JP2011074025A - Method of purifying botulinus toxin - Google Patents
Method of purifying botulinus toxin Download PDFInfo
- Publication number
- JP2011074025A JP2011074025A JP2009228199A JP2009228199A JP2011074025A JP 2011074025 A JP2011074025 A JP 2011074025A JP 2009228199 A JP2009228199 A JP 2009228199A JP 2009228199 A JP2009228199 A JP 2009228199A JP 2011074025 A JP2011074025 A JP 2011074025A
- Authority
- JP
- Japan
- Prior art keywords
- exchange chromatography
- toxin
- botulinum
- botulinum toxin
- purification method
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 121
- 239000003053 toxin Substances 0.000 title claims abstract description 84
- 231100000765 toxin Toxicity 0.000 title claims abstract description 84
- 238000000746 purification Methods 0.000 claims abstract description 57
- 238000005571 anion exchange chromatography Methods 0.000 claims abstract description 36
- 238000005277 cation exchange chromatography Methods 0.000 claims abstract description 25
- 241000193155 Clostridium botulinum Species 0.000 claims abstract description 22
- 108030001720 Bontoxilysin Proteins 0.000 claims description 94
- 229940053031 botulinum toxin Drugs 0.000 claims description 85
- 239000000243 solution Substances 0.000 claims description 70
- 101710138657 Neurotoxin Proteins 0.000 claims description 50
- 239000002581 neurotoxin Substances 0.000 claims description 50
- 231100000618 neurotoxin Toxicity 0.000 claims description 50
- 150000003839 salts Chemical class 0.000 claims description 41
- 239000000872 buffer Substances 0.000 claims description 32
- 239000012528 membrane Substances 0.000 claims description 27
- 238000005374 membrane filtration Methods 0.000 claims description 25
- 108090000623 proteins and genes Proteins 0.000 claims description 19
- 102000004169 proteins and genes Human genes 0.000 claims description 19
- 238000004587 chromatography analysis Methods 0.000 claims description 17
- 239000007853 buffer solution Substances 0.000 claims description 14
- 238000005406 washing Methods 0.000 claims description 12
- 239000011148 porous material Substances 0.000 claims description 11
- 238000010828 elution Methods 0.000 claims description 9
- 231100001103 botulinum neurotoxin Toxicity 0.000 claims description 7
- 239000012535 impurity Substances 0.000 claims description 7
- 231100000252 nontoxic Toxicity 0.000 claims description 6
- 230000003000 nontoxic effect Effects 0.000 claims description 6
- 239000003814 drug Substances 0.000 claims description 3
- 239000004480 active ingredient Substances 0.000 claims description 2
- 229940079593 drug Drugs 0.000 claims description 2
- 238000001914 filtration Methods 0.000 abstract description 22
- 238000001556 precipitation Methods 0.000 abstract description 15
- 238000000926 separation method Methods 0.000 abstract description 13
- 238000004519 manufacturing process Methods 0.000 abstract description 11
- 239000002244 precipitate Substances 0.000 abstract description 9
- 230000036541 health Effects 0.000 abstract description 3
- 238000004500 asepsis Methods 0.000 abstract 1
- 230000008030 elimination Effects 0.000 abstract 1
- 238000003379 elimination reaction Methods 0.000 abstract 1
- 239000001963 growth medium Substances 0.000 abstract 1
- 108700012359 toxins Proteins 0.000 description 74
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 40
- 239000011780 sodium chloride Substances 0.000 description 20
- 238000012360 testing method Methods 0.000 description 20
- 238000000108 ultra-filtration Methods 0.000 description 18
- 239000008351 acetate buffer Substances 0.000 description 15
- 238000005119 centrifugation Methods 0.000 description 15
- 229920005654 Sephadex Polymers 0.000 description 10
- 239000012507 Sephadex™ Substances 0.000 description 10
- 102000039446 nucleic acids Human genes 0.000 description 10
- 108020004707 nucleic acids Proteins 0.000 description 10
- 150000007523 nucleic acids Chemical class 0.000 description 10
- 239000008363 phosphate buffer Substances 0.000 description 9
- 229920002684 Sepharose Polymers 0.000 description 8
- 239000003957 anion exchange resin Substances 0.000 description 8
- BFSVOASYOCHEOV-UHFFFAOYSA-N 2-diethylaminoethanol Chemical compound CCN(CC)CCO BFSVOASYOCHEOV-UHFFFAOYSA-N 0.000 description 7
- 231100000111 LD50 Toxicity 0.000 description 6
- 229910019142 PO4 Inorganic materials 0.000 description 6
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 6
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 6
- 238000002415 sodium dodecyl sulfate polyacrylamide gel electrophoresis Methods 0.000 description 6
- 230000001954 sterilising effect Effects 0.000 description 6
- 238000004659 sterilization and disinfection Methods 0.000 description 6
- 229920002271 DEAE-Sepharose Polymers 0.000 description 5
- BFNBIHQBYMNNAN-UHFFFAOYSA-N ammonium sulfate Chemical compound N.N.OS(O)(=O)=O BFNBIHQBYMNNAN-UHFFFAOYSA-N 0.000 description 5
- 229910052921 ammonium sulfate Inorganic materials 0.000 description 5
- 235000011130 ammonium sulphate Nutrition 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 230000007888 toxin activity Effects 0.000 description 5
- 241000699666 Mus <mouse, genus> Species 0.000 description 4
- 102000007327 Protamines Human genes 0.000 description 4
- 108010007568 Protamines Proteins 0.000 description 4
- 239000012564 Q sepharose fast flow resin Substances 0.000 description 4
- 238000004440 column chromatography Methods 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 238000001471 micro-filtration Methods 0.000 description 4
- 239000013049 sediment Substances 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- 239000007983 Tris buffer Substances 0.000 description 3
- 239000003729 cation exchange resin Substances 0.000 description 3
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 3
- 239000002158 endotoxin Substances 0.000 description 3
- 230000036512 infertility Effects 0.000 description 3
- 239000010452 phosphate Substances 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 229940048914 protamine Drugs 0.000 description 3
- 238000003756 stirring Methods 0.000 description 3
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 3
- NWUYHJFMYQTDRP-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;1-ethenyl-2-ethylbenzene;styrene Chemical compound C=CC1=CC=CC=C1.CCC1=CC=CC=C1C=C.C=CC1=CC=CC=C1C=C NWUYHJFMYQTDRP-UHFFFAOYSA-N 0.000 description 2
- 241000894006 Bacteria Species 0.000 description 2
- 208000003508 Botulism Diseases 0.000 description 2
- KRKNYBCHXYNGOX-UHFFFAOYSA-K Citrate Chemical compound [O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O KRKNYBCHXYNGOX-UHFFFAOYSA-K 0.000 description 2
- 239000002033 PVDF binder Substances 0.000 description 2
- 239000004695 Polyether sulfone Substances 0.000 description 2
- PXIPVTKHYLBLMZ-UHFFFAOYSA-N Sodium azide Chemical compound [Na+].[N-]=[N+]=[N-] PXIPVTKHYLBLMZ-UHFFFAOYSA-N 0.000 description 2
- 238000003916 acid precipitation Methods 0.000 description 2
- 150000001413 amino acids Chemical class 0.000 description 2
- 238000000502 dialysis Methods 0.000 description 2
- 239000000706 filtrate Substances 0.000 description 2
- 239000000499 gel Substances 0.000 description 2
- 238000002523 gelfiltration Methods 0.000 description 2
- 238000007912 intraperitoneal administration Methods 0.000 description 2
- 239000006166 lysate Substances 0.000 description 2
- 239000011259 mixed solution Substances 0.000 description 2
- 229920006393 polyether sulfone Polymers 0.000 description 2
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 2
- 238000003998 size exclusion chromatography high performance liquid chromatography Methods 0.000 description 2
- 238000001179 sorption measurement Methods 0.000 description 2
- 239000006228 supernatant Substances 0.000 description 2
- 230000004083 survival effect Effects 0.000 description 2
- 210000003462 vein Anatomy 0.000 description 2
- 108010088751 Albumins Proteins 0.000 description 1
- 102000009027 Albumins Human genes 0.000 description 1
- KWTQSFXGGICVPE-WCCKRBBISA-N Arginine hydrochloride Chemical compound Cl.OC(=O)[C@@H](N)CCCN=C(N)N KWTQSFXGGICVPE-WCCKRBBISA-N 0.000 description 1
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 238000003591 CyQUANT Cell Proliferation Assay Kit Methods 0.000 description 1
- 102100028188 Cystatin-F Human genes 0.000 description 1
- 101710169749 Cystatin-F Proteins 0.000 description 1
- 241000581650 Ivesia Species 0.000 description 1
- 241000699670 Mus sp. Species 0.000 description 1
- 206010058667 Oral toxicity Diseases 0.000 description 1
- 239000012506 Sephacryl® Substances 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 239000000443 aerosol Substances 0.000 description 1
- 238000001042 affinity chromatography Methods 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000001580 bacterial effect Effects 0.000 description 1
- 229940098773 bovine serum albumin Drugs 0.000 description 1
- 238000011088 calibration curve Methods 0.000 description 1
- 239000013622 capto Q Substances 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 238000005341 cation exchange Methods 0.000 description 1
- 229940023913 cation exchange resins Drugs 0.000 description 1
- 229920002301 cellulose acetate Polymers 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000007979 citrate buffer Substances 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- NKLPQNGYXWVELD-UHFFFAOYSA-M coomassie brilliant blue Chemical compound [Na+].C1=CC(OCC)=CC=C1NC1=CC=C(C(=C2C=CC(C=C2)=[N+](CC)CC=2C=C(C=CC=2)S([O-])(=O)=O)C=2C=CC(=CC=2)N(CC)CC=2C=C(C=CC=2)S([O-])(=O)=O)C=C1 NKLPQNGYXWVELD-UHFFFAOYSA-M 0.000 description 1
- 238000009295 crossflow filtration Methods 0.000 description 1
- 238000012136 culture method Methods 0.000 description 1
- 239000012228 culture supernatant Substances 0.000 description 1
- 238000012258 culturing Methods 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 230000002498 deadly effect Effects 0.000 description 1
- 239000007857 degradation product Substances 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 239000012470 diluted sample Substances 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000001962 electrophoresis Methods 0.000 description 1
- 238000012061 filter integrity test Methods 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 238000005194 fractionation Methods 0.000 description 1
- 238000001641 gel filtration chromatography Methods 0.000 description 1
- 239000011544 gradient gel Substances 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 201000011422 infant botulism Diseases 0.000 description 1
- 238000005342 ion exchange Methods 0.000 description 1
- 238000004255 ion exchange chromatography Methods 0.000 description 1
- 231100000225 lethality Toxicity 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000003550 marker Substances 0.000 description 1
- 239000002609 medium Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000006263 metalation reaction Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000003068 molecular probe Substances 0.000 description 1
- 230000003472 neutralizing effect Effects 0.000 description 1
- 231100000418 oral toxicity Toxicity 0.000 description 1
- 239000008055 phosphate buffer solution Substances 0.000 description 1
- 238000004321 preservation Methods 0.000 description 1
- 238000011085 pressure filtration Methods 0.000 description 1
- 238000011137 process chromatography Methods 0.000 description 1
- 238000004886 process control Methods 0.000 description 1
- 229950008679 protamine sulfate Drugs 0.000 description 1
- 238000002731 protein assay Methods 0.000 description 1
- 239000007671 pyg medium Substances 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 238000005185 salting out Methods 0.000 description 1
- 238000013341 scale-up Methods 0.000 description 1
- 239000001488 sodium phosphate Substances 0.000 description 1
- 229910000162 sodium phosphate Inorganic materials 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 235000000346 sugar Nutrition 0.000 description 1
- 150000008163 sugars Chemical class 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- RYFMWSXOAZQYPI-UHFFFAOYSA-K trisodium phosphate Chemical compound [Na+].[Na+].[Na+].[O-]P([O-])([O-])=O RYFMWSXOAZQYPI-UHFFFAOYSA-K 0.000 description 1
- 238000010200 validation analysis Methods 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A50/00—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
- Y02A50/30—Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change
Landscapes
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Peptides Or Proteins (AREA)
Abstract
Description
本発明は、ボツリヌス毒素の精製方法に関する。詳細には、沈殿法・遠心分離を行うことなく、膜ろ過法とクロマトグラフィー法を組み合わせることを特徴とするボツリヌス毒素の精製方法に関する。 The present invention relates to a method for purifying botulinum toxin. More specifically, the present invention relates to a method for purifying botulinum toxin characterized by combining a membrane filtration method and a chromatography method without performing precipitation or centrifugation.
嫌気性のグラム陽性菌であるクロストリジウム・ボツリナム(Clostridium botulinum)が産生するボツリヌス毒素は地球上で最も致死性の高い毒素であり、これまでに血清型A、B、C、D、E、F及びGの7種のボツリヌス菌由来の毒素とその特性が明らかにされている。これらは、それぞれ血清型に特異的な中和抗体で識別される。更に同じ血清型のボツリヌス毒素の中でも、毒素遺伝子の構造の違いによりいくつかの亜型に分類される。ボツリヌス毒素の活性中心蛋白質は、既知のボツリヌス毒素血清型の7種すべてにおいて、分子量約150 KDaのボツリヌス神経毒素(NTX)である。 Botulinum toxin produced by Clostridium botulinum , an anaerobic Gram-positive bacterium, is the most deadly toxin on earth, and so far serotypes A, B, C, D, E, F and G toxins from seven Clostridium botulinums and their properties have been elucidated. These are each identified by neutralizing antibodies specific for the serotype. Furthermore, among botulinum toxins of the same serotype, they are classified into several subtypes depending on the structure of the toxin gene. The botulinum toxin active center protein is a botulinum neurotoxin (NTX) having a molecular weight of about 150 KDa in all seven known botulinum toxin serotypes.
すべてのボツリヌス毒素はボツリヌス菌から産生される場合、分子量約150 KDaのNTXに分子量の異なる無毒成分が結合した複合体の形で産生される。複合体毒素は分子量の違いにより、LL毒素(900 KDa)、L毒素(500 KDa)、またはM毒素(300 KDa)の分子形態に分けられる。LL毒素及びL毒素は、NTX、HA蛋白質及びNTNH(無毒非HA蛋白質である蛋白質)より成り、M毒素はこれらのうちHA蛋白質を欠く。LL毒素、L毒素及びM毒素は、ボツリヌス毒素複合体あるいはプロジェニター毒素などと呼ばれている。 When all botulinum toxins are produced from Clostridium botulinum, they are produced in the form of a complex in which nontoxic components having different molecular weights are bound to NTX having a molecular weight of about 150 KDa. Complex toxins are divided into molecular forms of LL toxin (900 KDa), L toxin (500 KDa), or M toxin (300 KDa) depending on the molecular weight. LL toxin and L toxin consist of NTX, HA protein and NTNH (protein which is non-toxic non-HA protein), and M toxin lacks HA protein. LL toxin, L toxin and M toxin are called botulinum toxin complex or progenitor toxin.
A型ボツリヌス菌は、A1型〜A5型の亜型に分類される。例えば、A1型ボツリヌス菌は、LL毒素、L毒素及びM毒素を産生するが、A2型ボツリヌス菌は、M毒素しか産生しない。A1型ボツリヌス菌としては、Hall、62A、97A、NCTC887、NCTC7272、NCTC2916及びNCTC11199株等がある。A2型ボツリヌス菌は、1986年に日本で最初に乳児ボツリヌス症に関する患者から同定されている(Sakaguchi G., et al., Int. J. Food Microbiol.,11: 231-242,1990:非特許文献1)。A2型ボツリヌス菌の臨床分離株は、Kyoto-F、Chiba-H、Y-8036、7I03-H、7I05-H及びKZ1828である。その他、A3型ボツリヌス菌としてはLoch Maree株、A4型ボツリヌス菌としては657Ba株、A5型ボツリヌス菌としてはH0 4244 0055、H0 4402 065、H0 4464 107及びH0 4068 0341株が知られている。 Type A botulinum is classified into subtypes A1 to A5. For example, type A1 botulinum produces LL toxin, L toxin and M toxin, whereas type A2 botulinum produces only M toxin. Examples of A1-type Clostridium botulinum include Hall, 62A, 97A, NCTC887, NCTC7272, NCTC2916, and NCTC11199. Type A2 Clostridium botulinum was first identified in Japan in 1986 from patients with infantile botulism (Sakaguchi G., et al., Int. J. Food Microbiol., 11: 231-242, 1990: non-patented Reference 1). Clinical isolates of type A2 Clostridium botulinum are Kyoto-F, Chiba-H, Y-8036, 7I03-H, 7I05-H and KZ1828. In addition, Loch Maree strain is known as A3-type botulinum, 657Ba strain is known as A4-type botulinum, and H0 4244 0055, H0 4402 065, H0 4464 107, and H0 4068 0341 strains are known as A5-type botulinum.
その他のボツリヌス菌では、B型、C型及びD型ボツリヌス菌はLL毒素及びM毒素を産生する。E型及びF型ボツリヌス菌はM毒素のみ、G型ボツリヌス菌はL毒素のみを産生する。 In other Clostridium botulinum, B, C and D botulinum produce LL and M toxins. Type E and F botulinum produce only M toxin, and type G botulinum produces only L toxin.
ボツリヌス毒素複合体は、アルカリ条件下で、NTX(S毒素とも呼ばれる。)とNTNHとが解離するため、この性質を利用することで、150 KDaのNTXのみを単離することができる。 Since the botulinum toxin complex dissociates NTX (also called S toxin) and NTNH under alkaline conditions, only 150 KDa NTX can be isolated using this property.
従来、ボツリヌス毒素の精製方法は、培養液中のボツリヌス毒素複合体及びボツリヌス菌体を沈殿する酸沈殿、共存するDNAやRNA等を除去するプロタミン沈殿、粗精製を行う硫酸アンモニウム塩析等のいくつかの沈殿法を行った後に、イオン交換、金属あるいはゲルろ過等のクロマトグラフィー法を組み合わせる煩雑な方法であった。 Conventionally, botulinum toxin has been purified by several methods, such as acid precipitation that precipitates botulinum toxin complex and botulinum cells in culture, protamine precipitation that removes coexisting DNA and RNA, and ammonium sulfate salting-out for rough purification. After performing the precipitation method described above, it was a complicated method combining chromatographic methods such as ion exchange, metal or gel filtration.
例えばNTXの精製方法としては、培養液を硫酸、プロタミン及び硫酸アンモニウムで順次沈殿・抽出した後、遠心分離により得られた沈殿物を溶解し、SP Sephadex C-50(pH3.8)、Sephadex G-200(pH3.8)、DEAE Sephadex(pH8.0)で次々にカラムクロマトグラフィーを実施する阪口らの方法(Infect.Immun.12(6),1262-1270,1975:非特許文献2)がある。阪口らの方法では、A、B、C、D、E、F及びG型ボツリヌス菌由来のLL毒素、L毒素、M毒素あるいはNTXが精製できることが報告されている(Pharmac.Ther.19,165-194,1983:非特許文献3)。 For example, as a purification method of NTX, the culture solution is precipitated and extracted sequentially with sulfuric acid, protamine and ammonium sulfate, and then the precipitate obtained by centrifugation is dissolved, and SP Sephadex C-50 (pH 3.8), Sephadex G- There is a method of Sakaguchi et al. (Infect. Immun. 12 (6), 1262-1270, 1975: Non-Patent Document 2) in which column chromatography is successively performed with 200 (pH 3.8) and DEAE Sephadex (pH 8.0). . In the method of Sakaguchi et al., It has been reported that LL toxin, L toxin, M toxin or NTX derived from botulinum A, B, C, D, E, F and G can be purified (Pharmac. Ther. 19,165-194). , 1983: Non-patent document 3).
その他、培養液を硫酸、硫酸プロトアミン、硫酸アンモニウムで順次沈殿した後、遠心分離により得られた沈殿物を溶解し、DEAE Sephadex(pH6)、DEAE Sephadex(pH7.9)、SP Sephadex(pH7)で次々にカラムクロマトグラフィーを実施するピガルケ・ハンスらの方法(特表2003-505343:特許文献1)、あるいはボツリヌス毒素複合体をDEAE Sephadex A-50(pH5.5)のカラムから回収し、硫酸アンモニウム塩析の沈殿物を溶解後、DEAE Sephadex A-50(pH7.9)、SP Sephadex C-50(pH7.0)等で次々にカラムクロマトグラフィーを実施するジョンソンらの方法(特表平11-507072:特許文献2)が知られている。これらのいずれの方法もクロマトグラフィーの前処理として、沈殿法・遠心分離を実施する煩雑な方法である。 In addition, after the culture solution is precipitated sequentially with sulfuric acid, protoamine sulfate, and ammonium sulfate, the precipitate obtained by centrifugation is dissolved, and successively with DEAE Sephadex (pH6), DEAE Sephadex (pH7.9), and SP Sephadex (pH7). The column chromatography is performed on Pigalke Hans et al. (Special Table 2003-505343: Patent Document 1) or the botulinum toxin complex is recovered from DEAE Sephadex A-50 (pH 5.5) column and ammonium sulfate salted out. After dissolution of the precipitate, Johnson et al.'S method of performing column chromatography one after another with DEAE Sephadex A-50 (pH 7.9), SP Sephadex C-50 (pH 7.0), etc. Patent document 2) is known. Any of these methods is a complicated method of carrying out a precipitation method or centrifugation as a pretreatment for chromatography.
工業規模で沈殿法を行う場合、1)操作が煩雑である、2)分離が鋭敏でなく低分離性能である、3)工程管理が難しく、少しの条件の違いが分離度に大きく影響する、4)生産規模の変更(スケールアップまたはスケールダウン)が難しい、5)生産性が低い、等の問題がある。 When carrying out precipitation on an industrial scale, 1) the operation is complicated, 2) the separation is not sensitive and has low separation performance, 3) process control is difficult, and a slight difference in conditions greatly affects the degree of separation. 4) Difficult to change production scale (scale-up or scale-down), 5) low productivity, etc.
先に示した従来技術での問題点を具体的に述べると、1)酸沈殿によりボツリヌス菌体を全て破壊/除去したことを保証することが難しい、2)核酸除去を主目的とするプロタミン処理では、反応条件の設定が困難なため再現性の良い効率的な核酸の除去ができない、3)残存した核酸がクロマトグラフィー工程の分離度に大きく影響する、4)複数の種類の沈殿法を組み合わせるため製造期間が長い、等の問題がある。 Specifically, the problems with the prior art shown above are described: 1) It is difficult to guarantee that all botulinum cells have been destroyed / removed by acid precipitation, and 2) Protamine treatment mainly intended for nucleic acid removal. Therefore, it is difficult to set the reaction conditions, so it is impossible to remove nucleic acids with good reproducibility. 3) The remaining nucleic acids greatly affect the resolution of the chromatography process. 4) Combine multiple types of precipitation methods. Therefore, there are problems such as a long manufacturing period.
また、沈殿法に伴い実施する遠心分離では、1)投資コスト、2)せん断力による毒素回収率の低下、3)処理時間、4)遠心分離における高速回転によりボツリヌス毒素を含むエアロゾルの発生、5)沈殿物回収作業における作業者の毒素に対する安全性確保、6)完全自動化設備・完全インライン化設備を提供し難い、等の問題がある(Handbook of Process Chromatography Development, Manufacturing, Validation and Economics., Hagel, Elsevier Science & Technology, 2008:非特許文献4)。 In addition, in the centrifugation performed in conjunction with the precipitation method, 1) investment cost, 2) reduction in toxin recovery rate due to shear force, 3) processing time, 4) generation of aerosol containing botulinum toxin due to high speed rotation in centrifugation, 5 (6) It is difficult to provide workers with toxins during the sediment collection work, and (6) It is difficult to provide fully automated and fully inline facilities (Handbook of Process Chromatography Development, Manufacturing, Validation and Economics., Hagel) Elsevier Science & Technology, 2008: Non-Patent Document 4).
このような状況下、本発明の課題は、従来技術と比較して沈殿・遠心工程を代替する分離技術を見出すことで工程数を短縮した、より簡便なボツリヌス毒素の工業規模での精製方法を提供することにある。 Under such circumstances, the object of the present invention is to provide a simpler method for purifying botulinum toxin on an industrial scale, which reduces the number of steps by finding a separation technology that replaces the precipitation / centrifugation step as compared with the prior art. It is to provide.
そこで、本発明者等は上述の諸問題に鑑み鋭意検討した結果、沈殿法・遠心分離を代替する分離技術として、膜ろ過法に着目し、ボツリヌス毒素の精製方法を新たに見出し、本発明を完成するに至った。本発明は、ボツリヌス毒素複合体を含有するボツリヌス菌培養液から膜ろ過法とクロマトグラフィー法を組み合わせたことを特徴とするボツリヌス毒素の精製方法を提供するものである。本発明の精製方法を適用した場合、従来技術に比べて極めて簡便に、短期間にかつ効果的に安定性の高いボツリヌス毒素を大量調製することができる。以下に、本発明をさらに詳細に説明する。
(1)膜ろ過法と陰イオン交換クロマトグラフィーと陽イオン交換クロマトグラフィーを組み合わせることを特徴とするボツリヌス毒素の精製方法。
(2)以下の工程を含む、上記(1)に記載の精製方法。
(a) 膜ろ過法により、ボツリヌス菌培養液からボツリヌス菌体を除去する工程、
(b) 前記(a)工程においてボツリヌス菌体が除去されたボツリヌス毒素溶液を陰イオン交換クロマトグラフィーカラムに展開する工程、
(c) ボツリヌス毒素成分がカラムに吸着するような条件下で、前記(b)工程において得られる陰イオン交換クロマトグラフィーカラムの回収画分を陽イオン交換クロマトグラフィーカラムに展開する工程、及び
(d) 前記陽イオン交換クロマトグラフィーから不純物を洗い流し、次いでボツリヌス毒素を溶出する工程。
(3)前記膜ろ過法が、精密膜ろ過法である上記(1)または(2)に記載の精製方法。
(4)前記精密膜ろ過法に用いる膜の孔径が0.22μm以下である上記(3)に記載の精製方法。
(5)前記膜ろ過法において、前記精密膜ろ過を行う前に、前記精密膜ろ過に用いる膜よりも大きな孔径を有する膜で粗膜ろ過を行う工程をさらに含む上記(2)に記載の精製方法。
(6)前記陰イオン交換クロマトグラフィーカラム内の緩衝液のpHが4.5から6.8である、上記(1)または(2)に記載の精製方法。
(7)前記陰イオン交換クロマトグラフィーカラム内の緩衝液の塩濃度が0から0.3 mol/Lである、上記(1)または(2)に記載の精製方法。
(8)前記陰イオン交換クロマトグラフィーにおいて、ボツリヌス毒素成分をカラムに吸着させる場合、当該カラムに吸着したボツリヌス毒素を塩濃度が0から2.0 mol/Lの勾配で溶出する、上記(1)または(2)に記載の精製方法。
(9)前記(b)工程を行う前に、前記(a)工程においてボツリヌス菌体が除去されたボツリヌス毒素溶液を、当該陰イオン交換クロマトグラフィーの塩濃度及びpHの条件に調整する工程をさらに含む上記(2)に記載の精製方法。
(10)前記陽イオン交換クロマトグラフィーカラム内の緩衝液のpHが4.0から4.5である、上記(1)または(2)に記載の精製方法。
(11)前記陽イオン交換クロマトグラフィーカラム内の緩衝液の塩濃度が0から0.2 mol/Lである、上記(1)または(2)に記載の精製方法。
(12)前記(c)工程を行う前に、前記(b)工程において得られる陰イオン交換クロマトグラフィーカラムの回収画分を、当該陽イオン交換クロマトグラフィーの塩濃度及びpHの条件に調整する工程をさらに含む上記(2)に記載の精製方法。
(13)前記(d)工程において、陽イオン交換クロマトグラフィーに吸着したボツリヌス毒素を塩濃度が0.2から0.7 mol/Lの勾配で溶出する、上記(1)または(2)に記載の精製方法。
(14)(d)工程で溶出されるボツリヌス毒素がL毒素、LL毒素またはM毒素である上記(2)に記載の精製方法。
(15)前記(a)〜(d)の工程の後にさらに以下の工程を含む、上記(1)または(2)に記載のボツリヌス毒素の精製方法。
(e) ボツリヌス毒素成分がカラムに吸着し、かつ、ボツリヌス神経毒素(NTX)と無毒非HAタンパク質(NTNH)が解離するような条件下で、前記(d)工程で得られた陽イオン交換クロマトグラフィーの溶出画分を、第二陰イオン交換クロマトグラフィーカラムに展開する工程、及び
(f) 前記第二陰イオン交換クロマトグラフィーから不純物を洗い流し、次いでボツリヌス神経毒素(NTX)を溶出する工程。
(16)前記第二陰イオン交換クロマトグラフィーカラム内の緩衝液のpHが6.8から8.0である、上記(1)、(2)または(15)のいずれかに記載の精製方法。
(17)前記第二陰イオン交換クロマトグラフィーカラム内の緩衝液の塩濃度が0から0.1 mol/Lである、上記(1)、(2)または(15)のいずれかに記載の精製方法。
(18)前記(f)工程において、第二陰イオン交換クロマトグラフィーに吸着したNTXを塩濃度が0から0.3mol/Lの勾配で溶出する、上記(1)、(2)または(15)のいずれかに記載の精製方法。
(19)前記(e)工程を行う前に、前記(d)工程において得られる陽イオン交換クロマトグラフィーの溶出画分を、当該第二陰イオン交換クロマトグラフィーの塩濃度及びpHの条件に調整する工程をさらに含む上記(15)に記載の精製方法。
(20)当該ボツリヌス毒素がA型、B型、C型、D型、E型、F型及びG型ボツリヌス菌由来のボツリヌス毒素である上記(1)から(19)のいずれかに記載の精製方法。
(21)上記(1)から(20)のいずれかに記載の精製方法により精製されたボツリヌス毒素。
(22)当該ボツリヌス毒素が、LL毒素、L毒素、M毒素、またはNTXのいずれかである上記(21)に記載のボツリヌス毒素。
(23)上記(21)または(22)に記載のボツリヌス毒素を有効成分として含有する薬剤。
Therefore, as a result of intensive studies in view of the above-mentioned problems, the present inventors have found a purification method of botulinum toxin, focusing on the membrane filtration method as a separation technique to replace the precipitation method / centrifugation, and the present invention. It came to be completed. The present invention provides a method for purifying botulinum toxin characterized by combining a membrane filtration method and a chromatography method from a botulinum culture solution containing a botulinum toxin complex. When the purification method of the present invention is applied, a large amount of highly stable botulinum toxin can be prepared in a short time and effectively in a very simple manner as compared with the prior art. The present invention is described in further detail below.
(1) A method for purifying botulinum toxin, comprising combining membrane filtration, anion exchange chromatography, and cation exchange chromatography.
(2) The purification method according to (1) above, comprising the following steps.
(a) a step of removing botulinum cells from the Clostridium botulinum culture solution by a membrane filtration method,
(b) developing the botulinum toxin solution from which the botulinum cells have been removed in the step (a) on an anion exchange chromatography column,
(c) developing the recovered fraction of the anion exchange chromatography column obtained in the step (b) on a cation exchange chromatography column under conditions such that the botulinum toxin component is adsorbed on the column; and
(d) washing away impurities from the cation exchange chromatography and then eluting the botulinum toxin.
(3) The purification method according to (1) or (2), wherein the membrane filtration method is a precision membrane filtration method.
(4) The purification method according to the above (3), wherein the membrane used in the precision membrane filtration method has a pore size of 0.22 μm or less.
(5) The purification according to (2), further including a step of performing rough membrane filtration with a membrane having a larger pore size than the membrane used for the precision membrane filtration before the membrane filtration method in the membrane filtration method. Method.
(6) The purification method according to (1) or (2) above, wherein the pH of the buffer in the anion exchange chromatography column is 4.5 to 6.8.
(7) The purification method according to (1) or (2) above, wherein the salt concentration of the buffer in the anion exchange chromatography column is 0 to 0.3 mol / L.
(8) In the anion exchange chromatography, when the botulinum toxin component is adsorbed on a column, the botulinum toxin adsorbed on the column is eluted with a gradient having a salt concentration of 0 to 2.0 mol / L. The purification method according to 2).
(9) before performing the step (b), further comprising the step of adjusting the botulinum toxin solution from which the botulinum cells have been removed in the step (a) to the conditions of the salt concentration and pH of the anion exchange chromatography. The purification method according to (2) above.
(10) The purification method according to (1) or (2) above, wherein the pH of the buffer in the cation exchange chromatography column is 4.0 to 4.5.
(11) The purification method according to (1) or (2) above, wherein the salt concentration of the buffer in the cation exchange chromatography column is 0 to 0.2 mol / L.
(12) Before performing the step (c), adjusting the recovered fraction of the anion exchange chromatography column obtained in the step (b) to the salt concentration and pH conditions of the cation exchange chromatography The purification method according to (2), further comprising:
(13) The purification method according to (1) or (2) above, wherein, in the step (d), the botulinum toxin adsorbed on the cation exchange chromatography is eluted with a gradient having a salt concentration of 0.2 to 0.7 mol / L.
(14) The purification method according to the above (2), wherein the botulinum toxin eluted in the step (d) is L toxin, LL toxin or M toxin.
(15) The method for purifying the botulinum toxin according to (1) or (2), further including the following steps after the steps (a) to (d).
(e) The cation exchange chromatography obtained in the step (d) under the condition that the botulinum toxin component is adsorbed on the column and the botulinum neurotoxin (NTX) and non-toxic non-HA protein (NTNH) are dissociated. Developing the elution fraction of the chromatography on a second anion exchange chromatography column; and
(f) washing away impurities from the second anion exchange chromatography and then eluting botulinum neurotoxin (NTX);
(16) The purification method according to any one of (1), (2), and (15) above, wherein the pH of the buffer in the second anion exchange chromatography column is 6.8 to 8.0.
(17) The purification method according to any one of (1), (2), and (15) above, wherein the salt concentration of the buffer in the second anion exchange chromatography column is 0 to 0.1 mol / L.
(18) In the step (f), the NTX adsorbed on the second anion exchange chromatography is eluted with a gradient having a salt concentration of 0 to 0.3 mol / L, according to the above (1), (2) or (15) The purification method according to any one of the above.
(19) Before performing the step (e), the elution fraction of the cation exchange chromatography obtained in the step (d) is adjusted to the salt concentration and pH conditions of the second anion exchange chromatography. The purification method according to (15), further comprising a step.
(20) The purification according to any one of (1) to (19), wherein the botulinum toxin is a botulinum toxin derived from botulinum type A, B, C, D, E, F, and G. Method.
(21) A botulinum toxin purified by the purification method according to any one of (1) to (20) above.
(22) The botulinum toxin according to (21), wherein the botulinum toxin is any one of LL toxin, L toxin, M toxin, and NTX.
(23) A drug containing the botulinum toxin according to (21) or (22) as an active ingredient.
本発明によれば、沈殿法・遠心分離を伴う従来技術と比較して、膜ろ過法とクロマトグラフィー法を組み合わせることによりボツリヌス菌培養液から極めて簡便に、短期間にかつ効果的に安定性の高いボツリヌス毒素を大量調製することが可能となった。また、沈殿法・遠心分離における沈殿物の回収作業を排除したことで、製造ラインの完全自動化設備・インライン化設備の提供が可能となった。さらに、作業員の介在がなくなるともに、毒素溶液が環境に曝露されることがないため、作業者の労働安全衛生環境及びGMP準拠並びに無菌性確保を向上することを可能にした。 According to the present invention, compared with the prior art involving precipitation method / centrifugation, the membrane filtration method and the chromatographic method are combined to make the botulinum culture solution very easily, in a short time and effectively stable. It became possible to prepare a large amount of high botulinum toxin. In addition, by eliminating the sediment collection work in the precipitation method and centrifugation, it has become possible to provide fully automated equipment and in-line equipment for the production line. In addition, since the intervention of workers is eliminated and the toxin solution is not exposed to the environment, it is possible to improve the worker's occupational safety and health environment, GMP compliance, and ensuring sterility.
本発明の方法が適用されるボツリヌス菌は、A〜G型菌である。 The Clostridium botulinum to which the method of the present invention is applied is an A to G type bacterium.
本発明の膜ろ過法と陰イオン交換クロマトグラフィーと陽イオン交換クロマトグラフィーを組み合わせたボツリヌス毒素の精製方法は、具体的には以下の工程を含む。
(a) 膜ろ過法により、ボツリヌス菌培養液からボツリヌス菌体を除去する工程、
(b) 前記(a)工程においてボツリヌス菌体が除去されたボツリヌス毒素溶液を陰イオン交換クロマトグラフィーカラムに展開する工程、
(c) ボツリヌス毒素成分がカラムに吸着するような条件下で、前記(b)工程において得られる陰イオン交換クロマトグラフィーカラムの回収画分を陽イオン交換クロマトグラフィーカラムに展開する工程、及び
(d) 前記陽イオン交換クロマトグラフィーから不純物を洗い流し、次いでボツリヌス毒素を溶出する工程。
The botulinum toxin purification method combining the membrane filtration method, anion exchange chromatography and cation exchange chromatography of the present invention specifically comprises the following steps.
(a) a step of removing botulinum cells from the Clostridium botulinum culture solution by a membrane filtration method,
(b) developing the botulinum toxin solution from which the botulinum cells have been removed in the step (a) on an anion exchange chromatography column,
(c) developing the recovered fraction of the anion exchange chromatography column obtained in the step (b) on a cation exchange chromatography column under conditions such that the botulinum toxin component is adsorbed on the column; and
(d) washing away impurities from the cation exchange chromatography and then eluting the botulinum toxin.
ボツリヌス菌体、ボツリヌス毒素複合体及びその他の夾雑物を含むボツリヌス菌培養液は、例えば、阪口らの培養方法(Biochemical aspects of botulism: Purification and oral toxicities of Clostridium botulinum progenitor toxins.,21-34,Lewis GE.,1981, Academic Press,New York)に従って調製される。その一例としては、PYG培地で30℃、4日間培養する方法により得られるが、使用される培地、培養条件は目的により適宜選択される。別の培養方法として、Siegel, L.S.ら(Appl.Microbiol.Vol.38, No.4:606-611.,1979)の変法で調製した培養液を使用することもできる。 Clostridium botulinum progenitor toxins., 21-34, Lewis GE., 1981, Academic Press, New York). As an example, it is obtained by a method of culturing at 30 ° C. for 4 days in a PYG medium, and the medium and culture conditions to be used are appropriately selected depending on the purpose. As another culture method, a culture solution prepared by a modified method of Siegel, L.S. et al. (Appl. Microbiol. Vol. 38, No. 4: 606-611., 1979) can also be used.
本発明の精製方法によれば、まず、(a)工程として、得られたボツリヌス菌培養液を精密ろ過用フィルターでろ過することにより、ボツリヌス菌体を除去する。ろ過の様態に特別な制限はなく、例えばデェッドエンドろ過法、タンジェンシャルフロー法等が採用され得る。精密ろ過膜は蛋白低吸着性のもので、例えば、酢酸セルロース、親水性ポリエーテルスルホン、親水性ポリフッ化ビニリデンン(PVDF)等の市販のろ過膜を使用することができる。また、精密ろ過膜への負荷を軽減する目的から、精密ろ過の前に比較的膜孔径の大きな膜でろ過してもよい。膜孔径は、特に限定されるものではないが、最終ろ過膜の膜孔径は0.1〜0.22 μm、好ましくは、0.2μmであり、フィルターの完全性試験によりボツリヌス菌体の除去を保証できるものでなければならない。 According to the purification method of the present invention, first, as a step (a), the obtained Clostridium botulinum culture solution is filtered with a filter for microfiltration to remove botulinum cells. There is no particular restriction on the mode of filtration, and for example, a dead end filtration method, a tangential flow method, or the like can be employed. The microfiltration membrane has low protein adsorption, and for example, commercially available filtration membranes such as cellulose acetate, hydrophilic polyethersulfone, and hydrophilic polyvinylidene fluoride (PVDF) can be used. Further, for the purpose of reducing the load on the microfiltration membrane, the membrane may be filtered with a membrane having a relatively large pore size before the microfiltration. The membrane pore size is not particularly limited, but the membrane pore size of the final filtration membrane is 0.1 to 0.22 μm, preferably 0.2 μm, and removal of botulinum cells should be ensured by a filter integrity test. I must.
(a)工程で得られたボツリヌス菌体を除去した夾雑物を含むボツリヌス毒素複合体溶液を(b)工程の陰イオン交換クロマトグラフィーカラムに展開する前に、当該ボツリヌス毒素複合体溶液を(b)工程における陰イオン交換クロマトグラフィーの塩濃度、pHの条件に調整する。本調整は、例えば、工業用タンジェンシャルフロー式限外ろ過装置で濃縮及びバッファー交換を行い、蛋白濃度、塩濃度及びpHを調整する。限外ろ過膜の膜孔径としては、10〜100 KDaであればよい。 Before the botulinum toxin complex solution containing contaminants from which the botulinum cells obtained in step (a) have been removed is developed on the anion exchange chromatography column in step (b), the botulinum toxin complex solution (b) ) Adjust the salt concentration and pH of the anion exchange chromatography in the process. In this adjustment, for example, concentration and buffer exchange are performed with an industrial tangential flow ultrafiltration apparatus to adjust protein concentration, salt concentration, and pH. The membrane pore diameter of the ultrafiltration membrane may be 10 to 100 KDa.
次に(b)工程として、調製したボツリヌス毒素複合体溶液を、緩衝液等で平衡化した陰イオン交換樹脂に展開し、核酸やその他の不純物を吸着除去する。当該緩衝液としては、塩濃度が0.3 mol/L以下で、pHが4.5〜6.8の範囲、好適には塩類濃度が0.1mol/LでpHが6.0であれば特に限定されないが、例えばクエン酸またはクエン酸・リン酸混合緩衝液は好適な一例である。また、核酸が吸着除去できれば、ボツリヌス毒素複合体は吸着・非吸着のいずれでもよい。好適には、核酸は吸着除去し、ボツリヌス毒素複合体は非吸着にする。ボツリヌス毒素複合体をカラムに吸着させる場合は、0から2.0mol/Lの勾配の塩濃度の同じ緩衝液で溶出させる。使用する陰イオン交換樹脂は、DEAE Sepharose Fast Flow(GEヘルスケア)、Q Sepharose Fast Flow(GEヘルスケア)、CAPTO-Q(GEヘルスケア)、DEAEトヨパール(東ソー)、QAEトヨパール(東ソー)等の市販の陰イオン交換樹脂を使用することができる。塩の種類は限定されず、イオン強度が上記濃度の塩化ナトリウムに相当する濃度で使用すればよい。 Next, as the step (b), the prepared botulinum toxin complex solution is developed on an anion exchange resin equilibrated with a buffer solution or the like to adsorb and remove nucleic acids and other impurities. The buffer solution is not particularly limited as long as the salt concentration is 0.3 mol / L or less and the pH is in the range of 4.5 to 6.8, preferably the salt concentration is 0.1 mol / L and the pH is 6.0. A citrate / phosphate mixed buffer is a suitable example. The botulinum toxin complex may be either adsorbed or non-adsorbed as long as the nucleic acid can be adsorbed and removed. Preferably, the nucleic acid is removed by adsorption and the botulinum toxin complex is non-adsorbed. When the botulinum toxin complex is adsorbed to the column, it is eluted with the same buffer with a salt concentration with a gradient of 0 to 2.0 mol / L. The anion exchange resin used is DEAE Sepharose Fast Flow (GE Healthcare), Q Sepharose Fast Flow (GE Healthcare), CAPTO-Q (GE Healthcare), DEAE Toyopearl (Tosoh), QAE Toyopearl (Tosoh), etc. Commercially available anion exchange resins can be used. The type of salt is not limited, and the salt may be used at a concentration corresponding to sodium chloride having the above-mentioned concentration.
(b)工程で得られたボツリヌス毒素複合体溶液を(c)工程の陽イオン交換クロマトグラフィーに展開する前に、当該ボツリヌス毒素複合体溶液を当該陽イオン交換クロマトグラフィーの塩濃度、pHの条件に調整する。本調整は、例えば、工業用タンジェンシャルフロー式限外ろ過装置で濃縮及びバッファー交換を行い、蛋白濃度、塩濃度及びpHを調整する。 Before the botulinum toxin complex solution obtained in step (b) is developed in the cation exchange chromatography of step (c), the botulinum toxin complex solution is subjected to the salt concentration and pH conditions of the cation exchange chromatography. Adjust to. In this adjustment, for example, concentration and buffer exchange are performed with an industrial tangential flow ultrafiltration apparatus to adjust protein concentration, salt concentration, and pH.
次に(c)工程として、(b)工程で得られたボツリヌス毒素複合体溶液を陽イオン交換樹脂に展開し、ボツリヌス毒素複合体を吸着させる。当該陽イオン交換樹脂は予め塩濃度が0.2 mol/L以下でpHが4.0〜4.5の範囲、好適には塩濃度が0.2 mol/LでpHが4.2の酢酸緩衝液等の緩衝液で平衡化しておく。使用する緩衝液は、塩濃度が0.2 mol/L以下でかつpHが4.0〜4.5の範囲であればよく、特に酢酸緩衝液に限定されるものではない。ボツリヌス毒素複合体が吸着できれば、夾雑する蛋白質は吸着・非吸着のいずれでもよい。好適には、ボツリヌス毒素複合体を吸着し、夾雑する蛋白質は非吸着にする。前記緩衝液で洗浄後、塩濃度が0.2〜0.7 mol/Lの勾配の同じ緩衝液でリニアグラジェントによりボツリヌス毒素複合体を溶出し分画する。使用する陽イオン交換樹脂は、SP Sepharose Fast Flow(GEヘルスケア)、CM Sepharose Fast Flow(GEヘルスケア)、S Sepharose Fast Flow(GEヘルスケア)、SP トヨパール(東ソー)等の市販の陽イオン交換樹脂を使用することができる。塩の種類は限定されず、イオン強度が上記濃度の塩化ナトリウムに相当する濃度で使用すればよい。 Next, as step (c), the botulinum toxin complex solution obtained in step (b) is developed on a cation exchange resin to adsorb the botulinum toxin complex. The cation exchange resin is previously equilibrated with a buffer solution such as an acetate buffer solution having a salt concentration of 0.2 mol / L or less and a pH of 4.0 to 4.5, preferably a salt concentration of 0.2 mol / L and a pH of 4.2. deep. The buffer solution to be used is not particularly limited to the acetate buffer solution, as long as the salt concentration is 0.2 mol / L or less and the pH is in the range of 4.0 to 4.5. As long as the botulinum toxin complex can be adsorbed, the contaminating protein may be adsorbed or non-adsorbed. Preferably, the botulinum toxin complex is adsorbed and contaminating proteins are non-adsorbed. After washing with the buffer solution, the botulinum toxin complex is eluted and fractionated with a linear gradient using the same buffer solution with a salt concentration of 0.2 to 0.7 mol / L. Cation exchange resins used are commercially available cation exchanges such as SP Sepharose Fast Flow (GE Healthcare), CM Sepharose Fast Flow (GE Healthcare), S Sepharose Fast Flow (GE Healthcare), SP Toyopearl (Tosoh) Resin can be used. The type of salt is not limited, and the salt may be used at a concentration corresponding to sodium chloride having the above-mentioned concentration.
以上の方法により、夾雑する蛋白質が除去され、高度に精製されたボツリヌス毒素複合体(L毒素、LL毒素、M毒素)が得られる。さらに、より純度の高いボツリヌス毒素複合体が要求される場合は、更なるクロマトグラフィー、例えば、イオン交換クロマトグラフィー、ゲルろ過クロマトグラフィー、疎水クロマトグラフィー、アフィニティークロマトグラフィー等の方法、あるいはそれらを組み合わせることにより高度に精製することができる。 By the above method, contaminating proteins are removed, and highly purified botulinum toxin complex (L toxin, LL toxin, M toxin) is obtained. Furthermore, when a higher purity botulinum toxin complex is required, further chromatography, for example, ion exchange chromatography, gel filtration chromatography, hydrophobic chromatography, affinity chromatography, etc., or a combination thereof may be used. Can be highly purified.
得られたボツリヌス毒素複合体溶液からNTXを得るためには、さらに、以下の工程を行い、当該ボツリヌス毒素複合体から無毒性非HA蛋白(NTNH)を解離・除去しなければならない。
(e) ボツリヌス毒素成分がカラムに吸着し、かつ、ボツリヌス神経毒素(NTX)と無毒非HAタンパク質(NTNH)が解離するような条件下で、前記(d)工程で得られた陽イオン交換クロマトグラフィーの溶出画分を、第二陰イオン交換クロマトグラフィーカラムに展開する工程、及び
(f) 前記第二陰イオン交換クロマトグラフィーから不純物を洗い流し、次いでボツリヌス神経毒素(NTX)を溶出する工程。
In order to obtain NTX from the obtained botulinum toxin complex solution, the following steps must be further performed to dissociate and remove non-toxic non-HA protein (NTNH) from the botulinum toxin complex.
(e) The cation exchange chromatography obtained in the step (d) under the condition that the botulinum toxin component is adsorbed on the column and the botulinum neurotoxin (NTX) and non-toxic non-HA protein (NTNH) are dissociated. Developing the elution fraction of the chromatography on a second anion exchange chromatography column; and
(f) washing away impurities from the second anion exchange chromatography and then eluting botulinum neurotoxin (NTX);
(e)工程として、ボツリヌス毒素複合体溶液を陰イオン交換樹脂に展開し、NTXを吸着させる。当該陰イオン交換樹脂は、予め塩濃度が0.1 mol/L以下でpHが6.8〜8.0の範囲、好適には塩濃度が0 mol/LでpHが7.5のリン酸またはトリス緩衝液等の緩衝液で平衡化しておく。使用する緩衝液は、塩濃度が0.1 mol/L以下でかつpHが6.8〜8.0の範囲であればよく、特にリン酸またはトリス緩衝液に限定されるものではない。NTX及びNTNHが吸着できれば、夾雑する蛋白質は吸着・非吸着のいずれでもよい。好適には、NTX及びNTNHを吸着し、夾雑する蛋白質は非吸着する。 (e) As a step, the botulinum toxin complex solution is developed on an anion exchange resin to adsorb NTX. The anion exchange resin has a salt concentration of 0.1 mol / L or less and a pH in the range of 6.8 to 8.0, preferably a buffer solution such as phosphate or Tris buffer having a salt concentration of 0 mol / L and a pH of 7.5. Equilibrate with. The buffer solution to be used may be a salt concentration of 0.1 mol / L or less and a pH in the range of 6.8 to 8.0, and is not particularly limited to phosphate or Tris buffer. As long as NTX and NTNH can be adsorbed, the contaminating protein may be either adsorbed or non-adsorbed. Preferably, NTX and NTNH are adsorbed, and contaminating proteins are not adsorbed.
次に(f)工程として、NTX及びNTNHが吸着されたカラムを前記緩衝液で洗浄後、塩濃度が0〜0.3 mol/Lの勾配の同じ緩衝液でリニアグラジェントにより高度精製NTXを溶出し分画する。使用する陰イオン交換樹脂は、DEAE Sepharose Fast Flow(GEヘルスケア)、Q Sepharose Fast Flow(GEヘルスケア)、Capto-Q(GEヘルスケア)、DEAE トヨパール(東ソー)、QAE トヨパール(東ソー)等の市販の陰イオン交換樹脂を使用することができる。塩の種類は限定されず、イオン強度が上記濃度の塩化ナトリウムに相当する濃度で使用すればよい。 Next, in step (f), the column on which NTX and NTNH are adsorbed is washed with the buffer solution, and then highly purified NTX is eluted with a linear gradient using the same buffer solution with a salt concentration of 0 to 0.3 mol / L. Fractionation. The anion exchange resin used is DEAE Sepharose Fast Flow (GE Healthcare), Q Sepharose Fast Flow (GE Healthcare), Capto-Q (GE Healthcare), DEAE Toyopearl (Tosoh), QAE Toyopearl (Tosoh), etc. Commercially available anion exchange resins can be used. The type of salt is not limited, and the salt may be used at a concentration corresponding to sodium chloride having the above-mentioned concentration.
また、上記(e)工程において、陰イオン交換樹脂に展開する前に、予めNTXとNTNHを解離させても良い。例えば、M毒素から成るボツリヌス毒素複合体溶液を、限外ろ過法により、塩濃度が0〜0.1 mol/LでpHが6.8〜8.0の範囲、好適には塩濃度が0 mol/LでpH7.5のリン酸またはトリス緩衝液等でバッファー交換することで、NTXとNTNHを解離させる。本限外ろ過工程は、工業用タンジェンシャルフロー式限外ろ過装置等を用いて行うことができる。本工程に使用する限外ろ過膜は特に限定するものではなく、ハイドロザルト、親水性ポリエーテルスルホン等の市販の限外ろ過膜を使用することができる。膜孔径は、10〜30 KDaであればよい。 In the step (e), NTX and NTNH may be dissociated in advance before being developed into an anion exchange resin. For example, a botulinum toxin complex solution consisting of M toxin is subjected to ultrafiltration by a salt concentration of 0 to 0.1 mol / L and a pH of 6.8 to 8.0, preferably a salt concentration of 0 mol / L and a pH of 7. NTX and NTNH are dissociated by exchanging the buffer with 5 phosphate or Tris buffer. This ultrafiltration step can be performed using an industrial tangential flow ultrafiltration apparatus or the like. The ultrafiltration membrane used in this step is not particularly limited, and commercially available ultrafiltration membranes such as hydrozalto and hydrophilic polyethersulfone can be used. The membrane pore diameter may be 10 to 30 KDa.
上記の工程により得られた高度精製ボツリヌス毒素を医薬品として使用する場合、薬学的に使用可能な添加剤を使用する。例えば、安定剤としては、アルブミン、アミノ酸、糖類、界面活性剤等を使用することでき、好適なアミノ酸はアルギニン一塩酸塩である。また、当該高度精製ボツリヌス毒素を長期保存する際は、凍結保存することができる。 When the highly purified botulinum toxin obtained by the above process is used as a medicine, a pharmaceutically usable additive is used. For example, albumin, amino acids, sugars, surfactants and the like can be used as stabilizers, and a preferred amino acid is arginine monohydrochloride. Further, when the highly purified botulinum toxin is stored for a long time, it can be stored frozen.
以下に実施例において本発明を具体的に説明するが、本発明は実施例の記載に何ら限定されるものではない。 EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to the description of the examples.
《試験例:試験及び方法》
(1)SDS-PAGE試験
本法では高度精製NTX溶液またはボツリヌス毒素複合体溶液の純度を調べる。Laemmliらの方法(Nature 227:680-685)を一部改変してSDS-PAGE試験を実施した。マーカーはプレシジョンplusブルーステインド(Bio-Rad Laboratories, Inc.)を使用した。毒素溶液をDTT(ナカライテスク)で還元処理した後、10%単一濃度または5%〜20%のリニアグラジエントゲル(ATTO)で電気泳動した。電気泳動後は、クマシーブリリアントブルーR250(ナカライ)で染色した。
(2)マウス腹腔内投与LD50試験(i.p.法)
本法ではボツリヌス毒素溶液の毒素活性を調べる。ボツリヌス毒素をマウス腹腔内に投与し、その後4日間の累積致死率から50%致死量(LD50)を推定した。毒素溶液を希釈し、マウス一匹あたり希釈検体0.5mLを投与した。Probit法によりLD50を算出した。
(3)マウス尾静脈投与試験
本法はボツリヌス毒素の毒素活性測定法として一般的に使用されるマウス腹腔内投与LD50試験(i.p.法)あるいはラットCMAP法(WO 2007/125604 A1)を代替する簡便法である。高濃度の毒素をマウス尾静脈に投与し生存時間を調べ、事前に作成した生存時間(分)と毒素活性濃度(LD50/mL)との回帰直線から、検体の毒素活性濃度を算出した。
(4)蛋白濃度試験(ローリー法)
本法ではボツリヌス毒素溶液の蛋白濃度を調べる。DCプロテインアッセイキット(BIO-RAD)を用いた。検量線用溶液にはウシ血清アルブミン(PIERCE)を用いた。
(5)サイズ排除HPLC分析(SEC-HPLC)
本法では高度精製NTX溶液の純度を調べる。TSK-GEL G3000SWXL (7.8 mm×300 mm、東ソー)を0.2 mol/L塩化ナトリウム及び0.05w/v%アジ化ナトリウムを含む50 mmol/Lリン酸ナトリウム、pH 5.8で平衡化し、流速0.25 mL/minで分析した。全エリア面積に占めるNTXのエリア面積の割合(%)を純度として算出した。
(6)核酸含量試験
本法では高度精製NTX溶液に含まれる核酸の濃度を調べる。CyQUANT Cell Proliferation Assay Kit(Molecular Probes)を用いた。
(7)エンドトキシン試験
本法では高度精製NTX溶液に含まれるエンドトキシンの濃度を調べる。日本薬局方15改正 エンドトキシン試験に準じて試験した。
<< Test Example: Test and Method >>
(1) SDS-PAGE test In this method, the purity of highly purified NTX solution or botulinum toxin complex solution is examined. An SDS-PAGE test was performed by partially modifying the method of Laemmli et al. (Nature 227: 680-685). As a marker, Precision plus blue stained (Bio-Rad Laboratories, Inc.) was used. The toxin solution was reduced with DTT (Nacalai Tesque) and then electrophoresed on a 10% single concentration or 5-20% linear gradient gel (ATTO). After electrophoresis, it was stained with Coomassie Brilliant Blue R250 (Nacalai).
(2) Mouse intraperitoneal LD 50 test (ip method)
In this method, the toxin activity of the botulinum toxin solution is examined. Botulinum toxin was administered intraperitoneally to mice, and 50% lethal dose (LD 50 ) was estimated from the cumulative lethality over 4 days. The toxin solution was diluted and 0.5 mL of diluted sample was administered per mouse. LD 50 was calculated by the Probit method.
(3) Mouse tail vein administration test This method replaces the mouse intraperitoneal LD 50 test (ip method) or rat CMAP method (WO 2007/125604 A1), which is commonly used as a method for measuring toxin activity of botulinum toxin. It is a simple method. A high concentration of toxin was administered to the tail vein of the mouse, and the survival time was examined. The toxin activity concentration of the specimen was calculated from the regression line between the survival time (min) and the toxin activity concentration (LD 50 / mL) prepared in advance.
(4) Protein concentration test (Raleigh method)
In this method, the protein concentration of the botulinum toxin solution is examined. A DC protein assay kit (BIO-RAD) was used. Bovine serum albumin (PIERCE) was used as the calibration curve solution.
(5) Size exclusion HPLC analysis (SEC-HPLC)
In this method, the purity of highly purified NTX solution is examined. TSK-GEL G3000SW XL (7.8 mm x 300 mm, Tosoh) was equilibrated with 50 mmol / L sodium phosphate containing 0.2 mol / L sodium chloride and 0.05 w / v% sodium azide, pH 5.8, and a flow rate of 0.25 mL / Analyzed in min. The percentage (%) of the area area of NTX in the total area area was calculated as purity.
(6) Nucleic acid content test In this method, the concentration of nucleic acid contained in highly purified NTX solution is examined. CyQUANT Cell Proliferation Assay Kit (Molecular Probes) was used.
(7) Endotoxin test In this method, the concentration of endotoxin contained in the highly purified NTX solution is examined. Tested according to the Japanese Pharmacopoeia 15 revision endotoxin test.
《比較例1:従来技術によるA2型M毒素の分離・精製》
A2型ボツリヌス菌Chiba-H株を阪口らの方法(Biochemical aspects of botulism: Purification and oral toxicities of Clostridium botulinum progenitor toxins.,21-34,Lewis GE.,1981, Academic Press,New York)で培養した。96時間後の培養液30 LにpH3.5になるまで3 N硫酸を添加し、室温で一晩静置した。沈殿物を0.2 mol/Lリン酸緩衝液、pH6.0に溶解し、37℃で1時間抽出処理した。抽出液に硫酸アンモニウムを添加し、4℃で一晩静置した。遠心分離により回収した沈殿を50 mmol/L酢酸緩衝液、pH4.2で溶解した。溶解液を透析チューブに入れ、前記緩衝液に4℃で2日間透析した。遠心分離により回収した沈殿を0.5 mol/L塩化ナトリウムを含む50 mmol/L酢酸緩衝液、pH4.2で溶解した。この溶解液に等量の0.5 mol/L塩化ナトリウムを含む50 mmol/Lクエン酸緩衝液、pH4.2を加えた後、プロタミン処理した。遠心分離により沈殿(核酸)を除去した上清を、予め0.2 mol/Lを含む50 mmol/L酢酸緩衝液、pH4.2で平衡化したSP Sepharose Fast Flowへ展開し吸着させた。前記緩衝液で洗浄後、0.7 mol/L塩化ナトリウムを含む同じ酢酸緩衝液でリニアグラジエントにより溶出した。溶出画分の第一ピークを分画し、回収した溶液を撹拌式限外ろ過装置(アミコン、YM-30)で濃縮した。この濃縮液を予め0.2 mol/L塩化ナトリウムを含む50 mmol/L酢酸バッファー、pH6.0で平衡化したSephadex G-200へ展開した。溶出第二ピークを分画し、A2型M毒素を回収した。回収したA2型M毒素溶液を撹拌式限外ろ過装置(アミコン、YM-30)で濃縮した。
Comparative Example 1: Separation and purification of A2 type M toxin by conventional technology
Type A2 Clostridium botulinum strain Chiba-H was cultured by the method of Sakaguchi et al. (Biochemical aspects of botulism: Purification and oral toxicities of Clostridium botulinum progenitor toxins., 21-34, Lewis GE., 1981, Academic Press, New York). 3N sulfuric acid was added to 30 L of the culture solution after 96 hours until pH 3.5, and the mixture was allowed to stand overnight at room temperature. The precipitate was dissolved in 0.2 mol / L phosphate buffer, pH 6.0, and extracted at 37 ° C. for 1 hour. Ammonium sulfate was added to the extract and left at 4 ° C. overnight. The precipitate recovered by centrifugation was dissolved in 50 mmol / L acetate buffer, pH 4.2. The lysate was placed in a dialysis tube and dialyzed against the buffer at 4 ° C. for 2 days. The precipitate collected by centrifugation was dissolved in 50 mmol / L acetate buffer containing 0.5 mol / L sodium chloride, pH 4.2. A 50 mmol / L citrate buffer solution, pH 4.2, containing an equal amount of 0.5 mol / L sodium chloride was added to the lysate, and then treated with protamine. The supernatant from which the precipitate (nucleic acid) was removed by centrifugation was developed and adsorbed on SP Sepharose Fast Flow equilibrated in advance with 50 mmol / L acetate buffer containing 0.2 mol / L, pH 4.2. After washing with the buffer, elution was performed with a linear gradient using the same acetate buffer containing 0.7 mol / L sodium chloride. The first peak of the eluted fraction was fractionated, and the collected solution was concentrated with a stirring type ultrafiltration device (Amicon, YM-30). This concentrated solution was developed on Sephadex G-200 previously equilibrated with 50 mmol / L acetic acid buffer containing 0.2 mol / L sodium chloride, pH 6.0. The eluted second peak was fractionated to recover A2 type M toxin. The collected A2-type M toxin solution was concentrated with a stirring type ultrafiltration device (Amicon, YM-30).
《比較例2:従来技術によるA2型NTXの分離・精製》
比較例1にて濃縮したA2型M毒素溶液を透析チューブに入れ、10 mmol/Lリン酸緩衝液、pH7.5で4℃、一晩透析した。透析後液を予め10 mmol/Lリン酸緩衝液、pH7.5で平衡化したDEAE Sepharose Fast Flowに展開し吸着させた。前記緩衝液で洗浄後、0.3 mol/L塩化ナトリウムを含む同じ酢酸緩衝液でリニアグラジエントにより溶出した。溶出画分の第一ピークを分画し、回収した溶液を撹拌式限外ろ過装置(アミコン、YM-10)で濃縮した後、10 mmol/Lリン酸緩衝液、pH7.5でバッファー交換した。これを高度精製A2型NTX溶液とした。培養液から高度精製A2型NTX溶液を精製するまでの製造期間は7日間であった。本試験より得られた結果を表2に示す。
<< Comparative Example 2: Separation and purification of A2 type NTX by conventional technology >>
The A2 type M toxin solution concentrated in Comparative Example 1 was placed in a dialysis tube and dialyzed overnight at 4 ° C. with 10 mmol / L phosphate buffer, pH 7.5. The dialyzed solution was developed and adsorbed on DEAE Sepharose Fast Flow equilibrated in advance with 10 mmol / L phosphate buffer, pH 7.5. After washing with the buffer solution, elution was performed with a linear gradient using the same acetate buffer solution containing 0.3 mol / L sodium chloride. The first peak of the eluted fraction was fractionated, and the collected solution was concentrated with a stirring ultrafiltration device (Amicon, YM-10), and then buffer exchanged with 10 mmol / L phosphate buffer, pH 7.5. . This was designated as highly purified A2 type NTX solution. The production period from the culture solution to the purification of the highly purified A2-type NTX solution was 7 days. The results obtained from this test are shown in Table 2.
《実施例1:0.2 μmフィルターによるボツリヌス菌培養液の除菌ろ過》
A2型ボツリヌス菌培養液30 Lを6,700×g、4℃、20分間で遠心分離し、遠心上清を回収した。この培養上清液をタンジェンシャルフロー式ろ過装置(ザルトリウス)を用いて膜孔径0.2 μmのハイドロザルト(ザルトリウス)で除菌ろ過した。ろ過処理量は、25 L/m2/hrであった。
Example 1: Bacterial Clostridium Clostridium Botulinum Filtration with 0.2 μm Filter
30 L of the A2-type Clostridium botulinum culture solution was centrifuged at 6,700 × g and 4 ° C. for 20 minutes, and the centrifuged supernatant was recovered. The culture supernatant was sterilized and filtered with hydrosalt (Sartorius) having a membrane pore size of 0.2 μm using a tangential flow filtration device (Sartorius). The filtration throughput was 25 L / m 2 / hr.
《実施例2:粗ろ過及び除菌ろ過に関する検討》
除菌ろ過の処理量を高めることを目的として、事前に比較的膜孔径の大きい膜でろ過する粗ろ過工程の導入について検討した。粗ろ過用膜として、ゼータプラス(CUN0)及びゼータカーボンR53SLP(CUNO)を使用した。ゼータプラスではろ過精度の異なる4種類の膜を使用した。ろ過精度は90LA、60LA、30LA及び05SPの順で高い。また、除菌ろ過用膜として、0.65 μmザルトクリーンCA(ザルトリウス)及び0.2 μmザルトポア2(ザルトリウス)を連結したフィルターを使用した。A2型ボツリヌス菌Chiba-H株の培養液30 Lを各粗ろ過用膜及び除菌濾過用膜で定圧ろ過(0.03 MPa)し、ろ過量を調べた。本試験で得られた結果を表1に示す。粗ろ過フィルターを導入することで、0.2 μmフィルターによる除菌ろ過の処理量は、実施例1(25 L/m2/hr)に比べて40倍になった。
<< Example 2: Study on coarse filtration and sterilization filtration >>
For the purpose of increasing the throughput of sterilization filtration, the introduction of a coarse filtration step in which filtration was performed with a membrane having a relatively large membrane pore diameter was studied in advance. Zeta plus (CUN0) and zeta carbon R53SLP (CUNO) were used as membranes for rough filtration. Zeta Plus used four types of membranes with different filtration accuracy. Filtration accuracy is high in the order of 90LA, 60LA, 30LA and 05SP. Further, a filter in which 0.65 μm Sarto Clean CA (Sartorius) and 0.2 μm Sartopore 2 (Sartorius) were connected was used as a membrane for sterilization filtration. 30 L of a culture solution of A2-type Clostridium botulinum Chiba-H strain was subjected to constant pressure filtration (0.03 MPa) with each membrane for coarse filtration and membrane for sterilization filtration, and the amount of filtration was examined. The results obtained in this test are shown in Table 1. By introducing the coarse filter, the amount of sterilization filtration by the 0.2 μm filter was 40 times that of Example 1 (25 L / m 2 / hr).
《実施例3:本発明によるA2型M毒素の分離・精製》
A2型ボツリヌス菌Chiba-H株をSiegel, L.S.ら(Appl.Microbiol.Vol.38, No.4:606-611.,1979)の方法を一部改変して培養した。48時間後の培養液 30 Lをゼータプラスフィルター(05SP)とゼータプラスフィルターマキシマイザー(30LA+60LA)を連結したフィルターで0.03 MPaの圧力で粗ろ過した。このろ過液を0.65 μmザルトクリーンCA及び0.2 μmザルトポア2を連結したフィルターで0.03 MPaの圧力で除菌ろ過した。ろ過後に0.2 μmフィルターが完全性試験に適合することを確認した。ボツリヌス菌体を除去したろ過液をタンジェンシャルフロー式限外ろ過装置(ザルトリウス、30 KDa)で濃縮した後、0.1 mol/L塩化ナトリウムを含む20 mmol/Lクエン酸・リン酸混合緩衝液、pH6.0でバッファー交換した。この濃縮液を、予め0.1 mol/L塩化ナトリウムを含む20 mmol/Lクエン酸・リン酸混合緩衝液、pH6.0で平衡化したQ Sepharose Fast Flow(GEヘルスケア)に展開し、さらに使用したカラムクロマトグラフィーのゲル量(CV)の約7倍量(7CV)の前記緩衝液で洗浄し、非吸着画分を集めた。本工程で核酸を効果的に除去すると同時に粗精製を達成することができた。集めた非吸着画分をタンジェンシャルフロー式限外ろ過装置(ザルトリウス、30 KDa)で濃縮した後、0.2 mol/L塩化ナトリウムを含む50 mmol/L酢酸緩衝液、pH4.2でバッファー交換した。この濃縮液を、予め0.2 mol/L塩化ナトリウムを含む50 mmol/L酢酸緩衝液、pH4.2で平衡化したSP Sepharose Fast Flow(GEヘルスケア)に展開し吸着させた。次に、約10CVの前記緩衝液で洗浄後、0.7 mol/L塩化ナトリウムを含む同じ酢酸緩衝液でリニアグラジエントにより溶出した。溶出画分の第一ピークを分画し、A2型M毒素を回収した。回収したA2型M毒素溶液をタンジェンシャルフロー式限外ろ過装置(ザルトリウス、30 KDa)で濃縮した後、0.2 mol/L塩化ナトリウムを含む50 mmol/L酢酸緩衝液、pH6.0でバッファー交換した。得られたA2型M毒素溶液をSDS-PAGE試験した結果、M毒素以外のバンドを認めなかった。
Example 3: Separation and purification of A2 type M toxin according to the present invention
A2-type Clostridium botulinum Chiba-H strain was cultured by partially modifying the method of Siegel, LS et al. (Appl. Microbiol. Vol. 38, No. 4: 606-611., 1979). After 48 hours, 30 L of the culture solution was coarsely filtered at a pressure of 0.03 MPa with a filter in which a zeta plus filter (05SP) and a zeta plus filter maximizer (30LA + 60LA) were connected. This filtrate was subjected to sterilization filtration at a pressure of 0.03 MPa through a filter in which 0.65 μm Zaltclean CA and 0.2 μm Zaltpore 2 were connected. After filtration, the 0.2 μm filter was confirmed to meet the integrity test. The filtrate from which botulinum cells have been removed is concentrated using a tangential flow ultrafiltration device (Sartorius, 30 KDa), and then 20 mmol / L citric acid / phosphate mixed buffer containing 0.1 mol / L sodium chloride, pH 6 The buffer was exchanged at 0.0. This concentrated solution was developed and used further in Q Sepharose Fast Flow (GE Healthcare) equilibrated with 20 mmol / L citrate / phosphate mixed buffer containing 0.1 mol / L sodium chloride in advance, pH 6.0. The non-adsorbed fraction was collected by washing with about 7 times (7 CV) of the gel amount (CV) of column chromatography. In this step, the nucleic acid was effectively removed, and at the same time, crude purification could be achieved. The collected non-adsorbed fractions were concentrated with a tangential flow ultrafiltration apparatus (Sartorius, 30 KDa), and then buffer exchanged with 50 mmol / L acetate buffer containing 0.2 mol / L sodium chloride, pH 4.2. This concentrated solution was developed and adsorbed on SP Sepharose Fast Flow (GE Healthcare) previously equilibrated with 50 mmol / L acetate buffer containing 0.2 mol / L sodium chloride, pH 4.2. Next, after washing with about 10 CV of the buffer solution, elution was performed with a linear gradient using the same acetate buffer solution containing 0.7 mol / L sodium chloride. The first peak of the eluted fraction was fractionated to recover A2 type M toxin. The collected A2-type M toxin solution was concentrated with a tangential flow ultrafiltration device (Sartorius, 30 KDa), and then buffer exchanged with 50 mmol / L acetate buffer containing 0.2 mol / L sodium chloride, pH 6.0. . As a result of SDS-PAGE test of the obtained A2-type M toxin solution, no band other than M toxin was observed.
《実施例4:本発明によるA2型NTXの分離・精製》
更に、実施例3にて回収したA2型M毒素溶液をタンジェンシャルフロー式限外ろ過装置(ザルトリウス、30 KDa)で濃縮した後、10 mmol/Lリン酸緩衝液、pH7.5でバッファー交換した。この濃縮液を、予め10 mmol/Lリン酸緩衝液、pH7.5で平衡化したDEAE Sepharose Fast Flow(GEヘルスケア)に展開し、吸着させた。次に、約10CVの前記緩衝液で洗浄後、0.3 mol/L塩化ナトリウムを含む同じリン酸緩衝液でリニアグラジエントにより溶出した。溶出液の第一ピークを分画し、回収した。これを高度精製A2型NTX溶液とした。培養液から高度精製A2型NTX溶液を精製するまでの製造期間は3日間であった。本試験で得られた結果を表2に示す。その結果、従来技術と比較して、極めて少ない工程数で高純度・高比活性のNTXを大量調製できることが示された。作業者による沈殿物の回収作業を排除したことから、製造ラインを完全自動化設備及びインライン化設備の提供が可能であることが示された。作業者が高濃度のボツリヌス菌またはボツリヌス毒素に曝露する機会を排除・低減したことにより、作業者の労働安全性を著しく向上できること及びGMP準拠及び無菌性確保を向上できることが期待された。さらに、従来技術に比べて製造期間を著しく短縮し、効率的に工業規模で高度精製NTXを製造することが可能であることが示された。
Example 4: Separation and purification of A2 type NTX according to the present invention
Furthermore, after concentrating the A2 type M toxin solution collect | recovered in Example 3 with a tangential flow type | formula ultrafiltration apparatus (Sartorius, 30 KDa), buffer exchange was carried out by 10 mmol / L phosphate buffer and pH7.5. . This concentrated solution was developed and adsorbed on DEAE Sepharose Fast Flow (GE Healthcare) previously equilibrated with 10 mmol / L phosphate buffer, pH 7.5. Next, after washing with about 10 CV of the buffer solution, elution was performed with a linear gradient using the same phosphate buffer solution containing 0.3 mol / L sodium chloride. The first peak of the eluate was fractionated and collected. This was designated as highly purified A2 type NTX solution. The production period from the culture solution to purification of the highly purified A2 type NTX solution was 3 days. The results obtained in this test are shown in Table 2. As a result, it was shown that NTX with high purity and high specific activity can be prepared in large quantities with a very small number of steps as compared with the prior art. It was shown that it was possible to provide fully automated equipment and in-line equipment for the production line because the operator did not collect sediment. By eliminating / reducing the opportunity for workers to be exposed to high concentrations of Clostridium botulinum or botulinum toxin, it was expected that the worker's occupational safety could be significantly improved and that GMP compliance and sterility assurance could be improved. Furthermore, it was shown that the production period can be significantly shortened compared to the prior art, and highly purified NTX can be efficiently produced on an industrial scale.
《実施例5:本発明によるA1型M毒素の分離・精製》
A1型ボツリヌス菌Hall株をSiegel, L.S.ら(Appl.Microbiol.Vol.38, No.4:606-611.,1979)の方法を一部改変して培養した。48時間後の培養液30 Lを実施例3と同様の方法で菌体除去、濃縮、バッファー交換、Q Sepharose Fast Flowクロマトグラフィー、SP Sepharose Fast Flowクロマトグラフィーの順で実施した。SP Sepharose Fast Flowクロマトグラフィーでは、溶出画分の第三ピークを分画し、A1型M毒素を回収した。回収したA1型M毒素溶液をタンジェンシャルフロー式限外ろ過装置(ザルトリウス、30 KDa)で濃縮した後、0.2 mol/L塩化ナトリウムを含む50 mmol/L酢酸緩衝液、pH6.0でバッファー交換した。得られたA1型M毒素をSDS-PAGE試験した結果、M毒素以外のバンドを認めなかった。
Example 5 Separation and Purification of A1 Type M Toxin According to the Present Invention
A1 type Clostridium botulinum Hall strain was cultured by partially modifying the method of Siegel, LS et al. (Appl. Microbiol. Vol. 38, No. 4: 606-611., 1979). After 48 hours, 30 L of the culture broth was removed in the same manner as in Example 3 in the order of cell removal, concentration, buffer exchange, Q Sepharose Fast Flow chromatography, and SP Sepharose Fast Flow chromatography. In SP Sepharose Fast Flow chromatography, the third peak of the eluted fraction was fractionated to recover A1 type M toxin. The collected A1 type M toxin solution was concentrated with a tangential flow ultrafiltration device (Sartorius, 30 KDa), and then buffer exchanged with 50 mmol / L acetate buffer solution, pH 6.0 containing 0.2 mol / L sodium chloride. . As a result of SDS-PAGE test of the obtained A1 type M toxin, no band other than M toxin was observed.
《実施例6:本発明によるA1型NTXの分離・精製》
更に、実施例5にて回収したA1型M毒素溶液をタンジェンシャルフロー式限外ろ過装置(ザルトリウス、30 KDa)で濃縮した後、0.2 mol/L塩化ナトリウムを含む50mmol/L酢酸緩衝液、pH6.0でバッファー交換した。この濃縮液を予め0.2 mol/L塩化ナトリウムを含む50 mmol/L酢酸緩衝液、pH6.0で平衡化したSephacryl S-300 High Resolution(GEヘルスケア)へ展開し、ゲルろ過した。溶出された第一ピークを分画し回収した。以降の操作は、実施例4と同様に、濃縮、pH7.5緩衝液でのバッファー交換、DEAE Sepharose Fast Flowクロマトグラフィーの順で実施することにより、高度精製A1型NTX溶液を得た。培養液から高度精製A1型NTX溶液を精製するまでの製造期間は4日間であった。本試験で得られた結果を表2に示す。その結果、本発明により、高度精製A2型NTXと同様に高純度・高比活性のA1型NTXを精製することが可能であることが示された。このことから、本発明によれば、ボツリヌス毒素複合体の構成成分(LL毒素/L毒素/M毒素)が異なる菌株(B型〜G型)からでもNTXを高純度・高比活性で精製できることが期待できる。
Example 6 Separation and Purification of A1 Type NTX According to the Present Invention
Furthermore, after concentrating the A1 type M toxin solution collected in Example 5 with a tangential flow ultrafiltration device (Sartorius, 30 KDa), a 50 mmol / L acetate buffer containing 0.2 mol / L sodium chloride, pH 6 The buffer was exchanged at 0.0. This concentrated solution was developed on Sephacryl S-300 High Resolution (GE Healthcare) previously equilibrated with 50 mmol / L acetate buffer containing 0.2 mol / L sodium chloride, pH 6.0, and subjected to gel filtration. The eluted first peak was fractionated and collected. Subsequent operations were carried out in the same manner as in Example 4 in the order of concentration, buffer exchange with pH 7.5 buffer, and DEAE Sepharose Fast Flow chromatography to obtain a highly purified A1-type NTX solution. The production period from purification of the highly purified A1-type NTX solution from the culture was 4 days. The results obtained in this test are shown in Table 2. As a result, it was shown by the present invention that A1 type NTX having high purity and high specific activity can be purified in the same manner as highly purified A2 type NTX. Therefore, according to the present invention, NTX can be purified with high purity and high specific activity even from strains (types B to G) having different botulinum toxin complex components (LL toxin / L toxin / M toxin). Can be expected.
《実施例7:本発明によるA1型LL及びL毒素の分離・精製》
実施例5でのSP Sepharose Fast Flowクロマトグラフィーにおいて、溶出画分の第二ピークを分画し、LL毒素及びL毒素を回収した。回収したLL毒素及びL毒素混合溶液をタンジェンシャルフロー式限外ろ過装置(ザルトリウス、30 KDa)で濃縮した後、0.2 mol/L塩化ナトリウムを含む50 mmol/L酢酸緩衝液、pH6.0でバッファー交換した。得られたLL毒素及びL毒素混合溶液をSDS-PAGE試験した結果、LL毒素及びL毒素以外のバンドを認めなかった。
<< Example 7: Separation and purification of A1 type LL and L toxins according to the present invention >>
In SP Sepharose Fast Flow chromatography in Example 5, the second peak of the eluted fraction was fractionated to recover LL toxin and L toxin. Concentrate the collected LL toxin and L toxin mixed solution with a tangential flow ultrafiltration device (Sartorius, 30 KDa), then buffer with 50 mmol / L acetate buffer containing 0.2 mol / L sodium chloride, pH 6.0 Exchanged. As a result of SDS-PAGE test of the obtained LL toxin and L toxin mixed solution, bands other than LL toxin and L toxin were not recognized.
《実施例8:高度精製A2型NTXの安定性の比較》
従来技術(比較例2)及び本発明(実施例4)で調製した高度精製A2型NTX溶液の23℃における安定性を比較した。活性残存率の結果を図1に示した。その結果、本発明で調製した高度精製A2型NTXは、従来技術で調製した毒素に比べて毒素活性の低下はなかった。また、SDS-PAGE試験においても本発明で調製した高度精製A2型NTXに分解物は認められなかった。この結果は、本発明で調製した高度精製A2型NTXは従来技術で調製した毒素に比べて安定性が高いことを示すものであった。
<< Example 8: Comparison of stability of highly purified A2 type NTX >>
The stability at 23 ° C. of highly purified A2 type NTX solutions prepared in the prior art (Comparative Example 2) and the present invention (Example 4) was compared. The result of the activity remaining rate is shown in FIG. As a result, the highly purified A2 type NTX prepared by the present invention did not have a decrease in toxin activity compared to the toxin prepared by the prior art. In the SDS-PAGE test, no degradation product was observed in the highly purified A2-type NTX prepared in the present invention. This result indicates that the highly purified A2 type NTX prepared in the present invention is more stable than the toxin prepared by the prior art.
本発明によれば、従来技術と比較して、沈殿法・遠心分離を行わずに膜ろ過法とクロマトグラフィー法を組み合わせることによりボツリヌス菌培養液から極めて簡便に、短期間にかつ効果的に安定性の高いボツリヌス毒素を大量調製することが可能となった。また、沈殿法・遠心分離における沈殿物の回収作業を排除したことで、製造ラインの完全自動化設備・インライン化設備の提供が可能となった。さらに、作業員の介在がなくなるともに、毒素溶液が環境に曝露されることがないため、作業者の労働安全衛生環境及びGMP準拠並びに無菌性確保を向上することを可能にした。 According to the present invention, compared with the prior art, the membrane filtration method and the chromatography method are combined without performing the precipitation method / centrifugation, so that the botulinum culture solution is extremely easily and stably stabilized in a short time. It became possible to prepare a large amount of highly specific botulinum toxin. In addition, by eliminating the sediment collection work in the precipitation method and centrifugation, it has become possible to provide fully automated equipment and in-line equipment for the production line. In addition, there is no operator intervention and the toxin solution is not exposed to the environment, which makes it possible to improve workers' occupational safety and health environment, GMP compliance and sterility assurance.
Claims (23)
(a) 膜ろ過法により、ボツリヌス菌培養液からボツリヌス菌体を除去する工程、
(b) 前記(a)工程においてボツリヌス菌体が除去されたボツリヌス毒素溶液を陰イオン交換クロマトグラフィーカラムに展開する工程、
(c) ボツリヌス毒素成分がカラムに吸着するような条件下で、前記(b)工程において得られる陰イオン交換クロマトグラフィーカラムの回収画分を陽イオン交換クロマトグラフィーカラムに展開する工程、及び
(d) 前記陽イオン交換クロマトグラフィーから不純物を洗い流し、次いでボツリヌス毒素を溶出する工程。 The purification method according to claim 1, comprising the following steps.
(a) a step of removing botulinum cells from the Clostridium botulinum culture solution by a membrane filtration method,
(b) developing the botulinum toxin solution from which the botulinum cells have been removed in the step (a) on an anion exchange chromatography column,
(c) developing the recovered fraction of the anion exchange chromatography column obtained in the step (b) on a cation exchange chromatography column under conditions such that the botulinum toxin component is adsorbed on the column; and
(d) washing away impurities from the cation exchange chromatography and then eluting the botulinum toxin.
(e) ボツリヌス毒素成分がカラムに吸着し、かつ、ボツリヌス神経毒素(NTX)と無毒非HAタンパク質(NTNH)が解離するような条件下で、前記(d)工程で得られた陽イオン交換クロマトグラフィーの溶出画分を、第二陰イオン交換クロマトグラフィーカラムに展開する工程、及び
(f) 前記第二陰イオン交換クロマトグラフィーから不純物を洗い流し、次いでボツリヌス神経毒素(NTX)を溶出する工程。 The method for purifying botulinum toxin according to claim 1 or 2, further comprising the following steps after the steps (a) to (d).
(e) The cation exchange chromatography obtained in the step (d) under the condition that the botulinum toxin component is adsorbed on the column and the botulinum neurotoxin (NTX) and non-toxic non-HA protein (NTNH) are dissociated. Developing the elution fraction of the chromatography on a second anion exchange chromatography column; and
(f) washing away impurities from the second anion exchange chromatography and then eluting botulinum neurotoxin (NTX);
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009228199A JP2011074025A (en) | 2009-09-30 | 2009-09-30 | Method of purifying botulinus toxin |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009228199A JP2011074025A (en) | 2009-09-30 | 2009-09-30 | Method of purifying botulinus toxin |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2011074025A true JP2011074025A (en) | 2011-04-14 |
Family
ID=44018385
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009228199A Pending JP2011074025A (en) | 2009-09-30 | 2009-09-30 | Method of purifying botulinus toxin |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2011074025A (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016527257A (en) * | 2013-07-30 | 2016-09-08 | メルツ ファーマ ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディト ゲゼルシャフト アウフ アクティーン | Method for producing high purity neurotoxic component of botulinum toxin and its use |
US9469849B2 (en) * | 2009-10-21 | 2016-10-18 | Revance Therapeutics, Inc. | Methods and systems for purifying non-complexed botulinum neurotoxin |
KR101775682B1 (en) * | 2015-11-30 | 2017-09-06 | 주식회사 대웅 | Methods for Preparing Botulinum Toxin |
KR20180037420A (en) * | 2016-10-04 | 2018-04-12 | (주)메디톡스 | Method for isolating botulinum toxin from a solution containing botulinum toxin |
WO2020129986A1 (en) | 2018-12-21 | 2020-06-25 | 一般財団法人阪大微生物病研究会 | Botulinum toxin producing method |
WO2021124295A1 (en) * | 2019-12-20 | 2021-06-24 | Galderma Holding SA | Method of purifying botulinum toxin |
CN114269773A (en) * | 2019-08-14 | 2022-04-01 | 普罗-塔克斯公司 | Process for preparing botulinum toxin |
CN114341167A (en) * | 2019-04-15 | 2022-04-12 | 株式会社技特玛 | Method for purifying botulinum toxin |
EP3957648A4 (en) * | 2019-04-15 | 2023-02-08 | Jetema Co., Ltd. | Method for purifying botulinum toxin |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003009897A (en) * | 2001-07-03 | 2003-01-14 | Keiji Oguma | Method for separating and purifying botulinus toxin |
JP2003505343A (en) * | 1999-06-07 | 2003-02-12 | メルツ・ウント・コンパニー・ゲゼルシヤフト・ミト・ベシュレンクテル・ハフツング・ウント・コンパニー | Therapeutics containing botulinum neurotoxin |
WO2008050866A1 (en) * | 2006-10-27 | 2008-05-02 | Juridical Foundation The Chemo-Sero-Therapeutic Research Institute | Preparation containing highly purified botulinum toxin type a derived from infant botulism pathogen |
JP2008531046A (en) * | 2005-03-03 | 2008-08-14 | アラーガン、インコーポレイテッド | Animal-free product-free method and method for purifying botulinum toxin |
-
2009
- 2009-09-30 JP JP2009228199A patent/JP2011074025A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003505343A (en) * | 1999-06-07 | 2003-02-12 | メルツ・ウント・コンパニー・ゲゼルシヤフト・ミト・ベシュレンクテル・ハフツング・ウント・コンパニー | Therapeutics containing botulinum neurotoxin |
JP2003009897A (en) * | 2001-07-03 | 2003-01-14 | Keiji Oguma | Method for separating and purifying botulinus toxin |
JP2008531046A (en) * | 2005-03-03 | 2008-08-14 | アラーガン、インコーポレイテッド | Animal-free product-free method and method for purifying botulinum toxin |
WO2008050866A1 (en) * | 2006-10-27 | 2008-05-02 | Juridical Foundation The Chemo-Sero-Therapeutic Research Institute | Preparation containing highly purified botulinum toxin type a derived from infant botulism pathogen |
Non-Patent Citations (1)
Title |
---|
JPN6013055051; Water Treatment vol.10, no.3, 1995, p.229-234 * |
Cited By (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9469849B2 (en) * | 2009-10-21 | 2016-10-18 | Revance Therapeutics, Inc. | Methods and systems for purifying non-complexed botulinum neurotoxin |
US11466262B2 (en) | 2009-10-21 | 2022-10-11 | Revance Therapeutics, Inc. | Methods and systems for purifying non-complexed botulinum neurotoxin |
US10653754B2 (en) | 2013-07-30 | 2020-05-19 | Merz Pharmaceuticals Gmbh | Highly pure neurotoxic component of a botulinum toxin and uses thereof |
JP2016527257A (en) * | 2013-07-30 | 2016-09-08 | メルツ ファーマ ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディト ゲゼルシャフト アウフ アクティーン | Method for producing high purity neurotoxic component of botulinum toxin and its use |
KR101775682B1 (en) * | 2015-11-30 | 2017-09-06 | 주식회사 대웅 | Methods for Preparing Botulinum Toxin |
US11331598B2 (en) | 2016-10-04 | 2022-05-17 | Medytox Inc. | Method of isolating botulinum toxin from botulinum toxin-containing solution |
KR20180037420A (en) * | 2016-10-04 | 2018-04-12 | (주)메디톡스 | Method for isolating botulinum toxin from a solution containing botulinum toxin |
KR102485898B1 (en) | 2016-10-04 | 2023-01-09 | (주)메디톡스 | Method for isolating botulinum toxin from a solution containing botulinum toxin |
KR20220153536A (en) * | 2016-10-04 | 2022-11-18 | (주)메디톡스 | Method for isolating botulinum toxin from a solution containing botulinum toxin |
KR102463881B1 (en) * | 2016-10-04 | 2022-11-07 | (주)메디톡스 | Method for isolating botulinum toxin from a solution containing botulinum toxin |
WO2020129986A1 (en) | 2018-12-21 | 2020-06-25 | 一般財団法人阪大微生物病研究会 | Botulinum toxin producing method |
JPWO2020129986A1 (en) * | 2018-12-21 | 2021-11-04 | 一般財団法人阪大微生物病研究会 | How to make botulinum toxin |
KR20210106983A (en) | 2018-12-21 | 2021-08-31 | 잇판사이단호진한다이비세이부쯔뵤우겐큐우카이 | Method for making botulinum toxin |
US11926853B2 (en) | 2018-12-21 | 2024-03-12 | The Research Foundation For Microbial Diseases Of Osaka University | Botulinum toxin producing method |
JP7454507B2 (en) | 2018-12-21 | 2024-03-22 | 一般財団法人阪大微生物病研究会 | Method for producing botulinum toxin |
CN114341167A (en) * | 2019-04-15 | 2022-04-12 | 株式会社技特玛 | Method for purifying botulinum toxin |
EP3957647A4 (en) * | 2019-04-15 | 2023-01-18 | Jetema Co., Ltd. | Method for purifying botulinum toxin |
EP3957648A4 (en) * | 2019-04-15 | 2023-02-08 | Jetema Co., Ltd. | Method for purifying botulinum toxin |
CN114269773A (en) * | 2019-08-14 | 2022-04-01 | 普罗-塔克斯公司 | Process for preparing botulinum toxin |
WO2021124295A1 (en) * | 2019-12-20 | 2021-06-24 | Galderma Holding SA | Method of purifying botulinum toxin |
JP2023507653A (en) * | 2019-12-20 | 2023-02-24 | ガルデルマ・ホールディング・エスアー | Method for purifying botulinum toxin |
JP7708765B2 (en) | 2019-12-20 | 2025-07-15 | ガルデルマ・ホールディング・エスアー | Methods for Purifying Botulinum Toxin |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2011074025A (en) | Method of purifying botulinus toxin | |
Kandutsch et al. | PARTIAL PURIFICATION OF TISSUE ISOANTIGENS FROM A MOUSE SARCOMA1, 2 | |
JP6574528B2 (en) | Method for producing botulinum toxin | |
CN105153297B (en) | Method for separating and purifying α 2-macroglobulin from Cohn component IV precipitate | |
JP5443175B2 (en) | Method for purifying hydrophobic proteins | |
JP2003009897A (en) | Method for separating and purifying botulinus toxin | |
US5444159A (en) | Purification of a pertussis outer membrane protein | |
JP3438735B2 (en) | Method for isolating human albumin from supernatant IV, especially IV-4 or corn fraction V or a similar supernatant or fraction | |
CN101265288B (en) | Method for purifying CRM197 mutant | |
JP7454507B2 (en) | Method for producing botulinum toxin | |
CN112210002A (en) | Purification method of recombinant human serum albumin | |
KR102516204B1 (en) | A Purification Method of Botulinum Toxin | |
JPH05508546A (en) | Purification of Erwinia-L-asparaginase | |
JPH02167069A (en) | Staphylococcus epidermidis and pharmaceutical compositions | |
JPH04505706A (en) | Recombinant protein recovery method | |
CN114269773A (en) | Process for preparing botulinum toxin | |
CN1749274B (en) | A new separation and purification method of recombinant human interferon α2b | |
JP7680099B2 (en) | Method for purifying Clostridium botulinum neurotoxin proteins from which non-toxin proteins have been removed | |
TW202136286A (en) | Method of purifying botulinum toxin | |
CN113980103B (en) | Method for purifying mSEB antigen protein | |
JP2012112930A (en) | Method for purifying polymeric material | |
Dhulster et al. | Advancement in intermediate opioid peptide production in an enzymatic membrane reactor assisted by solvent extraction | |
CN108570098A (en) | A kind of isolation and purification method of a variety of antigenic components of pertussis | |
US20020015711A1 (en) | Purification of a pertussis outer membrane protein | |
JP2024522930A (en) | Method for purifying Clostridium botulinum toxin complex proteins |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20120515 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20140513 |