite resin particles, pre-expanded particles and foamed molded products |
JP2016069556A (en) * | 2014-09-30 | 2016-05-09 | 積水化成品工業株式会社 | Method for producing composite resin particle |
JP2017043011A (en) * | 2015-08-27 | 2017-03-02 | 積水化成品工業株式会社 | Method for producing fiber-reinforced composite foam and foamed thermoplastic resin particles usable in the method |
JP2018141087A (en) * | 2017-02-28 | 2018-09-13 | 積水化成品工業株式会社 | Method for producing foamed particle and method for producing foam molded body |
WO2023153310A1 (en) * | 2022-02-14 | 2023-08-17 | 株式会社ジェイエスピー | Expanded crystalline-thermoplastic-resin particles, molded object from expanded crystalline-thermoplastic-resin particles, and production method therefor |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4718645B2 (en) | Styrene modified polypropylene resin particles, expandable styrene modified polypropylene resin particles, styrene modified polypropylene resin foam particles, and method for producing styrene modified polypropylene resin foam molded article | |
JP5138254B2 (en) | Modified polystyrene resin particles containing self-extinguishing carbon, Modified polystyrene resin particles containing foam, self-extinguishing carbon, Modified polystyrene resin foam particles containing self-extinguishing carbon, Modified polystyrene resin foam containing self-extinguishing carbon Molded body and method for producing the same | |
JP2011074152A (en) | Prefoamed particle and process for producing the same | |
JP5192420B2 (en) | Expandable composite resin particles for long-term storage, pre-expanded particles and expanded molded articles | |
JP5053675B2 (en) | Modified polystyrene resin particles, expandable modified polystyrene resin particles, modified polystyrene resin foam particles, modified polystyrene resin foam moldings | |
JP5232397B2 (en) | Method for producing modified polystyrene resin particles, expandable modified polystyrene resin particles, modified polystyrene resin foam particles, modified polystyrene resin foam molding | |
CN106715553A (en) | Composite resin particles, process for producing same, foaming beads, foamed beads, foamed molded object, and automotive interior trim | |
JP2011073196A (en) | Laminate and method of manufacturing the same | |
JP2011074151A (en) | In-mold foamed molded product and laminate | |
JP6322148B2 (en) | Seed polymerization seed particles, composite resin particles, expandable particles, expanded particles, and composite resin foam moldings | |
JP2011068821A (en) | Expandable composite resin particle, preliminary foamed particle, method for producing these, and foamed molded article | |
JP6441948B2 (en) | Expandable styrene composite polyolefin resin particles and process for producing the same, pre-expanded particles, and expanded molded body | |
JP5208818B2 (en) | SOUND ABSORBING MODIFIED POLYSTYRENE RESIN FOAM MOLDED BODY AND PROCESS FOR PRODUCING THE SAME | |
JP2009263639A (en) | Foamable styrene-modified polyolefin-based resin particle, its production method, prefoamed particle, and foam molded body | |
JP2011068776A (en) | Foam-molded article | |
JP5337442B2 (en) | Foam molded body and method for producing the same | |
JP6081266B2 (en) | Foam molding | |
JP2013117037A (en) | Foam molding body | |
JP5957599B2 (en) | Foamed particle manufacturing method and foamed particle manufacturing apparatus | |
JP5032366B2 (en) | Modified polystyrene resin pre-expanded particles and sound-absorbing modified polystyrene resin foam molding. | |
JP5809902B2 (en) | MODIFIED POLYPROPYLENE RESIN PARTICLE, ITS PREFOAMED PARTICLE, PROCESS FOR PRODUCING THE SAME, AND METHOD FOR PRODUCING FOAM MOLD | |
JP5358237B2 (en) | Expandable composite resin particles and wet manufacturing method thereof | |
JP2018141087A (en) | Method for producing foamed particle and method for producing foam molded body | |
JP5216843B2 (en) | Expandable composite resin particles for long-term storage, pre-expanded particles and expanded molded articles | |
JP2024108578A (en) | Composite resin particles, expanded particles, and expanded molded products |